当前位置:文档之家› 大跨度斜连续梁桥顶推新技术

大跨度斜连续梁桥顶推新技术

大跨度斜连续梁桥顶推新技术
大跨度斜连续梁桥顶推新技术

大跨度斜连续梁桥顶推新技术

及施工控制技术研究

报告简本

1研究背景及国内外研究概况

1.1研究背景

目前,对直桥的顶推施工已是一项比较成熟的桥梁施工方法,但大跨度斜连续梁桥以及曲线梁桥、坡桥等适合于在山区修建的桥梁的顶推施工还有许多技术难题需要解决。因此有必要对大跨度斜连续梁桥的顶推施工开展系统的研究,形成大跨度斜连续梁桥顶推施工的设计理论、施工规范、施工控制技术为主的成套顶推技术,使我国顶推法施工技术处于世界领先水平,提高我国山区高等级公路桥梁的修筑技术水平,加快我国特别是西部地区国民经济的发展。

另外,顶推施工方法在其它桥型的施工中也被广泛采用,取得了良好的经济和社会效益。

1.2国内外研究概况

1.2.1国外顶推法施工研究概况

首次将顶推施工法用于预应力混凝土连续梁桥架设施工的是联邦德国的莱昂哈特博士和鲍尔教授。1959年,前联邦德国的莱昂哈特(Leonhardt)教授在建造奥地利的阿格尔(Ager)桥时首次使用了顶推施工法。

1.2.2国内顶推法施工研究概况

我国于1974年首先在狄家河铁路桥采用了顶推法施工。狄家河桥是西安至

延安跨越狄家河的单线铁路桥,为4×40m的预应力混凝土连续梁桥。

1.2.3国内顶推法施工的发展和广泛应用

随着顶推施工工艺的不断成熟和科技工作者对顶推施工法的深入研究。我国桥梁工作者成功地将顶推施工方法应用到了其它桥型的施工中,取得了良好的经济和社会效益。

2研究内容及目标

2.1研究内容

本项目围绕10个专题开展研究,各专题如下:

【专题一】“利用大型结构分析软件进行顶推施工全过程仿真计算与分析”

【专题二】“斜(坡)、弯连续梁和桥墩在顶推施工中关键参数确定与分析”

【专题三】“影响顶推施工控制的主要设计参数的确定以及竖曲线上斜交角顶推预拱度设计计算控制技术”

【专题四】“预制场动态调整及符合实际工作条件和受力特点的钢导梁优化设计等”

【专题五】“大跨度斜连续梁桥的斜交角度、全桥总长、平纵曲线的因素对顶推施工的影响程度”

【专题六】“解决顶推施工中箱梁结构的受力特性及梁体裂缝的成因与防治问题,横向应力不均匀分布的相应措施”

【专题七】“如何控制多点顶推过程中各墩(特别是高墩)的牵引力及墩顶位移以及各墩的相互影响问题”

【专题八】“顶推梁预应力的合理配置及施工质量控制技术”

【专题九】“顶推施工的作业程序和施工工艺”

【专题十】“顶推过程中温度的影响及落梁过程的控制”

2.2项目目标

本项目研究的目的是,在我国现有桥梁顶推施工技术的基础上,对斜(坡)、弯连续梁桥顶推施工的理论设计参数、施工工艺、专用设备以及施工控制技术中的难点问题进行系统研究。通过研究提出采用顶推法施工的使用条件、施工新技术和施工控制技术;研究解决顶推施工过程中影响箱梁和桥墩内力的主要设计参数;桥梁预拱度设置计算方法和控制方法;编制出能仿真模拟施工全过程的设计和施工计算软件,并在依托工程中的实桥上应用和检验。

3技术路线与研究手段

本项目采用调查研究、理论分析和依托工程验证的技术路线。技术路线综合归纳为:现场调研与资料查询→专题研究(形成各专题综述报告)→形成各专题试验研究大纲→开展各专题研究→进行理论分析与计算形成初步研究结果、技术开发→示范工程试验与观测→观测结果反馈分析,修改完善研究结果→局部实体工程应用及效果评价→编写研究报告→课题验收。

4研究对依托工程的支撑

4.1工程概况

张家界澧水大桥是常德至张家界高速公路张家界连接线上的一座特大桥,主桥为8×50m预应力混凝土顶推连续箱梁,顶推连续箱梁按斜度20°设计,该桥成桥照片如图4.1-1所示。

图4.1-1 张家界澧水大桥成桥照片

张家界澧水大桥全桥总宽29m,由两幅分离式桥组成,每幅桥宽14.25m,为单箱单室直腹式箱形截面。

4.2设计标准:

设计荷载:汽车-超20级,挂-120,人群3.5kN/m2。

桥面宽度:全桥总宽29m。

通航标准:按照六级航道净空标准。

设计洪水频率:1/100。

地震烈度:小于Ⅵ级,不做抗震设计。

4.3澧水大桥顶推施工关键技术:

(1)预制平台和临时墩设计

张家界澧水大桥采用分离式可升降预制平台,平台基础为混凝土桩,中间布置22

个临时墩,预制平台照片如图4.3-1和图4.3-2所示。

图4.3-1 张家界澧水大桥预制平台照片

图4.3-2 张家界澧水大桥预制平台整体布照片

(2)导梁设计

张家界澧水大桥采用钢板梁导梁,钢腹板之间用钢管连接,并增加三向钢撑,以增加稳定,如图4.3-3所示。

图4.3-3 张家界澧水大桥导梁照片

(3)千斤顶顶拉系统

张家界澧水大桥采用多点连续顶推方案,千斤顶选用ZID100型自动连续顶推系统,如图4.3-4所示。

图4.3-4 ZLD 100型穿心式自动连续顶推千斤

(4)滑道系统

滑道系统是顶推施工中的另一关键工艺,滑道系统由垫石、滑块和滑板组成,如图4.3-5所示。

图4.3-5 顶推施工用滑板和滑道照片

(5)纠偏系统

为了控制斜交箱梁在顶推过程中的中线始终处于允许偏差范围内,导向纠偏

装置的设置是非常重要的,如图4.3-6。

1、箱梁;

2、钢垫板;

3、导向轮;

4、千斤顶;

5、钢板立架;

6、预埋件;

7、盖梁;

8、支座垫石;

9、滑道;10滑块

图4.3-6 导向轮纠偏器构造示意图

(6)落梁

本桥采取分段落梁方法,每一阶段在纵向三个连续桥墩处起顶,完成前两个桥墩处落梁,另一个桥墩处只落一半,然后将前两个桥墩上的千斤顶转移到第三个墩后的两个连续桥墩处起顶,这样重复进行,直至全桥落梁完成。

5主要成果及创新点

5.1主要研究成果

本项目立项以来,在各参研单位的共同努力下,圆满完成了合同规定的各项科研任务,提交的成果如下:

5.1.1顶推仿真计算与分析

本专题对斜、弯连续梁桥受力特性进行了分析,研究了大跨度斜连续梁桥顶推仿真计算模式的选取。

本专题结合最近几年来国内外学者在斜连续梁桥方面的最新研究成果,以Visual C++6.0 的MFC App Wizard为基础,根据斜桥顶推施工的受力特点,编制出了一套针对斜梁桥顶推施工的有限元分析程序--ILMAP(Incremental Launching

Method Analisys Program)。该程序即可适用于一般桥梁整体计算,也可针对斜桥顶推施工过程进行模拟计算。

编制的ILMP程序的操作界面如图5.1.1-1~5.1.1-6所示。

图5.1.1-1 ILMP程序界面图5.1.1-2 ILMP计算过程界面(一)

图5.1.1-3 ILMP计算过程界面(二)图5.1.1-4 ILMP后处理界面(内力)

图5.1.1-5 ILMP后处理界面(反力)图5.1.1-6 ILMP后处理界面(应力)

5.1.2斜、弯连续梁和桥墩顶推施工关键参数确定与分析

本专题主要针对斜连续梁桥以及桥墩在顶推过程中的关键参数进行分析。对顶推节段长度的合理划分、预制平台临时滑道支承墩的数目以及预制平台前端与

第一个永久墩之间的临时墩的数目进行了研究。

本专题针对顶推施工中,斜、弯桥由于顶推合力作用线与桥梁中线及主梁重心线不完全重合,主梁容易发生偏位的问题,对斜桥顶推施工中的内外侧顶推力的施加、顶推行程差的设置、中线的偏移与观测、轴线的纠正问题进行了研究。

5.1.3影响顶推施工控制的主要设计参数的确定以及竖曲线上斜交角顶推预拱度设计计算

本专题针对顶推施工控制的控制变量进行了分析,研究了顶推施工连续梁的自重和纵向预应力大小、顶推力大小,箱梁与桥墩上滑道间的摩擦力等因素的影响。重点研究了桥墩高度和刚度对顶推的影响,对顶推施工过程桥墩稳定性进行了分析,研究了顶推施工过程保证桥墩安全的临时措施,研究顶推施工导梁预拱度的设置方法。

5.1.4预制场动态调整及钢导梁优化设计

本专题研究了导梁长度、刚度、重量的确定原则和方法;导梁预留空间高度的确定方法;研究了导梁与主梁连接处的加固措施和预制场底模的刚度、临时滑道支撑墩的刚度、数量以及间距对梁底的线形的影响;新旧梁段接缝转角产生偏位的原因及该偏位对主梁内力的影响规律和预制场底模纵向的动态调整技术。

5.1.5大跨度斜连续梁桥的斜交角度、平纵曲线的因素对顶推施工的影响程度

本专题研究了斜度在顶推阶段对主梁内力的影响规律,斜度主梁对柔性墩内力的影响规律,3桥梁纵曲率对顶推施工的影响,弯桥顶推施工的各关键参数的合理取值和平曲线对顶推施工的不利影响。

5.1.6顶推施工中箱梁受力特性及梁体裂缝的成因与防治

本专题对弯桥在顶推施工中梁体裂缝成因与防治进行了详细的分析研究,对顶推箱梁裂缝形式进行了分类总结,并就其裂缝成因进行了分析。

5.1.7多点顶推各墩牵引力及墩顶位移以及各墩的相互影响

本专题研究了多点顶推过程中各墩所需要施加的顶推力大小的确定方法。研究了柔性墩墩底最大的拉应力与墩顶偏位及桥墩受到的不平衡水平推力的关系和墩顶水平偏位的控制方法。

5.1.8顶推梁预应力的合理配置及施工质量控制技术

本专题研究了斜梁桥顶推施工预应力束的配置原则和方法,研究了弯连续梁桥顶推施工预应力束的配置原则和方法,并对预应力的张拉施工质量控制技术进行了研究。

5.1.9顶推专用设备,顶推施工作业程序和施工工艺

本专题分析了适合大跨度斜连续梁桥顶推施工的千斤顶类型选择及布置形式,对滑动装置进行了研究。

本专题重点对顶推施工工艺系统进行了研究总结。

5.1.10顶推过程中温度的影响及落梁过程的控制研究

本专题分析了温度对桥墩变形及主梁应力的影响规律,提出减弱甚至消除温度对顶推影响的措施,并分析了不同的落梁方案和落梁顺序对主梁内力的影响。

5.2研究成果中的主要创新点

5.2.1斜梁顶推计算程序的编制

本课题结合最近几年来国内外学者在斜连续梁桥方面的最新研究成果,以Visual C++6.0 的MFC App Wizard为基础,根据斜桥顶推施工的受力特点,编制出了一套针对斜梁桥顶推施工的有限元程序--ILMAP(Incremental Launching Method Analisys Program)。该程序可在微机上实现针对桥梁顶推施工过程的分析。它适用于一般桥梁的整体计算和斜桥顶推的施工过程模拟计算。该程序在Windows环境下设计出可视化用户界面,对计算结果的输出进行可视化处理。该

程序可准确、快速分析连续梁桥的顶推过程受力特性,具备友好的界面和强大数据输入、输出功能。在依托工程中的应用体现了计算结果准确可靠,数据输入输出方便,计算速度快等优点,具有创新性。

5.2.2斜连续梁和桥墩在顶推施工中关键参数确定及精细化控制

本课题针对斜连续梁桥以及桥墩在顶推过程中的关键参数进行了敏感性分析,得到了影响顶推施工斜连续梁桥状态的多个关键参数(顶推节段划分长度、连续箱梁的斜交角、临时滑道支承墩数目与滑道方位角、滑板接触面积和支承反力、钢导梁长度及匹配刚度、新旧梁体节段接缝转角偏差、内外侧水平牵引力差和桥墩刚度等)的优化设计值,这些参数的优化设计值是精细化施工控制的主要依据。

在施工控制中,对滑道标高、滑板数量、节段混凝土接缝转角、节段纵向构形、预制场底模刚度、预制场动态调整、临时墩的设置、临时预应力大小、水平牵引力、墩顶偏位、梁体偏位、落梁方案以及温度影响等方面的研究具有创新性。

5.2.3斜桥顶推施工新工艺和技术指南

斜交顶推箱梁的施工工艺和流程,与正交箱梁基本相同,但由于斜交顶推箱梁存在斜交角,使梁体在施工过程和成桥后的内力和线形要达到理想状态是一个非常困难的工作。本课题针对斜桥顶推的特点提出了一套较为恰当的斜桥顶推施工工艺指南,可提高顶推施工质量,确保顶推顺利进行,使梁体在顶推过程和成桥后的内力及线形达到理想状态。

6项目的经济、社会、环境效益及推广应用前景

本项目研究完成的顶推法施工连续梁桥调研报告、顶推法施工连续梁桥施工工艺指南、顶推法施工连续梁桥施工控制方法、研究成果在依托工程实桥上应用的评价报告,对预应力混凝土连续梁桥顶推施工技术进行了系统研究,使顶推施工技术有了进一步的发展和提高。

本项目研究完成的顶推法施工预应力混凝土连续梁桥技术在我国西部地区的交通建设过程中必将产生巨大经济、社会效益和环境效益。

7结束语

本项目针对我国西部地区的地形、地质、河流特点,就连续梁桥顶推施工方法在西部特殊桥梁建设条件下的适用性,大跨度斜连续梁桥顶推施工的设计理论、施工工艺、施工控制技术进行了细致深入的研究。形成了顶推连续梁桥施工工艺指南,顶推连续梁桥施工控制技术为主的成套顶推技术,使我国顶推施工技术水平达到比较成熟的阶段。

本项目研究提出的顶推法施工工艺指南,施工控制技术等研究成果对顶推施工方法进行了系统的阐述,便于施工单位掌握连续梁桥顶推法施工的技术要点,并应用到桥梁建设实践中去。

本项目研究成果将对提高我国西部山区高等级公路桥梁的修筑技术水平,加快我国西部地区国民经济的发展起到应有的作用。

8合作者

本项目的合作者为交通部公路科学研究院、长沙理工大学、山西省交通科学研究院、贵州省公路局等四家参研单位。

9致谢

感谢交通部科教司和交通部西部交通建设科技项目管理中心的各位领导对本项目的大力支持和帮助。

感谢交通部公路科学研究院的各位领导对本项目的指导和支持。

感谢对本项目提出宝贵意见的桥梁界专家和学者。

感谢本项目所有参研单位。在本项目研究过程中得到了交通部公路科学研究院、长沙理工大学、山西省交通科学研究院、贵州省公路局对本项目给予了大力支持和配合。为顺利完成本项目各项工作内容,各参研单位都投入了大量的人力

与物力,并且无私地奉献了多年积累的研究成果与工程经验。

感谢湖南省张家界市和株洲市有关单位在本项目研究过程中提供的依托工程的支持和帮助。

变截面连续梁完整计算书

一、工程概况 上部结构采用预应力混凝土变截面连续箱梁,为双幅结构。单幅箱梁采用单箱单室截面,箱梁顶板宽11.99m,底板宽为6.99米,箱梁顶板设置1.5%的横坡。边跨端部及中跨跨中梁高均为2.0m(以梁体中心线为准),箱梁根部梁高为4.0米,梁高从2.0m到箱梁根部按1.5次抛物线规律变化;边跨端部及中跨跨中底板厚度为0.25米,箱梁悬臂根部底板厚度为0.6米,箱梁底板厚度从2.0m到悬臂根部按1.5次抛物线规律变化。箱梁腹板在3.5m长度内由0.45米直线变化至0.6米。 桥台采用重力式U型桥台,桥台与道路中心线正交布置。桥台扩大基础应嵌入中风化岩面不少于0.5m,同时应满足基底持力层抗压承载力要求,桩基础应嵌入中风化岩层长度不小与2.5倍桩径,桥台台身采用C25片石混凝土浇筑,台帽混凝土采用C30钢筋混凝土。台后的填料采用压实度不小于96%的砂卵石,回填时应预设隔水层或排水盲沟。 桥墩均采用钢筋混凝土八棱形截面,基础采用桩基接承台。桥墩墩身截面为3.5×2.0m,截面四角对应切除70×50cm倒角。墩顶设盖梁,桥墩盖梁尺寸为 6.99m(长)×2.4m(宽)×2.6m(高),承台尺寸为8.4m(长)×3.4m(宽)×2.5m。每个承台接两根直径2.0m的桩基。 所有的桩基础均采用嵌岩桩,用人工挖孔成桩。桩基础应嵌入完整的中风化岩面不少于3倍桩径,并要求嵌岩岩石襟边宽度大于3.0m,同时应满足基底持力层岩石抗压强度要求。 桥型布置见图1 桥型立面布置图。 图1 桥型立面布置图 二、主要技术标准 汽车荷载:公路-I级。 人群荷载:3.5 KN/m2。 2.4.桥梁宽度:

变截面连续梁式桥设计入门

变截面连续梁桥设计入门 预应力混凝土连续梁桥在公路桥梁中的应用范围越来越广泛,跨径超过40m时多采用变截面箱梁,本文主要介绍变截面连续箱梁桥设计的入门知识和容易遗漏的一些技术处理措施。 一、变截面连续梁桥的适用范围 变截面连续梁桥主跨经济跨径一般在40~250m之间,桥型优点在于施工技术成熟、造价低廉、行车舒适、养护简单;缺陷在于结构自重大、容易开裂、恒载在使用荷载中占据较大比例、建筑高度高。 二、箱梁构造设计 1.箱梁箱室分配 (1)鉴于多室箱梁弯曲内力分配难以把握,箱梁最好采用单箱单室; (2)箱梁分室受畸变和横框架抗弯控制,当箱梁最大宽高比超过3~3.5时应考虑分室; (3)当采用单箱多室结构时,各墩支撑最好一条腹板对应一排支座; (4)当腹板与支座不是一一对应或支座中心与腹板中心存在偏离时应进行支座处横隔板的横向抗弯计算。 2.箱梁梁高 箱梁梁高的控制因素主要包括: (1)箱梁根部梁高一般取主跨跨径的1/16~1/20;跨中梁高一般取主跨跨径的1/40~1/60。 (2)跨中梁高最小箱内净高一般不宜小于1.5m,特小跨径桥梁例外。 (3)箱梁最矮梁段箱体宽高比不大于3.5。 3.梁高变化 箱梁梁高一般采用抛物线变化,主跨跨径小于120m时采用2次抛物线,大于120m时采用1.8、1.6或1.5次抛物线。 4.底板厚度 箱梁底板厚度变化规律一般采用2次抛物线,最薄处根据桥梁跨径、构造需要和横向抗弯计算确定一般为20cm~32cm;最厚处底板厚度一般取跨径的1/200~1/120,根据下缘压应力要求控制。

1.纵向预应力 一般由内力设计控制:抵抗负弯矩设置顶板束;抵抗正弯矩设置底板束;抵抗主拉应力设置腹板束。

钢箱梁顶推施工工艺介绍

钢箱梁顶推施工工艺介绍 位于济南小清河项目难点施工为架设3片钢箱梁(垂直于桥向),每片由5节(沿桥向)钢箱梁组成,共约600吨。采用先轮箱纵移到钢箱梁对应的跨位,再利用自锁爬行顶推小车横移至梁位处,落梁就位(中间9节钢箱梁)。两头的钢箱梁利用大吨位吊车和已经就位好的钢箱梁对接架设。很好地解决了单片整体吊装钢箱梁接头变形影响问题。 1、工程概况 1.1小清河桥位于济南小清河上,与老桥紧挨。新桥下部为钻孔桩基础、圆柱形墩身,上部主跨为钢箱梁,跨距65m。新桥由3片钢箱梁组成(垂直于桥向),每片5节(沿桥向)。每两片钢箱梁间距3m,再用桥面板焊接成整体、钢箱梁面板上铺设沥青混凝土,边跨为砼现浇箱梁,主跨钢箱梁与边跨砼箱梁通过预应力钢绞线连成整体。钢箱梁在工厂加工成型后运至施工现场。 1.2难点施工主要内容为:由中间3节钢箱梁组成的3片钢箱梁的安装就位(共9节),共计360吨。中资路桥采用的施工方案为先沿桥向纵移到钢箱梁对应的跨位,再横移钢箱梁至梁位处下落就位。为横移钢箱梁,在河中钢箱梁4个接处下方,设置4个临时支墩。同时可以作为钢箱梁需调拱使用。 2、施工流程 济南小清河钢箱梁顶推施工流程为:施工准备(材料和设备进场)→横移轨道和纵移轨道的铺设→轮箱纵移钢箱梁→落到自锁爬行顶推小车上→横移钢箱梁就位→钢箱梁对接→钢箱梁调拱 3、施工工艺 3.1轮箱纵移施工工艺 3.1.1主要设备:轮箱 3.1.2纵移轨道铺设在老桥路基上铺设轨道,轨距3.2m,用P50钢轨,轨道下用1.25m短枕木,间距80cm,每10m设轨距拉杆一道。轨距拉杆可用4m方木完成。轮箱按轨距布设好后,钢箱梁用50吨的汽车吊吊放在轮箱上,准备纵向移动。 3.1.3钢箱梁纵移启动轮箱,低速运转,将钢箱梁纵移至对应跨位。为保证横移时钢箱梁的精确位置,运梁轨道要严格顺直,并与新桥桥轴线平行,且钢梁运至老桥上时,要正对其桥跨位置。要求测量定位准确。同时,为保证老桥的承载,轨道必须设置在老桥主拱上方。 3.1.4落梁至横移轨道纵移到位后,在两端梁下轮箱上安放千斤顶,顶起钢箱梁,在纵移轨道上安放延伸横移轨道,自锁爬行钢箱梁顶推小车安放至钢箱梁两头下方的横移轨道上。为防止钢箱梁滑移,在自锁爬行顶推设备上搭设一层至两层枕木,千斤顶落下钢箱梁至自锁爬行顶推小车上,横移钢箱梁。拆除纵移轨道上的横移轨道,退出轮箱,进行下片钢箱梁的纵移。为保证钢梁的精确就位,两端的横移轨道要严格顺直并严格垂直桥轴线,两轨道严格平行。 3.2顶推横移施工工艺 3.2.1主要设备:自锁爬行钢箱梁顶推小车。 3.2.2横移轨道铺设在搭设好的临时支墩轨道梁上铺设间距80cm的短枕木,在枕木上铺设50型钢轨,轨距为55cm。 3.2.3钢箱梁横移钢箱梁放置在自锁爬行顶推小车上,两台设备同步慢速将整片钢梁横向推

变截面连续梁桥常用施工方法与经典图纸

变截面连续梁桥常用施工方法 1.支架现浇法 支架现浇法适用于旱地且跨径不太大的桥梁,施工中支架的安全、变形等是必须引起重视的问题。 2.悬臂施工法 悬臂施工法是大跨径连续梁桥常用的施工方法,属于一种自架设方式,分为悬臂拼装与悬臂浇筑两种。 悬臂拼装指在预制场预制梁节段、然后进行逐节对称拼装,拼装方法主要有扒杆吊装法、缆索吊装法、提升法等。 悬臂浇注法则是利用挂蓝在桥墩两侧对称浇注箱梁节段、待已浇节段混凝土强度达到要求的张拉强度后进行预应力张拉,然后移动挂蓝进行下一节段施工,直至合拢。目前主要采用该法施工。 不论悬拼还是悬浇,都是属于自架设方式施工,且已成结构的状态(包括受力,变形)具有不可调整性,所以,施工成败的关键在于临时锚固的可靠性,施工过程中的应力监测、变形预测与标高调整以及体系转换的实施。 经典图纸:变截面预应力连续刚构箱梁桥施工图范例 桥梁全长:695.4m 设计行车速度:80Km/h。 荷载等级:公路-Ⅰ级,无人群荷载。 桥宽:左右幅桥宽布置为0.5m 11m(行车道)0.5m(防撞护栏)。 高程:黄海高程系统。 坐标:北京坐标系。

地震烈度:设计基本地震动加速度峰值A=0.05g,抗震设防烈度为6度。 桥面横坡:主桥单向横坡2%,引桥处在横坡变化段上。 单箱单室截面箱梁顶宽:12米底宽6.5米 顶板悬臂长度:2.75米顶板悬臂端部厚:20cm 根部厚70cm。全桥分五联,其中第二联为主桥,采用(70 130 70)m跨的变截面预应力混凝土 连续刚构箱梁;两岸引桥采用预应力混凝土T梁,第一、三联为先简支后刚构 (采用部分连续墩),第四、五联为先简支后连续。 主桥数量表、引桥数量表、地质纵断面图、桥型布置图 箱梁标准横断面图、箱梁施工程序示意图 箱梁截面标高、箱梁一般构造图 箱梁纵向预应力钢束布置图 箱梁纵向钢束竖弯平弯要素表 箱梁纵向预应力钢束材料数量及引伸量计算表 纵向钢束布置断面图20张 箱梁纵向预应力钢束定位钢筋示意图 箱梁锚下加强钢筋布置图 箱梁横、竖向预应力钢束(筋)布置图 箱梁横、竖向预应力钢束(筋)锚固大样图 箱梁横、竖向预应力钢束(筋)数量表 箱梁横、竖向预应力钢束(筋)定位钢筋示意图 箱梁0号节段一般构造图、箱梁0号节段钢筋布置图 箱梁1-16、1-16号节段钢筋布置图 箱梁17号节段钢筋布置图、箱梁17号节段一般构造图

变截面预应力混凝土连续箱梁大桥施工技术研究

变截面预应力混凝土连续箱梁大桥施工技术研究 发表时间:2016-03-21T10:10:38.140Z 来源:《基层建设》2015年26期供稿作者:徐立骞 [导读] 杭州市城市建设基础工程有限公司随着桥梁技术不断发展,变截面预应力混凝土箱梁得到越来越广泛的应用。杭州市城市建设基础工程有限公司浙江杭州 310004 摘要:随着桥梁技术不断发展,变截面预应力混凝土箱梁得到越来越广泛的应用。某桥主桥为变截面连续梁桥,在施工过程中进行了相应的施工控制。本文结合某桥对变截面预应力混凝土连续箱梁施工要点进了研究,可为同类型工程施工提供参考。关键词:变截面;预应力;箱梁大桥;钢管桩;施工技术 1、工程概况 某桥工程桩号分别为K0+000,终点桩号K2+300,全长2.3km。主桥上部构造:混凝土C55:16293.6m3Ⅰ钢筋606t,Ⅱ钢筋2747t,预应力钢绞线841t。该桥左幅设计为:(4×32m)等截面预应力砼连续箱梁+(58+3×96+58)变截面预应力砼连续箱梁+(3×24)等截面预应力砼连续箱梁+(4×32)等截面预应力砼连续箱梁+(3×32)等截面预应力砼连续箱梁;右幅设计为:(3×32m +24.175m)等截面预应力砼连续箱梁+(58+3×96+58)变截面预应力砼连续箱梁+(25.825+2×27)等截面预应力砼连续箱梁+(4×32)等截面预应力砼连续箱梁+(3×32)等截面预应力砼连续箱梁,总长828m。全桥位于直线段,部分纵面位于-2.4%和2.4%直线纵坡段,其余位于R=8000,T=144的竖曲线上。 2、箱梁结构形成 该桥起点桩号为K0+842.877,终点桩号K1+670.877,大桥全长828m(双幅),主桥设计为58m+3×96m+58m五跨变截面预应力混凝土连续箱梁。主桥上部箱梁为变截面单箱双室断面,箱梁梁高、底板厚度均按圆曲线变化。主跨箱梁根部梁高(箱梁中心线)为560cm,跨中梁高(箱梁中心线)为270cm,箱梁顶板全宽为2050cm,厚度25cm。底板宽度957.7至1180.8cm变化,厚度为73.6—30cm。腹板厚度分别为75cm及50cm。箱梁在花瓶墩顶处设300cm厚的横隔板。主跨箱梁单“T”共分12段悬臂浇筑,0号梁段长12m,其余1-12号梁分段长为7x300+5x400cm,边跨、次边跨、中跨合拢段都为2m,边跨现浇段长10m。0号梁段和边跨现浇段采用钢管桩支架现浇施工,主跨T构采用对称挂篮悬臂现浇施工,悬浇最重梁段为1794kN。全桥合拢顺序为:先合拢两个边跨,接着合拢次边跨,最后合拢中跨。 3、0#段桥梁结构特点 3.1 0#块施工 该桥0#段采用单箱双室结构,节段长1200cm,墩顶高560cm,底板宽957.7cm,顶板宽2050cm,0号块混凝土方量为473.3m3,0号块重量为12542kN。考虑0#块长度较长,桥面与墩身宽比大,结合设计图纸及实际施工条件,主桥0#块支架选用钢管桩支架,图1 0#段支架示意。 图1 0#段支架示意 3.2钢管桩支架构造 钢管桩支架由钢管桩立柱、剪刀撑、主横梁、纵向分配梁、落架系统、模板系统等分别由六部形成: 1)钢管桩立柱:墩柱两侧底板位置各设置3根φ700σ10钢管桩立柱,用于支撑底板、腹板荷载以及抵抗部分施工不平衡力距;两侧各设置3根φ530σ6钢管桩立柱,用于支撑腹板和翼板荷载。 2)剪刀撑:钢管桩立柱之间设置[20槽钢剪刀撑增加支架横向稳定,剪刀撑的层数根据支架高度进行调整。 3)主横梁:主横梁采用两根Ⅰ45b工字钢,横梁与钢管桩采用焊接。 4)纵向分配梁:纵向分配梁采用Ⅰ25b工字钢,分配梁按照支架设计进行布设。 5)落架系统:纵向分配梁与主横梁之间设置木楔,以便于后期模板拆除。 6)模板系统:外侧模采用定型钢模,单侧模板长度组合为4.5m+3.5m+4.5m,几何尺寸以设计图为准;考虑0#段内部几何尺寸变化较大,内模采用组合木模。 3.3钢管桩支架搭设 安装前准备→钢管立柱→设置剪力撑→安装主横梁→安装纵向分配梁及木模→铺设底模→预压→卸载→调整模板标高→安装侧模→钢筋预应力绑扎→砼浇筑。 3.4准备顺序 钢管桩支架拼装应做好以下准备: 1)根据设计图纸要求,在加工场下料,焊接过程中应注意控制杆件的结合尺寸及焊接质量;

变截面连续箱梁毕业开题报告

开题报告 1 工程简介 该桥为南水北调中线一期工程总干渠邯邢渠段跨渠公路。地震设防烈度7度。地质资 料如图所示:粘性土(厚度为1.5-4.9m),壤土(厚度为2.2-9.5),粉砂(厚度为1.3-5.3m)。 材料:C50混凝土,铰缝采用C50细石混凝土。立柱、盖梁及桥头搭板采用C30混 凝土,基桩采用C25混凝土。桥面铺装采用三涂FYT-1改进型防水层+10cm厚C50混凝 土(原路面为混凝土路面)或10cmC50混凝土找平层+三涂FYT-1改进型防水层+10cm厚 C50混凝土(原路面为沥青路面)。预应力钢绞线采用1860级高强低松弛s 15.24钢绞线。 2 桥梁设计 (1)桥型布置 分孔:该桥采用现浇预应力变截面连续箱梁,对于多于两跨的连续梁,其边跨一般为中跨的0.6-0.8倍左右,当采用箱型截面的三跨连续梁时,其边跨可以是中跨的0.5-0.7倍。该桥共3跨,跨径采用18+30+18比例合适,总跨径为66m;一般30

梁高的确定:该桥型为变截面连续箱梁。根据规定可知,变截面梁支点截面的梁高H支约为(1/16-1/20)l(l为中间跨径),跨中梁高H中约为(1/1.6-1/2.5)H支。因此该桥中间跨径l=30m,H支=1.7m,H中=1m。桥宽为4.5m+2×1m的人行道·。 桥两端设置耳墙和背墙,长3m,主要是固定桥两端的土,桥两端分别设置8cm的伸缩缝。 (2)桥横断面设置 ①桥向两侧设置2%横坡,主要是有利于排水。桥宽6.5m,属于窄桥,由于桥宽小于20m的一般设置为单箱单室截面,因此该桥箱型设置单箱单室,由于该桥墩型为独立中墩,在中墩处箱梁采用全实梁,全实梁长度为2m,桥台处也采用全实梁,长度为1m。悬臂端部厚度不小于10cm,故跨中梁悬臂端取20cm,悬臂根部取30cm,悬臂长150cm,箱梁顶板厚度应满足横向弯矩的要求和布置纵向预应力筋的要求;参考如下: 腹板与顶板尺寸的关系 ②底板厚的拟定:箱梁底板厚度随箱梁负弯矩的增大而逐渐加厚之墩顶,以适应箱梁下缘的受压要求,墩顶区域底板不宜太薄,否则压应力过高,由此产生的徐变将使跨中区域梁体下挠度较多。一般底板厚度与主跨之比宜为1/140~1/170,跨中区域底板厚度可按构造要求设计,跨中底板宜为20~25cm。底板除承受自身荷载外,还承受一定的施工

变截面连续梁完整计算书

28+36+46+36+28m变截面连续梁计算书 第一章概述 1.1、工程简介 上部标准段结构为预应力混凝土现浇箱梁结构,跨径28+36+46+36+28m,桥宽23.5m,梁高1.8~5.9m,桥面布置为8m(人行道)+15m(车行道)+0.5m (防撞护栏),桥面铺装为10cm沥青混凝土+8cm C50混凝土。梁体采用后张法预应力构件,结构计算考虑施工和使用阶段中预应力损失以及预应力、温度、混凝土收缩徐变等引起的次内力对结构的影响。 1.1.1、采用的主要规范及技术标准 ①、《工程建设标准强制性条文》建标【2000】202号 ②、建设部部颁标准《城市桥梁设计荷载标准》CJJ11-2011 ③、交通部部颁标准《公路桥涵设计通用规范》JTG D60-2015 ④、交通部部颁标准《公路桥涵地基与基础设计规范》JTG D63—2007 ⑤、交通部部颁标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004 ⑥、建设部部颁标准《城市道路设计规范》CJJ37-90 技术标准: 1、道路等级:主干路 2、设计车速:主线60km/h。 3、设计荷载:公路—Ⅰ级。

4、地震烈度:Ⅶ度,地震动峰值加速度0.1g。 5、横断面:8m(人行道)+15m(车行道)+0.5m(防撞护栏)=23.5m 6、桥梁结构设计安全等级:一级 7、路面类型:沥青混凝土路面。 1.1.2、应用的计算软件 Midas CIVIL 1.1.3、主要参数及荷载取值 1)主梁:C55混凝土,γ=26kN/m3,强度标准值f ck=35.5MPa,f tk=2.74MPa。强度设计值f cd=24.4MPa,f td=1.89Pa,桥梁达到设计强度的100%张拉2)二期恒载: 结构部分:155KN/m; 装饰部分:①侧面装饰12KN/m ②底面装饰6K N/m 3)预应力钢束采用1860级φs15.20钢绞线,公称面积139.0mm2,标准强度f pk=1860MPa(270级),张拉控制应力σcon=1350MPa。 4)管道每米局部偏差对摩擦的影响系数:0.0015 k=; μ=; 5)预应力钢筋与管道壁的摩擦系数:0.17 ζ=; 6)钢筋松弛系数,Ⅱ级(低松弛),0.3 7)锚具变形、钢筋回缩和接缝压缩值:6mm l?=(单端); 8)混凝土加载龄期:7天; 9)收缩徐变效应计算至3650天 10)端横梁支座不均匀沉降为采用5.6mm,次中横梁支座不均匀沉降为采

变截面箱型连续梁桥桥梁工程毕业设计

目录 第一章方案比选 (1) 1.1方案选取 (1) 1.11方案一:50+80+50M的变截面箱型连续梁桥 (1) 1.12方案二:4×45M等截面预应力砼连续刚构梁 (2) 1.13方案三:65+115M斜拉桥 (3) 1.2各方案主要优缺点比较表 (4) 1.3.结论 (4) 第二章毛截面几何特性计算 (5) 2.1基本资料 (5) 2.1.1主要技术指标 (5) 2.1.2材料规格 (5) 2.2结构计算简图 (5) 2.3毛截面几何特性计算 (6) 第三章内力计算及组合 (9) 3.1荷载 (10) 3.1.1结构重力荷载 (10) 3.1.2支座不均匀沉降 (11) 3.1.3活载 (11) 3.2结构重力作用以及影响线计算 (11) 3.2.1输入数据 (11) 3.3支座沉降(SQ2荷载)影响计算 (20) 3.5荷载组合 (24) 3.5.1按承载能力极限状态进行内力组合 (25) 3.5.2按正常使用极限状态进行内力组合 (27)

第四章配筋计算 (31) 4.1计算原则 (31) 4.2预应力钢筋估算 (31) 4.2.1材料性能参数 (31) 4.2.2预应力钢筋数量的确定及布置 (31) 4.3预应力筋的布置原则 (37) 第五章预应力钢束的估算及布置 (39) 5.1按正常使用极限状态的应力要求估算 (39) 5.1.1截面上、下缘均布置预应力筋 (39) 5.1.2仅在截面下缘布置预应力筋 (40) 5.1.3仅在截面上缘布置预应力筋 (41) 5.2按承载能力极限状态的强度要求估算 (41) 5.3预应力筋估算结果 (42) 5.4预应力筋束的布置原则 (44) 5.5预应力筋束的布置结果 (45) 第六章净截面及换算截面几何特性计算 (45) 6.1净截面几何特性计算(见表6-1) (46) 6.2换算截面几何特性计算(见表6-2) (46) 第七章预应力损失及有效预应力计算 (47) 7.1控制应力及有关参数的确定 (48) 7.1.1控制应力 (48) 7.1.2其他参数 (48) σ的计算 (48) 7.2摩阻损失1l σ的计算 (50) 7.3混凝土的弹性压缩损失4l σ的计算 (52) 7.4预应力筋束松弛损失5l

大跨变截面钢连续梁桥(主跨185m)——崇启大桥(现场高清图文简介)

工程名称:崇明至启东长江公路通道工程(江苏段) 设计:中交公路规划设计院 施工:中交二航局 开工日期:2009-2 竣工日期:2011-2 工程简介:崇启大桥为多跨连续梁结构,主桥跨度为102+185×4+102= 944m。无论联长还是跨径均属国内第一!主桥钢箱梁为变高等宽断面,箱梁单幅宽16.1m,主桥总宽33.2m,两幅桥间距1m,顶板设计为25000m的竖曲线,底板呈二次抛物线变化,近引桥一跨箱梁高度从3.5米变化至9米,中跨部分高度从4.8米变化至9米。主桥钢箱梁横隔板间距5.6m,两道横隔板之间设置一道横肋。横隔板采用实腹式和框架式两种构造,框架中根据断面高低设置“X”或“V”形斜撑。根据受力需要,钢箱梁在不同区段采用了不同的横肋布置,底板受力较大的部位,采用框架式横肋,底板受力较小的部位,采用只在顶部加劲的横肋型式。支点处及边跨端部横隔板采用实腹式横隔板。 钢箱梁采用正交异性钢桥面板,顶板均采用U肋加劲,底板及腹板采用扁钢加劲。根据受力情况的不同,钢箱梁在不同区段采用不同钢板厚度:顶板板厚为16~22mm,腹板厚度为16~28mm,底板厚度为14~48mm。 钢箱梁大节段现场工地连接采用以栓接为主的栓焊组合方式:除了顶板采用焊接连接外,其余的U肋、底板和腹板及其加劲肋均采用高强螺栓连接。 为确保挑臂桥面下U肋加劲的密闭性,在每个梁段端部U肋内设置隔板,并与顶板焊接,保证U肋内部密闭。梁段间U肋依旧采用栓接。 施工特点:根据国内现有起重船的起重能力及钢箱梁制造运输能力,崇启大桥钢箱梁采用大节段整跨吊装。最大吊装长度185m,最大吊重约2730t ,全桥共分12个大节段,现场采用栓焊组合方式进行连接。

二桥北汊桥大跨径变截面连续箱梁施工组织设计方案

大跨径变截面连续箱梁施工 赵根生王小山姜艳玲 山东省交通工程总公司 【摘要】南京长江二桥北汊桥为预应力连续箱型梁桥,主桥桥跨布置为(90+3 * 165十90)m。采用悬臂浇注法施工,主要介绍其上部结构的施工工艺。 【关键词】PC连续箱梁施工工艺 一、简介 南京长江二桥北汊桥主桥上部90m+3 * 165m+90m五跨PC变截面连续箱梁,位于半径R=16000m 的竖曲线上。桥宽32m,PC箱梁由上下分离的单箱单室箱梁截面组成。箱梁根部 0号块高 8.8m,跨中梁高 3m,箱梁顶板宽15.42m,底板宽7.5m,翼缘板悬壁长3.96m。箱形梁高按二次抛物线变化。 0号块设两道横隔板。 二、现浇段施工为方便挂篮施工 1.支架搭设 根据挂篮的构造特点,0号、1号、2号段采用在支架上浇注混凝土施工。支架采用4根φ1000mm、壁厚10mm的钢管作为竖向主要受力构件。墩身施工时在墩身顶端预留纵向孔,内穿2根φ15mm 丝杠,通过丝杠将以钢管为主件联接而成的架结构锚固于墩身上,从而形成稳定安全的支架体系。 在支架体系上设灌砂筒,上安放支架,其上铺设底模板。用行架结构将两根钢管锚固于墩顶,可节省许多落地支架所需要的构件安设,即节约材料、缩短安装时间,又增加了支架的安全系数。支架体系上设砂筒,有利于底膜的高度调整和拆除,加快了施工进度。 2.支架预压 现浇支架搭设完成后,进行预压,以检测支架的承载力和稳定性,同时消除永久变形,测定弹性变形,底板高程的调整提供依据。

压载是以 1号梁段重量确定预压荷载。取安全系数 1.4倍即 210号,进行堆载压载,压载结果证明支架是安全可靠的,满足施工要求。 3.0号、1号、2号段施工 0号段混凝土体积大,配筋多,断面复杂,且预应力管道密集,是上部结构受力最复杂的主要浇至箱梁顶。 l号、2号分别一次浇注完成。0号、1号、2号所用侧模均为挂篮悬浇段侧模,这样增加模板的周转次数,节省材料,加快了进度。 4.边跨现浇段基本相同 三、挂篮施工O号、回号、2号现浇段完成以后,进行挂篮悬浇施工 1.挂篮构造及特点 根据本桥梁体分段多、工期紧,结构要求严格等特点,选择了正梯形整体行架挂篮。 挂篮由主行系,后锚系及滑动行走系、悬吊系、模板系及工作平台等五部分组成。连同所有模板及施工机具荷载共重80.5t。 挂篮具有以下特点:结构重量轻,整体钢度大、变型小、构件数量少,拼装快,挂篮下有足够行走作业空间。挂篮同模板整体前移,加工容易,造价低廉操作系统实用方便(如图1)。

连续刚构顶推施工

白果渡嘉陵江大桥合拢段预顶推施工技术 薛立强 陈宇啸 杨 雷 张中伟 白果渡嘉陵江大桥是国道212线四川武胜(川渝界)至重庆合川高速公路的主要控制性工程。白果渡嘉陵江大桥全长1433.78米,采用10×40+130+230+130+13×40跨径布置,其中主桥全长490米,主桥上部结构为三跨预应力砼连续刚构桥,跨径设置为130m+230m+130m。引桥为23跨40米预应力砼T梁,该桥设计桥面全宽24.5米,分左右两幅,主桥每幅采用单箱单室截面,主桥箱梁为三向预应力结构。主桥箱梁中跨合拢段长度为2米,在桥纵向中跨合拢段中间位置,设置一道30米厚横隔板,以消除底板预应力产生的径向力对结构的不利影响,确保箱梁的横向安全。 由于受降低工程造价及降低施工难度这两方面的因素影响,该桥两个主墩(11#、12#)被设计成了不等高的墩,墩身高度分别为43m、22m。对于连续刚构这样的结构,两个“T”构主墩的高度相差如此之大,这在国内同类型桥梁中也是极少见的,因此该桥的中跨合拢段施工就显得尤为关键。 1. 预顶推施工 预应力砼连续刚构在完成体系转换后,后期砼收缩徐变与降温效应相组合使两墩之间主梁有缩短的趋势,迫使墩顶向跨中方向发生位移,墩顶、墩底产生较大的弯矩,同时主梁受到砼纤维限制,在结构内部产生拉应力,对结构构成危害。通过计算分析发现,在边跨合拢后,如果能在中跨合拢前在中跨悬臂端部施加一个水平推力,将合拢段两端顶开一段距离,然后焊接合拢段劲性骨架,再拆除顶推千斤顶,这样即可将顶推轴力存储于梁内,顶推工艺类似预应力作用,施工切实可行。中跨合拢前顶推主梁示意如图1。 (图略) 2.中跨合拢段施工工艺 2.1中跨合拢段施工方案 中跨合拢段全长2.0m,该处箱梁设计高度为4.0m,底板宽度为11.0m,顶板宽度为19.0m,腹板厚为0.5m,底板厚度为0.32m,顶板厚度为0.25m,横隔板厚?,中跨合拢段砼总方量为m3。 中跨合拢段的施工方案一般有吊架法、挂篮抬浇法及落地支架现浇法,由于中跨合拢段所处地理位置及现场的施工条件,本着降低成本及加快施工进度,采用已有挂篮作改动之后施工中跨合拢段 2.2中跨合拢段施工准备

预应力砼连续箱梁顶推法施工方法

预应力砼连续箱梁顶推法施工方法 顶推法施工适应于截面等高,跨径70-80m以内,平曲线以竖曲线为同曲率的预应力砼连续梁。顶推法施工不受通车、通航及水情、气候的影响,梁段在桥头实行工厂化施工、质量、工期易于控制和保证。 一、施工方法 1.施工准备 (1)根据桥跨数量、设备条件、场地情况及工期要求,确定预制、顶推的方案。 (2)在桥台后面的桥轴线位置的引道或引桥上设置预制场。对于纵坡小于1.5%的桥梁,预制场地设在上坡桥台后面,如纵 坡大于1.5%则设在下坡的桥台后面。为了加速施工进度并有 条件时,也可在桥两端设预制场地,从两岸相对顶推。如桥头 引道直线长度受到限制,也可在引桥或靠岸一孔上设置“临空 式”的预制台座。 (3)预制场布设时应考虑梁身分段和每段是全断面整体浇筑还是全断面分次浇筑的长度,梁身前面设导梁时,应考虑拼装导 梁的场地,此外,还应考虑拼装第一跨预出时,梁体本身的稳 定安全度。 (4)在引道上的预制场必须将地基先辗压密平,并采取排水措施,使其不沉陷、不积水,如地基承载力不足时,宜选用桩基 础。在平整、密实的地基浇注砼台座,砼基础台座尺寸必要满 足强度、刚度、稳定性要求,在引桥上的预制台座、临时墩的

墩的基础、装配式大梁、横梁、纵梁均应进行设计计算,使台座的强度、刚度(挠度及基础的沉降)和稳定性均符合设计要求。 (5)当用顶推修建的桥梁是设在竖曲线上时,台后预制段各台座支点的标高,应在同一半径的竖曲线圆弧轨迹上。 (6)为减小顶推时产生的内力,以节省临时张拉束,采用设置导梁、临时墩、墩旁临时撑架、斜缆索加固或两端对顶跨中合拢梁段等措施。 (7)系梁可用贝雷桁架或万能杆件拼制,并可在导梁底部用加劲弦杆或型钢分段加劲,导梁设置的长度一般为顶推跨径的 0.6-0.8倍,刚度为主梁的1/9-1/15。最好将导梁从根部至前 端拼成变刚度或分段变刚度。主梁端部的顶板、底板内预埋厚钢板或型钢伸出梁端与导梁连接,主梁端应设横隔梁加固,导梁与箱梁接头处应用预应力束连接以防梁端接头处砼开裂。(8)如跨径较大,现场条件允许时,可在设计跨径中间设置临时墩以减小顶推跨径,临时墩一般采用装配式空心钢筋砼柱,并利用斜拉索或水平索拉柱临时墩,锚碇在永久桥墩上,以加强临时墩抵抗水平力的能力。 2.梁段预制 (1)梁段浇注可根据条件及技术要求采取一次全断面浇注或分底板、腹顶板两次浇注或底、腹、顶板三次浇注,可以等全截面完成后再向前顶推。

变截面箱型连续梁桥--桥梁工程毕业设计

变截面箱型连续梁桥--桥梁工程毕业设计

————————————————————————————————作者:————————————————————————————————日期:

目录 第一章方案比选 (1) 1.1方案选取 (1) 1.11方案一:50+80+50M的变截面箱型连续梁桥 (1) 1.12方案二:4×45M等截面预应力砼连续刚构梁 (2) 1.13方案三:65+115M斜拉桥 (3) 1.2各方案主要优缺点比较表 (4) 1.3.结论 (4) 第二章毛截面几何特性计算 (5) 2.1基本资料 (5) 2.1.1主要技术指标 (5) 2.1.2材料规格 (5) 2.2结构计算简图 (5) 2.3毛截面几何特性计算 (6) 第三章内力计算及组合 (10) 3.1荷载 (10) 3.1.1结构重力荷载 (10) 3.1.2支座不均匀沉降 (11) 3.1.3活载 (11) 3.2结构重力作用以及影响线计算 (11) 3.2.1输入数据 (11) 3.3支座沉降(SQ2荷载)影响计算 (21) 3.5荷载组合 (25) 3.5.1按承载能力极限状态进行内力组合 (25)

3.5.2按正常使用极限状态进行内力组合 (28) 第四章配筋计算 (32) 4.1计算原则 (32) 4.2预应力钢筋估算 (32) 4.2.1材料性能参数 (32) 4.2.2预应力钢筋数量的确定及布置 (32) 4.3预应力筋的布置原则 (38) 第五章预应力钢束的估算及布置 (40) 5.1按正常使用极限状态的应力要求估算 (40) 5.1.1截面上、下缘均布置预应力筋 (41) 5.1.2仅在截面下缘布置预应力筋 (42) 5.1.3仅在截面上缘布置预应力筋 (42) 5.2按承载能力极限状态的强度要求估算 (43) 5.3预应力筋估算结果 (44) 5.4预应力筋束的布置原则 (45) 5.5预应力筋束的布置结果 (47) 第六章净截面及换算截面几何特性计算 (47) 6.1净截面几何特性计算(见表6-1) (48) 6.2换算截面几何特性计算(见表6-2) (49) 第七章预应力损失及有效预应力计算 (49) 7.1控制应力及有关参数的确定 (50) 7.1.1控制应力 (50) 7.1.2其他参数 (50) 的计算 (51) 7.2摩阻损失1l

变截面连续箱梁施工方案

变截面连续箱梁施 工方案

5.变截面连续箱梁施工 东山大桥主桥内侧变截面连续箱梁为三向预应力混凝土结果,采用单箱单室截面。外侧箱梁为变截面连续箱梁采用纵向预应力混凝土结构,采用单箱单室截面。 表5-1:悬臂法箱梁施工桥梁表 连续箱梁的0#块及边跨直线现浇段均采用支架现浇法施工,其余各节段均采用三角挂篮或菱形挂篮悬臂灌筑施工。支架及挂篮拼装好后进行预压,消除非弹性变形。模板安装及钢筋绑扎检测合格后,进行混凝土浇筑。混凝土由拌和站集中拌和,混凝土运输车运至施工现场。泵送混凝土入模。混凝土浇筑后进行养护,达至设计张拉要求后进行预应力施工,挂篮移动,重复进行完成悬臂段的施工,最后进行直线段及合拢段的施工。各阶段施工顺序见图8-5所示。

步骤 步骤Ⅱ 步骤Ⅲ 步骤Ⅳ 步骤Ⅴ 步骤Ⅵ 图8-5悬浇箱梁施工步骤图

搭设支架 0#块钢筋制作 边跨直线段施 挂篮制造,试拼与临时支承钢管 0#块施工 拼装挂篮 分块吊装1#、1′#梁段底板、腹 拖移内模架,安装1#、1′#梁段内模及 混凝土灌注后测量观测 对称灌注1#、1′#梁段养护 1#、1′#梁段顶面张拉及压 张拉后测量观测点 计算调整2#、2′#梁段施工立模 对称牵引1#、1′#梁段挂篮 2#(2′#)~N#(N ′#)梁段悬灌循拆除挂篮 5.1 0#块施工的工序流程如下: 0#块支架拼装→支架预压检验→0#浇筑施工→在0# 块上拼装挂篮及预压→挂篮悬臂浇筑1#块→悬臂浇筑n#块→边跨现浇段施工→边跨合拢段施工→中跨合拢段施工。 图8-6 悬臂现浇梁施工工艺框图 5.1.1临时支承安装 临时支承体系由支承钢管和OVM15-5预应力体系共同组成,是箱梁悬臂浇筑施工中的主要受力构件,是保证本桥施工安全度

顶推法施工

顶推法施工 6.7.1 工艺概述 顶推法施工是预先在桥台后面的路堤(或引道)上、亦可在桥梁中部设置预制平台逐段拼装或浇筑桥跨结构,待达到预定强度的设计强度后,安装临时预应力索,用顶推装置逐段通过墩顶滑移装置将梁顶出,安装一段,拼接一段,直至全部就位,全部顶推就位后拆除临时预应力束,安装永久预应力束,拆除滑移装置,安装永久支座,完成预应力连续梁的安装施工。由于不需要使用膺架,可不中断桥下交通,省去大量施工脚手支架,减少高空作业,便于集中管理和指挥,施工安全可靠。顶推法适用于跨越城市、深谷、较大河流、公路、铁路的预应力连续梁结构施工。多用于跨径30~60m 预应力混凝土等截面连续梁架设,顶推法可架设直桥、弯桥,坡桥。 采用顶推法架梁时,梁前端呈悬臂状态,与后部相比断面受力较大。为降低梁前端这种临时架设的断面力,可在梁前端安装导梁,还可以根据现场条件,在桥墩间设置临时支墩以降低架设时梁的断面受力。在中间跨度大,又不能设置临时支墩时,也可用导梁从两侧相对顶推,在跨中连结。 顶推方法主要分为单点顶推和多点顶推两种: 单点顶推方法是把千斤顶等顶推设备设置于1 处——桥台或桥墩上。其它墩上布置滑道,边顶推边使梁滑动的方式,这种方式有用水平、竖向两台千斤顶和用穿心式水平千斤顶配以拉杆两种方法。 多点顶推是在各墩上均设置千斤顶等顶推设备的顶推方式,这种方式可将水平力分散作用于各墩上,对长大桥尤为有利。目前大多使用此种方法。

6.7.2 作业内容 顶推施工作业内容主要如下: 1.施工准备; 2.箱梁节段预制及早期预应力张拉; 3.箱梁节段顶推、导梁拆除; 4.预应力箱梁后期预应力束安装及张拉压浆、前期预应力束拆除; 5.体系转换,包括滑道拆除以及支座安装等。 6.7.3 质量标准及检验方法 《铁路桥涵工程施工质量验收标准》(TB10415-2003) 《高速铁路桥涵工程施工质量验收标准》(TB10752-2010)《铁路混凝土工程施工质量验收标准》(TB10424-2010) 6.7.4 工艺流程图 6.7.5 工艺步骤及质量控制 一、施工准备 1.施工场地

MIDAS中PSC变截面箱梁施工阶段及PSC设计例题

PSC变截面箱梁施工阶段及PSC设计例题 北京迈达斯技术有限公司 2007年3月19日 一、结构描述 (2) 二、结构建模 (4) 三、分步骤说明 (4) 1、定义材料和截面特性 (4) 2、建立上部梁单元并赋予单元截面属性 (7) 3、定义结构组并赋予结构组单元信息 (11) 4、定义边界组并定义边界条件 (12) 5、定义荷载工况和荷载组 (13) 6、定义施工阶段 (14) 7、分阶段定义荷载信息 (14) 8、分析及后处理查看 (20) 9、按照JTG D62规范的要求对结构进行PSC设计 (21)

PSC变截面箱梁施工阶段及PSC设计例题 对于常规的PSC连续梁桥我们通常可以参考建模助手建立的模型,对于特殊的桥型或有特殊要求的结构我们需要按照一般方法建立有限元模型,施加边界和荷载进行分析。这个例题主要说如何使用一般方法建立PSC连续梁桥并定义施工阶段进行施工阶段分析和按照JTG D62规范对结构进行设计验算。 一、结构描述 这是一座50+62+50的三跨预应力混凝土连续箱梁桥,这里仅模拟其上部结构。施工方法采用悬臂浇注,跨中截面和端部截面如图1所示。 图1-1 跨中截面示意

图1-2 支座截面示意 桥梁立面图如图2所示。 图2 连续梁立面图 图3 钢束布置形状

二、结构建模 对于施工阶段分析模型,通常采用的建模方法是: 1、定义材料和截面特性(包括混凝土收缩徐变函数定义); 2、建立上部梁单元并赋予单元截面属性; 3、定义结构组并赋予结构组信息; 4、建立边界组并定义边界条件; 5、定义荷载工况和荷载组; 6、定义施工阶段; 7、分阶段定义荷载信息(分施工阶段荷载和成桥荷载两部分); 8、分析,分析完成后定义荷载组合进行后处理结果查看; 9、定义设计验算参数按照JTG D62对结构进行长短期及承载能力验算。 下面就每个步骤分别详述如下—— 三、分步骤说明 1、定义材料和截面特性 本模型中涉及的材料包括混凝土主梁(C40)、预应力钢绞线(Strand1860)。如下图4所示。 图4 材料列表 通常对于预应力混凝土结构(PSC结构)按照现浇施工时,要考虑混凝土的收缩徐变效应,因此需要在建模前要定义混凝土的收缩徐变函数,按照如下图所示定义混凝土收缩徐变函数。

变截面连续箱梁悬浇施工

主桥上部结构形式为预应力变截面连续箱梁,采用悬臂浇筑法施工。施工程序为:在主墩旁设托架立模施工0#和1#块件→利用墩顶块件作工作面,拼装挂篮→利用挂篮悬臂浇筑其余块件,施加预应力→边跨合拢,张拉底板预应力索,拆除边跨临时支座,完成体系转换→次中跨合拢,解除临时锚固→中跨合拢,张拉底板索,完成全桥的体系转换。 一、0#、1#块件施工 主墩墩身施工完毕,在承台顶利用型钢和贝雷钢架拼装0#、1#块件施工托架。施工托架采用扇形托架,其长度根据现浇块件的长度和挂篮拼装需要而定,横桥向的宽度比箱梁底板宽1.5m,以便设立箱梁腹板的外模,托架顶加设型钢垫梁,并与箱梁底面纵向线形一致,托架拼装时要与立柱预埋筋和承台顶面预埋螺栓紧密联结。 托架拼装完成后,在墩顶安置盆式支座,然后设置预应力筋的墩梁临时固结体系(详见相关设计图纸),以此来平衡悬臂浇筑过程中产生的不平衡弯矩。 梁段底模支承在钢垫梁上,底板由组合钢模围绕着支座拼装而成,模面与支座保持一致,并按设计要求调整纵坡。底模和支座的缝隙用塑料泡膜嵌塞以防止漏浆。底模铺设完成后,使用水箱加水预压(与梁体砼同重),消除非弹性变形,观察弹性变形量,并与计算值比较,调整底模标高。 水箱放置时,利用水平仪观测底板标高H1,水箱加水后,测得标高为H2,水箱拆除后,测得标高为H3,则非弹性变形S非= H1-

H3,弹性变形S弹= H3- H2。 钢筋绑扎时,如有必要,可采用劲性钢骨架措施,以保证钢筋骨架的刚度和稳定性。钢筋绑扎完成后,紧接着穿波纹管,预埋锚垫板及加强钢筋,同时绑扎下一节段固定端预埋钢筋。波纹管两端用透明胶纸包裹以防砼浆进入管内。预应力管道应精确放样,并用设计规定的钢筋焊接固定,以减少张拉时预应力的损失。 块件外侧模用组合钢模加以拼装。外侧模钢支架上设置横向预应力张拉平台。模板高度的调整以及拆模均使用模底设置的千斤顶。内模和过人洞模均采用木模,为拆卸方便,其内侧采用角钢支撑连接。为确保箱梁断面尺寸,箱梁底板上预埋T形钢筋并与底板主筋焊接以供芯模支撑。端模采用组合钢模,外侧用支架支撑,内设长拉杆螺栓对拉。堵头板采用木模,每端用角钢作斜支撑与支架联结,以保证准确定位。 模板安装顺序为:安装底模→外侧模→内模→端模→顶板底模→堵头板→外翼边板。 砼浇筑时先浇筑0#块件和墩顶横隔板,然后对称浇筑1#块件。浇筑从外侧向内侧进行,浇筑前要检查预埋件的预埋位置,特别是挂篮系统的预埋件。提前做好砼配合比,并根据砂石含水率及时修改施工配合比。砼浇筑用输送泵运输,底板设串筒以防止离析,砼坍落度控制在17cm~20cm,砼中掺加早强减水剂。砼浇筑时注意不要使振捣棒触碰预应力管道。 砼终凝后进行洒水养护,强度达到90%后方可进行张拉工作,按照设计要求,其张拉程序为:

40 60 40m预应力混凝土变截面连续梁桥设计计算书

盘锦新区纬一河二号桥设计

概述 工程概况 始建于2005年12月的盘锦辽东湾新区(原盘锦辽滨沿海经济开发区),是辽“五点一线”最早的七个重点园区之一。新区地处“辽宁沿海经济带”、“辽西蒙东城市群经济圈”、“沈阳开发区城市群”三大经济板块结合点,是辽宁沿海开发开放战略的主轴线和渤海翼的交叠之地,承载着振兴东北老工业基地、辽宁沿海开发开放、资源型城市转型试点市等多项国家战略。新区初步形成了水城、产业、港口三大主体功能区,影响力、吸引力、辐射力大幅提升。 辽滨水城,又叫金帛湾水城。是盘锦沿海经济区建设与发展的最高境界。优越的区位和显著的地缘优势,使水城成为极具开发潜力和美好前景的最佳发展区域。辽滨境内水系的贯通,城内河网的存在,是辽滨水城建设的重要标志。辽滨水城陆域面积与水域面积相当,在水城内既可以开车,也可以划船。同时,水城内将根据全世界400多座名桥的形状建设桥梁,纬一河2#桥正是其中一座。由于纬一河紧临市政府,河上桥梁均仿照中世纪欧洲桥梁风格建造,以达到庄重美观的效果。总体规划布置图如图1-1 图1-1 总体规划布置图

技术标准 ⑴道路等级:双向八车道城市主干道; ⑵设计荷载:公路I级; ⑶计算行车速度:40km/h; ⑷桥梁宽度: 4.0m(人行道及栏杆)+3m(非机动车道)+30m(行车道)+3m(非机动车道)+4.0m(人行道及栏杆)= 44m。; ⑸结构设计安全等级:I 级; ⑹地震基本烈度:地震基本烈度为7度,设计基本地震峰值加速度为0.10g,按《公路桥梁抗震细则》中B类桥梁设计。 ⑺结构设计基准期:100年; 设计遵循的依据 ⑴《公路工程技术标准》(JTG B01-2003)。 ⑵《公路桥梁抗震设计细则》(JTG/T B02-01-2008)。 ⑶《公路桥涵设计通用规范》(JTG D60-2004) ⑷《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) ⑸《公路桥涵地基与基础设计规范》(JTJ D63-2007)。 ⑹《公路沥青路面设计规范》(JTG D50-2006) ⑺《城市道路照明设计标准》(CJJ45-2006) ⑻《公路工程水文勘测设计规范》(JTG 030—2002)

相关主题
文本预览
相关文档 最新文档