当前位置:文档之家› 内燃机曲轴结构设计的方法

内燃机曲轴结构设计的方法

内燃机曲轴结构设计的方法
内燃机曲轴结构设计的方法

内燃机曲轴结构设计的方法

河南职业技术学院 邵立新

安阳工学院 段立霞

摘 要 

本文通过对内燃机曲轴疲劳破坏形式及其主要原因的分析,得出弯曲和扭转疲劳断裂是内燃机曲轴的主

要破坏形式。内燃机曲轴部分的结构形状和主要尺寸,对内燃机曲轴的抗弯疲劳强度和扭转刚度有主要影响,因而强调在内燃机曲轴设计时,必须对内燃机曲轴的结构强度问题予以充分重视。关键词 内燃机曲轴 结构 设计

 方法

01前言

内燃机是一种往复式动力机械,内燃机曲轴是一种常见的把柴油燃烧产生的热能转换成机械能的传动部件。内燃机曲轴的横断面沿着轴线方向急剧变化,因而应力分布极不均匀,很难准确计算出应力,给出强度判据。尤其在曲柄臂和轴颈的过渡圆角部分、油孔附近会产生严重的应力集中。在循环

应力作用下,其应力集中区便可能产生疲劳破坏。

实践证明,弯曲和扭转疲劳断裂是内燃机曲轴的主要破坏形式。内燃机曲轴部分的结构形状和主要尺寸,对内燃机曲轴的抗弯疲劳强度和扭转刚度有主要影响,因而在内燃机曲轴设计时,必须对内燃机曲轴的结构强度问题予以充分重视。

11内燃机曲轴疲劳破坏形式及其主要原因(见下表)

破坏形式

特 征

主 要 原 因

裂纹最初常发生在主轴颈或连杆轴颈与曲柄臂过渡圆角处应力集中严重点,随后逐渐发展成横断曲柄臂的疲劳裂纹 1.由于曲柄过渡圆角太小,曲柄臂太薄,过渡圆角加工不完善所致。

2.曲轴箱或支撑刚度太小,引起附加弯矩过大。

3.由于曲轴箱刚度不够,主轴颈变形太大,引起不均匀磨损,造成不同心度,致使附加弯矩过大。这时断裂常发生在运行较长时间之后。 裂纹起源于过渡圆角或油孔,且只有一个方向裂纹,裂纹与轴线呈45°

1.由于不对称交变扭矩引起最大应力,致使疲劳破坏。

2.圆角加工不好,及热加工工艺不完善,造成材料组织不均匀。

3.油孔孔口圆角加工不完善。

4.连杆轴颈太细。 裂纹起源于油孔,沿与轴线呈45°方向发展

1.由于过大的扭转振动,引起附加应力。

2.油孔边缘加工不完善,或孔口过渡圆角太小,引起过大的应力集中。

裂纹沿过渡圆角周向同时发生,断口呈径向锯齿形

由于圆角太尖锐,引起过大的应力集中。

2.内燃机曲轴结构设计的基本要求

内燃机曲轴部分的结构形状和主要尺寸,对内

燃机曲轴的抗弯疲劳强度和扭转刚度有主要影响,因而内燃机曲轴设计须满足以下要求:2.1 足够的强度

主要是曲柄部分的弯曲疲劳强度、扭转疲劳强度以及功率输出端的静强度。2.2 足够的刚度

减少曲轴挠曲变形,以保证活塞连杆组和曲轴各轴承可靠工作,同时提高曲轴的自振频率,尽量避

免在工作转速范围内发生共振。2.3 轴颈—轴承副具有足够的承压面积和较高的耐磨性,油孔布置合理。2.4 合理的曲柄排列,使其工作时运转平稳,扭矩均匀,并改善轴系的扭振情况。2.5 合理配置平衡块,减轻主轴承负荷和振动。

上述各项设计要求相互关联,又相互制约,应根据各种内燃机的不同特点,结合总体设计综合考虑。3.内燃机曲轴结构设计的方法

由于影响内燃机曲轴结构的因素很多,且结构

4

1 农 机 使 用 与 维 修

2008年第3期

形式又要随具体情况不同而异,所以内燃机曲轴没有标准的结构形式。设计时应针对不同情况进行具体分析,但是不论何种具体情况,内燃机曲轴在结构上都应满足:曲轴和装在曲轴上的零件要有准确的工艺位置;曲轴要有良好的制造工艺性;曲轴应力尽可能做到均匀分布,满足疲劳强度要求;考虑曲轴加工制造的经济性等。在设计内燃机曲轴时,应根据内燃机曲轴的工作条件,选择不同的结构设计方案。内燃机曲轴结构设计方法大致如下:

3.1 选择确定结构形式

3.1.1 整体锻造曲轴

整体锻造曲轴尺寸紧凑,重量较轻,强度高,但对于复杂的形状加工困难,平衡块也不易与曲轴做成一体。整体锻造曲轴一般采用模缎和连续纤维挤压锻造。只有小量生产的曲轴,主要是曲柄半径在800mm以下的大中型曲轴才采用自由锻。

3.1.2 整体铸造曲轴

整体铸造曲轴的加工性能好,金属切削量少,成本低。铸造曲轴可以获得较合理的结构形状,如椭圆形曲柄臂,桶形空心轴颈和卸载槽等,从而使应力分布均匀,对提高曲铀的疲劳强度有显著效果。

3.1.3 组合曲轴

大型曲轴由于整体毛坯的制造能力受到限制,以及部分损坏时须更换整根曲轴很不经济,故采用组合曲轴。在一些有特殊要求的情况下,中小曲轴也可以做成组合式。而用得最多的是套合曲轴。

套合曲轴分为全套合和半套合两种。主轴颈、曲柄销、曲柄臂全部分开或部分分开制造(后者通常曲柄销与曲柄臂铸成一体),然后再用“热套”或液压压入等方法联接起来,即为全套合或半套合曲轴。

套合曲轴一般用于曲柄半径大于400~450mm 的大型低速十字头柴油机曲轴,以及曲柄销上采用滚针轴承的小型曲轴。

大型套合曲轴全套合时t

o≥1/3d,t近于to,半套合时t亦接近于1/3d。在200~250℃以下“热套”时,曲柄臂材料的屈服极限应不小于220MPa,配合过盈量为1.4/1000~1.6/1000d,压入量为0.4~0.45d(d为配合处的轴颈直径)。

3.2 确定润滑油道

曲轴主轴颈和曲柄销一般采用压力润滑。润滑油由主油道(或主油管)送到各主轴承,再经曲轴内润滑油道进入连杆轴承。当主轴承为滚动轴承时,润滑可从“假轴承”进入曲轴内腔,再分配到各有关轴承。

在决定主轴颈和曲柄销上的油孔位置时,主要应考虑保证供油压力和油孔对曲轴强度的影响程度。因此一般希望把主轴颈油孔开在最大轴颈压力作用线的垂直方向,曲柄销油孔开在轴承负荷较低的地方。从强度考虑曲柄销油孔应位于曲轴的垂直平面内,因为在该平面内曲轴销的表面弯曲正应力和扭转切应力都较小。此外,还应同时根据曲轴结构和钻孔工艺等因素来确定油孔位置。油孔部位应力集中较严重,疲劳裂纹可由油孔边缘产生和发展,以致造成曲轴扭转疲劳断裂,所以油孔边缘应倒角并抛光。

3.3 确定曲轴平衡块形式

平衡块用来平衡曲轴的不平衡惯性力和力矩,减轻主轴承载荷,以及减小曲轴和曲轴箱(或机体)所受的内力矩。但曲轴配置平衡块后质量增加,将使曲轴系统的扭振效率有所降低。因此,应根据曲轴结构、转速、曲柄排列等因素来配置平衡块和确定平衡精度要求。平衡块可与曲轴制成一体,也可与曲轴分开制造后再行装配。

另外应该注意到,为提高曲轴疲劳强度,还可以通过改进曲轴的几何形状来实现。例如:增大过渡圆角(多圆弧连接圆角,圆角处作沉割),增大重叠度;采用空心轴颈及在曲柄臂上作卸载槽,尽量增大油孔边缘圆角;采用局部强化工艺,如高频淬火、圆角辊压,软氮化等措施,以提高曲轴应力集中区的疲劳强度。

4.内燃机曲轴的应力分析及强度校核

从内燃机曲轴断口分析得知,内燃机曲轴的破坏大多由于应力集中区疲劳裂纹的发生和发展引起的,因此,通常应在易于发生疲劳裂纹处进行强度校核。

内燃机曲轴的应力分析及强度校核可以采用传统的计算方法进行校核,凭工程技术人员的经验进行结构修改,通过校核结果来校正设计。经过多次重复计算,达到最终设计要求。另外也可以采用工程上广泛应用的C AE软件—ANSY S来对内燃机曲轴进行应力分析及强度校核,即利用建立的有限元模性来进行校核。这种先进的校核方法,可以大大缩短内燃机曲轴结构设计的周期,从而减少设计成本,并有利于多种型号产品的开发。

参考文献

[1]王启等1常用机械零部件可靠性设计[M]1北京:机械工业出版社,19961

[2]许尚贤1机械零部件现代设计方法[M]1北京:高等教育出版社,19961

[3]隋明阳1机械设计基础[M]1北京:机械工业出版社,20021

[4]赵冬梅1机械设计基础[M]1西安:西安电子科技大学出版社,20041

[5]郭仁生1机械设计基础[M]1北京:清华大学出版社,20011

(04)

51

2008年第3期

农 机 使 用 与 维 修

发动机曲轴结构设计

2.1 曲轴的结构 曲轴的作用是把活塞往复运动通过连杆转变为旋转运动,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等【18】。 曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端和后端等组成,如图1.1所示。一个主轴颈、一个连杆轴颈和一个曲柄组成了一个曲拐,直列式发动机曲轴的曲拐数目等于气缸数,而V型发动机曲轴的曲拐数等于气缸数的一半。 图1.1 主轴颈是曲轴的支承部分,通过主轴承支承在曲轴箱的主轴承座中。主轴承的数目不仅与发动机气缸数目有关,还取决于曲轴的支承方式。 曲柄是主轴颈和连杆轴颈的连接部分,断面为椭圆形,为了平衡惯性力,曲柄处常设置平衡重。平衡重用来平衡发动机不平衡的离心力矩及一部分往复惯性力,从而保证了曲轴旋转的平稳性【19】。 曲轴的连杆轴颈是曲轴与连杆的连接部分,曲柄与主轴颈的相连处用圆弧过渡,以减少应力集中。直列发动机的连杆轴颈数目与气缸数相等而V型发动机的连杆轴颈数等

于气缸数的一半。 曲轴前端装有正时齿轮,以驱动风扇和水泵的皮带轮以及起动爪等。为了防止机油沿曲轴轴颈外漏,在曲轴前端装有一个甩油盘,在齿轮室盖上装有油封。曲轴的后端用来安装飞轮,在后轴颈与飞轮凸缘之间制成档油凸缘与回油螺纹,以阻止机油向后窜漏。 曲轴的形状和曲拐相对位置取决于气缸数、气缸排列和发动机的发火顺序。多缸发动机的发火顺序应使连续作功的两缸保持尽量远的距离,这样既可以减轻主轴承的载荷,又能避免可能发生的进气重叠现象。此外作功间隔应力求均匀,也就是说发动机在完成一个工作循环的曲轴转角,每个气缸都应发火作功一次,以保证发动机运转平稳。 曲轴的作用:它与连杆配合将作用在活塞上的气体压力变为旋转的动力,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等。工作时,曲轴承受气体压力,惯性力及惯性力矩的作用,受力大而且受力复杂,并且承受交变负荷的冲击作用。同时,曲轴又是高速旋转件,因此,要求曲轴具有足够的刚度和强度,具有良好的承受冲击载荷的能力,耐磨损且润滑良好【20】。 2.2 曲轴的疲劳损坏形式 曲轴的工作情况十分复杂,它是在周期性变化的燃气作用力、往复运动和旋转运动惯性力及其他力矩作用下工作的,因而承受着扭转和弯曲的复杂应力。曲轴箱主轴承的不同心度会影响到曲轴的受力状况,其次,由于曲轴弯曲与扭转振动而产生的附加应力,再加上曲轴形状复杂,结构变化急剧,产生了严重的应力集中。最后曲轴主轴颈与曲柄销是在比压下进行高速转动,因而产生强烈的磨损。因此柴油机在运转中发生曲轴裂纹和断裂事故不为鲜见,尤其是发电柴油机曲轴疲劳破坏较多。依曲轴产生裂纹的交变应力的性质不同,主要有以下三种疲劳裂纹:弯曲疲劳裂纹、扭转疲劳裂纹和弯曲一扭转疲劳裂纹【21】,如图2.1所示。

发动机曲轴结构设计说明

目录 1 绪论 (1) 1.1 本课题的目的及意义 (1) 1.2 国外研究的现状与发展趋势 (1) 1.2.1 曲轴结构设计的发展 (1) 1.2.2 曲轴强度计算发展 (2) 1.3 有限元分析 (3) 2 1015柴油机曲轴结构设计 (4) 2.1 曲轴的结构 (4) 2.2 曲轴的疲劳损坏形式 (5) 2.2.1 弯曲疲劳裂纹 (6) 2.2.2 扭转疲劳裂纹 (6) 2.2.3 弯曲--扭转疲劳裂纹 (6) 2.3 曲轴的设计要求 (7) 2.4 曲轴的结构型式 (7) 2.5 曲轴的材料 (8) 2.6 曲轴的主要部件设计 (8) 2.6.1 主轴颈和曲柄销 (8) 2.6.2 曲柄臂 (9) 2.6.3 曲轴圆角 (10) 2.6.4 润滑油道 (11) 2.6.5 平衡重 (12) 2.6.6 曲轴两端和轴向止推 (12) 2.6.7 曲轴的强化 (13) 2.7 曲轴的强度校核 (14) 2.7.1 曲柄销应力 (14) 2.7.2 圆角形状系数 (17) 2.7.3 安全系数 (19)

3 有限元分析 (21) 3.1 ANSYS软件介绍 (21) 3.2 整体曲轴有限元模型的建立 (22) 3.2.1 有限元网格的划分 (22) 3.2.2 载荷状况的确定 (22) 3.3 曲轴整体模型计算结果分析 (24) 3.3.1 压应力分析 (24) 3.3.2 拉应力分析 (25) 3.4 疲劳强度校核 (26) 3.5 结论 (26) 4 总结 (26) 参考文献 (28) 致 (32)

1 绪论 1.1 本课题的目的及意义 柴油机与汽油机相比其燃料、可燃混合气的形成以及点火方式都不相同,而柴油机采用压缩空气的办法提高空气温度【1】,因此柴油机的功率更大、经济性能更好,这也导致柴油机工作压力大,要求各有关零件具有较高的结构强度和刚度,所以柴油机比较笨重,体积较大;柴油机的喷油泵与喷嘴制造精度要求高【2】,所以成本较高;另外,柴油机工作粗暴,振动噪声大;柴油不易蒸发,冬季冷车时起动困难。因而柴油发动机一般用于大、中型载重货车上【3】。 曲轴是发动机的关键零件,其尺寸与燃机整体尺寸和重量有很大关系,如曲柄销直径直接影响连杆大端尺寸和重量,后者又影响曲轴箱宽度,曲轴单位曲柄长度影响燃机总长度,曲轴尺寸大小在很大程度上影响着发动机的外形尺寸和重量。曲轴是燃机曲柄连杆机构的主要组成部分、三大运动件之一,是主要传力件。它的功用是把气缸中所作的功,通过活塞连杆汇总后以旋转运动形式输出。此外,曲轴还传动保证燃机正常工作需要的机构和系统附件(如配气机构、燃油泵、水泵、润滑油泵等),因此曲轴工作的可靠性和寿命在很大程度上影响燃机工作的可靠性和寿命。【4】。曲轴的工作情况及其复杂,基本工作载荷是弯曲载荷和扭荷;对不平衡的发动机曲轴还承受弯矩和剪力;未采取扭转振动减振措施的曲轴还可能作用着幅值较大的扭转振动弹性力矩。这些载荷都是交变性的,可能引起曲轴疲劳失效。曲轴的破坏事故可能引起其它零件的严重损坏。曲轴又是一根连续曲梁,结构形状复杂,刚性差,材质要求严,制造要求高,是燃机造价最贵的机件。随着燃机的发展与强化,曲轴的工作条件愈加严酷了【5】,必须在设计上正确选择曲轴的结构形式,并根据设计要求选择合理的尺寸、合适的材料与恰当的工艺,以求获得满意的技术经济效果【6】。由以上所述可以看出曲轴设计的重要性。 1.2 国外研究的现状与发展趋势 1.2.1 曲轴结构设计的发展 曲轴结构设计在过去的几十年中得到了飞速的发展。在曲轴的设计初期一般是按照已有的经验公式计算或者与已有的曲轴进行类比设计【7】。在进行了初步的设计后造出曲轴样品再进行试验,通过实验数据进行适当的改进【8】。曲轴设计发展到今天已经有了很大的发展。随着燃机向高可靠性、高紧凑性、高经济性的不断发展,传统的以经验、试

内燃机曲轴分析案例

运通内燃机曲轴结构可靠性分析案例 北京运通恒达科技有限公司 2006年7月

1.背景描述 车用内燃机的曲轴断裂故障发生的几率并不是很高。但当柴油机的内燃机曲轴,在车辆行驶了比较长的里程(约4~5万km左右)以后常常出现断裂。 而曲轴断裂故障多属疲劳破坏。因为曲轴是一个弹性轴,在回转中受到各缸交变的气体压力、往复惯性力和离心力,以及由此引起的弯矩、扭矩的作用,发生强迫扭转振动,形成复杂的交变应力和扭转或弯曲振动附加应力,加之曲轴形状复杂,刚性差,应力集中严重,一旦所承受的应力超过曲轴的疲劳强度(过载)就容易发生疲劳破坏。疲劳破坏一般可分为三种类型:扭转疲劳破坏、弯曲疲劳破坏和弯曲-扭转疲劳破坏。如图1所示;因此本文提出了对内燃机曲轴的疲劳可靠性分析。 图1 疲劳破坏实物图1 2.疲劳分析 ?疲劳应力分析 将疲劳设计和有限元法相结合,通过有限元求解出最危险点的最大应力和最小应力,从而获得疲劳计算需要的名义平均应力及幅值。 ?疲劳强度分析 因为内燃机内的零件一般都是无限寿命设计,即失效循环数在107以上,本问通过参数修正来将材料疲劳极限转化为零部件的疲劳极限。材料的疲劳极限,只能代表标准光滑试样的疲劳性能,而实际零件的尺寸、形状和表面情况是各式

各样的,与标准试样有很大的差别。影响机械零件疲劳强度的影响因素很多,其中主要的有:尺寸、形状、表面情况、平均应力、复合应力、腐蚀介质、温度等。因此通过引入应力集中系数、尺寸系数和表面加工系数等,对试样的疲劳强度进行修正,来确定零件的疲劳强度。其中修正系数的均值合标准差由试验或经验得到。 疲劳寿命分析 疲劳安全寿命分析可以根据S-N曲线来进行。为减少试验通常利用材料S-N 曲线,进行一定的修正得出零件S-N曲线,零件的S-N曲线是名义应力有限寿命设计法的基础。常规的S-N曲线一般是对称循环应力条件下(即r=-1)做试验的方法采集到的。而大多数现场条件都包含非零的平均应力即非对称循环应力工作。而循环的平均应力水平对材料的疲劳行为由很大的影响,平均应力值增大时,疲劳寿命降低。在进行非对称循环的疲劳寿命时,需要用表示交变应力幅合平均应力之间的关系的经验公式,本分析采用Goodman曲线来分析。 3.受力分析 本文所分析的内燃机是并列连杆式曲柄连杆机构,在发动机实际运行过程中曲轴主要受连杆及轴承作用力产生的弯曲应力,由于扭转应力相对较小,不予以考虑。活塞直径150mm,面积17671.46mm2。气体爆发力为16MPa,作用于活塞顶面的燃气载荷为280000N。利用ADAMS计算出的各缸运动规律及曲轴受力情况,推导出缸内气体通过连杆作用于曲拐上的力、活塞和连杆的惯性力在曲拐上产生的力。连杆在处于爆发状态时,作用在曲柄销上的总载荷为210000N。不考虑由于机构的摩擦力。考虑作用在曲轴上的缸内气体压力和机构运动质量的惯性力。 4.建立有限元模型 由于曲轴外表面形状复杂,为了控制有限元网格的疏密程度合整个有限元模型规模,对实体各部分进行分区,对不同区域设定不同的单元密度,并采用半自动方法进行网格剖分。单元类型是四面体单元,对实际使用中易发生断裂、应力集中严重的曲柄销与曲柄臂过渡圆角处进行细化,以提高计算精度。如图2所示;

内燃机学第二章第三次作业-答案

第二章内燃机的工作指标 一、填空题(任选10 题) 1. 内燃机指标体系中主要有动力性能指标、经济性能指标、运转性能指标、耐久可靠性指标、排放性指标、强化指标等几类指标。 2. 内燃机强化指标主要有:、、 等。 3. 造成内燃机有效指标与指示指标不同的主要原因是 。 4. 平均有效压力可以看作是一个假想不变的力作用在活塞顶上,使活塞移动一个冲程所做的功等于每循环所做的有效功 5. 在标定工况下,高速四冲程柴油机的有效燃油消耗率的一般范围为210~285 g/kW.h。 6.汽油机有效效率的一般区间为:0.15~0.32 ;柴油机有效效率的一般区间为:0.3~0.42 。 7.从内燃机示功图上可以得到的信息包括:内燃机工作循环不同阶段中的压力变化、进气行程中的压力变化、排气行程中的压力变化等。 8. 增压柴油机的示功图与非增压相比,主要不同点有:、等。 9. 什么动力机械应该用持续功率?;什么动力机械应该用十五分钟功率?。 10. 给出几个能反映普通汽油机特点的性能指标值:、、等。 11. 内燃机的指示指标是指工质对活塞做功为基础的指标;指示功减有效功等于机械损失功。

12. 平均指示压力是一个假想不变的压力,这个压力作用在活塞顶上,使活塞 运动一个膨胀行程 所做的功。 13.发动机转速一定,负荷增加时,机械效率 。 14.测量机械损失的方法主要有 示功图法 、 倒拖法 、 灭缸法 、 油耗线法 几种。 15. 内燃机中机械损失最大的是: 活塞、活塞环与气缸套之间的摩擦损失 。 16. 活塞和活塞环的摩擦损失大约占机械损失功率的 45%~65% 。 17. 机械损失的测量方法有: 、 、 等。 18. 当发动机负荷一定,转速降低时,平均机械损失压力 , 机械效率。 19. 过量空气系数的定义为 燃烧单位质量燃料的实际空气量与理论空气量之比,即:10a b m g l φ= 。 20. 过量空气系数a φ=1 表示: 燃烧单位质量燃料的实际空气量与理论空气量相等 。 21. 内燃机的燃油消耗率和哪两个因素成反比:et η、u H 。 22. 燃料化学能在柴油机内最终分配情况大致为: 热损失 , 机械损失 , 输出功 等。 23. 提高内燃机经济性的主要措施有: 采用增压技术 、 合理组织燃烧过程,提高循环指示效率 、 改善换气过程,提高气缸充量系数 、 提高发动机转速 、 提高内燃机机械效率 、 采用二冲程提高升功率 等。

发动机曲轴连杆实习报告范文

发动机曲轴连杆实习报告范文 实习是大学进入社会前理论与实际结合的最好的锻炼机会,也是大学生到从业者一个非常好的过度阶段,更是大学生培养自身工作能力的磨刀石,作为一名刚刚从学校毕业的大学生,能否在实习过程中掌握好实习内容,培养好工作能力,显的尤为重要。 发动机曲轴连杆实习报告一 今日实习目的地:南车柴油机二分厂 实习车间:曲轴加工车间 在王工的带领下,进入了曲轴加工车间,首先,向我们介绍了曲轴的用途,以及各个部位特点,如何加工而成、 曲轴是活塞式发动机中最重要、承受负荷最大的零件之一。其主要功用是将活塞的往复运动通过连杆变成回转运动,即把燃料燃烧的爆发力通过活塞、连杆转变成扭矩输送出去做功,同时还带动发动机本身的配气机构和相关系统工作 曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端和后端等组成。一个主轴颈、一个连杆轴颈和一个曲柄组成了一个曲拐,曲轴的曲拐数目等于气缸数(直列式发动机);V型发动机曲轴的曲拐数等于气缸数的一半。主轴颈是曲轴的支承部分,通过主轴承支承在曲轴箱的主轴承座中。主轴承的数目不仅与发动机气缸数目有关,还取决于曲轴的支承方式。曲轴的支承方式一般有

两种,一种是全支承曲轴,另一种是非全支承曲轴。曲轴的形状和曲拐相对位置(即曲拐的布置)取决于气缸数、气缸排列和发动机的发火顺序。 轴典型加工工艺 曲轴的典型加工过程如下 铣端面打中心孔粗精车所有主轴颈及周轴颈铣角向定位面粗精车所有连杆颈粗磨第四主轴颈 车平衡块钻直斜油孔半精磨 1、主轴径7车铣割滚压精磨所有主轴颈及周轴颈淬火回火探伤精磨第四主轴颈喷丸钻工艺孔 两端孔的加工精磨所有连杆颈动平衡抛光所有轴颈清洗防锈 铣键槽 曲轴加工第一工序铣端面、钻中心孔。通常以两端主轴颈的外圆表面和中间主轴颈的轴肩为粗基准,这样钻出的中心孔可保证曲轴加工时径向和轴向余量均匀。 径向定位主要以中心线为基准,还可以两端主轴颈外圆为精基准。轴向定位用曲轴一段的端面或轴肩。角度定位一般用法兰盘端面上的定位销孔或曲柄臂上铣出的定位平台。采用不同的加工工艺方法和设备,定位基准的选用亦有不同。

曲轴内燃机

曲轴内燃机 第一个坐标图中橘黄色部分是活塞传递到曲轴上的有效功率,阴影部分是活塞做的无用功。检验曲轴在0——145°的运动中活塞传递到曲轴上的有用功可以通过滑块推动曲柄进行测试,也可以用一根棍使你的作用力由0——90°开始逐渐增大角度去推放在玻璃板上的物体,看水平直线推与增大角度去推物体上得到的力是否相等,而失去的力就是活塞的直线变圆周做的无用功。 下坐标图中的粉红色是排气门被打开后145°——720°曲轴上消耗掉的功,在这曲轴拉 动连杆或推动连杆都会造成活塞对缸壁产生测向作用力,曲轴的圆周变直线消耗掉的有用功可以利用曲轴上的惯性转动720°后测曲轴所剩的扭力功。 内燃机汽缸里活塞上产生力的大小由两方面来决定:一是产生气体的量来决定,二是要看活塞在运动中缸体空间的大小。在上止点上它的空间体积最小但随着活塞向下止点的运动缸体的空间也在逐渐的增大,那么后来产生的膨胀气体就必须先填满增大的空间才能够得到膨胀气体的体积与汽缸空间体积相对较大的比值也就是较大的力,这就造成了因缸体体积的逐渐增大而使活塞产生与前一点相同的作用力就必须消耗稍多的膨胀气体也就是要比前一 点上要多消耗燃油。曲轴由0°—145°从图中我们可以看出橘黄色的有效做功只有60%,而其它40%的做功都转变成了连杆对轴瓦的摩擦力而做无用功,在还没有计算膨胀气体的 做功在逐渐衰减。曲轴传动也只有在90°一个点上它的有效做功能完全传递到曲轴上,在 其它的任何点都存在做或多或少的无用功,但在90°这个点上缸体的空间体积比活塞在上 止点上的最小空间体积增大了5倍,由此得出曲轴0——145°的转动活塞的运动都将造成 缸体空间基数逐渐增大而需要多耗能。曲轴在145°—720°的圆周运动因与活塞直线运动 方向不在一条直线上也就造成了在传递力时会做大量的无用功,那些认为内燃机的做功有25%浪费在被排放的高温气体上是完全错误的。请问产生的高温是不是已对缸体的全部气体做了最大的加热反应?缸体的高温还有可能再使缸体里的气体产生热膨胀吗?还有人认为10%浪费在冷却液上请问缸体每秒产生50次做功是不是绝热反应?高温有时间去加热冷却液吗? 曲轴145°——720°在575°的圆周变直线转动自身消耗掉的60%无用功,这个损耗比 曲轴0——145°的损失还要多,可见曲轴传动在进行力的互换中自身造成的能量损失将达 到80%以上。把以上两个图的得失做综合分析我们可以看出外国人猜想出的内燃机谬论竟 然被公认为正确的理论真是内燃机上的悲哀!往复式内燃机浪费力的根源就在力的传递和转换上,在这一点上就是外国的内燃机专家看了也拿不出理由来驳倒这个论点,可能连膨胀气体转变成活塞上的力大小是以啥为标准基数都不知道,也就是说以前的所有推论都是错误的。还有大多数的人认为膨胀气体的做功没有完全转变成曲轴上的动力可以在缸体里得到储存 更是错误的猜想,请问曲轴在0——45°的运动中活塞通过连杆分支出去的一个较大的作用力(轴瓦的正向作用力)难道不消耗膨胀气体的做功吗?而正向作用力远远大于它乘以摩擦系数产生的轴与瓦的摩擦力。 感兴趣的可以参看本人的无曲轴内燃机,所采用的是齿条往复驱动双棘轮,它可以使活塞的动力做功传递到动力输出轴上时不会少于90%,而轮轴在145°——720°的转动中惯性力驱动齿条往复两回其轴上的扭力最多也只能下降3%。这个数据可能没有人信但你想一下活塞环与缸壁的垂直摩擦力能超过300克吗?就是把齿条、活塞的重量与摩擦力都加在一起算也达不到5公斤,当活塞完成压缩比后由上止点向下止点运动压缩后的气体与齿条、活塞的重力势能都会为棘轮提供重力做功(在切线上)。在这可能有人要问曲轴的圆周变活塞的往复为啥就要消耗掉60%做功,这是因为曲轴的运动方向与活塞的运动方向不在同一条直 线上和重力在做功时自由落体的速度小于曲轴的转动速度,这两个原因才造成了曲轴在传递

内燃机学课后习题答案(供参考)

2-4 平均有效压力和升功率在作为评定发动机的动力性能方面有何区别? 答平均有效压力是一个假想不变的压力,其作用在活塞顶上使活塞移动一个行程所做的功等于每循环所做的有效功,升功率是在标定的工况下,发动机每升气缸工作容积所发出的有效功率。区别:前者只反应输出转矩的大小,后者是从发动机有效功率的角度对其气缸容积的利用率作出的总评价,它与 Pme 和 n 的乘积成正比。(Pl=Pme·n/30T) 2-6 提升途径:1)采用增压技术,2)合理组织燃烧过程,提高循环指示效率,3) 改善换气过程,提高气缸的充量系数,4)提高发动机的转速,5)提高内燃机的机械效率,6)采用二冲程提高升功率,7)增加排量 2-9 内燃机的机械损失由哪些部分组成?详细分析内燃机机械损失的测定方法,其优缺点及适用场合。 答(1)机械损失组成:1 活塞与活塞环的摩擦损失。2 轴承与气门机构的摩擦损失。3.驱动附属机构的功率消耗。4 风阻损失。5 驱动扫气泵及增压器的损失。 (2)机械损失的测定:1 示功图法:由示功图测出指示功率 Pi,从测功器和转速计读数中测出有效功率 Pe,从而求得 Pm,pm 及ηm 的值。优:在发动机真实工作情况下进行,理论上完全符合机械损失定义。缺:示功图上活塞上止点位置不易正确确定,多缸发动机中各缸存在一定的不均匀性。应用:上止点位置能精确标定的场合。 2 倒拖法:发动机以给定工况稳定运行到冷却水,机油温度达正常值时,切断对发动机供油,将电力测功器转换为电动机,以给定转速倒拖发动机,并且维持冷却水和机油温度不变。这样测得的倒拖功率即为发动机在该工况下的机械损失功率。缺点:1 倒拖工况与实际运行情况相比有差别 2 求出的摩擦功率中含有不该有的 Pp 这一项。 3 在膨胀,压缩行程中,p-v 图上膨胀线与压缩线不重合。 4 上述因素导致测量值偏高。应用:汽油机机械损失的测定。 3 灭缸法:在内燃机给定工况下测出有效功率 Pe,然后逐个停止向某一缸供油或点火,并用减少制动力矩的办法恢复其转速。重新测定其有效功率。则各缸指示功率为(Pr)x=(Pe-Pe)x。总指示功率。Pi=∑(Pi)x。然后可求出Pm 和ηm.优点:无须测示功图,也无须电力测功器。缺点:要求燃烧不引起进排气系统的异常变化。应用:只适用于多缸发动机,且对增压机及汽油机不适用。 4 油耗线法:将负荷特性实验时获得的燃油消耗率曲线延长并求出横坐标的交点,就可得到 Pmm。优点:无须电力测功器和燃烧分析仪。缺点:只是近似方法,低负荷附近才可靠。应用:除节气门调节的汽油机和中高增压的柴油机 3-3.4试述汽油辛烷值和柴油十六烷值的意义。答:辛烷值用来表示汽油的 抗爆性,抗爆性时指汽油在发动机气缸内燃烧时抵抗爆燃的能力。辛烷值是代

内燃机的功能剖析

一、内燃机的工作原理 内燃机的工作原理是利用燃料在气缸内燃烧产生的热能,通过气体受热膨胀推动活塞移动,再经过连杆传递到曲轴使其旋转做功。 内燃机在实际工作时,每次能量转变,都必须经历进气、压缩、作功和排气四个过程。每进行一次进气、压缩、作功和排气叫做一个工作循环。若曲轴每转两圈,活塞经过四人冲程完成一个工作循环的叫做四冲程内燃机;若曲轴每转一圈,活塞只经过两个冲程就完成一个工作循环的叫做二冲程内燃机。重复上述压缩、燃烧,膨胀,排气等过程,周期循环,不断地将燃料的化学能转化为热能,进而转换为机械能。 二、内燃机的传动机构组成(画出传动路线图) 往复活塞式内燃机的组成部分主要有曲柄连杆机构、机体和气缸盖、配气机构、供油系统、润滑系统、冷却系统、起动装置等。 四冲程汽油机 四冲程柴油机

四冲程柴油机 三、内燃机的传动机构的传动原理(针对内燃机中存在的每种机构,例如:连杆机构,齿轮机构····) 气缸是一个圆筒形金属机件。密封的气缸是实现工作循环、产生动力的源地。各个装有气缸套的气缸安装在机体里,它的顶端用气缸盖封闭着。活塞可在气缸套内往复运动,并从气缸下部封闭气缸,从而形成容积作规律变化的密封空间。燃料在此空间内燃烧,产生的燃气动力推动活塞运动。活塞的往复运动经过连杆推动曲轴作旋转运动,曲轴再从飞轮端将动力输出。由活塞组、连杆组、曲轴和飞轮组成的曲柄连杆机构是内燃机传递动力的主要部分。 活塞组由活塞、活塞环、活塞销等组成。活塞呈圆柱形,上面装有活塞环,借以在活塞往复运动时密闭气缸。上面的几道活塞环称为气环,用来封闭气缸,防止气缸内的气体漏泄,下面的环称为油环,用来将气缸壁上的多余的润滑油刮下,防止润滑油窜入气缸。活塞销呈圆筒形,它穿入活塞上的销孔和连杆小头中,将活塞和连杆联接起来。连杆大头端分成两半,由连杆螺钉联接起来,它与曲轴的曲柄销相连。连杆工作时,连杆小头端随活塞作往复运动,连杆大头端

内燃机学习题及答案

2-1 内燃机的动力性能和经济性能指标为什么要分为指示指标和有效指标两大类?表示动力性能的指标有哪 些?它们的物理意义是什么?它们之间的关系是什么?表示经济性能的指标有哪些?它们的物理意义是什么?它 们之间的关系是什么?答:(1)指示性能指标是以工质对活塞做功为基础的指标。能评定工作循环进行的好坏。有效性 能指标是以曲轴的有效输出为基础的指标,能表示曲轴的有效输出。 (2)动力性能指标:功率、转矩、转速、平均有效压力、升功率。 (3)功率:内燃机单位时间内做的有效功。转矩:力与力臂之积。转速:内燃机每分钟的转数。Pe=Ttq.n/9550 (4)经济性能指标:有效热效率,有效燃油消耗率be 。 (5)有效热效率:实际循环的有效功与为得到此有效功所消耗的热量之比值。 ηet=We/Q1 有效燃油消耗率:单位有效功的耗油量。关系:be=3.6*106/ηet 。Hu 2-4 平均有效压力和升功率在作为评定发动机的动力性能方面有何区别?答平均有效压力是一个假想不变的压力,其作用在活塞顶上使活塞移动一个行程所做的功等于每循环所做的有效功,升功率是在标定的工况下,发动机每升气缸工作容积所发出的有效功率。 区别:前者只反应输出转矩的大小,后者是从发动机有效功率的角度对其气缸容积的利用率作出的总评价,它与Pme 和n 的乘积成正比。(Pl=Pme ·n/30T ) 2-5充量系数的定义是什么?充量系数的高低反映了发动机哪些方面性能的好坏?答(1)充量系数每个循环吸入气缸的空气量换算成的进气管状态下的体积。V1与活塞排量Vs 之比(Φc =V1/Vs )(2)充量系数高地反映换气过程进行完善程度。 2-8 过量空气系数的定义是什么?在实际发动机上怎样求得? 1)过量空气系数:燃烧1kg 燃料的实际空气量与理论空气量之比。(2)实际发动机中Φa 可由废气分析法求得,也可用仪器直接测得;对于自然吸气的四冲程内燃机,也可由耗油量与耗气量按下式求的(Φa =Aa/BLo ) 2-9 内燃机的机械损失由哪些部分组成?详细分析内燃机机械损失的测定方法,其优、缺点及适用场合。答(1)机械损失组成:1活塞与活塞环的摩擦损失。2轴承与气门机构的摩擦损失。3.驱动附属机构的功率消耗。4风阻损失。5驱动扫气泵及增压器的损失。(2)机械损失的测定:1示功图法:由示功图测出指示功率Pi ,从测功器和转速计读数中测出有效功率Pe ,从而求得Pm,pm 及ηm 的值。优:在发动机真实工作情况下进行,理论上完全符合机械损失定义。缺:示功图上活塞上止点位置不易正确确定,多缸发动机中各缸存在一定的不均匀性。应用:上止点位置能精确标定的场合。 2倒拖法:发动机以给定工况稳定运行到冷却水,机油温度达正常值时,切断对发动机供油,将电力测功器转换为电动机,以给定转速倒拖发动机,并且维持冷却水和机油温度不变。这样测得的倒拖功率即为发动机在该工况下的机械损失功率。缺点:1倒拖工况与实际运行情况相比有差别2求出的摩擦功率中含有不该有的Pp 这一项。3在膨胀,压缩行程中,p-v 图上膨胀线与压缩线不重合。4上述因素导致测量值偏高。应用:汽油机机械损失的测定。 3灭缸法:在内燃机给定工况下测出有效功率Pe ,然后逐个停止向某一缸供油或点火,并用减少制动力矩的办法恢复其转速。重新测定其有效功率。则各缸指示功率为(Pr )x=(Pe-Pe )x 。总指示功率。Pi=∑(Pi)x 。然后可求出Pm 和ηm.优点:无须测示功图,也无须电力测功器。缺点:要求燃烧不引起进。排气系统的异常变化。应用:只适用于多缸发动机,且对增压机及汽油机不适用。 4油耗线法:将负荷特性实验时获得的燃油消耗率曲线延长并求出横坐标的交点,就可得到Pmm 。优点:无须电力测功器和燃烧分析仪。缺点:只是近似方法,低负荷附近才可靠。应用:除节气门调节的汽油机和中高增压的柴油机。 3-2 试推导混合加热理论循环热效率的表达式。答: ) /'/()//'(1/1)'()'(11/21Ta Tz Ta Tz k Ta Tc Ta Tz Ta Tb Tz Tz k Tc Tz Ta Tb Q Q t -+---=-+---=-=ηλρρελερλερλερλερλελεεεk k c k c k k c k c k c k c k c k c k c k vb vz Tz Tb Tz Tb Ta Tz Ta Tb vz vz Ta Tz Tz Tz Ta Tz pc pz Ta Tc Tc Tz Ta Tz vc va Ta Tc 010 10110101011111)/1()/(////'//''//)/'(//'/'; )/(/====?===?===?===-----------

结构设计基本流程

一、结构设计的内容和基本流程 结构设计的内容主要包括: 1.合理的体系选型与结构布置 2.正确的结构计算与内力分析 3.周密合理的细部设计与构造 三方面互为呼应,缺一不可。 结构设计的基本流程 二、各阶段结构设计的目标和主要内容 1.方案设计阶段 1)目标 确定建筑物的整体结构可行性,柱、墙、梁的大体布置,以便建筑专业在此基础上进一步深化,形成一个各专业都可行、大体合理的建筑方案。 2)内容: a.结构选型 结构体系及结构材料的确定,如混凝土结构几大体系(框架、框架—剪力墙、剪力墙、框架—筒体、筒中筒等)、混合结构、钢结构以及个别构件采用组合构件,等等。 b.结构分缝 如建筑群或体型复杂的单体建筑,需要考虑是否分缝,并确定防震缝的宽度。 c.结构布置 柱墙布置及楼面梁板布置。主要确定构件支承和传力的可行性和合理性。 d.结构估算 根据工程设计经验采用手算估计主要柱、墙、梁的间距、尺寸,或构建概念模型进行估算。

2.初步设计阶段 目标在方案设计阶段成果的基础上调整、细化,以确定结构布置和构件截面的合理性和经济性,以此作为施工图设计实施的依据。 2)内容 ①计算程序的选择(如需要); ②结构各部位抗震等级的确定; ③计算参数选择(设计地震动参数、场地类别、周期折减系数、剪力调整系数、地震调整系数,梁端弯矩调整系数、梁跨中弯矩放大系数、基本风压、梁刚度放大系数、扭矩折减系数、连梁刚度折减系数、地震作用方向、振型组合、偶然偏心等); ④混凝土强度等级和钢材类别; ⑤荷载取值(包括隔墙的密度和厚度); ⑥振型数的取值(平扭耦连时取≥15,多层取3n,大底盘多塔楼时取≥9n,n为楼层数); ⑦结构嵌固端的选择。 3)结构计算结果的判断 ①地面以上结构的单位面积重度是否在正常数值范围内,数值太小可能是漏了荷载或荷载取值偏小,数值太大则可能是荷载取值过大,或活载该折减的没折减,计算时建筑结构面积务必准确取值; ②竖向构件(柱、墙)轴压比是否满足规范要求:在此阶段轴压比必须严加控制;③楼层最层 间位移角是否满足规范要求:理想结果是层间位移角略小于规范值,且两个主轴方向侧向位移值相近;④ 周期及周期比;⑤剪重比和刚重比⑥扭转位移比的控制;⑦有转换层时,必须验算转换层上下刚度比 及上下剪切承载力比;等等 4)超限判别:确定超限项目(高度超限、平面不规则、竖向不连续、扭转不规则、复杂结构等)和超限程度是否需要进行抗震超限审查。结构计算中可能需要包括地震的多向作用、多程序验证、多模型包络、弹性时程分析、弹塑性时程分析、转换结构的应力分析、整体稳定分析,等。 a.性能化设计和性能目标的确定(如需) b.基础选型和基础的初步设计 如果是天然地基基础,需确定基础持力层、地基承载力特征值、基础型式、基础埋深、下卧层(强度、沉降)等;如果是桩基础,需确定桩型、桩径、桩长、竖向承载力特征值等等。并应注意是否存在液化土层、大面积堆载、负摩阻、欠固结土层等特殊问题。

内燃机原理课后习题与答案定稿版

内燃机原理课后习题与 答案精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

第一章发动机的性能 1.简述发动机的实际工作循环过程。 1)进气过程:为了使发动机连续运转,必须不断吸入新鲜工质,即是进气过程。此时进气门开启,排气门关闭,活塞由上止点向下止点移动。2)压缩过程:此时进排气门关闭,活塞由下止点向上止点移动,缸内工质受到压缩、温度。压力不断上升,工质受压缩的程度用压缩比表示。3)燃烧过程:期间进排气门关闭,活塞在上止点前后。作用是将燃料的化学能转化为热能,使工质的压力和温度升高,燃烧放热多,靠近上止点,热效率越高。4)膨胀过程:此时,进排气门均关闭,高温高压的工质推动活塞,由上止点向下至点移动而膨胀做功,气体的压力、温度也随之迅速下降。(5)排气过程:当膨胀过程接近终了时,排气门打开,废气开始靠自身压力自由排气,膨胀过程结束时,活塞由下止点返回上止点,将气缸内废气移除。 3.提高发动机实际工作循环热效率的基本途径是什么可采取哪些基本措施 提高实际循环热效率的基本途径是:减小工质传热损失、燃烧损失、换气损失、不完全燃烧损失、工质流动损失、工质泄漏损失。提高工质的绝热指数κ可采取的基本措施是:⑴减小燃烧室面积,缩短后燃期能减小传热损失。⑵.采用最佳的点火提前角和供油提前角能减小提前燃烧损失或后燃损失。⑶采用多气门、最佳配气相位和最优的进排气系统能减小换气损失。⑷加强燃烧室气流运动,改善混合气均匀性,优化混合气浓度能减少不完全燃烧损失。⑸优化燃烧室结构减少缸内流动损失。⑹采用合理的配缸间隙,提高各密封面的密封性减少工质泄漏损失。

发动机曲轴结构设计

发动机曲轴结构设计 Document number:PBGCG-0857-BTDO-0089-PTT1998

曲轴的结构 曲轴的作用是把活塞往复运动通过连杆转变为旋转运动,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等【18】。 曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端和后端等组成,如图所示。一个主轴颈、一个连杆轴颈和一个曲柄组成了一个曲拐,直列式发动机曲轴的曲拐数目等于气缸数,而V型发动机曲轴的曲拐数等于气缸数的一半。 图 主轴颈是曲轴的支承部分,通过主轴承支承在曲轴箱的主轴承座中。主轴承的数目不仅与发动机气缸数目有关,还取决于曲轴的支承方式。 曲柄是主轴颈和连杆轴颈的连接部分,断面为椭圆形,为了平衡惯性力,曲柄处常设置平衡重。平衡重用来平衡发动机不平衡的离心力矩及一部分往复惯性力,从而保证了曲轴旋转的平稳性【19】。 曲轴的连杆轴颈是曲轴与连杆的连接部分,曲柄与主轴颈的相连处用圆弧过渡,以减少应力集中。直列发动机的连杆轴颈数目与气缸数相等而V型发动机的连杆轴颈数等于气缸数的一半。

曲轴前端装有正时齿轮,以驱动风扇和水泵的皮带轮以及起动爪等。为了防止机油沿曲轴轴颈外漏,在曲轴前端装有一个甩油盘,在齿轮室盖上装有油封。曲轴的后端用来安装飞轮,在后轴颈与飞轮凸缘之间制成档油凸缘与回油螺纹,以阻止机油向后窜漏。 曲轴的形状和曲拐相对位置取决于气缸数、气缸排列和发动机的发火顺序。多缸发动机的发火顺序应使连续作功的两缸保持尽量远的距离,这样既可以减轻主轴承的载荷,又能避免可能发生的进气重叠现象。此外作功间隔应力求均匀,也就是说发动机在完成一个工作循环的曲轴转角内,每个气缸都应发火作功一次,以保证发动机运转平稳。 曲轴的作用:它与连杆配合将作用在活塞上的气体压力变为旋转的动力,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等。工作时,曲轴承受气体压力,惯性力及惯性力矩的作用,受力大而且受力复杂,并且承受交变负荷的冲击作用。同时,曲轴又是高速旋转件,因此,要求曲轴具有足够的刚度和强度,具有良好的承受冲击载荷的能力,耐磨损且润滑良好【20】。 曲轴的疲劳损坏形式 曲轴的工作情况十分复杂,它是在周期性变化的燃气作用力、往复运动和旋转运动惯性力及其他力矩作用下工作的,因而承受着扭转和弯曲的复杂应力。曲轴箱主轴承的不同心度会影响到曲轴的受力状况,其次,由于曲轴弯曲与扭转振动而产生的附加应力,再加上曲轴形状复杂,结构变化急剧,产生了严重的应力集中。最后曲轴主轴颈与曲柄销是在比压下进行高速转动,因而产生强烈的磨损。因此柴油机在运转中发生曲轴裂纹和断裂事故不为鲜见,尤其是发电柴油机曲轴疲劳破坏较多。依曲轴产

高等内燃机原理答案整理

第一章 第二章 思考题 1.分析上止点误差对内燃机工作过程分析的影响,有几种确定上止点的方法,倒拖示功图法为什么要考虑热力损失角的影响。给出一种确定上止点方法的步骤。P9~13 步骤按照1.静态测定法的步骤 3.直喷式柴油机以动力性、经济性为优化目标和以动力性、经济性、排放x NO 和噪声综合性能为优化目标组织燃烧有什么不同,试分析之。P24~25 图 6.采用稳流气道实验台能进行哪些零部件性能试验试验中测量哪些参数,简介测量方法,用哪些量来评价系统的进气性能 进、排气管,气缸盖,消声器等;测量方法:等压差法,等流量法(分别简述)P35~36 试验中测量的参数:气门升程、气道流动压力降△P 1、气体的体积流量Q 、风速仪转速n D ,流动气体温度t 评价参数:P36 8.汽油机和直喷柴油机采用四气门后,试从影响性能的诸方面探讨与两气门相比有何优点和存在的缺点。(结合第2、3、5等章内容综述)P42、待完善 第三章第四章 思考题 2.使用理想的空燃比特性场(或过量空气系数a φ特性场)会取得怎样的汽油机性能P62对汽油机而言过浓或过稀混合气....~之间(性能);按负荷、转速变化分析图3-6为什么说是a φ的较理想的特性场(它是综合考虑动力性、经济性、排放性能得出的,当在小负荷,低转速时,为了保证怠速稳定性及起动和加速,应适当加浓混合气~;当汽油机在部分负荷范围内运行时,应供给较稀的混合气~,当发动机在大负荷、高转速运转时,也需要较浓的混合气~)电喷汽油机为什么不采用图3-6模式,而在大部分工况用闭环1≈α模式控制(内燃机学99或高等内燃机原理P62)

11.简述汽油机电控喷油的喷油量控制的实现方法 电控器根据发动机转速和表示发动机负荷的空气流量决定喷油脉宽的基本值,冷却液温度、进气温度等都是用来对喷油脉宽修正的条件参数。喷油量取决于喷油器的开启时间,即由送到喷油器电磁线圈的控制脉宽的宽度决定,因此ECU控制此脉冲宽度就可以控制供油。节气门开度传感器信号对于怠速工况判断、过渡工况喷油量补偿是必须的。p97~P99 欧3、4(国3、4)电控系统有那些基本功能的控制系统。喷油量控制精度有那些影响因素 电控喷油系统、电控节气门系统,电控点火系统,OBD车载诊断系统,怠速控制系统,燃油蒸发系统,二次空气系统等。 喷油量控制精度的影响因素:喷油脉宽,喷油嘴流量分组,冷却水温度,进气温度,空燃比,海拔高度,蓄电池电压,发动机负荷等等。 11.电控技术中,闭环控制与开环控制有什么区别和特点,举一例说明闭环原理。常见的有哪些闭环控制反馈信号是什么 开环控制:为单一方向的流程,无反馈信号。发动机在一定工况下,电控器从传感器得到该工况的各种信息并从内存中找出适合该工况的脉谱,制定各种控制指令送到相应的执行器去工作,至于个执行器是否正确的执行了预定控制,执行后发动机工况是否和控制目标一致,电控器不去检查和比较。 闭环控制则为双向操作,电控器不断地将待控参数与优化的控制目标值进行比较,据此不断地调节输出指令使两者差别达到最小,该系统中一定有反馈信号。闭环控制的精度一定高于开环控制。 常见闭环控制: Φa=1空燃比闭环控制,反馈信号:由氧传感器检测排气中的含氧量 点火控制中的爆燃传感器,反馈信号:压力波脉冲温度 怠速控制:反馈信号:空气流量传感器检测空气流量 六章思考题 4.给出两种确定滞燃期iτ的测试方法,并讨论如何减少iτ的值。 示功图法:根据燃烧始点和针阀升程始点(喷油始点)来确定,两者角度之差以为滞燃期。 放热规律法:根据实测示功图进行数值计算得到燃烧放热规律。 如何减少 压缩温度和压力对滞燃期影响较大。随着压缩温度和压力的提高,滞燃期减少。如增加压缩比使

容柏生建筑工程设计事务所结构设计程序要点

简介 李盛勇 职务广州容柏生建筑工程设计事务所总经理, 副总工程师 专业土木工程系建筑结构专业 学历本科学士:清华大学土木工程系(1981~1986年) 工程硕士:清华大学深圳研究生院 专业资格教授级高级工程师 一级注册结构工程师 国家注册监理工程师 香港注册工程师学会会员 中国建筑学会高层结构专业委员会委员 中国建筑学会抗震防灾分会高层建筑抗震专业委员会委员 中国建筑学会混凝土结构基本理论工程应用委员会委员 中国建筑学会钢-砼组合结构协会建筑结构专业委员会副主任委员 广东省土木建筑学会建筑结构学术委员会委员 广州市科学技术委员会结构与抗震专业委员会委员 主要工作经验 1986年毕业于清华大学土木工程系建筑结构专业。清华大学深圳研究生院在读建筑结构工程硕士,1986~2003年间一直在广东省建筑设计研究院从事建筑结构设计工作,曾任广东省院副总工程师兼深圳分院总工程师,2000年被评为省建院“十大优秀中青年科技带头人”。主持过十多项高层及超高层工程的结构设计,在国内外发表多篇专著和论文,多项工程获国家级一等奖、省级一等奖,专长于高层及超高层结构设计、大跨度结构设计。具有创新的设计精神、丰富的工程实践经验及卓越的组织管理能力。 主要论文、专著或科研成果 一、著作: 1. 《钢筋混凝土结构配筋原位图示法》。(广东科技出版社2000年出版,与张元坤合著。) 2. 《建筑结构设计实用指南》。(新世纪广东省首届建筑结构技术交流会2001年出版,与张元坤合著。) 二、论文: 1.潮汕大厦结构设计。(第十三届全国高层建筑结构论文交流会,1994年。) 2.潮汕大厦结构时程分析。(第十三届全国高层建筑结构论文交流会,1994年。) 3.浅谈柱—短肢剪力墙的结构设计。(第十六届全国高层建筑结构论文交流会,2000年。) 4.深圳天安数码时代大厦结构设计。(第十七届全国高层建筑结构论文交流会,2002年。) 5.剪力墙边缘构件的一种科学配筋形式介绍。(建筑结构,2003年第8期。) 6.建筑结构设计中的刚度理论。(南方建筑,1997年第4期。) 7. 刚度理论在结构设计中的作用和体现。(建筑结构,2003年第2期。)

发动机曲轴结构设计

2、1曲轴得结构 曲轴得作用就是把活塞往复运动通过连杆转变为旋转运动,传给底盘得传动机构同时,驱动配气机构与其它辅助装置,如风扇、水泵、发电机等【18】。 曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端与后端等组成,如图1、1所示个主轴颈、一个连杆轴颈与一个曲柄组成了一个曲拐,直列式发动机曲轴得曲拐数目等于气缸数,而V型发动机曲轴得曲拐数等于气缸数得一半。 图1、1 主轴颈就是曲轴得支承部分,通过主轴承支承在曲轴箱得主轴承座中。主轴承得数目不仅与发动机气缸数目有关,还取决于曲轴得支承方式。 曲柄就是主轴颈与连杆轴颈得连接部分,断面为椭圆形,为了平衡惯性力,曲柄处常设置平衡重。平衡重用来平衡发动机不平衡得离心力矩及一部分往复惯性力,从而保证了曲轴旋转得平稳性【19】。 曲轴得连杆轴颈就是曲轴与连杆得连接部分,曲柄与主轴颈得相连处用圆弧过渡,以减少应力集中。直列发动机得连杆轴颈数目与气缸数相等而V型发动机得连杆轴颈数等于气缸数得一半。 曲轴前端装有正时齿轮,以驱动风扇与水泵得皮带轮以及起动爪等。为了防止机油沿曲轴轴颈外漏,在曲轴前端装有一个甩油盘,在齿轮室盖上装有油封。曲轴得后端用来安装飞轮,在后轴颈与飞轮凸缘之间制成档油凸缘与回油螺纹,以阻止机油向后窜漏。 曲轴得形状与曲拐相对位置取决于气缸数、气缸排列与发动机得发火顺序。多缸发动机得发火顺序应使连续作功得两缸保持尽量远得距离,这样既可以减轻主轴承得载荷,又能避免可能发生得进气重叠现象。此外作功间隔应力求均匀,也就就是说发动机在完成一个工作循环得曲轴转角内,每个气缸都应发火作功一次,以保证发动机运转平稳。

曲轴得作用:它与连杆配合将作用在活塞上得气体压力变为旋转得动力,传给底盘得传动机构。同时,驱动配气机构与其它辅助装置,如风扇、水泵、发电机等。工作时, 曲轴承受气体压力,惯性力及惯性力矩得作用,受力大而且受力复杂,并且承受交变负荷得冲击作用。同时,曲轴又就是高速旋转件,因此,要求曲轴具有足够得刚度与强度,具有良好得承受冲击载荷得能力,耐磨损且润滑良好【20】。 2、2曲轴得疲劳损坏形式 曲轴得工作情况十分复杂,它就是在周期性变化得燃气作用力、往复运动与旋转运动惯性力及其她力矩作用下工作得,因而承受着扭转与弯曲得复杂应力。曲轴箱主轴承得不同心度会影响到曲轴得受力状况,其次,由于曲轴弯曲与扭转振动而产生得附加应力,再加上曲轴形状复杂,结构变化急剧,产生了严重得应力集中。最后曲轴主轴颈与曲柄销就是在比压下进行高速转动,因而产生强烈得磨损。因此柴油机在运转中发生曲轴裂纹与断裂事故不为鲜见,尤其就是发电柴油机曲轴疲劳破坏较多。依曲轴产生裂纹得交变应力得性质不同,主要有以下三种疲劳裂纹:弯曲疲劳裂纹、扭转疲劳裂纹与弯曲一扭转疲劳裂纹【21】,如图2、1所示。 图2、1 1-弯曲疲劳裂纹2-扭转疲劳裂纹 2、2、1弯曲疲劳裂纹 曲轴得弯曲疲劳裂纹一般发生在主轴颈或曲柄销颈与曲柄臂连接得过渡圆角处,或 逐渐扩展成横断曲柄臂得裂纹,或形成垂直轴线得裂纹。弯曲疲劳试验表明,过渡圆角处得最大应力出现在曲柄臂中心对称线下方。应力沿曲轴长度方向得分布就是在中间得与端部得曲柄有较大得弯曲应力峰值。因此,曲轴弯曲疲劳裂纹常发生在曲轴得中间或两端得曲柄上。 曲轴弯曲疲劳破坏通常就是在柴油机经过较长时间运转之后发生。因为长时间运转后柴油机得各道主轴承磨损不均匀,使曲轴轴线弯曲变形,曲轴回转时产生过大得附加交变弯曲应力。此外,曲轴得曲柄臂、曲柄箱或轴承支座(机座)等得刚性不足,柴油机短时间运转后,也会使曲

相关主题
文本预览
相关文档 最新文档