当前位置:文档之家› MPI并行程序设计基础

MPI并行程序设计基础

并行计算1

并行计算 实 验 报 告 学院名称计算机科学与技术学院专业计算机科学与技术 学生姓名 学号 年班级 2016年5 月20 日

一、实验内容 本次试验的主要内容为采用多线程的方法计算pi的值,熟悉linux下pthread 形式的多线程编程,对实验结果进行统计并分析以及加速比曲线分析,从而对并行计算有初步了解。 二、实验原理 本次实验利用中值积分定理计算pi的值 图1 中值定理计算pi 其中公式可以变换如下: 图2 积分计算pi公式的变形 当N足够大时,可以足够逼近pi,多线程的计算方法主要通过将for循环的计算过程分到几个线程中去,每次计算都要更新sum的值,为避免一个线程更新sum 值后,另一个线程仍读到旧的值,所以每个线程计算自己的部分,最后相加。三、程序流程图 程序主体部分流程图如下:

多线程执行函数流程图如下: 四、实验结果及分析

令线程数分别为1、2、5、10、20、30、40、50和100,并且对于每次实验重复十次求平均值。结果如下: 图5 时间随线程的变化 实验加速比曲线的计算公式类似于 结果如下: 图5 加速比曲线 实验结果与预期类似,当线程总数较少时,线程数的增多会对程序计算速度带来明显的提升,当线程总数增大到足够大时,由于物理节点的核心数是有限的,因此会给cpu带来较多的调度,线程的切换和最后结果的汇总带来的时间开销较大,所以线程数较大时,增加线程数不会带来明显的速度提升,甚至可能下降。 五、实验总结

本次试验的主要内容是多线程计算pi的实现,通过这次实验,我对并行计算有了进一步的理解。上学期的操作系统课程中,已经做过相似的题目,因此程序主体部分相似。不同的地方在于,首先本程序按照老师要求应在命令行提供参数,而非将数值写定在程序里,其次是程序不是在自己的电脑上运行,而是通过ssh和批处理脚本等登录到远程服务器提交任务执行。 在运行方面,因为对批处理任务不够熟悉,出现了提交任务无结果的情况,原因在于windows系统要采用换行的方式来表明结束。在实验过程中也遇到了其他问题,大多还是来自于经验的缺乏。 在分析实验结果方面,因为自己是第一次分析多线程程序的加速比,因此比较生疏,参考网上资料和ppt后分析得出结果。 从自己遇到的问题来看,自己对批处理的理解和认识还比较有限,经过本次实验,我对并行计算的理解有了进一步的提高,也意识到了自己存在的一些问题。 六、程序代码及部署 程序源代码见cpp文件 部署说明: 使用gcc编译即可,编译时加上-pthread参数,运行时任务提交到服务器上。 编译命令如下: gcc -pthread PI_3013216011.cpp -o pi pbs脚本(runPI.pbs)如下: #!/bin/bash #PBS -N pi #PBS -l nodes=1:ppn=8 #PBS -q AM016_queue #PBS -j oe cd $PBS_O_WORKDIR for ((i=1;i<=10;i++)) do ./pi num_threads N >> runPI.log

并行计算实验报告一

江苏科技大学 计算机科学与工程学院 实验报告 实验名称:Java多线程编程 学号:姓名:班级: 完成日期:2014年04月22日

1.1 实验目的 (1) 掌握多线程编程的特点; (2) 了解线程的调度和执行过程; (3)掌握资源共享访问的实现方法。 1.2 知识要点 1.2.1线程的概念 (1)线程是程序中的一个执行流,多线程则指多个执行流; (2)线程是比进程更小的执行单位,一个进程包括多个线程; (3)Java语言中线程包括3部分:虚拟CPU、该CPU执行的代码及代码所操作的数据。 (4)Java代码可以为不同线程共享,数据也可以为不同线程共享; 1.2.2 线程的创建 (1) 方式1:实现Runnable接口 Thread类使用一个实现Runnable接口的实例对象作为其构造方法的参数,该对象提供了run方法,启动Thread将执行该run方法; (2)方式2:继承Thread类 重写Thread类的run方法; 1.2.3 线程的调度 (1) 线程的优先级 ●取值范围1~10,在Thread类提供了3个常量,MIN_PRIORITY=1、MAX_ PRIORITY=10、NORM_PRIORITY=5; ●用setPriority()设置线程优先级,用getPriority()获取线程优先级; ●子线程继承父线程的优先级,主线程具有正常优先级。 (2) 线程的调度:采用抢占式调度策略,高优先级的线程优先执行,在Java中,系统按照优先级的级别设置不同的等待队列。 1.2.4 线程的状态与生命周期

说明:新创建的线程处于“新建状态”,必须通过执行start()方法,让其进入到“就绪状态”,处于就绪状态的线程才有机会得到调度执行。线程在运行时也可能因资源等待或主动睡眠而放弃运行,进入“阻塞状态”,线程执行完毕,或主动执行stop方法将进入“终止状态”。 1.2.5 线程的同步--解决资源访问冲突问题 (1) 对象的加锁 所有被共享访问的数据及访问代码必须作为临界区,用synchronized加锁。对象的同步代码的执行过程如图14-2所示。 synchronized关键字的使用方法有两种: ●用在对象前面限制一段代码的执行,表示执行该段代码必须取得对象锁。 ●在方法前面,表示该方法为同步方法,执行该方法必须取得对象锁。 (2) wait()和notify()方法 用于解决多线程中对资源的访问控制问题。 ●wait()方法:释放对象锁,将线程进入等待唤醒队列; ●notify()方法:唤醒等待资源锁的线程,让其进入对象锁的获取等待队列。 (3)避免死锁 指多个线程相互等待对方释放持有的锁,并且在得到对方锁之前不会释放自己的锁。 1.3 上机测试下列程序 样例1:利用多线程编程编写一个龟兔赛跑程序。 乌龟:速度慢,休息时间短;

计算方法上机实验报告

《计算方法》上机实验报告 班级:XXXXXX 小组成员:XXXXXXX XXXXXXX XXXXXXX XXXXXXX 任课教师:XXX 二〇一八年五月二十五日

前言 通过进行多次的上机实验,我们结合课本上的内容以及老师对我们的指导,能够较为熟练地掌握Newton 迭代法、Jacobi 迭代法、Gauss-Seidel 迭代法、Newton 插值法、Lagrange 插值法和Gauss 求积公式等六种算法的原理和使用方法,并参考课本例题进行了MATLAB 程序的编写。 以下为本次上机实验报告,按照实验内容共分为六部分。 实验一: 一、实验名称及题目: Newton 迭代法 例2.7(P38):应用Newton 迭代法求 在 附近的数值解 ,并使其满足 . 二、解题思路: 设'x 是0)(=x f 的根,选取0x 作为'x 初始近似值,过点())(,00x f x 做曲线)(x f y =的切线L ,L 的方程为))((')(000x x x f x f y -+=,求出L 与x 轴交点的横坐标) (') (0001x f x f x x - =,称1x 为'x 的一次近似值,过点))(,(11x f x 做曲线)(x f y =的切线,求该切线与x 轴的横坐标) (') (1112x f x f x x - =称2x 为'x

的二次近似值,重复以上过程,得'x 的近似值序列{}n x ,把 ) (') (1n n n n x f x f x x - =+称为'x 的1+n 次近似值,这种求解方法就是牛顿迭代法。 三、Matlab 程序代码: function newton_iteration(x0,tol) syms z %定义自变量 format long %定义精度 f=z*z*z-z-1; f1=diff(f);%求导 y=subs(f,z,x0); y1=subs(f1,z,x0);%向函数中代值 x1=x0-y/y1; k=1; while abs(x1-x0)>=tol x0=x1; y=subs(f,z,x0); y1=subs(f1,z,x0); x1=x0-y/y1;k=k+1; end x=double(x1) K 四、运行结果: 实验二:

MPI并行程序设计实例教程

编辑推荐 ◆书中内容侧重于以MPI库为基础开发并行应用程序,对MP规范定义的各项功能和特征在阐述其特点基础上均配以实例加以说明和印证。 ◆书中所附实例尽量采用独立的功能划分,其中的代码片段可直接用于并行应用程序开发 ◆在讲述基本原理的同时,注重对各项消息传递和管理操作的功能及局限性、适用性进行分析从而使熟读此书的读者能够编写出适合应用特点,易维护、高效率的并行程序。 ◆与本书配套的电子教案可在清华大学出版社网站下载。 本书简介 本书旨在通过示例全面介绍MP1并行程序开发库的使用方法、程序设计技巧等方面的内容,力争完整讨论MP1规范所定义的各种特征。主要也括MPI环境下开发并行程序常用的方法、模式、技巧等 内容。在内容组织上力求全面综合地反映MPl-1和MPI-2规范。对MPI所定义的各种功能、特征分别

给出可验证和测试其工作细节的示例程序 目录 第1章 MPI并行环境及编程模型  1.1 MPICH2环境及安装和测试 1.1.1 编译及安装 1.1.2 配置及验汪 1.1.3 应用程序的编译、链接 1.1.4 运行及调试 1.1.5 MPD中的安全问题  1.2 MPI环境编程模型 1.2.1 并行系统介绍 1.2.2 并行编程模式 1.2.3 MPI程序工作模式  1.3 MPI消息传递通信的基本概念 1.3.1 消息 1.3.2 缓冲区 1.3.3 通信子 1.3.4 进样号和进程纰 1.3.5 通价胁议 1.3.6 隐形对象 第2章 点到点通信  2.1 阻糍通信 2.1.1 标准通信模式 2.1.2 缓冲通信模式 2.1.3 就绪通信模式 2.1.4 同步通信模式 2.1.5 小结  2.2 非阻塞通信 2.2.1 通信结束测试 2.2.2 非重复的非阻塞通信 2.2.3 可醺复的非阻塞通信 2.2.4 Probe和Cancel  2.3 组合发送接收 2.3.1 MPl_Send,MPI_RecvoMPl_Sendreev 2.3.2 MPI_Bsend←→MPl_Sendrecv 2.3.3 MPI_Rsend←→MPI_Sendrecv 2.3.4 MPl_Ssend←→MPl_Sendrecv 2.3.5 MPl_lsend←→MP1一Sendrecv 2.3.6 MPl_Ibsend←→MPI_Sendrecv 2.3.7 MPI_Irsend←→MPI_Sendrecv 2.3.8 MPl_Issend,MPI_Irecv←→MPI_Sendrecv 2.3.9 MPI Send_init←→MPl_Sendrecv 2.3.10 MPI一Bsendj init←→MPl_Sendrecv 2.3.11 MPI_Rsend_init←→MPI_Sendrecv 2.3.12 MPl_Ssend_init,MPl_Recv_init←→MPl_Sendrecv 2.4 点到点通信总结

进程管理实验报告

进程的控制 1 .实验目的 通过进程的创建、撤消和运行加深对进程概念和进程并发执行的理解,明确进程与程序之间的区别。 【答:进程概念和程序概念最大的不同之处在于: (1)进程是动态的,而程序是静态的。 (2)进程有一定的生命期,而程序是指令的集合,本身无“运动”的含义。没有建立进程的程序不能作为1个独立单位得到操作系统的认可。 (3)1个程序可以对应多个进程,但1个进程只能对应1个程序。进程和程序的关系犹如演出和剧本的关系。 (4)进程和程序的组成不同。从静态角度看,进程由程序、数据和进程控制块(PCB)三部分组成。而程序是一组有序的指令集合。】2 .实验内容 (1) 了解系统调用fork()、execvp()和wait()的功能和实现过程。 (2) 编写一段程序,使用系统调用fork()来创建两个子进程,并由父进程重复显示字符串“parent:”和自己的标识数,而子进程则重复显示字符串“child:”和自己的标识数。 (3) 编写一段程序,使用系统调用fork()来创建一个子进程。子进程通过系统调用execvp()更换自己的执行代码,新的代码显示“new

program.”。而父进程则调用wait()等待子进程结束,并在子进程结束后显示子进程的标识符,然后正常结束。 3 .实验步骤 (1)gedit创建进程1.c (2)使用gcc 1.c -o 1编译并./1运行程序1.c #include #include #include #include void mian(){ int id; if(fork()==0) {printf(“child id is %d\n”,getpid()); } else if(fork()==0) {printf(“child2 id %d\n”,getpid()); } else {id=wait(); printf(“parent id is %d\n”,getpid()); }

多核编程与并行计算实验报告 (1)

(此文档为word格式,下载后您可任意编辑修改!) 多核编程与并行计算实验报告 姓名: 日期:2014年 4月20日

实验一 // exa1.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include #include #include #include using namespace std; void ThreadFunc1(PVOID param) { while(1) { Sleep(1000); cout<<"This is ThreadFunc1"<

实验二 // exa2.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include #include using namespace std; DWORD WINAPI FunOne(LPVOID param){ while(true) { Sleep(1000); cout<<"hello! "; } return 0; } DWORD WINAPI FunTwo(LPVOID param){ while(true) { Sleep(1000); cout<<"world! "; } return 0; } int main(int argc, char* argv[]) { int input=0; HANDLE hand1=CreateThread (NULL, 0, FunOne, (void*)&input, CREATE_SUSPENDED,

单片机并行口实验报告

单片机并行口实验报告

实验二并行口实验报告 班级: 学号: 姓名: 教师:

一、实验目的 通过实验了解8051并行口输入方式和输出方式的工作原理及编程方法。 二、实验内容 1、输出实验 如图4-1所示。以8031的P2口为输出口。通过程序控制发光二极管的亮灭。 2、输入实验 如图4-1所示。以8031的P1口为输入口。用开关向P1.0~P1.3输入不同的状态,控制P2口P2.4~P2.7发光二极管的亮灭。 3、查询输入输出实验 如图1-1所示。以8051的P1.6或P1.0为输入位,以P2口为输出,二进制计数记录按键的次数。

图1-1 三、编程提示 1、输出实验程序 (1)设计一组显示花样,编程使得P2口按照设计的花样重复显示。 (2)为了便于观察,每一状态加入延时程序。 2、输入实验程序 开关打开,则输入为1;开关闭合,则输入为0。读取P1.0~ P1.3的状态,并将它们输出到P2.4~ P2.7,驱动发光二极管。所以发光二极管L1~L4的亮灭应与开关P1.0~ P1.3的设置相吻合。 3、查询输入输出程序 (1)编程计数P1.0按键次数,按键不去抖动。 (2)编程计数P1.6按键次数,按键不去抖动。 (3)编程计数P1.0按键次数,按键软件延时去抖动。 观察(1)、(2)、(3)、的结果。 四、实验器材 计算机,目标系统实验板 五、实验步骤 1、在KEILC中按要求编好程序,编译,软件调试,生成.HEX文件。 2、断开电源,按图1-1所示,连好开关及发光二极管电路。

3、下载程序。 4、调试运行程序,观察发光二极管状态。 六、C源程序清单 1、#include #define uchar unsigned char #define ON 0 #define OFF 1 sbit led1=P2^0; sbit led2=P2^1; sbit led3=P2^2; sbit led4=P2^3; sbit led5=P2^4; sbit led6=P2^5; sbit led7=P2^6; sbit led8=P2^7; void delay1(void); void main(void) { led1=led2=led3=led4=led5=led6=led7=led8=O FF; while(1) { led1=led8=ON; delay1(); led2=led7=ON;

并行计算第一次实验报告

并行计算上机实验报告题目:多线程计算Pi值 学生姓名 学院名称计算机学院 专业计算机科学与技术时间

一. 实验目的 1、掌握集群任务提交方式; 2、掌握多线程编程。 二.实验内容 1、通过下图中的近似公式,使用多线程编程实现pi的计算; 2、通过控制变量N的数值以及线程的数量,观察程序的执行效率。 三.实现方法 1. 下载配置SSH客户端 2. 用多线程编写pi代码 3. 通过文件传输界面,将文件上传到集群上 4.将命令行目录切换至data,对.c文件进行编译 5.编写PBS脚本,提交作业 6.实验代码如下: #include

#include #include #include #include #include static double PI=0; static int N=0; static int numOfThread=0; static int length=0; static int timeUsed=0; static int numOfThreadArray[]={1,2,4,6,8,10,12,14,16,20,24,30}; static int threadArraySize=12; static int nTime=4; static int repeatTime=30; static double totalTime=0; struct timeval tvpre, tvafter; pthread_mutex_t mut; clockid_t startTime,endTime;

并行处理实验报告:用MPI实现的矩阵乘法的加速比分析

华中科技大学 课程名称并行处理 实验名称矩阵乘法的实现及加速比分析考生姓名李佩佩 考生学号 M201372734 系、年级计算机软件与理论2013级类别硕士研究生 考试日期 2014年1月3日

一. 实验目的 1) 学会如何使用集群 2) 掌握怎么用并行或分布式的方式编程 3) 掌握如何以并行的角度分析一个特定的问题 二. 实验环境 1) 硬件环境:4核CPU、2GB内存计算机; 2) 软件环境:Windows XP、MPICH2、VS2010、Xmanager Enterprise3; 3) 集群登录方式:通过远程桌面连接211.69.198.2,用户名:pppusr,密码:AE2Q3P0。 三. 实验内容 1. 实验代码 编写四个.c文件,分别为DenseMulMatrixMPI.c、DenseMulMatrixSerial.c、SparseMulMatrixMPI.c和SparseMulMatrixSerial.c,用于比较并行和串行矩阵乘法的加速比,以及稀疏矩阵和稠密矩阵的加速比。这里需要说明一下,一开始的时候我是把串、并行放在一个程序中,那么就只有两个.c文件DenseMulMatrix.c 和SparseMulMatrix.c,把串行计算矩阵乘的部分放到了主进程中,即procsID=0的进程,但是结果发现执行完串行后,再执行并行就特别的慢。另外,对于稀疏矩阵的处理方面可能不太好,在生成稀疏矩阵的过程中非0元素位置的生成做到了随机化,但是在进行稀疏矩阵乘法时没有对矩阵压缩,所以跟稠密矩阵乘法在计算时间上没多大区别。 方阵A和B的初始值是利用rand()和srand()函数随机生成的。根据稀疏矩阵和稠密矩阵的定义,对于稀疏矩阵和稠密矩阵的初始化方法InitMatrix(int *M,int *N,int len)会有所不同。这里需要说明一下,一开始对于矩阵A和B的初始化是两次调用InitMatrix(int *M ,int len),生成A和B矩阵,但是随后我发现,由于两次调用方法InitMatrix的时间间隔非常短,又由于srand()函数的特点,导致生成的矩阵A和B完全一样;然后,我就在两次调用之间加入了语句“Sleep(1000);”,加入头文件“#include ”,这样生成的A、B矩阵就不一样了,但很快问题又出现了,在Xshell中不能识别头文件“#include ”。所以,最后决定用下面的方法生成矩阵A和B,B是A的转置。 //稠密矩阵的生成方法 void InitMatrix(int *M,int *N,int len) { srand((unsigned)time( NULL)); for(i=0; i < len*len; i++)

矩阵乘法的并行化 实验报告

北京科技大学计算机与通信工程学院 实验报告 实验名称: 学生姓名: 专业: 班级: 学号: 指导教师: 实验成绩:________________________________ 实验地点: 实验时间:2015年05月

一、实验目的与实验要求 1、实验目的 1对比矩阵乘法的串行和并行算法,查看运行时间,得出相应的结论;2观察并行算法不同进程数运行结果,分析得出结论; 2、实验要求 1编写矩阵乘法的串行程序,多次运行得到结果汇总; 2编写基于MPI,分别实现矩阵乘法的并行化。对实现的并行程序进行正确性测试和性能测试,并对测试结果进行分析。 二、实验设备(环境)及要求 《VS2013》C++语言 MPICH2 三、实验内容与步骤 实验1,矩阵乘法的串行实验 (1)实验内容 编写串行程序,运行汇总结果。 (2)主要步骤 按照正常的矩阵乘法计算方法,在《VS2013》上编写矩阵乘法的串行程序,编译后多次运行,得到结果汇总。

实验2矩阵乘法的并行化实验 3个总进程

5个总进程 7个总进程

9个进程 16个进程 四:实验结果与分析(一)矩阵乘法并行化

矩阵并行化算法分析: 并行策略:1间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程1:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此O(n)=(n); 2间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程3:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此T(n)=O(n);

多核编程与并行计算实验报告 (1)

多核编程与并行计算实验报告 姓名: 日期:2014年 4月20日 实验一 // exa1.cpp : Defines the entry point for the console application.

// #include"stdafx.h" #include #include #include #include using namespace std; void ThreadFunc1(PVOID param) { while(1) { Sleep(1000); cout<<"This is ThreadFunc1"<

实验二 // exa2.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include #include using namespace std; DWORD WINAPI FunOne(LPVOID param){ while(true) { Sleep(1000); cout<<"hello! "; } return 0; } DWORD WINAPI FunTwo(LPVOID param){ while(true) { Sleep(1000); cout<<"world! ";

MPI并行编程环境及程序设计

第27卷 第3期河北理工学院学报Vol127 No13 2005年8月Journa l of Hebe i I n stitute of Technology Aug.2005 文章编号:100722829(2005)0320041203 MP I并行编程环境及程序设计 杨爱民1,陈一鸣2 (11河北理工大学理学院,河北唐山063009;21燕山大学理学院,河北秦皇岛066004)关键词:MP I;并行编程;消息传递 摘 要:通过对MP I原理和特点的研究,给出了并行MP I程序的基本设计思路和执行过程,并 实现了向量相加的并行计算。 中图分类号:TP316 文献标识码:A 0 引 言 近几十年来,大规模和超大规模的并行机取得了快速发展,由于各种原因,开发商对用户提供的必要支持,如它们各自专有的消息传递包NX、EU I、P VM等,虽然在特定平台上具有很优越的性能,但是从应用程序来看,可移植性差。1992年11月,在Supercomputi ong’92会议上,正式成立了一个旨在建立一个消息传递标准平台的MP I(Message Passing I nterface)论坛,该论坛不仅包括了许多P VM、Exp ress等的研制者及并行程序用户,还吸收了许多著名计算机厂商的代表。论坛于1994年5月,公布了MP I标准。MP I是一种为消息传递而开发的广泛使用的标准,它为消息传递建立了一个可移植的、高效、灵活的标准。 1 MP I的原理与特征 MP I是一个函数库,而不是一门语言,它是一种消息传递模型,它的最终目的是服务于进程间通信。MP I作为一个并行程序库的开发平台,为用户编写和运行程序提供了便利的条件。由于MP I是基于消息传递机制构建的系统,因此它在体系结构为分布存储的并行机中有很宽阔的应用空间,它可以应用在各种同构和异构的网络平台中。它的编程语言可以为Fortran77/90、C/C++。在Fortran77/90、C/C++语言中都可以对MP I的函数进行调用,它作为一种消息传递模式的并行编程环境,MP I并行程序要求将任务进行划分,同时启动多个进程并发的执行,而各个进程之间通过MP I的库函数来实现其中的消息传递。 MP I与其它并行编程环境相比,显著的特点有: (1)可移植性强,能同时支持同构和异构的并行计算; (2)可伸缩性强,允许并行结构中的节点任意增加或减少; (3)能很好的支持点对点通信和集体通信方式; (4)对C语言和Fortran语言的支持,使其能很好的满足各种大规模科学和工程计算的需要。 这样,以MP I作为公共消息传递接口的并行应用程序就可以不作任何改动的移植到不同种类和型号的并行机上,也能够正常运行,或者移到网络环境中也一样。 2 MP I的基本函数 MP I为消息传递和相关操作提供了功能强大的库函数,MPl-1中有128个,MP I-2中有287个库函数。但是从理论上来说,MP I的所有通信功能都可以用它的6个基本调用来完成,即使用这6个函数可以实现所有的消息传递并行程序。这六个函数分别为呼(Fortran77语言的调用格式来描述): (1)MP I初始化 MP I程序的初始化工作通过调用MPl l N I T(I ERROR)来实现,所有MP I程序的第一条可执行语句都是 收稿日期:2004210221 基金项目:河北省自然科学基金项目(E2004000245) 作者简介:杨爱民(19782),男,河北顺平人,河北理工大学理学院教师,硕士。

并行口实验实验报告

8255并行口实验实验报告 作者: 一、实验目的 掌握8255A的编程原理。 二、实验设备 CPU挂箱、8086CPU模块。 三、实验内容 8255A的A口作为输入口,与逻辑电平开关相连。8255A的B口作为输出口,与发光二极管相连。编写程序,使得逻辑电平开关的变化在发光二极管上显示出来。 四、实验原理介绍 本实验用到两部分电路:开关量输入输出电路和8255可编程并口电路。 五、实验步骤 1、实验接线 CS0?CS8255; PA0~PA7?平推开关的输出K1~K8; PB0~PB7?发光二极管的输入LED1~LED8。 2、编程并全速或单步运行。 3、全速运行时拨动开关,观察发光二极管的变化。当开关某位置于L 时,对应的发光二极管点亮,置于H时熄灭。 六、实验提示 实验也是如此。实验中,8255A工作于基本8255A是比较常用的一种并行接口芯片,其特点在许多教科书中均有介绍。8255A有三个8位的输入输出端口,通常将A端口作为输入用,B端口作为输出用,C端口作为辅助控制用,本输入输出方式(方式0)。 七、实验结果 程序全速运行后,逻辑电平开关的状态改变应能在LED上显示出来。例如:K2置于L位置,则对应的LED2应该点亮。 八、程序框图(实验程序名:t8255.asm)

开始 设置8255工作方式 读A口 输出至B口 结束 九、程序源代码清单: assume cs:code code segment public org 100h start: mov dx,04a6h ;控制寄存器地址 mov ax,90h ;设 置为A口输入,B口输出 out dx,ax mov al,0feh start1:mov dx,04a2h 芯片的 入口地址 out dx,al mov bl,al mov dx ,04a0h in al,dx test ax,01h jz strat2 mov al ,bl rol al,1 流水灯循环左移 mov bl,al mov cx,3000h 设置cx为灯闪烁时间对应的循环次数 add: loop add jmp start1 无条件跳转至start1 strat2:mov al,bl mov dx,04a2h out dx,al ror al,1 流水灯循环左移 mov bl, al mov cx,3000h add1: loop add jmp start 无条件跳转至start code ends end start 十、实验总结 通过该实验,掌握了8255A的编程原理,学会了用汇编语言来编写程序控制8255A进行流水灯的操作实验。

并行计算-实验二-矩阵乘法的OpenMP实现及性能分析

深圳大学 实验报告 课程名称:并行计算 实验名称:矩阵乘法的OpenMP实现及性能分析姓名: 学号: 班级: 实验日期:2011年10月21日、11月4日

一. 实验目的 1) 用OpenMP 实现最基本的数值算法“矩阵乘法” 2) 掌握for 编译制导语句 3) 对并行程序进行简单的性能 二. 实验环境 1) 硬件环境:32核CPU 、32G 存计算机; 2) 软件环境:Linux 、Win2003、GCC 、MPICH 、VS2008; 4) Windows 登录方式:通过远程桌面连接192.168.150.197,用户名和初始密码都是自己的学号。 三. 实验容 1. 用OpenMP 编写两个n 阶的方阵a 和b 的相乘程序,结果存放在方阵c 中,其中乘法用for 编译制导语句实现并行化操作,并调节for 编译制导中schedule 的参数,使得执行时间最短,写出代码。 方阵a 和b 的初始值如下: ????????? ? ??????????-++++=12,...,2,1,..2,...,5,4,31,...,4,3,2,...,3,2,1n n n n n n n a ???????? ? ???????????= 1,...,1,1,1..1,...,1,1,11,...,1,1,11,..., 1,1,1b 输入: 方阵的阶n 、并行域的线程数 输出: c 中所有元素之和、程序的执行时间 提示: a,b,c 的元素定义为int 型,c 中所有元素之各定义为long long 型。 Windows 计时: 用中的clock_t clock( void )函数得到当前程序执行的时间 Linux 计时: #include

虚拟化与云计算实验报告.

实验报告 课程名称虚拟化与云计算学院计算机学院 专业班级11级网络工程3班学号3211006414 姓名李彩燕 指导教师孙为军 2014 年12 月03日

EXSI 5.1.0安装 安装准备 安装VSPHERE HYPERVISOR SEVER(EXSI 5.1.0)需要准备: 无操作系统的机器(如有系统,安装过程中会格式化掉),需切换到光盘启动模式。BOIS中开启虚拟化设置(virtualization设置成enable) VMware vSphere Hypervisor 自启动盘 安装过程 1.安装VMware vSphere Hypervisor确保机器中无操作系统,并且设置BIOS到光盘启 动模式 2.插入光盘,引导进入安装界面。 3.选择需要安装在硬盘 4.选择keyboard 类型,默认US DEFAULT

5.设置ROOT的密码 6.安装完毕后,请注意弹出光盘。然后重启。 7.F2进入系统配置界面。

8.选择到Configure management network去配置网络。

9.配置完毕后,注意重启网络以使设置生效,点击restart management network,测 试网络设置是否正确,点test management network。至此,sever端安装完毕。配置 1.添加机器名:在DNS服务器上添加相关正反解析设置。 2.License设置:Vsphere client登陆后,清单→配置→已获许可的功能→编辑 输入license

3.时间与NTP服务设置:Vsphere client登陆后,清单→配置→时间配置→属性 钩选上NTP客户端 选项中,NTP设置设添加NTP服务器,然后在常规中开启NTP服务

矩阵乘法的并行化实验报告

科技大学计算机与通信工程学院 实验报告 实验名称: 学生: 专业: 班级: 学号: 指导教师: 实验成绩:________________________________ 实验地点: 实验时间:2015年05月

一、实验目的与实验要求 1、实验目的 1对比矩阵乘法的串行和并行算法,查看运行时间,得出相应的结论;2观察并行算法不同进程数运行结果,分析得出结论; 2、实验要求 1编写矩阵乘法的串行程序,多次运行得到结果汇总; 2编写基于MPI,分别实现矩阵乘法的并行化。对实现的并行程序进行正确性测试和性能测试,并对测试结果进行分析。 二、实验设备(环境)及要求 《VS2013》C++语言 MPICH2 三、实验容与步骤 实验1,矩阵乘法的串行实验 (1)实验容 编写串行程序,运行汇总结果。 (2)主要步骤 按照正常的矩阵乘法计算方法,在《VS2013》上编写矩阵乘法的串行程序,编译后多次运行,得到结果汇总。

实验2矩阵乘法的并行化实验 3个总进程

5个总进程 7个总进程

9个进程 16个进程 四:实验结果与分析(一)矩阵乘法并行化

矩阵并行化算法分析: 并行策略:1间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程1:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此O(n)=(n); 2间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程3:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此T(n)=O(n);

消息传递并行编程环境MPI

国家973项目高性能计算环境支持讲座 MPI与PETSc 莫则尧 (北京应用物理与计算数学研究所)

个人介绍 莫则尧,男,汉族,1971年7月生,副研究员:●1992年国防科技大学应用数学专业本科毕业; ●1997年国防科技大学计算机应用专业并行算法 方向博士毕业; ●1999年北京应用物理与计算数学数学博士后流 动站出站,并留所工作; ●主要从事大规模科学与工程并行计算研究。

消息传递并行编程环境MPI 一、进程与消息传递 二、MPI环境的应用现状 三、MPI并行程序设计入门(程序例1) 四、初步的MPI消息传递函数 五、作业一 六、先进的MPI函数 七、MPI并行程序示例2(求解- u=f); 八、MPI环境的发展 九、作业二

一、进程与消息传递 1.单个进程(process ) ● 同时包含它的执行环境(内存、寄存器、程序计数器等),是操作系统中独立存在的可执行的基本程序单位; ● 通俗理解:串行应用程序编译形成的可执行代码,分为“指令”和“数据”两个部分,并在程序执行时“独立地申请和占有”内存空间,且所有计算均局限于该内存空间。 2.单机内多个进程: ● 多个进程可以同时存在于单机内同一操作系统:由操作系统负责调度分时共享处理机资源(CPU 、内存、存储、外设等); ● 进程间相互独立(内存空间不相交):在操作系统调度下各自独立地运行,例如多个串行应用程序在同一台计算机中运行; ● 进程间可以相互交换信息:例如数据交换、同步等待,内存

些信息在进程间的相互交换,是实现进程间通信的唯 一方式; ●最基本的消息传递操作:发送消息(send)、接受消 息(receive)、进程同步(barrier)、规约(reduction); ●消息传递的实现:共享内存或信号量,用户不必关心; 3.包含于通过网络联接的不同计算机的多个进程: ●进程独立存在:进程位于不同的计算机,由各自独立 的操作系统调度,享有独立的CPU和内存资源; ●进程间相互信息交换:消息传递; ●消息传递的实现:基于网络socket机制,用户不必关 心; 4.消息传递库函数: ●应用程序接口(API):提供给应用程序(FORTRAN、 C、C++语言)的可直接调用的完成进程间消息传递

MPI并行编程实验报告

MPI并行编程实验报告 起讫日期:xx-05-20 ~全文结束》》-06-15组名:第四组院系:计算机学院专业:计算机科学与技术指导老师:XXX 教授xx 年6月15日实验一Linux下基于MPI的hello程序设计Author:姓名 一、MPICH并行计算库安装在Linux环境下安装MPICH执行环境,配置MP D、CONF, 完成实验室中临近机器间的并行配置。概要:以寝室四台计算机为例,设置IP(1 92、1 68、1、1~1 92、1 68、1、4),更改主机名为node01,node02,node03, node04。 (一)创建SSH信任连接 1、更改/etc/hosts文件#vi /etc/hosts 打开hosts文件,更改如下:1 27、0、0、1 localhost、localdomain localhost1 92、1 68、1、1 node011 92、1

68、1、2 node021 92、1 68、1、3 node031 92、1 68、1、4 node0 42、在node01生成SSH秘钥对、#ssh-keygena 查看是否有、ssh文件夹 3、进入、ssh目录#cd 、ssh 4、生成authorized_keys文件#cp id_rsa、pub authorized_keys 5、退出到root目录#cd 、、 6、建立本身的信任连接#ssh node01 按提示输入yes(三个字母要打全) 7、设置node02(node02的root目录下)#ssh-keygenzxvf mpich2- 1、0、1、tar、gz 2、创建安装目录#mkdir /usr/MPICH-instsll 3、进入mpich2解压目录#cd mpich2- 1、0、 14、设置安装目录#、/configureprefix=/usr/MPICH- install 5、编译#make 6、安装#make install

相关主题
文本预览
相关文档 最新文档