当前位置:文档之家› 高中数学思想----分类讨论思想

高中数学思想----分类讨论思想

高中数学思想----分类讨论思想
高中数学思想----分类讨论思想

分类讨论思想

[思想方法解读] 分类讨论思想是一种重要的数学思想方法,其基本思路是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.

1.中学数学中可能引起分类讨论的因素:

(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等.

(2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列{a n }的前n 项和公式等.

(3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等.

(4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等.

(5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等.

2.进行分类讨论要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论.其中最重要的一条是“不重不漏”.

3.解答分类讨论问题时的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不重不漏、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论.

体验高考

1.(2015·山东)设函数f (x )=?????

3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( ) A.????23,1 B .[0,1]

C.????23,+∞ D .[1, +∞)

答案 C

解析 由f (f (a ))=2f (a )得,f (a )≥1.

当a <1时,有3a -1≥1,∴a ≥23,∴23

≤a <1.

当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1.

综上,a ≥23

,故选C. 2.(2015·湖北)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( )

A .对任意的a ,b ,e 1>e 2

B .当a >b 时,e 1>e 2;当a

C .对任意的a ,b ,e 1

D .当a >b 时,e 1e 2

答案 D

解析 由题意e 1=a 2+b 2

a 2=1+????

b a 2;

双曲线C 2的实半轴长为a +m ,虚半轴长为b +m ,

离心率e 2=(a +m )2+(b +m )2

(a +m )2=1+? ??

??b +m a +m 2. 因为b +m a +m -b a =m (a -b )a (a +m )

,且a >0,b >0,m >0,a ≠b , 所以当a >b 时,m (a -b )a (a +m )>0,即b +m a +m >b a

. 又b +m a +m

>0,b a >0, 所以由不等式的性质依次可得? ????b +m a +m 2>???

?b a 2, 1+? ??

??b +m a +m 2>1+????b a 2, 所以1+? ????b +m a +m 2>1+????b a 2,即e 2>e 1;

同理,当a

<0,可推得e 2b 时,e 1e 2.

3.(2015·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),离心率为33

,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2

=b 24截得的线段的长为c ,|FM |=433. (1)求直线FM 的斜率;

(2)求椭圆的方程;

(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.

解 (1)由已知有c 2a 2=13

, 又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.

设直线FM 的斜率为k (k >0),F (-c,0),

则直线FM 的方程为y =k (x +c ).

由已知,有?

????kc k 2+12+????c 22=???

?b 22, 解得k =33. (2)由(1)得椭圆方程为x 23c 2+y 2

2c

2=1, 直线FM 的方程为y =33

(x +c ), 两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,

解得x =-53

c ,或x =c . 因为点M 在第一象限,可得点M 的坐标为?

???c ,233c . 由|FM |=(c +c )2+????233c -02=433. 解得c =1,所以椭圆的方程为x 23+y 2

2

=1. (3)设点P 的坐标为(x ,y ),直线FP 的斜率为t ,

得t =y x +1

,即y =t (x +1)(x ≠-1). 与椭圆方程联立,????? y =t (x +1),x 23+y 22

=1, 消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t =6-2x 23(x +1)2>2, 解得-32

<x <-1或-1<x <0. 设直线OP 的斜率为m ,得m =y x ,即y =mx (x ≠0),与椭圆方程联立,整理得m 2=2x 2-23

. ①当x ∈???

?-32,-1时,有y =t (x +1)<0, 因此m >0,于是m =2x 2-23,得m ∈????23

,233. ②当x ∈(-1,0)时,有y =t (x +1)>0,

因此m <0,于是m =-

2x 2-23

, 得m ∈????-∞,-233. 综上,直线OP 的斜率的取值范围是?

???-∞,-233∪????23,233. 高考必会题型

题型一 由概念、公式、法则、计算性质引起的分类讨论

例1 设集合A ={x ∈R |x 2+4x =0},B ={x ∈R |x 2+2(a +1)x +a 2-1=0,a ∈R },若B ?A ,求实数a 的取值范围.

解 ∵A ={0,-4},B ?A ,于是可分为以下几种情况.

(1)当A =B 时,B ={0,-4},

∴由根与系数的关系,得?????

-2(a +1)=-4,a 2-1=0, 解得a =1.

(2)当B A 时,又可分为两种情况.

①当B ≠?时,即B ={0}或B ={-4},

当x =0时,有a =±1;

当x =-4时,有a =7或a =1.

又由Δ=4(a +1)2-4(a 2-1)=0,

解得a =-1,此时B ={0}满足条件;

②当B =?时,Δ=4(a +1)2-4(a 2-1)<0,解得a <-1.

综合(1)(2)知,所求实数a 的取值范围为a ≤-1或a =1.

点评 对概念、公式、法则的内含及应用条件的准确把握是解题关键,在本题中,B ?A ,包括B =?和B ≠?两种情况.解答时就应分两种情况讨论,在关于指数、对数的运算中,底数的取值范围是进行讨论时首先要考虑的因素.

变式训练1 已知数列{a n }的前n 项和S n =p n -1(p 是常数),则数列{a n }是( )

A .等差数列

B .等比数列

C .等差数列或等比数列

D .以上都不对

答案 D

解析 ∵S n =p n -1,

∴a 1=p -1,a n =S n -S n -1=(p -1)p n -

1(n ≥2), 当p ≠1且p ≠0时,{a n }是等比数列;

当p =1时,{a n }是等差数列;

当p =0时,a 1=-1,a n =0(n ≥2),此时{a n }既不是等差数列也不是等比数列.

题型二 分类讨论在含参函数中的应用

例2 已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]上有最大值2,求a 的值.

解 函数f (x )=-x 2+2ax +1-a

=-(x -a )2+a 2-a +1,

对称轴方程为x =a .

(1)当a <0时,f (x )max =f (0)=1-a ,

∴1-a =2,∴a =-1.

(2)当0≤a ≤1时,f (x )max =f (a )=a 2-a +1,

∴a 2-a +1=2,∴a 2-a -1=0,∴a =1±52

(舍). (3)当a >1时,f (x )max =f (1)=a ,∴a =2.

综上可知,a =-1或a =2.

点评 本题中函数的定义域是确定的,二次函数的对称轴是不确定的,二次函数的最值问题与对称轴息息相关,因此需要对对称轴进行讨论,分对称轴在区间内和对称轴在区间外,从而确定函数在给定区间上的单调性,即可表示函数的最大值,从而求出a 的值. 变式训练2 已知函数f (x )=2e x -ax -2(x ∈R ,a ∈R ).

(1)当a =1时,求曲线y =f (x )在x =1处的切线方程;

(2)求x ≥0时,若不等式f (x )≥0恒成立,求实数a 的取值范围.

解 (1)当a =1时,f (x )=2e x -x -2,

f ′(x )=2e x -1,f ′(1)=2e -1,

即曲线y =f (x )在x =1处的切线的斜率k =2e -1,

又f (1)=2e -3,所以所求的切线方程是y =(2e -1)x -2.

(2)易知f ′(x )=2e x -a .

若a ≤0,则f ′(x )>0恒成立,f (x )在R 上单调递增;

若a >0,则当x ∈(-∞,ln a 2

)时,f ′(x )<0,f (x )单调递减, 当x ∈(ln a 2

,+∞)时,f ′(x )>0,f (x )单调递增. 又f (0)=0,所以若a ≤0,则当x ∈[0,+∞)时,

f (x )≥f (0)=0,符合题意.

若a >0,则当ln a 2

≤0,

即0

则当x ∈[0,+∞)时,

f (x )≥f (0)=0,符合题意.

当ln a 2

>0,即a >2, 则当x ∈(0,ln a 2

)时,f (x )单调递减, f (x )

综上,实数a 的取值范围是(-∞,2].

题型三 根据图形位置或形状分类讨论

例3 在约束条件????? x ≥0,y ≥0,y +x ≤s ,y +2x ≤4

下,当3≤s ≤5时,z =3x +2y 的最大值的变化范围是( )

A .[6,15]

B .[7,15]

C .[6,8]

D .[7,8]

答案 D

解析 由????? x +y =s ,y +2x =4??????

x =4-s ,y =2s -4, 取点A (2,0),B (4-s,2s -4),C (0,s ),C ′(0,4).

①当3≤s <4时,

可行域是四边形OABC (含边界),如图(1)所示,

此时,7≤z max

<8.

②当4≤s ≤5时,此时可行域是△OAC ′,如图(2)所示,z max =8.综上,z =3x +2y 最大值的变化范围是[7,8].

点评 几类常见的由图形的位置或形状变化引起的分类讨论

(1)二次函数对称轴的变化;(2)函数问题中区间的变化;(3)函数图象形状的变化;(4)直线由斜率引起的位置变化;(5)圆锥曲线由焦点引起的位置变化或由离心率引起的形状变化;(6)立体几何中点、线、面的位置变化等.

变式训练3 设点F 1,F 2为椭圆x 29+y 24

=1的两个焦点,点P 为椭圆上一点,已知点P ,F 1,

F 2是一个直角三角形的三个顶点,且||PF 1>||PF 2,求

||PF 1||PF 2的值. 解 若∠PF 2F 1=90°,

则||PF 12=|PF 2|2+||F 1F 22,

又∵||PF 1+||PF 2=6,||F 1F 2=25,

解得||PF 1=143,||PF 2=43,∴||PF 1||PF 2=72

. 若∠F 1PF 2=90°,则||F 1F 22=||PF 12+||PF 22,

∴||PF 12+(6-||PF 1)2=20,

又|PF 1|>|PF 2|,

∴||PF 1=4,||PF 2=2,∴

||PF 1||PF 2=2. 综上知,||PF 1||PF 2=72

或2. 高考题型精练

1.若关于x 的方程|a x -1|=2a (a >0且a ≠1)有两个不等实根,则a 的取值范围是( )

A .(0,1)∪(1,+∞)

B .(0,1)

C .(1,+∞) D.???

?0,12 答案 D

解析 方程|a x -1|=2a (a >0且a ≠1)有两个实数根转化为函数y =|a x -

1|与y =2a 有两个交点.

①当0

∴0<2a <1,即0

.

②当a >1时,如图(2),

而y =2a >1不符合要求.

综上,0

. 2.x ,y 满足约束条件????? x +y -2≤0,x -2y -2≤0,

2x -y +2≥0.

若z =y -ax 取得最大值的最优解不唯一,则实数a

的值为( )

A.12或-1 B .2或12

C .2或1

D .2或-1

答案 D

解析 如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,

故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;

当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.

3.抛物线y 2=4px (p >0)的焦点为F ,P 为其上的一点,O 为坐标原

点,若△OPF 为等腰三角形,则这样的点P 的个数为( )

A .2

B .3

C .4

D .6

答案 C

解析 当|PO |=|PF |时,点P 在线段OF 的中垂线上,此时,点P 的位置有两个;当|OP |=|OF |时,点P 的位置也有两个;对|FO |=|FP |的情形,点P 不存在.事实上,F (p,0),若设P (x ,y ),则|FO |=p ,|FP |=(x -p )2+y 2,若(x -p )2+y 2=p ,则有x 2-2px +y 2=0,又∵y 2=4px ,∴x 2+2px =0,解得x =0或x =-2p ,当x =0时,不构成三角形.当x =-2p (p >0)时,与点P 在抛物线上矛盾.∴符合要求的点P 一共有4个.

4.函数f (x )=?????

log 12x ,x ≥1,2x ,x <1

的值域为________.

答案 (-∞,2)

解析 当x ≥1时,12()log f x x =是单调递减的,

此时,函数的值域为(-∞,0];

当x <1时,f (x )=2x 是单调递增的,

此时,函数的值域为(0,2).

综上,f (x )的值域是(-∞,2).

5.已知集合A ={x |1≤x <5},C ={x |-a

解析 因为C ∩A =C ,所以C ?A .

①当C =?时,满足C ?A ,此时-a ≥a +3,得a ≤-32

; ②当C ≠?时,要使C ?A ,则????? -a

a +3<5,

解得-32

综上,a 的取值范围是(-∞,-1].

6.已知函数f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围. 解 要使f (x )≥0恒成立,则函数在区间[-2,2]上的最小值不小于0,设f (x )的最小值为g (a ).

(1)当-a 2

<-2,即a >4时,g (a )=f (-2)=7-3a ≥0, 得a ≤73

,故此时a 不存在. (2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=f ????-a 2=3-a -a 24

≥0,得-6≤a ≤2,又-4≤a ≤4,故-4≤a ≤2.

(3)当-a 2

>2,即a <-4时,g (a )=f (2)=7+a ≥0, 得a ≥-7,又a <-4,故-7≤a <-4,

综上得-7≤a ≤2.

7.已知ax 2-(a +1)x +1<0,求不等式的解集.

解 若a =0,原不等式等价于-x +1<0,解得x >1.

若a <0,原不等式等价于(x -1a

)(x -1)>0, 解得x <1a

或x >1. 若a >0,原不等式等价于(x -1a

)(x -1)<0. ①当a =1时,1a =1,(x -1a

)(x -1)<0无解; ②当a >1时,1a <1,解(x -1a )(x -1)<0得1a

1,解(x -1a )(x -1)<0得1

. 综上所述:当a <0时,解集为{x |x <1a

或x >1}; 当a =0时,解集为{x |x >1};

当0

}; 当a =1时,解集为?;

当a >1时,解集为{x |1a

的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.

(1)求数列{a n }的通项公式;

(2)设T n =S n -1S n

(n ∈N *),求数列{T n }的最大项的值与最小项的值. 解 (1)设等比数列{a n }的公比为q ,

因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列,

所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,

于是q 2=a 5a 3=14

. 又{a n }不是递减数列且a 1=32,所以q =-12

. 故等比数列{a n }的通项公式为

a n =32×????-12n -1=(-1)n -1·32n . (2)由(1)得S n =1-????-12n

=??? 1+12n ,n 为奇数,1-12n ,n 为偶数.

当n 为奇数时,S n 随n 的增大而减小,

所以1

, 故0

. 当n 为偶数时,S n 随n 的增大而增大,

所以34

=S 2≤S n <1, 故0>S n -1S n ≥S 2-1S 2=34-43=-712

. 综上,对于n ∈N *,

总有-712≤S n -1S n ≤56

. 所以数列{T n }最大项的值为56,最小项的值为-712

. 9.已知a 是实数,函数f (x )=x (x -a ).

(1)求函数f (x )的单调区间;

(2)设g (a )为f (x )在区间[0,2]上的最小值.

①写出g (a )的表达式;

②求a 的取值范围,使得-6≤g (a )≤-2.

解 (1)函数的定义域为[0,+∞),

f ′(x )=3x -a 2x

(x >0).

若a ≤0,则f ′(x )>0,f (x )有单调递增区间[0,+∞).

若a >0,令f ′(x )=0,得x =a 3

, 当0

时,f ′(x )<0, 当x >a 3

时,f ′(x )>0. f (x )有单调递减区间[0,a 3

], 有单调递增区间(a 3

,+∞). (2)①由(1)知,

若a ≤0,f (x )在[0,2]上单调递增,

所以g (a )=f (0)=0.

若0

]上单调递减, 在(a 3

,2]上单调递增, 所以g (a )=f (a 3)=-2a 3a 3

. 若a ≥6,f (x )在[0,2]上单调递减,

所以g (a )=f (2)=2(2-a ).

综上所述,g (a )=????? 0,a ≤0,-2a 3a 3,0

②令-6≤g (a )≤-2.若a ≤0,无解.

若0

若a ≥6,解得6≤a ≤2+3 2.

故a 的取值范围为3≤a ≤2+3 2.

10.已知函数f (x )=a ln x -x +1(a ∈R ).

(1)求f (x )的单调区间;

(2)若f (x )≤0在(0,+∞)上恒成立,求所有实数a 的值.

解 (1)f ′(x )=a x -1=a -x x

(x >0), 当a ≤0时,f ′(x )<0,

∴f (x )的减区间为(0,+∞);

当a >0时,由f ′(x )>0得0

由f′(x)<0得x>a,

∴f(x)递增区间为(0,a),递减区间为(a,+∞).(2)由(1)知:当a≤0时,f(x)在(0,+∞)上为减函数,而f(1)=0,

∴f(x)≤0在区间x∈(0,+∞)上不可能恒成立;

当a>0时,f(x)在(0,a)上递增,在(a,+∞)上递减,f(x)max=f(a)=a ln a-a+1,

令g(a)=a ln a-a+1,

依题意有g(a)≤0,而g′(a)=ln a,且a>0,

∴g(a)在(0,1)上递减,在(1,+∞)上递增,

∴g(a)min=g(1)=0,故a=1.

高中数学解题思想之分类讨论思想

分类讨论思想方法 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。 引起分类讨论的原因主要是以下几个方面: ①问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。 ②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。 ③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。 另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。 进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。 解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。 Ⅰ、再现性题组: 1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A?B,那么a的范围是_____。 A. 0≤a≤1 B. a≤1 C. a<1 D. 00且a≠1,p=log a (a3+a+1),q=log a (a2+a+1),则p、q的大小关系是 _____。 A. p=q B. pq D.当a>1时,p>q;当0

高中数学解题四大思想方法

思想方法一、函数与方程思想 姓名: 方法1 构造函数关系,利用函数性质解题 班别: 根据题设条件把所求的问题转化为对某一函数性质的讨论,从而使问题得到解决,称为构造函数解题。通过构造函数,利用函数的单调性解题,在解方程和证明不等式中最为广泛,解题思路简洁明快。 例1 (10安徽)设232555322(),(),(),555 a b c ===则,,a b c 的大小关系是( ) ....A a c b B a b c C c a b D b c a >>>>>>>> 例2 已知函数21()(1)ln , 1.2 f x x ax a x a =-+-> (1) 讨论函数()f x 的单调性; (2) 证明:若5,a <则对任意12121212 ()(),(0,),, 1.f x f x x x x x x x -∈+∞≠>--有 方法2 选择主从变量,揭示函数关系 含有多个变量的数学问题中,对变量的理解要选择更加合适的角度,先选定合适的主变量,从而揭示其中的函数关系,再利用函数性质解题。 例3 对于满足04p ≤≤的实数p ,使2 43x px x p +>+-恒成立的x 的取值范围是 . 方法3 变函数为方程,求解函数性质 实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式,我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题一般是通过方程来实现的……函数与方程是密切相关的。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。 例4 函数()2)f x x π=≤≤的值域是( ) 11111122.,.,.,.,44332233A B C D ????????----?????????? ??????

高中数学常见思想方法总结

高中常见数学思想方法 方法一 函数与方程的思想方法 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,一直是高考的热点、重点内容.函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数特征,重在对问题的变量的动态研究,从变量的运动变化、联系和发展角度拓宽解题思路.方程的思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解. 函数与方程的思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的. 【例1】 设等差数列{}n a 的前n 项的和为n S ,已知3121312,0,0a S S =><. (1)求公差d 的取值范围; (2)指出1S 、2S 、…、12S 中哪一个值最大,并说明理由. 【分析】 (1)利用公式n a 与n S 建立不等式,容易求解d 的范围;(2)利用n S 是n 的二次函数,将n S 中哪一个值最大,变成求二次函数中n 为何值时n S 取最大值的函数最值问题. 【解】(1) 由3a =12a d +=12,得到1a =12-2d , 所以12S =121a +66d =12(12-2d )+66d =144+42d >0, 13S =131a +78d =13(12-2d )+78d =156+52d <0. 解得:2437 d -<<-. (2)解法一:(函数的思想) n S =21115(1)(12)222 na n n d dn d n ++=+- =22 124124552222d d n d d ????????---- ? ????????????? 因为0d <,故212452n d ????-- ???????最小时,n S 最大.

高考数学思想方法汇总(80页)

高考数学思想方法 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言

美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题.而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法.高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法.我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光. 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和 演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想 等. 数学思想方法与数学基础知识相比较,它有较高的地位和层次.数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记.而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用. 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段.数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得. 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”. 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想.最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷. 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现.再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范.巩固性题组旨在检查学习的效果,起到巩固的作用.每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识. 第一章高中数学解题基本方法 一、配方法

“函数思想”在高中数学中的教学及意义

“函数思想”在高中数学中的教学及意义 【内容摘要】函数在高中数学的全部体系中,具有极其重要的地位,拥有起承转合的功能,为了给学习更多的函数及导数、极限与积分打下稳固的根基,在高中数学学习中要重点学习函数的奇偶性、单调性还有周期性等性质。此文特别研究“函数思想”的教育与突出意义,希望得到师生的看重。 【关键词】高中数学函数思想意义 一、学习函数的重要性 关于函数的定义,在初中时会学到,但是在高中还会在初中数学的根基下继续拓展新的含义,重点是关于映射的理论,这些新概念需要学生加深对函数理论、思维、含义的掌握,必须明白之中的关联,找出函数思想的真义,才可以在遇到实际问题时灵活多变

地利用函数思想处理难题。“函数思想”体现了认识来源于实践这一哲学认识论,它来源于我们的社会活动,而函数中变量的概念也印证了人类社会在量变和质变统一中的永久性变化,所以,关于量变的一些实际问题能够用“函数思想”来解决。 德国的克莱因和英国的贝利,是函数出现在中学阶段的数学教材的关键人物。克莱因的观点是,函数概念和思想是数学教育的一部分,他说过函数是数学教育的主题,需要将所有的数学教学内容都放置在函数概念四周,综合运用。中学数学教学任务与函数思想紧密连接,在高中数学中灌输函数思想需要一线数学老师的研究,本文章就是浅议函数思想。 在函数思想讲解的初级阶段,老师起初要引出学生对函数思想的兴趣,了解函数的初步含义,调动学生的热情。教师需要分层讲解函数思想的定义,使学

生掌握函数思想的重点,全面认识函数思想的深度含义,接着,教师再概括归纳出逻辑性性强的函数定义。函数关系可以看作是通向两个变量间的路,通过特定的数学关系把两者连接在一起。 对于高中函数思想的教学来说,具有四个关键意义,有函数的知识导向功能、考试导向功能、应用导向功能和教育导向功能。知识导向功能表示的是函数思想作为高中数学的主体,在高中数学中所占份额很大,是打造高中数学全部知识的框架,因此掌握好函数有益于理解其它知识点,提升眼界,锻炼数学思维。函数的应用导向功能是指通过函数思想解决日常生活中的实际问题。函数思想的考试导向是指高考数学卷中有关函数的题型比例大。函数思想的教育导向功能是指学生创设和运用函数模型,来解决生活中的数学的实际问题,提升学生的综合素质,比如思考意识和

高中数学解题思想之等价变换思想.

等价转化思想方法 等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。 转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。 著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。 等价转化思想方法的特点是具有灵活性和多样性。在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。 在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,有如顺水推舟,经常渗透等价转化思想,可以提高解题的水平和能力。 Ⅰ、再现性题组: 1. f(x是R上的奇函数,f(x+2=f(x,当0≤x≤1时,f(x=x,则f(7.5等 于_____。 A. 0.5 B. -0.5 C. 1.5 D. -1.5

初高中数学衔接之数学思想方法

初高中数学衔接 ——数学思想方法目录 一、方程与函数思想 1.1方程思想 1.2函数思想 二、数形结合思想 2.1数形结合思想 三、分类讨论思想

1.1 方程思想 方程知识是初中数学的核心容。理解、掌握方程思想并应用与解题当中十分重要。所谓方程思想就是从分析问题的数量关系入手,适当设定未知数,把已知量与未知量之间的数量关系转化为方程(组)模型,从而使问题得到解决的思维方法。对方程思想的考查主要有两个方面:一是列方程(组)解应用题;二是列方程(组)解决代数或几何问题。 (1)高中体现 函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多 函数思想简单,即将所研究的问题借助建立函数关 系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决 举例: 例1已知函数f (x )=log m 3 3 +-x x (1)若f (x )的定义域为[α,β],(β>α>0),判断f (x )在定义域上的 增减性,并加以说明; (2)当0<m <1时,使f (x )的值域为[log m [m (β–1)],log m [m (α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由 解 (1) ?>+-03 3 x x x <–3或x >3 ∵f (x )定义域为[α,β],∴α>3 设β≥x 1>x 2≥α,有 0) 3)(3() (6333321212211>++-=+--+-x x x x x x x x 当0<m <1时,f (x )为减函数,当m >1时,f (x )为增函数 (2)若f (x )在[α,β]上的值域为[log m m (β–1),log m m (α–1)] ∵0<m <1, f (x )为减函数 ∴??? ???? -=+-=-=+-=) 1(log 33log )()1(log 33log )(ααααββββm f m f m m m m

[精品]新高三数学第二轮专题复习分类讨论思想优质课教案

高三数学第二轮专题复习:分类讨论思想 高考要求 分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论” 重难点归纳 分类讨论思想就是依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则分类讨论常见的依据是 1由概念内涵分类如绝对值、直线的斜率、指数对数函数、直线与平面的夹角等定义包含了分类 2由公式条件分类如等比数列的前n项和公式、极限的计算、圆锥曲线的统一定义中图形的分类等 3由实际意义分类如排列、组合、概率中较常见,但不明显、有些应用问题也需分类讨论 在学习中也要注意优化策略,有时利用转化策略,如反证法、补集法、变更多元法、数形结合法等简化甚至避开讨论 典型题例示范讲解

例1已知{a n }是首项为2,公比为2 1的等比数列,S n 为它的前n 项和 (1)用S n 表示S n +1; (2)是否存在自然数c 和k ,使得21>--+c S c S k k 成立 命题意图 本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力 知识依托 解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质 错解分析 第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-223 技巧与方法 本题属于探索性题型,是高考试题的热点题型 在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想 即对双参数k ,c 轮流分类讨论,从而获得答案 解 (1)由S n =4(1–n 21),得221)2 11(411+=-=++n n n S S ,(n ∈N *) (2)要使21>--+c S c S k k ,只要0)223(<---k k S c S c 因为4)211(4<-=k k S 所以0212)223(>-=--k k k S S S ,(k ∈N *)故只要23S k –2<c <S k ,(k ∈N *) 因为S k +1>S k ,(k ∈N *) ① 所以23S k –2≥2 3S 1–2=1 又S k <4,故要使①成立,c 只能取2或3 当c =2时,因为S 1=2,所以当k =1时,c <S k 不成立,从而①不

高中数学四大思想

高中数学四大思想 1.数形结合思想 数形结合,“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。 实质:将抽象的数学语言与直观图形结合起来;将抽象思维和形象思维结合起来。抽象问题具体化,复杂问题简单化。 应用数形结合的思想,应注意以下数与形的转化: (1)集合的运算及韦恩图; (2)函数及其图象; (3)数列通项及求和公式的函数特征及函数图象; (4)方程(多指二元方程)及方程的曲线. 以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法. 以数助形常用有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合. 2.分类讨论思想 分类讨论思想,即根据所研究对象的性质差异,分各种不同的情况予以分析解决. 原则:化整为零,各个击破。无重复、无遗漏、最简。 步骤: 1)明确讨论对象,确定对象范围; 2)确定分类标准,进行合理分类,做到不重不漏; 3)逐类讨论,获得阶段性结果; 4)归纳总结,得出结论。 常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等.

3.函数与方程思想 函数思想,即将所研究的问题借助建立函数关系式或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题; 方程思想,即将问题中的数量关系运用数学语言转化为方程模型加以解决. 运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到: (1)深刻理解函数f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质。 (2)密切注意一元二次函数、一元二次方程、一元二次不等式等问题;掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略。 4.转化与化归思想 转化与化归思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想。 转化,是将数学命题由一种形式向另一种形式的变换过程; 化归,是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题. 转化有等价转化与不等价转化。等价转化后的新问题与原问题实质是一样的;不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正。 原则:化难为易、化生为熟、化繁为简,尽量是等价转化. 常见的转化有:正与反的转化、数与数的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化.

高中数学解题思想方法大全

目录 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳 和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思 想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

中学数学思想方法的教学研究

中学数学思想方法的教学研究 发表时间:2013-03-14T14:50:22.857Z 来源:《少年智力开发报》2012-2013学年21期供稿作者:盖玉顺 [导读] 美国心理学家布鲁纳认为,“不论我们选教什么学科,务必使学生理解该学科的基本结构.”所谓基本结构就是指“基本的、统一的观点,或者是一般的、基本的原理. 山东省东营市陈庄镇中学盖玉顺 1.数学思想方法教学的意义 美国心理学家布鲁纳认为,“不论我们选教什么学科,务必使学生理解该学科的基本结构.”所谓基本结构就是指“基本的、统一的观点,或者是一般的、基本的原理.”“学习结构就是学习事物是怎样相互关联的.”数学思想与方法为数学学科的一般原理的重要组成部分.第一,“懂得基本原理使得学科更容易理解”.心理学认为“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习.”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了.下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即使新知识能够较顺利地纳 入到学生已有的认知结构中去.学生学习了数学思想、方法就能够更好地理解和掌握数学内容. 第二,有利于记忆.布鲁纳认为,“除非把一件件事情放进构造得好的模型里面,否则很快就会忘记.”“学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来.高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具.”由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的.无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生.” 第三,学习基本原理有利于“原理和态度的迁移”.布鲁纳认为,“这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识.”曹才翰教授也认为,“如果学生认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的,”“只有概括的、巩固的和清晰的知识才能实现迁移.”美国心理学家贾德通过实验证明,“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中.”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力. 2.中学数学教学内容的层次 中学数学教学内容从总体上可以分为两个层次:一个称为表层知识,另一个称为深层知识.表层知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法. 表层知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的,以及具有较强操作性的知识.学生只有通过对教材的学习,在掌握和理解了一定的表层知识后,才能进一步的学习和领悟相关的深层知识. 深层知识蕴含于表层知识之中,是数学的精髓,它支撑和统帅着表层知识.教师必须在讲授表层知识的过程中不断地渗透相关的深层知识,让学生在掌握表层知识的同时,领悟到深层知识,才能使学生的表层知识达到一个质的“飞跃”,从而使数学教学超脱“题海”之苦,使其更富有朝气和创造性.那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略到深层知识的真谛.因此,数学思想、方法的教学应与整个表层知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形成良好的数学素质. 3.中学数学中的主要数学思想和方法 数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识.由于中学生认知能力和中学数学教学内容的限制,只能将部分重要的数学思想落实到数学教学过程中,而对有些数学思想不宜要求过高.我们认为,在中学数学中应予以重视的数学思想主要有三个:集合思想、化归思想和对应思想.其理由是: (1)这三个思想几乎包摄了全部中学数学内容; (2)符合中学生的思维能力及他们的实际生活经验,易于被他们理解和掌握; (3)在中学数学教学中,运用这些思想分析、处理和解决数学问题的机会比较多; 4.数学思想方法的教学模式 数学表层知识与深层知识具有相辅相成的关系,这就决定了他们在教学中的辩证统一性.基于上述认识,我们给出数学思想方法教学的一个教学模式: 操作——掌握——领悟。对此模式作如下说明: (1)数学思想、方法教学要求教师较好地掌握有关的深层知识,以保证在教学过程中有明确的教学目的; (2)“操作”是指表层知识教学,即基本知识与技能的教学.“操作”是数学思想、方法教学的基础; (3)“掌握”是指在表层知识教学过程中,学生对表层知识的掌握.学生掌握了一定量的数学表层知识,是学生能够接受相关深层知识的前提; (4)“领悟”是指在教师引导下,学生对掌握的有关表层知识的认识深化,即对蕴于其中的数学思想、方法有所悟,有所体会;

分类讨论思想在高中数学中的应用

分类讨论思想在高中数学中的应用 摘要:分类讨论是是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。在近几年的高考试题中,他都被列为一种重要的思维方法来考察。因此在平时的教学中,应该注重分类思想的教学,注重培养学生的逻辑性思维。 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置,在近几年的高考试题中,他都被列为一种重要的思维方法来考察。因此在平时的教学中,应该注重分类思想的教学,注重培养学生的逻辑性思维。 分类讨论实质是“化整为零,各个击破,再积零为整”的思维策略。分类讨论的思想方法的步骤:(1)确定标准;(2)合理分类;(3)逐类讨论;(4)归纳总结.其关键是“为什么分类,怎样分类”。 一、分类讨论的几个注意点 1. 明确分类讨论的对象 分类讨论的对象是用字母表示的数,一般为变量, 当然也不排除为常量的可能。 例1、设k 为实常数,问方程)4()8()4()8(22-?-=-+-k k y k x k 表示的曲线是何种曲线? 解析:方程表示何种曲线主要取决于k 的取值,可对k 分以下三种情形讨论: (1)当k 4=时,方程变为0,042==x x 即,表示直线; (2)当k 8=时,方程变为0042==y y 即,表示直线; (3)当84≠≠k k 且时,方程变为1842 2=-+-k y k x ,又有以下五种情形讨论: ①当4

(完整版)高中数学四大思想方法

高中数学四大思想方法 ————读《什么是数学》笔记 《什么是数学》这本书是一本数学经典名著,它收集了许多闪光的数学珍品。它的目标之一是反击这样的思想:"数学不是别的东西,而只是从定义和公理推导出来的一组结论,而这些定义和命题除了必须不矛盾外,可以由数学家根据他们的意志随意创造。"简言之,这本书想把真实的意义放回数学中去。但这是与物质现实非常不同的那种意义。数学对象的意义说的是"数学上'不加定义的对象'之间的相互关系以及它们所遵循的运算法则"。数学对象是什么并不重要,重要的是做了什么。这样,数学就艰难地徘徊在现实与非现实之间;它的意义不存在于形式的抽象中,也不存在于具体的实物中。对喜欢梳理概念的哲学家,这可能是个问题,但却是数学的巨大力量所在--我们称它为,所谓的"非现实的现实性"。数学联结了心灵感知的抽象世界和完全没有生命的真实的物质世界。我根据自己在数学方面的兴趣,基于已有的数学背景知识,选取一部分和高中有关的内容进行舒心愉快的阅读。重新总结了高中数学中的数学四大思想方法:函数与方程、转化与化归、分类讨论、数形结合;函数与方程 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。 等价转化等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范

文本预览
相关文档 最新文档