当前位置:文档之家› β内酰胺酶抑制剂复合制剂

β内酰胺酶抑制剂复合制剂

β内酰胺酶抑制剂对比

β-内酰胺类抗生素:联合酶抑制剂,提升抗菌能力 文张永信(复旦大学附属华山医院传染科教授) 基层医院2013年5月20日D11版 【问】氨曲南属于窄谱抗生素,有哪些药理特点?其临床适应证是什么? 【答】氨曲南是单环类β-内酰胺抗生素,主要针对革兰阴性(G-)菌。对肠杆菌和铜绿假单胞菌有效,但对不动杆菌、产碱杆菌以及革兰阳性(G+)菌和厌氧菌无效。该药化学结构特殊,对β-内酰胺酶稳定,毒性低;对青霉素和头孢菌素过敏的患者仍可选用该药。临床适用于敏感菌引起的脑膜炎、严重感染、院内感染、免疫缺陷者感染,以及不能使用青霉素和头孢菌素的患者。如合并有G+菌感染,应加用林可霉素或克林霉素。 【问】头霉素与二代头孢菌素,氧头孢烯类与三代头孢菌素的抗菌谱有什么不同?对临床适应证有何影响? 【答】头霉素与二代头孢菌素、氧头孢烯类与三代头孢菌素抗菌谱上的不同在于:头霉素、氧头孢烯类对各种厌氧菌(包括脆弱类杆菌)有良好的抗菌活性。由于头霉素和氧头孢烯类对需氧菌和厌氧菌均有良好的抗菌作用,常适用于需氧菌和厌氧菌的混合感染。 【问】β-内酰胺酶抑制剂与β-内酰胺类抗生素联用,有什么作用?舒巴坦、克拉维酸和三唑巴坦(他唑巴坦)在透过血脑屏障方面有何差异? 【答】β-内酰胺酶抑制剂可以保护β-内酰胺类抗生素免受细菌产生的β-内酰胺酶破坏,两者联合应用具有协同作用,能增强β-内酰胺类抗生素的抗菌效果。而且扩大了β-内酰胺类抗生素的抗菌谱。如原来对产酶葡萄球菌无效的药物,在联用后对产酶葡萄球菌有效。β-内酰胺类抗生素对脆弱类杆菌等厌氧菌的抗菌活性较弱,但联用后的复合制剂对厌氧菌具有良好的抗菌活性。 舒巴坦、克拉维酸和三唑巴坦对β-内酰胺酶都有抑制作用,但以三唑巴坦最强,其次为克拉维酸,舒巴坦最弱。在血脑屏障穿透力方面,舒巴坦比三唑巴坦更易透过,而克拉维酸基本不能透过。所以克拉维酸的复合制剂不宜用于中枢神经系统感染。 【问】氨苄西林/舒巴坦、阿莫西林/克拉维酸、替卡西林/克拉维酸、头孢哌酮/舒巴坦、哌拉西林/三唑巴坦这5种复合制剂在抗菌谱、临床适应证及不良反应方面有何异同? 【答】在抗菌谱方面,对厌氧菌的差别不大,对需氧菌有所不同。氨苄西林/舒巴坦、阿莫西林/克拉维酸对肠杆菌科细菌有良好的抗菌作用,但对铜绿假单胞菌和沙雷菌等没有抗菌作用;其他3种药物不仅对肠杆菌科细菌有良好抗菌作用,且优于前两者,对铜绿假单胞菌和沙雷菌、不动杆菌等葡萄糖不发酵菌也有良好的抗菌活性。 由于抗菌谱不同,临床适应证也就不同。氨苄西林/舒巴坦、阿莫西林/克拉维酸主要应用于肠杆菌科或肠杆菌科与厌氧菌的混合感染;由于克拉维酸的抑酶作用优于舒巴坦,阿莫

饲料添加剂——微生物复合酶制剂

饲料添加剂——微生物复合酶制剂 摘要:酶是一种专一性极高的生物催化剂,广泛应用于食品、纺织、饲料、医药、造纸等行业领域。本文从酶制剂的发展历史、微生物复合酶制剂的生产方式、影响因素和复合酶制剂最新的研究成果以及16SrRNA菌种鉴定技术在菌种筛选中的应用等几个方面做了简单的综述,并提出了今后的发展方向,指明微生物制备复合酶制剂有巨大的发展潜力。 关键词:研究进展;复合酶;微生物发酵; 16Sr RNA 酶是有活细胞产生的、催化特定生物化学反应的一种生物催化剂,酶制剂是经过提纯、加工后的具有催化功能的生物制品。酶作为一种饲料添加剂具有很多优点:(1)酶催化的反应需要在常温常压下进行,而且具有很高的效率和专一性,它不会有任何有害残留物质;(2)其用量小,经济合算;(3)酶反应条件温和、易操作、能耗低,还可避免因剧烈操作所造成营养成分的损失。因此,酶的应用正日益受到人们的重视。 大量的试验表明,酶制剂主要参与以下活动,发挥其作用:(1)参与细胞壁降解,使酶与底物充分接触,增进现有养分的消化;(2)水解非淀粉多糖(NSP),降解消化道内容物粘度;(3)消除抗营养因子;(4)补充内源酶的不足,改进动物自身肠道酶的作用效果;(5)使某些成分在消化道内的消化位点转移,如NSP的消化由大肠转入小肠,使消化后的营养更易于吸收;(6)改变消化道内菌群分布。 酶的制备主要有2种方法,即直接提取法和微生物发酵生产法。早期的酶制剂是以动植物作为原料,从中直接提取的。由于动植物生长周期长,又受地理、气候和季节等因素的影响,因此原料的来源受到了限制,不适于大规模的工业生产。目前生产上应用的酶制剂中,虽然动、植物来源的酶制剂还在发挥着不可忽视的作用,占很少的一部分,但人们正越来越多地转向以微生物作为酶制备的主要来源,如淀粉酶和蛋白酶的微生物制备已经实现工业化。目前已经能够大规模

β内酰胺类抗生素β内酰胺酶抑制剂合剂临床应用专家共识

β-内酰胺类抗生素/β-内酰胺酶抑制剂合剂临床应用专家共识 一、概述 革兰阴性菌是我国细菌感染性疾病最常见的病原体。近年来,革兰阴性菌对β-内酰胺类抗生素的耐药性不断增加,最重要的耐药机制是细菌产生各种β-内酰胺酶。β-内酰胺酶抑制剂能够抑制大部分β-内酰胺酶,恢复β-内酰胺类抗生素的抗菌活性。因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂合剂在临床抗感染中的地位不断提升,已成为临床治疗多种耐药细菌感染的重要选择。目前我国临床使用的β-内酰胺类抗生素/β-内酰胺酶抑制剂合剂的种类和规格繁多,临床医师对该类合剂的特点了解不够,临床不合理使用问题较突出。为规范β-内酰胺类抗生素/β-内酰胺酶抑制剂合剂的临床应用,延缓其耐药性的发生和发展,特制定本共识。 二、主要β-内酰胺酶及β-内酰胺酶抑制剂 β-内酰胺酶是由细菌产生的能水解β-内酰胺类抗生素的一大类酶。β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶、头孢菌素酶和碳青霉烯酶等;根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法),将β-内酰胺酶分为丝氨酸酶和金属酶。目前引用较多的是基于上述2种方法建立的分类方法。见表1。 表1:β-内酰胺酶的分类和3种主要酶抑制剂的作用 功能分类分 子 分 型 主要底物 可被抑制 代表性酶 克 拉 维 酸 舒 巴 坦 他 唑 巴 坦 1 C 头孢菌素类- - - AmpC,ACT-1,CMY-2,FOX-1,MIR-1 2a A 青霉素类+ + + 青霉素酶 2b A 青霉素类,窄谱头孢菌素类+ + + TEM-1,TEM-2,SHV-1 2be A 青霉素类,超广谱头孢菌素类,单环酰胺类+ + + TEM-3,SHV-2,CTX-M-15,PER-1,VER-1 2br A 青霉素类- - - TEM-30,SHV-10,TRC-1

复合酶制剂的研究及应用进展

复合酶制剂的研究及应用进展 农业大学动物科学技术学院/罗士津瞿明仁 中国农业科学院畜牧兽医研究所动物营养国家重点实验室/铁鹰 原刊于《新饲料》杂志2007年第4期 摘要:复合酶制剂在现代畜牧业生产中的应用非常广泛,而且起到了令人鼓舞的效果,该文综述了饲料中的抗营养因子、复合酶制剂的作用机制、影响复合酶作用效果的因素以及复合酶制剂在畜牧业中的作用效果,旨在为畜牧业生产提供理论依据。 关键词:复合酶制剂;作用机制;生产性能 酶是一种生物催化剂,对畜禽的消化吸收极为重要。酶制剂是应用物理或化学的方法,将生物体产生的酶提取出来制成的产品。近年来,随着中国畜牧业的快速发展和微生物技术在畜牧业上的应用,国已开发生产出许多不同类型的畜禽用复合酶制剂。 复合酶中存在多种酶活,其中主要为非淀粉多糖酶(NSP酶)。复合酶中的各种酶活起着互相补充、相辅相成的作用,在各种酶的共同作用下,动物饲料中的一些抗营养因子被破坏,其抗营养作用消失,因而可以促进动物的生长,提高动物的免疫力,增进动物健康。饲用复合酶中各种酶的种类和比例与动物饲粮有关.不同饲粮所含抗营养因子的种类和比例不同,需要饲用酶制剂所含酶的种类和比例也不同。 1 复合酶制剂分类 抗生素是应用最广泛的抗菌类药物之一。在过去的5O多年中,由于抗生素的长期使用,导致大量耐药菌株的产生,且病原菌抗药性逐年增强,致使疗效下降,剂量提高。为此,世界卫生组织于1994年就细菌耐药性的监测结果给全世界提出了警告:细菌对抗生素产生的耐药性正在以惊人的速度增加。而现有的抗生素药物正在失去原来的疗效。因此,寻求一种高效的绿色产品已成为当今畜牧生产的迫切需求。 酶广泛存在于生物体,参与新代等多种生理功能,其中对微生物细胞壁有水解功能的酶能够溶解微生物细胞壁而使其死亡。由于水解酶的特异性很强,微生物的细胞壁结构和化学组成又存在差异,因此一种酶只能对某一类微生物有水解作用。即使对于某一特定微生物,由于细胞壁化学组成的复杂性,也需要不同类型水解酶的组合,才能有更好的作用效果。 水解酶具有对某一病原菌所有血清型都有效的优点,当几种酶复合后,对不同类型的病原菌均有效,克服了一种抗生素只能预防一种病原菌或一种血清型病原菌的不足,也不存在药物残留和耐药性的问题。 溶菌酶在医药和食品行业中已开始使用,作为畜禽饲料添加剂则刚刚起步,仅前联、法国、德国和美国做了一些初步研究,目前国也已开始了相关研究。而对复合杀菌酶药物的研究,国外均刚刚起步。高效、绿色养殖已成为当今养殖的主题,而复合酶制剂正是这个情况下诞生的产物,复合酶制剂将为养鸡业生产带来福音。

复合酶制剂的研究进展

河北畜牧兽医饵料夭地复合酶制剂的研究进展 李晓东1.2.董文成1 (1.廊坊市畜牧水产局,河北廊坊065000; 2.中国农业大学农业推广专业,北京100094) 1酶制剂的种类 目前已发现的酶种类很多,生产上可以应用的酶已达到300多种,用于饲料的也有20多种。饲用酶制剂大致分为内源性消化酶、外源性消化酶和复合酶。 1.1内源性消化酶:内源性消化酶是指动物体内能够自身合成并分泌到消化道的一类酶。通常养殖动物内源性酶类不足会直接影响到饲养效果。内源性酶不足有两种情况:一是动物体内酶系不全。如非草食性动物缺乏纤维素酶、植酸酶等。二是生理性内源酶分泌不足。即当动物处于幼年、老年、疾病或应激状态时,也会出现内源酶分泌量的减少。添加内源性酶类似物的结构和性质,可能不同于内源酶,但功能相同,统称内源性酶。该类酶主要包括淀粉酶、蛋白酶和脂肪酶等。 1.2外源性消化酶:畜禽体内不能够合成外源性消化酶,一般需要添加到动物体内。用于消化动物自身不能消化的物质或降解抗营养因子或有害物质等。这类酶主要包括纤维紊酶、半纤维素酶、植酸酶、果胶酶等。 1.3复合酶类:随着单酶制剂生产的工业化发展及价格的降低,复合酶制剂的使用便越来越多.这是一类最常用的酶制剂。复合酶制剂是由一种或几种单一酶制剂为主体,加上其他单一酶制剂混合而成的:可同时降解饲料中多种需降解的抗营养因子及多种养分,最大限度地提高饲料的营养价值。复合酶制剂主要有以下几类:一是以蛋白酶、淀粉酶为主的饲用复合酶,主要用于补充动物内源酶的不足:二是以B一葡聚糖酶为主的饲用复合酶,主要用于以大麦、燕麦为主的饲料原料:三是以纤维素酶、果胶酶为主的饲用复合酶,主要作用是破坏植物细胞壁,释放细胞中的营养物质,同时消除饲料中的抗营养因子,降低胃肠道内容物的黏度,促进动物的消化吸收;四是以纤维素酶、蛋白酶、淀粉酶、糖化酶、B一葡聚糖酶、果胶酶为主的饲用复合酶,综合各种酶类的共同作用,具有更强的辅助消化作用。 2酶制剂在饲料中的作用 2.1直接分解营养物质,提高饲料的利用效率。动物饲料组分多为谷物类及粕类,植物细胞壁的存在影响了养分的消化吸收。具有活性的各种酶能有效地将饲料的一些大分子多聚体分解和消化成动物容易吸收的营养物质或分解成小片段营养物质.使其他消化酶进一步消化一些动物本身难以分解和吸收的大分子物质。 2.2补充内源酶的不足,激活内源酶的分泌消化功能。正常的健康成年动物,在适宜的生产条件下,能分泌足够的消化饲料中淀粉、蛋白质、脂类等养分的酶。但幼年动物或动物处于高温、寒冷、转群、疾病等应激状态时,动物分泌酶的能力较弱或者易出现消化机能紊乱,内源消化酶分泌减少,因此在日粮中添加外源性消化酶,可以补充内源酶的不 足,提高饲料的利用率,改善动物的消化能力,减少应激条 件下生产能力的I:下降.同时还可以促进内涿酶的分泌。 2.3消除抗营养因子,改善消化机能。植物性饲料原料中常常存在一些非淀粉糖、果胶、纤维素聚合物,这些物质 使动物消化道内容物的黏度增加,影响动物对有效营养成 分的消化和吸收。酶制剂中多种酶特别是B一葡聚糖酶、果 胶酶和纤维素酶能够将这些物质分解为小分子物质,从而 降低了消化道的黏度,有效消除这些抗营养因子的不良影 响,改善了动物的消化机能。 2.4提高植酸磷的利用率。由于植物含有相当多的植酸,而植酸容易与磷结合,结合态的磷是不能被动物吸收利 用的.因而降低了磷的利用率。而植酸酶能将该结合物水 解,生成游离态的磷,供动物消化利用。 2.5使某些成分在消化道内的消化位点转移。如NSP的消化有大肠转入小肠.但是消化后的营养更容易吸收。 3研究现状 3.1从世界养禽业来看,肉鸡应用酶制剂比较早并产生了比较好的效益。20世纪80年代,在欧洲,大麦比较便宜, 营养学家研究在肉鸡日粮中添加B一葡聚糖酶以减少日粮 中大麦的负面影响。其结果得到一个黄金定律:大麦+8一葡 聚糖酶=小麦。紧接着,小麦+木聚糖酶=玉米,也得到证实。 20世纪90年代。酶在饲料工业中的应用得到了普遍认可。 1996年,欧洲80%的肉鸡饲料<粘性谷物为能量来源)中含 有纤维素降解酶。越来越多的证据表明。黄金日粮(玉米一豆 粕型日粮)也可以通过酶来改善其营养价值。03.2有关酶制剂对反刍动物作用的研究,始于20世纪60年代,但酶制剂的作用效果添稳定。20世纪90年代中后 期,随着发酵成本的降低,以及更多韵活:性更高酶制剂的问 世,研究者垂薪开始-『外源性酶翩剂对反刍动物作用的研 究。t肉牛应用酶澍剂早期的研究,没有考虑到日粮组成、日 粮类型、酶活性水平或者酶的使用方法等因素对肉牛生产 性能的影响。近年来的研究开始偏重于此。例如:使用不同 水平(0.25--4.01.h)的木聚糖酶和纤维素酶的混合物以及单 一纤维素酶,均能使饲喂紫花苜蓿干草或猫尾草干草的阉 牛的ADG增加30%和36%。但是没有改善饲喂大麦青贮日 粮牛的ADG。当类似的酶制剂添加到95%的大麦日粮中。 牛的饲料效率改善了1l%;而添加到95%的玉米日粮后.牛 的饲料效率并没有改善。与肉牛上的研究一样,外源性酶制 剂对奶牛生产性能的影响也是不稳定的。在荷斯坦牛高粱 日粮中添加复合酶制剂,其产奶量并没有增加。相反,给奶 牛饲喂由50%精料和喷洒两种酶制剂的玉米青贮组成的日 粮。产奶量增加2.Skg/d,奶的成分没有受到影响。 3-3我国饲用酶的研究始于70年代,曾进行过酶曲的生产,并应用于饲料——发酵饲料。此后,酶制剂的研究、开 加o 2005年第21卷第6期

β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识(2020年版)

β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用 专家共识(2020年版) 一、概述 革兰阴性菌及少数革兰阳性菌对β-内酰胺类抗生素耐药的最重要机制是产生各种β-内酰胺酶。β-内酰胺酶抑制剂能够抑制部分β-内酰胺酶,避免β-内酰胺类抗生素被水解而失活。因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂复方制剂(简称β-内酰胺酶抑制剂复方制剂)是临床治疗产β-内酰胺酶细菌感染的重要选择。我国临床使用的β-内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。 二、主要β-内酰胺酶及产酶菌流行情况 β-内酰胺酶是由细菌产生的,能水解β-内酰胺类抗生素的一大类酶。β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种: 一、是根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),其将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶(ESBLs)、头孢菌素酶(AmpC酶)和碳青霉烯酶等; 二、是根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法),将β-内酰胺酶分为丝氨酸酶(包括A类、C类酶和D 类酶)及金属酶(B类酶)。目前引用较多的是1995年Bush等基于上述二种方法建立的分类方法,2019年Bush等又将该分类表进一步完善和细化(表1)。其中临床意义最大的是下列三类β-内酰胺酶: 表1 常见β-内酰胺酶分类及特点,常见酶抑制剂抑酶活性

1、ESBLs主要属2be\2br\2ber类酶,是由质粒介导的能水解青霉素类、头孢菌素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。根据编码基因的同源性,ESBLs可分为TEM型、SHV型、CTX-M 型、OXA型和其他型共5大类型。 2、AmpC酶属C类酶,通常由染色体介导,可以被β-内酰胺类抗生素诱导。部分由质粒介导,常呈持续高水平表达。其对第一、二、三代头孢菌素水解能力强,但对碳青霉烯类抗生素和第四代头孢菌素的水解能力弱。该酶主要存在于肠杆菌属、柠檬酸杆菌属、普鲁菲登菌属、黏质沙雷菌属和摩根菌属等细菌,非发酵菌中主要见于铜绿假单胞菌。质粒介导的β-内酰胺酶可分为CMY-2组、CMY-1组、MIR-1/ACT-1组、DHA-1组和ACC-1组等。 3、碳青霉烯酶是指能水解碳青霉烯类抗生素的一大类β-内酰胺酶,分别属于Ambler分子分类中的A类、B类和D类酶。A类、D类为丝氨酸酶,B类为金属酶,以锌离子为活性中心。A类碳青霉烯酶可由染色体介导,也可由质粒介导。前者包括SME、NMC和IMI酶等,后者包括KPC和GES酶等。KPC酶是近年来肠杆菌科细菌尤其是肺炎克雷伯菌对包括碳青霉烯类抗生素在内的几乎所有β-内酰胺类抗生素耐药的最主要机制,我国最常见的是KPC-2,其对头孢吡肟和头孢他啶的水解能力相对较弱。

复合酶制剂在食品工业中的应用

复合酶制剂在食品工业中的应用 酶制剂作为一类绿色食品添加剂,用于改善食品品质和食品制造工艺,其应用已越来越普遍,品种也不断增多。为了达到理想的酶制剂应用效果,并帮助酶制剂客户有效方便地使用酶制剂,酶制造商针对不同的食品加工应用领域特点,已经开发出各种专用复合酶制剂,把几种酶制剂混合使用往往有协同增效作用,还可减少单一酶的使用量,其在食品中的应用方兴未艾,现就复合酶制剂在食品工业中的研究与应用作一简单介绍。 一、面粉加工小麦、玉米、大麦、高粱、燕麦、荞麦等谷物主要成分是淀粉,其次是蛋白质,在其面食品(包焙烤食品、面条、饼干等)加工中主要使用淀粉酶和蛋白酶,同时木聚糖酶、脂肪酶、葡萄糖氧化酶、转谷氨酰胺酶、脂肪氧化酶、植酸酶等可赋予谷物食品特殊的风味、良好的品质以及增加营养,因此复合型酶制剂是面粉改良剂首选。 1、真菌α-淀粉酶真菌α-淀粉酶由米曲霉或黑曲酶产生,它能从淀粉分子内部切开α-1,4键生成各种寡糖,在长时间作用下,还可切开这些寡糖α-1,4键而生成麦芽糖,故又称麦芽糖生成酶。在面团发酵食品制作过程中,适量加入真菌α-淀粉酶,面粉中的淀粉被水解成麦芽糖,麦芽糖又在酵母本身分泌的麦芽糖酶作用下,水解成葡萄糖供酵母利用,从而为酵母的发酵提供足够的糖源作为营养物质,使面包变得柔软,增强伸展性和保持气体的能力,容积增大,出炉后制成触感良好面包。

2、木聚糖酶木聚糖酶是一种戊聚糖酶,面粉中存在着非淀粉多糖戊聚糖,在面粉中添加木聚糖酶,能使水不溶性戊聚糖增溶,可提高面筋网络的弹性,增强面团稳定性,改善加工性能,改进面包瓤的结构,增大面包体积。因面粉中的水不溶性戊聚糖对面包的品质有消极影响,它使面包体积减小,面包瓤质构变差,面包品质恶化。而水溶性戊聚糖则对面包品质起到积极作用。戊聚糖酶对水不溶性戊聚糖的增溶作用,一定程度上减小了水不溶性戊聚糖的消极影响,改善了面团的操作性能及面团的稳定性,增大了成品体积,提高了成品的质量。 3、葡萄糖氧化酶葡萄糖氧化酶在氧气的存在的条件下能将葡萄糖转化为葡萄糖酸,同时产生过氧化氢。过氧化氢是一种很强的氧化剂,能够将面筋分子中的巯基(-SH)氧化为二硫键(-S-S-),从而增强面筋的强度。提高面团延展性、增大面包体积,可取代对人体有致癌作用的溴酸钾KBrO4。在面条生产中,葡萄糖氧化酶有助面筋蛋白之间形成较好的蛋白质网络结构,增加面条的咬劲。 4、脂肪酶脂肪酶能水解脂肪成单酰甘油和二酰甘油,单酰甘油能与淀粉结合形成复合粉,从而延缓淀粉的老化,在面包使用脂肪氧化酶,使面包增白,改善风味。在面条面团中使用脂肪酶,可使天然脂质得到改性,生成脂质和淀粉复合物,可防止直链淀粉在膨胀和煮熟过程中渗出,减少面团上出现斑点。 5、植酸酶植酸其化学结构为肌醇六磷酸酯,由于分子中含有6个磷酸基团,具有强大的络合能力。植酸与蛋白质,钙、锰、铁等无机盐和维生素等螯合,使它们不能被利用,限制了面粉中无机盐的活性。使用植酸酶,可使面团中植酸水

复合酶制剂在食品工业中的应用范文知识分享

江南大学生物工程学院余晓斌 酶制剂作为一类绿色食品添加剂,用于改善食品品质和食品制造工艺,其应用已越来越普遍,品种也不断增多。为了达到理想的酶制剂应用效果,并帮助酶制剂客户有效方便地使用酶制剂,酶制造商针对不同的食品加工应用领域特点,已经开发出各种专用复合酶制剂,把几种酶制剂混合使用往往有协同增效作用,还可减少单一酶的使用量,其在食品中的应用方兴未艾,现就复合酶制剂在食品工业中的研究与应用作一简单介绍。 一、面粉加工 小麦、玉米、大麦、高粱、燕麦、荞麦等谷物主要成分是淀粉,其次是蛋白质,在其面食品(包焙烤食品、面条、饼干等)加工中主要使用淀粉酶和蛋白酶,同时木聚糖酶、脂肪酶、葡萄糖氧化酶、转谷氨酰胺酶、脂肪氧化酶、植酸酶等可赋予谷物食品特殊的风味、良好的品质以及增加营养,因此复合型酶制剂是面粉改良剂首选。 真菌α-淀粉酶 真菌α-淀粉酶由米曲霉或黑曲酶产生,它能从淀粉分子内部切开α-1,4键生成各种寡糖,在长时间作用下,还可切开这些寡糖α-1,4键而生成麦芽糖,故又称麦芽糖生成酶。在面团发酵食品制作过程中,适量加入真菌α-淀粉酶,面粉中的淀粉被水解成麦芽糖,麦芽糖又在酵母本身分泌的麦芽糖酶作用下,水解成葡萄糖供酵母利用,从而为酵母的发酵提供足够的糖源作为营养物质,使面包变得柔软,增强伸展性和保持气体的能力,容积增大,出炉后制成触感良好面包。 木聚糖酶 木聚糖酶是一种戊聚糖酶,面粉中存在着非淀粉多糖戊聚糖,在面粉中添加木聚糖酶,能使水不溶性戊聚糖增溶,可提高面筋网络的弹性,增强面团稳定性,改善加工性能,改进面包瓤的结构,增大面包体积。因面粉中的水不溶性戊聚糖对面包的品质有消极影响,它使面包体积减小,面包瓤质构变差,面包品质恶化。而水溶性戊聚糖则对面包品质起到积极作用。戊聚糖酶对水不溶性戊聚糖的增溶作用,一定程度上减小了水不溶性戊聚糖的消极影响,改善了面团的操作性能及面团的稳定性,增大了成品体积,提高了成品的质量。 葡萄糖氧化酶 葡萄糖氧化酶在氧气的存在的条件下能将葡萄糖转化为葡萄糖酸,同时产生过氧化氢。过氧化氢是一种很强的氧化剂,能够将面筋分子中的巯基(-SH)氧化为二硫键(-S-S-),从而增强面筋的强度。提高面团延展性、增大面包体积,可取代对人体有致癌作用的溴酸钾KBrO4。在面条生产中,葡萄糖氧化酶有助面筋蛋白之间形成较好的蛋白质网络结构,增加面条的咬劲。 脂肪酶

β内酰胺酶及其抑制剂简介

β-内酰胺酶及其抑制剂简介 抗菌药是指能抑制或杀灭细菌,用于预防和治疗细菌性感染的药物。抗菌药包括人工合成抗菌药(喹诺酮类等)和抗生素。抗生素(antibiotics)是由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或其它活性的一类次级代谢产物,能干扰其他生活细胞发育功能的化学物质。现临床常用的抗生素有微生物培养液中提取物以及用化学方法合成或半合成的化合物。随着抗生素药物使用的大量普及,抗生素耐药形势也日趋严峻。抗生素耐药的主要机制为产生β-内酰胺酶。β-内酰胺酶依据分子结构中氨基酸序列差异可主要分为两类,分别是以丝氨酸为活性位点的A、C、D类,还有以金属离子为活性位点的B(金属酶)类。病原菌产生β-内酰胺酶,致使一些药物β-内酰胺环水解而失活,是病原菌对一些常见的β-内酰胺类抗生素(青霉素类、头孢菌素类)耐药的主要方式。随着β-内酰胺酶的泛滥,一些β-内酰胺酶抑制剂应运而生。β-内酰胺酶抑制剂是一类β-内酰胺类药物,可与β-内酰胺酶发生牢固的结合而使酶失活,和其他抗生素联用可增强其抗菌活性,减少其用量。在治疗微生物感染时,常将β-内酰胺类抗生素与β-内酰胺酶抑制剂联用,治疗效果显著。本文将对β-内酰胺酶及当前常用的抑制剂(克拉维酸钾、舒巴坦、他唑巴坦)的作用特点作简要介绍,以便于临床医生在应用这类药物时的选择 β-内酰胺酶分类 根据Bush2-Jacoby-Medeiros的分类法, β-内酰胺酶以底物谱和抑制剂不同分为4组,按各自的氨基酸和核苷酸序列属于A、B、C、D 4 类(表1) 。第1组是不被克拉维酸抑制的头孢菌素酶,分子类别属于C类,本组酶大部分由染色体介导,也可由质粒介导。第 2 组β-内酰胺酶数目最多,可被克拉维酸抑制,多由质粒介导。本组酶根据对青霉素、头孢菌素、肟类β-内酰胺抗生素,邻氯西林、羧苄西林和碳青霉烯类的水解活性分属2a 、2b 、2be 、2c 、2d 、2e 6 个亚组,最近发现的不能被克拉维酸抑制的TEM 型酶和染色体介导的A 类碳青霉烯酶分别属于2br 和2f个亚组,除2d的分子类别为D类,其余各亚组均为类。第3 组酶的作用需金属离子Zn2 +的参与,故称为金属β-内酰胺酶。分子类别属B 类,不被克拉维酸抑制。本类酶底物水解谱广对青霉素类、头孢菌素类、碳青霉烯类和β-内酰胺酶抑制剂等广泛耐药。第 4 组酶包括少数青霉素酶,不被克拉维酸抑制,分子类别未定。

复合酶制剂的研究及应用进展(实操分享)

复合酶制剂的研究及应用进展 江西农业大学动物科学技术学院/罗士津瞿明仁 中国农业科学院北京畜牧兽医研究所动物营养国家重点实验室/张铁鹰 原刊于《新饲料》杂志2007年第4期 摘要:复合酶制剂在现代畜牧业生产中的应用非常广泛,而且起到了令人鼓舞的效果,该文综述了饲料中的抗营养因子、复合酶制剂的作用机制、影响复合酶作用效果的因素以及复合酶制剂在畜牧业中的作用效果,旨在为畜牧业生产提供理论依据。 关键词:复合酶制剂;作用机制;生产性能 酶是一种生物催化剂,对畜禽的消化吸收极为重要。酶制剂是应用物理或化学的方法,将生物体产生的酶提取出来制成的产品。近年来,随着中国畜牧业的快速发展和微生物技术在畜牧业上的应用,国内已开发生产出许多不同类型的畜禽用复合酶制剂。 复合酶中存在多种酶活,其中主要为非淀粉多糖酶(NSP酶)。复合酶中的各种酶活起着互相补充、相辅相成的作用,在各种酶的共同作用下,动物饲料中的一些抗营养因子被破坏,其抗营养作用消失,因而可以促进动物的生长,提高动物的免疫力,增进动物健康。饲用复合酶中各种酶的种类和比例与动物饲粮有关.不同饲粮所含抗营养因子的种类和比例不同,需要饲用酶制剂所含酶的种类和比例也不同。 1 复合酶制剂分类 抗生素是应用最广泛的抗菌类药物之一。在过去的5O多年中,由于抗生素的长期使用,导致大量耐药菌株的产生,且病原菌抗药性逐年增强,致使疗效下降,剂量提高。为此,世界卫生组织于1994年就细菌耐药性的监测结果给全世界提出了警告:细菌对抗生素产生的耐药性正在以惊人的速度增加。而现有的抗生素药物正在失去原来的疗效。因此,寻求一种高效的绿色产品已成为当今畜牧生产的迫切需求。 酶广泛存在于生物体内,参与新陈代谢等多种生理功能,其中对微生物细胞壁有水解功能的酶能够溶解微生物细胞壁而使其死亡。由于水解酶的特异性很强,微生物的细胞壁结构和化学组成又存在差异,因此一种酶只能对某一类微生物有水解作用。即使对于某一特定微生物,由于细胞壁化学组成的复杂性,也需要不同类型水解酶的组合,才能有更好的作用效果。 水解酶具有对某一病原菌所有血清型都有效的优点,当几种酶复合后,对不同类型的病原菌均有效,克服了一种抗生素只能预防一种病原菌或一种血清型病原菌的不足,也不存在药物残留和耐药性的问题。 溶菌酶在医药和食品行业中已开始使用,作为畜禽饲料添加剂则刚刚起步,仅前苏联、法国、德国和美国做了一些初步研究,目前国内也已开始了相关研究。而对复合杀菌酶药物的研究,国内外均刚刚起步。高效、绿色养殖已成为当今养殖的主题,而复合酶制剂正是这个情况下诞生的产物,复合酶制剂将为养鸡业生产带来福音。

β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识(2020年版)

3-内酰胺类抗生素B内酰胺酶抑制剂复方制剂临床应用 专家共识(2020年版) 一、概述 革兰阴性菌及少数革兰阳性菌对3 -内酰胺类抗生素耐药的最重要机制是产 生各种3 -内酰胺酶。3 -内酰胺酶抑制剂能够抑制部分3 -内酰胺酶,避免3 - 内酰胺类抗生素被水解而失活。因此,3 -内酰胺类抗生素/ 3-内酰胺酶抑制 剂复方制剂(简称3 -内酰胺酶抑制剂复方制剂)是临床治疗产3 -内酰胺酶 细菌感染的重要选择。我国临床使用的3 -内酰胺酶抑制剂复方制剂的种类 和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。 二、主要3-内酰胺酶及产酶菌流行情况 3-内酰胺酶是由细菌产生的,能水解3 -内酰胺类抗生素的一大类酶。3-内 酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种: 一、是根据3 -内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),其将3 -内酰胺酶分为青霉素酶、广谱酶、超广谱 3-内酰胺酶(ESBLs)、头抱菌素酶(AmpC酶)和碳青霉烯酶等; 二、是根据3-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法),将3 -内酰胺酶分为丝氨酸酶(包括A类、C类酶和D 类酶)及金属酶(B类酶)。目前引用较多的是1995年Bush等基于上述 二种方法建立的分类方法,2019年Bush等又将该分类表进一步完善和细 化(表1)。其中临床意义最大的是下列三类3 -内酰胺酶:

表1常见B-内酰胺酶分类及特点,常见酶抑制剂抑酶活性

1、E SBLs主要属2be\2br\2ber 类酶,是由质粒介导的能水解青霉素类、头抱 菌素及单环酰胺类等B -内酰胺类抗生素的B -内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。根据编码基因的同源性,ESBLs可分为TEM型、SHV型、 CTX-M型、OXA型和其他型共5大类型。 2、A mpC酶属C类酶,通常由染色体介导,可以被B -内酰胺类抗生素诱导。部分由质粒介导,常呈持续高水平表达。其对第一、二、三代头抱菌素水解能力强,但对碳青霉烯类抗生素和第四代头抱菌素的水解能力弱。该酶主要存在于肠杆菌 属、柠檬酸杆菌属、普鲁菲登菌属、黏质沙雷菌属和摩根菌属等细菌,非发酵菌

一种复合微生物酶制剂的配制

SooPAT 复合微生物酶制剂及其制备方法 申请号:201110173000.8 申请日:2011-06-24 申请(专利权)人泸州品创科技有限公司 地址646000 四川省泸州市龙马潭区南光路9号泸州老窖广场泸州 品创科技有限公司 发明(设计)人张宿义方军易彬卢中明敖宗华 主分类号C12G3/02(2006.01)I 分类号C12G3/02(2006.01)I C12R1/01(2006.01)N C12R1/865(2006.01)N 公开(公告)号102286322A 公开(公告)日2011-12-21 专利代理机构成都虹桥专利事务所 51124 代理人柯海军武森涛

(10)申请公布号 CN 102286322 A (43)申请公布日 2011.12.21C N 102286322 A *CN102286322A* (21)申请号 201110173000.8 (22)申请日 2011.06.24 C12G 3/02(2006.01) C12R 1/01(2006.01) C12R 1/865(2006.01) (71)申请人泸州品创科技有限公司 地址646000 四川省泸州市龙马潭区南光路 9号泸州老窖广场泸州品创科技有限 公司 (72)发明人张宿义 方军 易彬 卢中明 敖宗华 (74)专利代理机构成都虹桥专利事务所 51124 代理人柯海军 武森涛 (54)发明名称 复合微生物酶制剂及其制备方法 (57)摘要 本发明涉及复合微生物酶制剂及其制备方 法,属于微生物领域。本发明所要解决的技术问 题是提供一种生产复合微生物酶制剂的方法,该 复合微生物酶制剂可以用于酒糟的发酵生香,从 而提高生产的白酒品质。本发明生产复合微生 物酶制剂的方法包括如下步骤:a 、己酸菌液的制 备;b 、窖泥富集菌液的制备;c 、窖泥功能菌的制 备:己酸菌液与窖泥富集菌液混合,接种于窖泥 功能菌培养基中,32~36℃下培养22~27d , 得到窖泥功能菌液,干燥,得到干制窖泥功能菌; d 、干制窖泥功能菌以菌干重计、生香酵母、B 类 酶促物质、红曲酯化酶按重量配比1∶0.25~ 0.35∶1~2∶0.30~0.45混合,得到复合微 生物酶制剂。(51)Int.Cl. (19)中华人民共和国国家知识产权局(12)发明专利申请 权利要求书 2 页 说明书 5 页

内酰胺酶抑制剂研究进展

浅谈β-内酰胺酶及其抑制剂 摘要:随着抗生素药物使用的大量普及,抗生素耐药形势也日趋严峻。抗生素耐 药的主要机制为产生β-内酰胺酶。β-内酰胺酶依据分子结构中氨基酸序列差异 可主要分为两类,分别是以丝氨酸为活性位点的A、C、D类,还有以金属离子 为活性位点的金属酶类。随着β-内酰胺酶的泛滥,一些β-内酰胺酶抑制剂应运 而生。在治疗微生物感染时,常将抗生素与β-内酰胺酶抑制剂联用,治疗效果 显著。本文将对β-内酰胺酶及其抑制剂进行简要的介绍。 关键词:β-内酰胺酶β-内酰胺酶抑制剂细菌耐药 On the β-lactamase and its inhibitors Abstract :With the increasing popularity of the use of antibiotic, the situation of antibiotic resistance becomes worsening. The main mechanism of antibiotic resistance is due to the producing of β-lactamase.β-lactamase can be divided into two categories based on its amino acid sequence in molecular structure. The class of A, C, and D is of Ser active site while the class of B has metal ions in its active site. Some β-lactamase inhibitor come into being because of the spreading of β-lactamase. In the treatment of microbial infection, a number of commonly used antibiotics and β -lactamase inhibitor were combined with favored results. In this article, I will have a briefintroduction ofβ-lactamase and its inhibitor. Keywords :β-lactamase β-lactamase inhibitor antibiotic resistance 1 抗生素耐药性及其耐药机制 抗生素(antibiotic)是生物在其生命活动过程中产生的(以及用化学、生物、 生物化学方法衍生的),能在低微浓度下有选择性抑制或影响它种生物功能的有 机化合物。细菌耐药性(antibiotic resistance)是指细菌对抗生素不敏感的现象, 又可分为固有耐药(intrinsic resistance)和获得性耐药(acquired resistance)。固有 耐药是由细菌染色体基因决定、代代相传,不会改变的。如链球菌对氨基糖苷类 抗生素天然耐药。获得性耐药是由于细菌与抗生素接触后,通过改变自身的代谢 途径,使其不被抗生素杀灭。如本文将重点讨论的细菌对β-内酰胺酶的耐药性。 抗生素的作用机制如下表所示: 表一抗生素的作用机制 作用机制代表抗生素 干扰细菌细胞壁的合成,使其不能生长繁殖β-内酰胺类、万古霉素、环丝霉素 损伤细菌细胞膜,破坏其屏障作用多粘菌素B、两性霉素B、制霉菌素等影响细菌蛋白质合成,四环素、氯霉素、大环内酯类等 抑制核酸合成或作用,影响核酸代谢,利福霉素类、喹诺酮类、甲硝唑等 抑制细菌代谢磺胺药、甲氧苄氨嘧啶 抑制结核环脂酸的合成异烟肼

β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识(2020版)

β-内酰胺类抗生素β 内酰胺酶抑制剂复方制剂临床应用 专家共识( 2020 年版) 一、概述 革兰阴性菌及少数革兰阳性菌对β-内酰胺类抗生素耐药的最重要机制是产生各种β-内酰胺酶。β-内酰胺酶抑制剂能够抑制部分β-内酰胺酶,避免 β-内酰胺类抗生素被水解而失活。因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂复方制剂(简称β-内酰胺酶抑制剂复方制剂)是临床治疗产β-内酰胺酶细菌感染的重要选择。我国临床使用的β-内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。 二、主要β-内酰胺酶及产酶菌流行情况 β-内酰胺酶是由细菌产生的,能水解β-内酰胺类抗生素的一大类酶。β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种: 一、是根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法( Bush 分类法),其将β-内酰胺酶分为青霉素酶、广谱酶、超广谱 β-内酰胺酶( ESBLs)、头孢菌素酶( AmpC 酶)和碳青霉烯酶等; 二、是根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler 分类法),将β-内酰胺酶分为丝氨酸酶(包括 A 类、C 类酶和D 类酶)及金属酶( B 类酶)。目前引用较多的是 1995 年 Bush 等基于上述二种方法建立的分类方法,2019 年Bush 等又将该分类表进一步完善和细化(表1)。其中临床意义最大的是下列三类β-内酰胺酶:

表 1 常见β-内酰胺酶分类及特点,常见酶抑制剂抑酶活性

1、ESBLs 主要属 2be\2br\2ber 类酶,是由质粒介导的能水解青霉素类、头孢菌素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。ESBLs 主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。根据编码基因的同源性,ESBLs 可分为 TEM 型、SHV 型、CTX-M 型、OXA 型和其他型共 5 大类型。 2、AmpC 酶属C 类酶,通常由染色体介导,可以被β-内酰胺类抗生素诱导。部分由质粒介导,常呈持续高水平表达。其对第一、二、三代头孢菌素水解能力强,但对碳青霉烯类抗生素和第四代头孢菌素的水解能力弱。该酶主要存在于肠杆菌属、柠檬酸杆菌属、普鲁菲登菌属、黏质沙雷菌属和摩根菌属等细菌,

β-内酰胺类β-内酰胺酶抑制剂的适应证和注意事项

β-内酰胺类/β-内酰胺酶抑制剂的适应证和注意事项 目前临床应用的主要品种有阿莫西林/克拉维酸、氨苄西林/舒巴坦、头孢哌酮/舒巴坦、替卡西林/克拉维酸和哌拉西林/他唑巴坦。 阿莫西林/克拉维酸、氨苄西林/舒巴坦对甲氧西林敏感葡萄球菌,粪肠球菌,流感嗜血杆菌,卡他莫拉菌,淋病奈瑟菌,脑膜炎奈瑟菌,大肠埃希菌、沙门菌属等肠杆菌科细菌,脆弱拟杆菌、梭杆菌属等厌氧菌具良好抗菌作用。 头孢哌酮/舒巴坦、替卡西林/克拉维酸和哌拉西林/他唑巴坦对甲氧西林敏感葡萄球菌,流感嗜血杆菌,大肠埃希菌、克雷伯菌属、肠杆菌属等肠杆菌科细菌,铜绿假单胞菌以及拟杆菌属等厌氧菌具有良好抗菌活性。氨苄西林/舒巴坦、头孢哌酮/舒巴坦对不动杆菌属具有抗菌活性。头孢哌酮/舒巴坦、替卡西林/克拉维酸对嗜麦芽窄食单胞菌亦具抗菌活性。 【适应证】 1.本类药物适用于因产β-内酰胺酶而对β-内酰胺类药物耐药的细菌感染,但不推荐用于对复方制剂中抗菌药物敏感的细菌感染和非产β-内酰胺酶的耐药菌感染。 2.阿莫西林/克拉维酸口服制剂适用于:流感嗜血杆菌和卡他莫拉菌所致鼻窦炎、中耳炎和下呼吸道感染;大肠埃希菌、克雷伯菌属和肠杆菌属所致的尿路、生殖系统感染;甲氧西林敏感金

黄色葡萄球菌、大肠埃希菌和克雷伯菌属所致皮肤及软组织感染。阿莫西林/克拉维酸和氨苄西林/舒巴坦注射剂除上述适应证的较重病例外,还可用于上述细菌所致腹腔感染,血流感染和骨、关节感染。 3.头孢哌酮/舒巴坦、哌拉西林/他唑巴坦和替卡西林/克拉维酸 适用于:肠杆菌科细菌、铜绿假单胞菌敏感株和甲氧西林敏感金黄 色葡萄球菌所致血流感染、下呼吸道感染、皮肤及软组织感染、尿 路感染、腹腔感染、盆腔感染和骨、关节感染。 4.氨苄西林/舒巴坦、头孢哌酮/舒巴坦尚可用于不动杆菌 属所致感染。 5.舒巴坦可与其他药物联合治疗多重耐药不动杆菌属所致 感染。 【注意事项】 1.应用阿莫西林/克拉维酸、氨苄西林/舒巴坦、替卡西林/克拉维酸和哌拉西林/他唑巴坦前必须详细询问药物过敏史并 进行青霉素皮肤试验,对青霉素类药物过敏者或青霉素皮试阳性患者禁用。对以上复合制剂中任一成分过敏者亦禁用该复合制剂。 2.有头孢菌素类或舒巴坦过敏史者禁用头孢哌酮/舒巴坦。有 青霉素类过敏史的患者确有应用头孢哌酮/舒巴坦的指征时,必须在严 密观察下慎用,但有青霉素过敏性休克史的患者,不可选用头孢哌酮/ 舒巴坦。 3.应用本类药物时如发生过敏反应,须立即停药;一旦发

β内酰胺类β内酰胺酶抑制剂的适应证和注意事项

β内酰胺类β内酰胺酶抑制剂的适应证和注意事项 目前临床应用者有阿莫西林/克拉维酸、替卡西林/克拉维酸、氨苄西林/舒巴坦、头孢哌酮-舒巴坦和哌拉西林-三唑巴坦。 一、适应证 本类药物适用于因产β内酰胺酶而对β内酰胺类药物耐药的细菌感染,但不推荐用于对复方制剂中抗生素敏感的细菌感染和非产β内酰胺酶的耐药菌感染。 阿莫西林/克拉维酸适用于产β内酰胺酶的流感嗜血杆菌、卡他莫拉菌、大肠埃希菌等肠杆菌科细菌、甲氧西林敏感金葡菌所致下列感染:鼻窦炎,中耳炎,下呼吸道感染,泌尿生殖系统感染,皮肤、软组织感染,骨、关节感染,腹腔感染,以及败血症等。重症感染者或不能口服者应用本药的注射剂,轻症感染或经静脉给药后病情好转的患者可予口服给药。

氨苄西林/舒巴坦静脉给药及其口服制剂舒他西林的适应证与阿莫西林/克拉维酸同。 头孢哌酮/舒巴坦、替卡西林/克拉维酸和哌拉西林/三唑巴坦仅供静脉使用,适用于产β内酰胺酶的大肠埃希菌、肺炎克雷伯菌等肠杆菌科细菌、铜绿假单胞菌和拟杆菌属等厌氧菌所致的各种严重感染。 二、注意事项 1.应用阿莫西林/克拉维酸、替卡西林/克拉维酸、氨苄西林/舒巴坦和哌拉西林/三唑巴坦前必须详细询问药物过敏史并进行青霉素皮肤试验,对青霉素类药物过敏者或青霉素皮试阳性患者禁用。对以上合剂中任一成分有过敏史者禁用该合剂。 2.有头孢菌素或舒巴坦过敏史者禁用头孢哌酮/舒巴坦。有青霉素类过敏史的患者确有应用头孢哌酮/舒巴坦的指征时,必须在严密观察下慎用,但有青霉素过敏性休克史的患者,不可选用头孢哌酮/舒巴坦。

3.应用本类药物时如发生过敏反应,须立即停药;一旦发生过敏性休克,应就地抢救,并给予吸氧及注射肾上腺素、肾上腺皮质激素等抗休克治疗。 4.中度以上肾功能不全患者使用本类药物时应根据肾功能减退程度调整剂量。 5. 本类药物不推荐用于新生儿和早产儿;哌拉西林/三唑巴也不推荐在儿童患者中应用。

相关主题
文本预览
相关文档 最新文档