当前位置:文档之家› 信号与系统基础知识

信号与系统基础知识

信号与系统基础知识
信号与系统基础知识

信号与系统基础知识

第1章信号与系统的基本概念

1.1 引言

系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。

我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。

很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。

隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。

信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。

系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。

我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电

压波形)(

in t

v(测量系统输入信号)和测量得到的波形)(out t

v

(测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。

信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信号的叠加,观察信号所包含的各频率分量的幅值和相位,得到信号的频谱特性。图1-2是从时域和频域观察一个周期矩形波信号的示意图,由此可以看到信号频域和时域的关系。系统的频域分析是观察系统对不同频率激励信号的响应,得到系统的频率响应特性。频域分析的重要优点包括:(1)对信号变化的快慢和系统的响应速度给出定量的描述。例如,当我们要用一个示波器观察一个信

号时,需要了解信号的频谱特性和示波器的模拟带宽,当示波器的模拟带宽能够覆盖被测信号的频率范围时,可以保证测量的准确。(2)为线性系统分析提供了一种简化的方法,在时域分析中需要进行的微分或积分运算,在频域分析中简化成了代数运算。

图1-1 典型电压测量系

输入信

号)(in

t v

t 0 输出信号)(out

t v

t

过冲

上升时间

信号和系统分析还有复频域分析的方法,对于连续信号和系统,基于拉普拉斯变换,称为s域分析;对于离散信号和系统,基于z变换,称为z域分析。基于复频域分析,能够得到信号和系统响应的特征参数,即频率和衰减,分析系统的频率响应特性和系统稳定性等;复频域

分析也能简化系统分析,将在时域分析中需要进行的微分或积分运算简化为复频域中的代数运算。

本课程将学习信号和系统分析的基本方法和原理,包括时域分析、频域分析和复频域分析。随着计算机技术和数字信号处理技术的发展和应用,离散信号和离散系统的分析方法具有非常广泛的实际应用。本课程在深入学习连续信号和系统的分析方法的基础上,进一步学习离散信号和系统的分析方法。信号和系统分析的重要工具是信号变换,本课程依据信号变换方法的内在联系,将依次介绍连续周期信号傅里叶级数(FS)、连续信号傅里叶变换(FT)、拉普拉斯变换、离散周期信号傅里叶级数(DFS)、离散时间傅里叶变换(DTFT)、z变换,以及用于计算机计算的离散傅里叶变换(DFT)和快速傅里叶变换(FFT)。

1.2 信号的分类

1.2.1 连续时间信号和离散时间信号

连续时间信号简称为连续信号,在所讨论的信号时间区间内,除了若干不连续点之外,任意时间都有确定的信号取值。连续信号的符号表示为)(t f,t为时间,连续取值。当需要区分连续信号和离散信号时,以下标a表示连

续信号,表示为)(

a t

f。图1-3是一个连续信号的示意图。

连续信号可分为非奇异信号和奇异信号。当信号和信号的各阶导数在整个时间区间都是连续时,称为非奇异信号;当信号或信号的某阶导数存在不连续点(跳变点)时,称为奇异信号。注意,如果一个信号本身是连续的,但若干次求导以后的导函数存在不连续点,则是奇异信号。一个非奇异信号和一个奇异信号相加或相乘,其结果通常仍为一个奇异信号。

离散时间信号简称为离散信号,在所讨论的信号时间区间内,信号只在一些离散时间点取值,其他时间无定

义。离散信号的符号表示为)(

d n

f,n为离散点序数,取整数值。这里用下标d表示离散信号,以区分连续信号和离散信号。图1-4是一个离散信号的示意图。注意,在离散点之间,信号无定义,不要理解为信号取零值。

离散信号通常来自于对连续信号的抽样,并且经常是等间隔抽样。相邻两个抽样点之间的时间间隔称为抽样周期或抽样间隔,用s

T 表示;单位时间的抽样点数称为抽

样率,用s

f 表示,有s

s

/1T f

=。信号抽样满足关系)

()(s a d

nT f n f

=。

在离散信号分析中,经常隐去时间的概念,因此也称为离散序列。

实际中还经常用到模拟信号和数字信号的概念。所谓模拟信号,信号的时间和幅值都连续取值。本课程中不区分模拟信号和连续信号。所谓数字信号,信号的时间和幅值都离散取值。实际中的信号抽样,由于模数转换器(A/D 转换器)的位数限制,抽样得到的离散点的信号幅值都是离散的,所以是数字信号。

)

(a t f

0 图1-3 连续

t

图1-4 离散

)

(d n f

0 -1 1

2 3 4 5 6 7 8

-2 n

1.2.2 周期信号和非周期信号

周期信号是以一定时间间隔周期重复的信号,无始无终。

连续周期信号满足关系 )

()(a a

T t f t f

+=

(1-1)

T

称为连续周期信号的周期。 离散周期信号满足关系

)

()(d d N n f n f +=

(1-2)

N

取正整数,称为离散周期信号的周期。

1.2.3 能量有限信号和能量无限信号 一个连续信号)

(a

t f 的能量定义为

?

∞∞

-=t

t f E d )(2

a a

(1-3)

当)

(a t f

为复信号时,)

()()

(a a 2

a

t f t f t f *=。信号)

(a

t f

的能量可理解为:

假设)

(a

t f

是一个电压信号或电流信号,它作用在一个1Ω

电阻上时所消耗的能量为信号能量。 一个离散信号)

(d

n f 的能量定义为

-∞

==

n n f E 2

d d

)

(

(1-4) 当)

(d n f

为复信号时,)()()

(d d 2

d n f n f n f

*=。

对于连续信号和离散信号,当信号的能量为有限值时称为能量有限信号,否则称为能量无限信号。式(1-3)和式(1-4)中取信号的绝对值,表示信号能量的定义对复信号也成立。

1.3 典型信号

1.3.1 典型连续非奇异信号 1. 三角信号

三角信号有正弦和余弦两种表示形式,为方便起见,本教材选择余弦函数的表示方式。三角信号的一般表达

式为

)cos()(φω+=t M t f (1-5)

式中M 为信号幅值,ω为角频率,φ为初始相位。以后在提到三角信号的初始相位时,均指余弦表示方式下的初始相位。三角信号的角频率ω、频率f 和周期T 满足关系:

ω

π21==

f T 。当三角信号的角频率0=ω时为直流信号,直流信

号是三角信号的一个特例。图1-5是一个三角信号的典型波形。

2. 指数信号 指数信号的表达式为

at

A t f e )(=

(1-6)

式中A 和a 均为实数,A 为0=t 时的信号幅值,

a 为衰减系数,当0>a 时,)(t f 随时间增大而增加;当0

)

cos()(φω+=t M t f

3. 复指数信号

复指数信号的表达式为

at

)(=

f e

A

t

(1-7)

式中A和a既可为实数也可为复数,有以下几种情况。

(1)当A和a都为实数时,)(t f就是一个指数信号。指数信号是复指数信号的一个特例。

(2)当A为实数,a为复数时,设

σj

ω

a

=

+

(1-8)

t

A t f )j (e )(ωσ+=

(1-9) 根据欧拉公式

?????-=+=-t t t t t t ωωωωωωsin j cos e

sin j cos e j j

(1-10a )

???

???

?-=+=--)e e (j 21sin )e e (21cos j j j j t t t t t t ωωωωωω

(1-10b ) 于是有

t

A t A t f t t ωωσσsin e j cos e )(+=

(1-11)

此时)(t f 的实部和虚部都是一个指数包络的三角函数,复数的实部和虚部分别表示衰减系数和角频率。当0=σ时,有

t A t A t f ωωsin j cos )(+= (1-12)

它的实部和虚部都是无衰减的三角函数。 (3)如果A 和a 都为复数,设

ω

σφj e j j +==+=a A I R A

(1-13) 则有

)

sin(e j )cos(e e e )()j (j φωφωσσωσφ+++==+t A t A A t f t

t

t

(1-14)

其实部和虚部分别是一个指数包络的三角函数,复数A 的模和辐角分别表示指数包络三角函数的幅值和初始相位,复数a 的实部和虚部分别表示衰减系数和角频率。 复指数信号是一个抽象的信号,实际中并不存在复指数信号,但借助于复指数信号,可以表示指数信号、三角信号和指数包络三角信号,描述了幅值、衰减、频率和相位等特征量。

4. 三角信号的复指数表示

一个三角信号可以用一对共轭复指数信号表示,根

据欧拉公式,它们满足关系

[]

t

t t t t t A A M M M t M t f ωωωφωφφωφωφωj 2j 1j j j j )

(j )(j e e e e 2e e 2e e 2

)

cos()(---+-++=+=+=+=

(1-15)

(M 是实数,A 1、A 2是复数。)

图1-7显示了在复平面上一对共轭复指数信号叠加为一个实三角信号的关系。在复平面上,共轭复函数t

ωj e 和t

ωj e

-是一对旋转的单位向量,向量始端在原点,长度为1,分别以ω和ω-的角速度旋转。在0=t 时,两个旋转向量的起始位置在正实轴,即初始相位均为零;在任意时间t ,两个单位旋转向量与实轴的夹角分别为t ω和t ω-。两个向量在实轴上的投影都是t ωcos ,在虚轴上的投影分别为t ωsin j 和

t

ωsin j -。t

ωj e 和t

ωj e -始终关于实轴对称,两个向量叠加得到向

量t ωcos 2,始终在实轴上变化,是一个实函数,最大幅值为2。

式(1-15)中的共轭复数φ

j 1

e 2

M A

=

和φ

j 2

e 2

-=

M A

是复平面上

两个关于实轴为对称的固定向量,向量始端在原点,长

度为2M ,辐角分别为φ和φ-。

复数1A 和2

A 与复函数t

ωj e 和t

ωj e

-分别相乘,得t

M ωφ

j j e e

2

t

M ωφj j e e 2

--,它们也是复平面上一对旋转的共轭向量,始端

在原点,长度为2M ,分别以角速度ω和ω-旋转,初始相位分别为φ和φ-。在任意时间t ,两个向量与实轴的夹角分别为φω+t 和)(φω+-t 。这两个向量在实轴上的投影均为

图1-7 三角信号和复

φ Re

)

(j e 2

φω+t M φ

j e 2

M

)

(j e 2

φω+-t M

φ

j e 2

-M

2

M -

t

ωj e

t

ωj e -

1

)cos(2φω+t M

,在虚轴上的投影分别为)sin(2j φω+t M 和)sin(2

j φω+-t M

。两个向量始终关于实轴对称,叠加得向量)cos(φω+t M ,始终在实轴上变化,最大幅值为M 。

由此可见,一对任意幅值和初始相位的共轭复指数信号的叠加是一个实三角信号。反过来,任意幅值和初始相位的三角信号可分解为两个复指数信号的叠加。共轭复数

2

e j 1φM A =

2

e j 2φ

-=

M A 的模和辐角对应于三角信号

)

cos(φω+t M 的幅值和初始相位,单位共轭复函数t

ωj e 和t

ωj e -的角

频率对应于三角信号的角频率。

一个实三角信号分解为正、负两个频率的复指数信号的叠加,引出了负频率的概念,这个负频率的物理意义表示的还是实际的相同数值的正频率。

信号的复指数表示把指数信号、三角信号和指数包络三角信号统一到了同一个形式,同时包含了幅值、衰减、频率和相位等特征量,给信号和系统分析带来了很大方便,因此得到了大量使用。

5. 抽样信号

抽样信号的表达式为

t

t t sin )(Sa =

(1-16)

其波形如图1-8。在0=t 时刻,抽样信号取值为 1

sin lim

)(Sa 00

==→=t

t

t t t

(1-17)

抽样信号满足以下关系 ?

∞∞

-=π

d )Sa(t t

(1-18)

图1-9 单位

t

1

)

(t u

图1-8 抽

)

(Sa t

1

π2

π

π

3

1.3.2 典型奇异信号 1. 单位阶跃信号 单位阶跃信号的定义为

??

?=0

1)(t u

0<>t t

(1-19)

??

?=-0

1

)(0t t u 0

0t

t t

t <> (1-20) 图

1-9

是单位阶跃信号的波形,在

=t 处信

号跳变。

信号与系统基础知识

第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信号的叠加,观察信号所包含的各频率分量的幅值和相位,得到信号的频谱特性。图1-2是从时域和频域观察一个周期矩形波信号的示意图,由此可以看到信号频域和时域的关系。系统的频域分析是观察系统对不同频率激励信号的响应,得到系统的频率响应特性。频域分析的重要优点包括:(1)对信号变化的快慢和系统的响应速度给出定量的描述。例如,当我们要用一个示波器观察一个信号时,需要了解信号的频谱特性和示波器的模拟带宽,当示波器的模拟带宽能够覆盖被测信号的频率范围时,可以保证测量的准确。(2)

信号与系统知识点整理

第一章 1.什么是信号? 是信息的载体,即信息的表现形式。通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。 2.什么是系统? 系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。3.信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出的反应。 4.通常把信号分为五种: ?连续信号与离散信号 ?偶信号和奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5.连续信号:在所有的时刻或位置都有定义的信号。 6.离散信号:只在某些离散的时刻或位置才有定义的信号。 通常考虑自变量取等间隔的离散值的情况。 7.确定信号:任何时候都有确定值的信号 。 8.随机信号:出现之前具有不确定性的信号。 可以看作若干信号的集合,信号集中每一个信号 出现的可能性(概率)是相对确定的,但何时出 现及出现的状态是不确定的。 9.能量信号的平均功率为零,功率信号的能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10.自变量线性变换的顺序:先时间平移,后时间变换做缩放. 注意:对离散信号做自变量线性变换会产生信息的丢失! 11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能 力。(开关效应) 12.单位冲激信号的物理图景: 持续时间极短、幅度极大的实际信号的数学近似。 对于储能状态为零的系统,系统在单位冲激信号作 用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。 13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分的被积函数中一个因子, 其他因子在冲激偶出现处存在时间的连续导数. 14.斜升信号: 单位阶跃信号对时间的积分即为单位斜率的斜升信号。 15.系统具有六个方面的特性: 1、稳定性 2、记忆性 3、因果性 4、可逆性 5、时变性与非时变性 6、线性性 16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。 17.记忆系统:系统的输出取决于过去或将来的输入。 18.非记忆系统:系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。 19.因果系统:输出只取决于现在或过去的输入信号,而与未来的输入无关。 20.非因果系统:输出与未来的输入信号相关联。 21.系统的因果性决定了系统的实时性:因果系统可以实时方式工作,而非因果系统不能以实时方式工作. 22.可逆系统:可以从输出信号复原输入信号的系统。 23.不可逆系统:对两个或者两个以上不同的输入信号能产生相同的输出的系统。 24.系统的时变性: 如果一个系统当输入信号仅发生时移时,输出信号也只产生同样的时移,除此之外,输出响应无任何其他变化,则称该系统为非时变系统;即非时变系统的特性不随时间而改变,否则称其为时变系统。 25.检验一个系统时不变性的步骤: 1. 令输入为 ,根据系统的描述,确定此时的输出 。 1()x t 1()y t

信号与系统基础知识

第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不

城市轨道交通信号与通信系统基础知识

城市轨道交通信号与通信系统基础知识 填空题 城市轨道交通信号系统通常包括两大部分,分别为联锁装置和列车自动运行控制系统。 列车自动运行控制系统ATC包括ATO(列车自动驾驶)、ATP(列车自动超速防护)、ATS(列车自动监控系统)。 信号机是由机柱、机构、托架、梯子、基础组成。(此一般指高柱信号机,若矮型信号机则无梯子。) 机构是由透镜组(聚焦的作用)、灯座(安放灯泡)、灯泡(光源)、机箱(安装诸零件)、遮檐(避免其它光线射入)、背板(增大色灯信号与周围背景的亮度)等组成。 透镜式信号机是指用信号的颜色和数目来组成的设备,并且采用光学材料的透镜组。 通过色灯的显示,提供列车运营的条件,拥有一系列显示的设备称为信号机。 信号机按高矮可分为高柱信号机与矮型信号机。 信号机按作用的不同可分为:防护信号机、阻挡信号机、出段信号机、入段信号机、调车信号机。 道岔区段设置的信号机称为防护信号机。 10、控制列车的进入与速度的设备称为信号。传送各种信息(图像、信息等)称为通信。 11、继电器是由电磁系统和接点系统组成。电磁系统是由线圈和铁芯组成,即输入系统。接点系统是由前接点和后接点组成,即输出系统。 12、转辙机的功能有:转换道岔、锁闭道岔、给出表示。 13、转辙机按用电性质,可分为直流电动转辙机和三相交流电动转辙机。 14、转辙机按道岔锁闭位置,可分为内锁闭和外锁闭。 15、转辙机按动力,可分为电动和液压。 16、50Hz微电子相敏轨道电路应用于车辆段内,其作用是接受来自轨道上列车占用的情况。 17、音频数字编码无绝缘轨道电路应用于正线上和试车线上,其作用是接受和发送各种信息。

信号与系统知识点

第1章 信号与系统分析导论 北京交通大学 1、 信号的描述及分类 周期信号: ()000002sin ,sin ,2t T m k N π ωωπ=ΩΩ=当为不可约的有理数时,为周期信号 能量信号:直流信号和周期信号都是功率信号。 一个信号不可能既是能量信号又是功率信号,但有少数信号既不是能量信号 也不是功率信号。 2、 系统的描述及分类 线性: 叠加性、均匀性 时不变:输出和输入产生相同的延时 因果性:输出不超前输入 稳定性:有界输入有界输出 3、 信号与系统分析概述 ※ 第2章 信号的时域分析 信号的分析就是信号的表达。 1、 基本连续信号的定义、性质、相互关系及应用 ()t δ的性质:筛选特性:000()()()()x t t t x t t t δδ-=- 取样特性:00()()d ()x t t t t x t δ∞ -∞-=? 展缩特性:1 ()() (0)t t δαδαα=≠ ()'t δ的性质:筛选特性:00000()'()()'()'()()x t t t x t t t x t t t δδδ-=--- 取样特性:00()'()d '()x t t t t x t δ∞ -∞-=-? 展缩特性:1'()'() (0)t t δαδααα= ≠ 2、连续信号的基本运算 翻转、平移、展缩、相加、相乘、微分、积分、卷积

3、基本离散信号 4、离散信号的基本运算 翻转、位移、抽取和内插、相加、相乘、差分、求和、卷积 5、确定信号的时域分解 直流分量+交流分量、奇分量+偶分量、实部分量+虚部分量、()[],t k δδ的线性组合。 第3章 系统的时域分析 1、系统的时域描述 连续LTI 系统:线性常系数微分方程 ()()y t x t 与之间的约束关系 离散LTI 系统:线性常系数差分方程 [][]y k x k 与之间的约束关系 2、 系统响应的经典求解(一般了解) 衬托后面方法的优越 纯数学方法 全解=通解+特解 3、 系统响应的卷积方法求解 ()zi y t :零输入响应,形式取决于微分方程的特征根。 ()zs y t :零状态响应,形式取决于微分方程的特征根及外部输入()x t 。 ()h t :冲激平衡法(微分方程右边阶次低于左边阶次,则()h t 中不含有()t δ及其导数项) (一般了解) []h k :等效初始条件法(一般了解) 4、 ※卷积计算及其性质 ※图形法 ※解析法 等宽/不等宽矩形信号卷积 卷积的基本公式及其性质(交换律、结合律、分配律) ※第4章 信号的频域分析 1、连续周期信号表达为虚指数信号()0jn t e t ω-∞<<∞的线性组合 0=()jn t n n x t C e ω∞-∞= ∑% 完备性、唯一性 ()n x t C ?%(周期信号的频谱)000001 ()T t jn t n t C x t e dt T ω+-=?%

信号与系统基础知识.doc

第1章信号与系统的基本概念 1.1引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数干公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。木课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形0(。(测量系统输入信号)和测量得到的波形v out (r)(测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性, 经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1T是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信号的叠加,观察信号所包含的各频率分量的幅值和相位,得到信号的频谱特性。图1-2是从时域和频域观察一个周期矩形波信号的不意图,由此可以看到信号频域和时域的关系。系统的频域分析是观察系统对不同频率激励信号的响应,得到系统的频率响应特性。频域分析的重要优点包括:(1)对信号变化的快慢和系统的响应速度给出定量的描述。例如,当我们要用一个示波器观察一个信号时,需要了解信号的频谱特性和示波器的模拟带宽,当示波器的模拟带宽能够覆盖被测信号的频率范围时,可以保证测量的准确。(2)为线性系统分析提供了一种简化的方法,在时域分析中

信号与系统基本概念

信号与系统基本概念 一.常用信号 ε(t) δ(t) cos(ωt+Ф) e st ε(k) δ(k) cos(ωk+Ф) a k e sk 二.信号常用运算 x(t)=x1(t)+x2(t) x(k)=x1(k)+x2(k) x(t)=x1(t)-x2(t) x(k)=x1(k)-x2(k) x(t)=x1(-t) x(k)=x1(-k) x(t)=x1(t-t0) x(k)=x1(k-k0) x(t)=x1(at) x(k)=x1(ak) x(t)=x1(at-t0) x(k)=x1(ak-k0) x(t)=dx1(t)/dt x(k)=x1(k)-x1(k-1) ex1: y(t)=(t+2)*(ε(t+2)-ε(t)) +2ε(t)-2ε(t-2) y(1-2t)=?

三.周期信号与非周期信号 f(t+T)=f(t) f(n+N)=f(n) ex2: f(k)=cos(2k) g(k)=cos(π/3k)+cos(π/4k) 周期信号? f(k): N=2π/2=π g(k): N=m1*N1=m2*N2 N1=2π/(π/3)=6 N2=8; N=m1*6=8*m2 N=m1*3=4*m2 m1=4 m2=3 N=4*6=24; 四.奇偶函数 x(-t)=x(t) x(-t)=-x(t)

五.系统分类 LTI----线性时不变系统 1.线性与非线性系统 线性: 零状态下: a1*x1(t)+a2*x2(t) a1*y1(t)+a2*y2(t) a1*x1(k)+a2*x2(k) a1*y1(k)+a2*y2(k) 2.时不变与时变系统 时不变 x(t-t0) y(t-t0) x(k-k0) y(k-k0) ex3: y(t)=x(t)*cos (ωC t) 线性? 时不变? If x(t)= a1*x1(t)+a2*x2(t) Then y(t)=(a1*x1(t)+a2*x2(t)) *cos (ωC t) = a1*x1(t) *cos (ωC t)+ a2*x2(t)* cos (ωC t) =a1*y1(t)+a2*y2(t) 线性

(完整版)信号与系统的理解与认识

1.《信号与系统》这门课程主要讲述什么内容? 《信号与系统》是一门重要的专业基础课程。它的任务是研究信号和线性非时变系统的基本理论和基本分析方法,要求掌握最基本的信号变换理论,并掌握线性非时变系统的分析方法,为学习后续课程,以及从事相关领域的工程技术和科学研究工作奠定坚实的理论基础。 2. 这门在我们的知识架构中占有什么地位? 是一门承上启下的重要的专业基础课程。其基本概念和方法对所有的 工科专业都很重要。信号与系统的分析方法的应用范围一直不断的在扩大。信号与系统不仅仅是工科教育中一门最基本的课程,而且能够成为工科类学生最有益处而又引人入胜又最有用处的一门课程。 《信号与系统》是将我们从电路分析的知识领域引入信号处理与传输领域的关键性课程。 3.学习这门课程有什么用处?

学习这门课程有什么用处呢?百度告诉我:通过本课程的学习,学生将理解信号的 函数表示与系统分析方法,掌握连续时间系和离散时间系统的时域分析和频域分析, 连续时间系统的S域分析和散时间系统的Z分析,以及状态方程与状态变量分析法等 相关内容。通过上机实验,使学生掌握利用计算机进行信号与系统分析的基本方法加 深对信号与线性非时变系统的基本理论的理解,训练学生的实验技能和科学实验方法,提高分析和解决实际问题的能力。 在百度上和道客巴巴还有知乎上都是很多这样看起来很高大上的解释,但是作为学 生的我还是不能很清楚的了解到学习这门课程有什么用处,后面我发现了这样一个个 例子,觉得对信号与系统的用处有了一定的了解。 如图这样一个轮子是怎么设计的呢? (打印有可能打印不出来,就是很神奇的一个轮子,交通工具) 没学过信号与系统的小明想到了反馈与系统,在轮子上放一个传感器,轮子正不正 系统就知道了,所以设计这个轮子其实就是设计一个系统。 好,现在我们有了一个传感器,要是机器朝左边偏一度,他就会输出一个信号。这个信号接下来就会传给处理器进行处理。处理器再控制电机,让他驱动轮子产生向左 的加速度,加速度就相当于给予系统向右的力,来修正向左的偏移。 小明就按照这一思想设计了一个小车车。踏上踏板,一上电,尼玛,他和他的车车就变成了一个节拍器。左边摔一下,右边摔一下。幸亏小明戴了头盔。小明觉得被骗了。找了一本反馈理论来看,原来有些反馈系统是不稳定的。 想要这个系统稳定地立着,我该怎么办?小明眼神呆滞,望着天空。 天边传来一个声音:你要分析环路稳定性呀。 怎么分析呢? 你要从信号传输入手,分析信号的传输函数。

信号安全栅简介及基础知识

信号安全栅简介及基础 知识 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第一部分 安全栅的基本知识 本安型安全栅介绍 本安型安全栅应用在本安防爆系统的设计中,它是安装于安全场所并含有本安电路和非本安电路的装置,电路中通过限流和限压电路限制了送往现场本安回路的能量,从而防止非本安电路的危险能量串入本安电路,它在本安防爆系统中称为关联设备[见术语解释],是本安系统的重要组成部分。 由于安全栅被设计为介于现场设备与控制室设备之间的一个限制能量的接口,因此无论控制室设备处于正常或故障状态,安全栅都能确保通过它传送给现场设备的能量是本质安全的。 中国国家仪器仪表防爆安全监督站是中华人民共和国地区监督生产安全防爆产品的权威机构,对本安型安全栅产品有着严格、科学、详细的规定,只有通过该监督站认证的企业及其所开发生产的产品才具备符合标准的安全性能,否则可能会给使用方的设备、人员和生产造成无可估量的损害。 术语解释:关联设备 一种安装在安全场所,本安电气设备与非本安电气设备之间的相连的电气设备。 安装位置安全栅安装于安全场所,接收来自危险区的信号,输出安全信号到安全区或危险区. 安全栅的结构形式常见的安全栅结构形式分为齐纳式和隔离式. 齐纳式安全栅结构原理: 电路中采用快速熔断器、限流电阻或限压二极管以对输入的电能量进行限制,从而保证输出到危险区的能量。它的原理简单、电路实现容易,价格低廉,但因由于其自身原理的缺陷使其应用中的可靠性受到很大影响,并限制了其应用范围,其原因如下: 1、安装位置必须有非常可靠的接地系统,并且该齐纳式安全栅的接地电阻必须小于1Ω,否

(完整版)信号与系统复习知识点

《信号与系统》复习要点 第一章 1.信号的运算:时移、反褶、尺度变换、微分、积分等; 2.LTI 系统的基本性质:叠加性、时不变特性、微分特性、因果性、可分解线性; 3.阶跃型号与冲激信号及其特性。 单位冲激信号的性质: 1. )()()()(t o f t t f δδ= 2. )()()()(0 t t t f t t t f -=-δδ 3. ?∞ ∞-=)0()()(f dt t t f δ 4. ? ∞ ∞ -=-)()()(00t f dt t t t f δ 5. )()(t t -=δδ 6. dt t du t )()(=δ ?∞ -=t t u d )()(ττδ 7. ∑∞ -∞=-= n T nT t t )()(δδ ∑∞ -∞ =-=n T nT t nT f t t f )()()()(δδ 例、求下列积分 dt t t t t f ? ∞ ∞ -= )2sin() (2)(δ 例、已知信号)(t f 的波形如下图1所示,试画出下列各信号的波形 (1) )2(t f ,(2))()2(t u t f ---,(3))2()2(t u t f -- 例 已知 )3(2)(-=t t f δ求系列积分?)25(0 =-?∞ dt t f

第二章 1.响应的分解,各种响应分量的含义、可分解线性; 2.卷积及其特性(微积分特性); 3.零状态响应及卷积积分求解。 第三章 1.典型信号的傅里叶变换; 2.傅里叶变换的基本性质:对称性、尺度变换特性、平移特性、微积分特性;3.傅里叶变换卷积定理。

*)(ωj F o 为周期信号取一个单周期信号的傅立叶变换 ● 理想抽样序列: ∑∞ -∞ =-=n s T nT t t )()(δδ ● 非理想抽样序列: ∑∞ -∞ =-= n s nT t G t P )()(τ 被抽样信号的表达式: ∑∞-∞ =-=n s s nT t t f t f )()()(δ ∑∞ -∞ =-=n s s nT t G t f t f )()()(τ

信号与系统基础知识

1文档收集于互联网,如有不妥请联系删除. 第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信号的叠加,观察信号所包含的各频率分量的幅值和相位,得到信号的频谱特性。图1-2是从时域和频域观察一个周期矩形波信号的示意图,由此可以看到信号频域和时域的关系。系统的频域分析是观察系统对不同频率激励信号的响应,得到系统的频率响应特性。频域分析的重要优点包括:(1)对信号变化的快慢和系统的响应速度给出定量的描述。例如,当我们要用一个示波器观察一个信号时,需要了解信号的频谱特性和示波器的模拟带宽,当示波器的模拟带宽能够覆盖被测信号的频率范围时,可以保证测量的准确。(2)为线性系统分析提供了一种简化的方法,在时域分析中需要进行的微分或积分运算,在频域分析中简化成了代数运算。

信号与系统基础知识

信号与系统基础知识

第1章信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。

很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电 压波形)( in t v(测量系统输入信号)和测量得到的波形)(out t v

信号与系统基础知识

第1 章信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分 析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运 动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、 变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分 析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会 计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关 系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的 变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函 数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统 输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的 重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形( ) v in t (测量系统输入信号)和测量得到 的波形( ) v out t (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性, 经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1 是典型的波形,通过阶跃响应的电压上升 时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过 冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果 被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信 号的叠加,观察信号所包含的各频率分量的幅值和相位,得到信号的频谱特性。图1-2 是从时域和频域观 察一个周期矩形波信号的示意图,由此可以看到信号频域和时域的关系。系统的频域分析是观察系统对不 同频率激励信号的响应,得到系统的频率响应特性。频域分析的重要优点包括:(1)对信号变化的快慢和 系统的响应速度给出定量的描述。例如,当我们要用一个示波器观察一个信号时,需要了解信号的频谱特 性和示波器的模拟带宽,当示波器的模拟带宽能够覆盖被测信号的频率范围时,可以保证测量的准确。(2)

信号与系统基础教学大纲

《信号与系统基础》课程教学大纲 课程代码:060331002 课程英文名称:Signals and Systems 课程总学时:32 讲课:32 实验:0 上机:0 适用专业:电子科学与技术 大纲编写(修订)时间:2017.11 一、大纲使用说明 (一)课程的地位及教学目标 本课程是电子科学与技术专业的专业基础课,主要讨论信号与系统的数学表示,连续时间周期信号与非周期信号的频域分析方法与复频域分析方法,及其在实际中的简单应用。 通过本课程的学习,学生应能掌握信号的数学表示,线性时不变系统的基本理论及分析方法,应能建立简单系统的数学模型,对数学模型求解。 通过本课程的学习应为进一步研究数字信号处理等学科打下必要的基础。 (二)知识、能力及技能方面的基本要求 本课程要求学生理解并掌握重要的连续时间函数,基本系统性质,线性时不变系统的卷积积分与性质,周期信号的傅立叶级数,连续时间傅立叶变换,拉普拉斯变换。要求学生能够利用所学的知识,分析和解决简单的实际问题。 (三)实施说明 课程理论严谨,系统性强,教学过程中应注意培养学生的抽象思维的能力及严谨的科学学风。本课程教学中应注意运用启发式教学,注意阐述各种分析方法间的横向联系,以培养分析,归纳与总结的能力。 (四)对先修课的要求 为学好本课程,学生应有一定的数学基础,书中涉及的数学内容主要包括微分方程、复变函数、线性代数等。本课程主要的先修课程为:高等数学、复变函数与积分变换、线性代数。 (五)对习题课、实践环节的要求 在《信号与系统基础》课讲授过程中,需要借助各种典型例题,加深学生对本课程主要内容的理解,做一定数量习题是掌握和巩固基本概念的有力手段。利用授课及习题课讲解典型例题,每章布置适当数量的习题,并对学生作业中出现的错误,讲解纠正。 (六)课程考核方式 1.考核方式:考试 2.考核目标:在考核学生对信号与系统的数学表示、连续时间傅立叶分析方法,拉普拉斯变换等基本原理的基础上,重点考核学生的分析能力、解决问题的能力。 3.成绩构成:本课程的总成绩主要由三部分组成:平时成绩(包括作业情况、出勤情况等)占20%,期末考试成绩占80%。 (七)参考书目 1.《信号与线性系统》(第五版),管致中,高等教育出版社,2011. 2. 《信号与系统》(第二版精编版),奥本海姆(美)主编,刘树棠译,西安交通大学出版社,2010. 3.《信号与系统》,郑君里,高等教育出版社,2000. 4.《信号与系统》(第三版),段哲民,电子工业出版社,2012. 二、中文摘要

完整版信号与系统的理解与认识

1.《信号与系统》这门课程主要讲述什么内容?《信号与系统》是一门重要的专业基础课程。它的任务是研究信号和线性非时变系统的基本理论和基本分析方法,要求掌握最基本的信号变换理论,并掌握线性非时变系统的分析方法,为学习后续课程,以及从事相关领域的工程技术和科学研究工作奠定坚实的理论基础。 分析系统对信号的响应一个任务 连续时间系统两种系统离散事件系统 主要时域法内两类方法容变换域法 傅里叶变换三大变换拉斯变换 Z变换 2.这门在我们的知识架构中占有什么地位?是一门承上启下的重要的专业基础课程。其基本概

念和方法对所有的专业都很工科重要。信号与系统的分析方法的应用范围一直不断的在扩大。信号与系统不仅仅是工科教育中一门最基本的课程,而且能够成为工科类学生最有益处而又引人入胜又最有用处的一门课程。《信号与系统》是将我们从电路分析的知识领域引入信号处理与传 输领域的关键性课程。 《高等数学》《通信原理》《线性代数》《信号与系统》《数字信号处理》《复变函数》《自动控制原理》《电路分析》· 学习这门课程有什么用处?3. 学习这门课程有什么用处呢?百度告诉我:通过本课程的学习,学生将理解信号的函数表示与系统分析方法,掌握连续时间系和离散时间系统的时域分析和频域分析,连续时间系统的S 域分析和散时间系统的Z分析,以及状态方程与状态变量分析法等相关内容。通过上机实验,使学生掌握利用计算机进行信号与系统分析的基本方法加深对信号与线性非时变系统的基本理论的理解,训练学生的实验技能和科学实验方法,提高分析和解决实际问题的能力。

在百度上和道客巴巴还有知乎上都是很多这样看起来很高大上的解释,但是作为学生的我还是不能很清楚的了解到学习这门课程有什么用处,后面我发现了这样一个个例子,觉得对信号与系统的用处有了一定的了解。 设计的呢?如图这样一个轮子是怎么,就是很神奇的一个轮子,交通工具)(打印有可能打印不出来 没学过信号与系统的小明想到了反馈与系统,在轮子上放一个传感器,轮子正不正系统就知道了,所以设计这个轮子其实就是设计一个系统。好,现在我们有了一个传感器,要是机器朝左边偏一度,他就会输出一个信号。这 个信号接下来就会传给处理器进行处理。处理器再控制电机,让他驱动轮子产生向左的加速度,加速度就相当于给予系统向右的力,来修正向左的偏移。小明就按照这一思想设计了一个小车车。踏上踏板,一上电,尼玛,他和他的车车 就变成了一个节拍器。左边摔一下,右边摔一下。幸亏小明戴了头盔。小明觉得被骗了。找了

信号与系统基础知识

《信号与系统》基础知识学习指导 第一章 信号与系统的基本概念 1.单位冲激信号的脉冲幅度为 ,脉冲强度为 ,持续时间为 。 2.单位抽样序列 (是/不是)奇异函数。 3.离散信号两个序号之间的序列值为 (零/无定义)。 4.虚指数序列的低频位置位于π的 倍附近,高频位置位于π的 倍附近。 5.虚指数序列的谐波个数为 (有限/无限)多个。 6.线性系统的三个性质为 、 和 。 7.系统的输出是由输入引起的,它的输出不能领先于输入,这种性质称为 。 8.若系统输入有界输出也有界,则系统满足 性。 9.系统输入输出关系为)()(t y t x →,若其满足)()(00t t y t t x -→-,则其具有 性。 10.积分t t t t t d )1()835(2 426?---+++δ的结果为 。 11.普通函数)(t x 与)(0t t -δ的乘积为 。 第二章 连续时间系统的时域分析 1.连续时间系统的时域数学模型为 。 2.系统的微分方程的齐次解为系统的 响应,特解为系统的 响应。 3.系统的单位冲激响应和阶跃响应都属于系统的 (零输入/零状态/全)响应。 4.单位冲激响应是单位阶跃响应的 (微分/积分)。 5.因果的LTI 系统的单位冲激响应)(t h 应满足的条件是 。 6.稳定的LTI 系统的单位冲激响应)(t h 应满足的条件是 。 7.系统的单位冲击响应)(t h 与输入)(t x 的卷积)()(t h t x *代表系统的 响应。 8.两个子系统)(1t h 和)(2t h 串联组成的系统的单位冲激响应为 。 9.两个子系统)(1t h 和)(2t h 并联组成的系统的单位冲激响应为 。 10.普通函数)(t x 与)(0t t -δ的卷积为 。 11.恒等系统的单位冲激响应为 。 12.积分系统的单位冲激响应为 。 13.微分系统的单位冲激响应为 。 第三章 离散时间系统的时域分析 1.离散时间系统的时域数学模型为 。 2.系统的单位抽样响应和阶跃响应都属于系统的 (零输入/零状态/全)响应。 3.因果的LTI 系统的单位抽样响应][n h 应满足的条件是 。 4.稳定的LTI 系统的单位抽样响应][n h 应满足的条件是 。 5.系统的单位抽样响应][n h 与输入][n x 的卷积和][][n h n x *代表系统的 响应。 6.两个子系统][1n h 和][2n h 串联组成的系统的单位冲激响应为 。 7.两个子系统][1n h 和][2n h 并联组成的系统的单位冲激响应为 。 8.若]3[][],2[][-=-=n n h n n x δδ,则][][n h n x *为 。 第四章 连续时间傅立叶变换 1.偶对称的周期信号的傅里叶级数中只包含直流项和 项。 2.奇对称的周期信号的傅里叶级数中只包含 项。 3.偶半波对称的周期信号的傅里叶级数中只包含 次谐波。 4.奇半波对称的周期信号的傅里叶级数中只包含 次谐波。

信号与系统知识点

第一章 1.什么是信号 是信息的载体,即信息的表现形式。通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。 2.什么是系统 系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。3.信号作用于系统产生什么反应 系统依赖于信号来表现,而系统对信号有选择做出的反应。 4.通常把信号分为五种: ?连续信号与离散信号 ?偶信号和奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5.连续信号:在所有的时刻或位置都有定义的信号。 6.离散信号:只在某些离散的时刻或位置才有定义的信号。 通常考虑自变量取等间隔的离散值的情况。 7.确定信号:任何时候都有确定值的信号 。 8.随机信号:出现之前具有不确定性的信号。 可以看作若干信号的集合,信号集中每一个信号 出现的可能性(概率)是相对确定的,但何时出 现及出现的状态是不确定的。 9.能量信号的平均功率为零,功率信号的能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10.自变量线性变换的顺序:先时间平移,后时间变换做缩放. 注意:对离散信号做自变量线性变换会产生信息的丢失! 11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能 力。(开关效应) 12.单位冲激信号的物理图景: 持续时间极短、幅度极大的实际信号的数学近似。 对于储能状态为零的系统,系统在单位冲激信号作 用下产生的零状态响应,可揭示系统的有关特性。 例:测试电路的瞬态响应。 13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分的被积函数中一个因子, 其他因子在冲激偶出现处存在时间的连续导数. 14.斜升信号: 单位阶跃信号对时间的积分即为单位斜率的斜升信号。 15.系统具有六个方面的特性: 1、稳定性 2、记忆性

信号与系统复习知识点

课程编号:824 课程名称:信号与系统一 一、考试的总体要求 掌握连续和离散信号与系统的基本知识,连续和离散信号与系统的时域及变换域分析方法,信号的抽样与恢复,信号的调制与解调。 二、考试的内容及比例 1.信号与系统的基础知识 (1) 信号和系统的概念及分类 (2) 信号的基本运算及典型信号的定义和性质 (3) 系统性质的判定 2.连续时间系统的时域分析 (1)线性系统微分方程式的建立与求解; (2)系统全响应的两种分解形式:自由响应和强迫响应,零输入响应和零状态响应; (3)系统的单位冲激响应和单位阶跃响应的概念及求解; (4)信号的时域分解和卷积积分的定义、性质、计算; (5)卷积积分法求解线性时不变系统的零状态响应。 3.信号与系统的变换域分析 (1)Fourier级数和Fourier变换的求解方法及基本性质; (2)周期、非周期信号的频谱; (3)运用Fourier分析方法对信号进行频谱分析; (4)信号的抽样与恢复; (5)系统函数的定义、意义、求法与应用;系统函数的零、极点分布与系统特性的关系;系统的稳定性;

(6)任意信号激励下系统的稳态响应; (7)信号的无失真传输和理想低通滤波器; (8)系统调制和解调的原理与实现; (9)拉普拉斯变换在线性系统分析中的应用; 4.线性离散时间系统的分析 (1)离散时间信号的表示、性质、运算及卷积和; (2)线性离散时间系统的建模、分析; (3)离散时间系统的单位响应;离散时间系统的零状态响应、零输入响应和全响应。 (4)Z变换定义、收敛域;Z变换与拉普拉斯变换的关系;Z变换的性质、反Z变换; (5)离散系统的Z变换分析;离散系统的系统函数; (6)掌握离散时间系统的时域和Z域框图与流图描述形式 (7)离散时间信号Fourier变换(DTFT) 5.系统的状态变量分析 (1)状态、状态变量、状态矢量的概念; (2)状态方程和输出方程的建立; (3)状态方程的复频域解及时域解; 三、考试的题型 填空题、简答题、证明题、计算题

相关主题
文本预览
相关文档 最新文档