当前位置:文档之家› ansys子模型介绍与应用实例

ansys子模型介绍与应用实例

ansys子模型介绍与应用实例
ansys子模型介绍与应用实例

第五章子模型

何为子模型?

子模型是得到模型部分区域中更加精确解的有限单元技术。在有限元分析中往往出现这种情况,即对于用户关心的区域,如应力集中区域,网格太疏不能得到满意的结果,而对于这些区域之外的部分,网格密度已经足够了。见图5-1。

图5-1 轮毂和轮辐的子模型 a)粗糙模型,b)叠加的子模型

要得到这些区域的较精确的解,可以采取两种办法:(a)用较细的网格重新划分并分析整个模型,或(b)只在关心的区域细化网格并对其分析。显而易见,方法a太耗费机时,方法b即为子模型技术。

子模型方法又称为切割边界位移法或特定边界位移法。切割边界就是子模型从整个较粗糙的模型分割开的边界。整体模型切割边界的计算位移值即为子模型的边界条件。

子模型基于圣维南原理,即如果实际分布载荷被等效载荷代替以后,应力和应变只在载荷施加的位置附近有改变。这说明只有在载荷集中位置才有应力集中效应,如果子模型的位置远离应力集中位置,则子模型内就可以得到较精确的结果。

ANSYS程序并不限制子模型分析必须为结构(应力)分析。子模型也可以有效地应用于其他分析中。如在电磁分析中,可以用子模型计算感兴趣区域的电磁力。

除了能求得模型某部分的精确解以外,子模型技术还有几个优点:

它减少甚至取消了有限元实体模型中所需的复杂的传递区域。

它使得用户可以在感兴趣的区域就不同的设计(如不同的圆角半径)进行分析。

它帮助用户证明网格划分是否足够细。

使用子模型的一些限制如下:

只对体单元和壳单元有效。

子模型的原理要求切割边界应远离应力集中区域。用户必须验证是否满足这

个要求。

如何作子模型分析

子模型分析的过程包括以下步骤:

1. 生成并分析较粗糙的模型。

2. 生成子模型。

3. 提供切割边界插值。

4. 分析子模型。

5. 验证切割边界和应力集中区域的距离应足够远。

第一步:生成并分析较粗糙的模型

第一个步骤是对整体建模并分析。(注-为了方便区分这个原始模型,我们将其称为粗糙模型。这并不表示模型的网格划分必须是粗糙的,而是说模型的网格划分相对子模型的网格是较粗糙的。)

分析类型可以是静态或瞬态的,其操作与各分析的步骤相同。下面列出了其他的一些要记住的方面。

文件名——粗糙模型和子模型应该使用不同的文件名。这样就可以保证文件不被覆盖。而且在切割边界插值时可以方便地指出粗糙模型的文件。用下列方法指定文件名:

Command: /FILNAME

GUI: Utility Menu>File>Change Jobname

单元类型——子模型技术只能使用块单元和壳单元。分析模型中可以有其他单元类型(如梁单元作为加强筋),但切割边界只能经过块和壳单元。

一种特殊的子模型技术,称为壳到体子模型技术,允许用户用壳单元建立粗糙模型而用三维块单元建立子模型。本技术在后面还要讨论。

建模——在很多情况下,粗糙模型不需要包含局部的细节如圆角等,见下图。但是,有限元网格必须细化到足以得到较合理的位移解。这一点很重要,因为子模型的结果是根据切割边界的位移解插值得到的。

图5-2 粗糙模型可以不包括一些细节部分

文件——结果文件(Jobname.RST,Jobname.RMG等)和数据库文件(Jobname.DB,包含几何模型)在粗糙模型分析中是需要的。在生成子模型前应

存储数据库文件。用下列方法存储数据库:

Command: SAVE

GUI: Utility Menu>File>Save as

Utility Menu>File>Save as Jobname.db

第二步:生成子模型

子模型是完全依靠粗糙模型的。因此在初始分析后的第一步就是在初始状态清除数据库(另一种方法是退出并重新进入ANSYS)。用下列方法清除数据库:Command: /CLEAR

GUI: Utility Menu>File>Clear&Start New

同时,应记住用另外的文件名以防止粗糙模型文件被覆盖。用下列方法指定文件名:

Command: /FILNAME

GUI: Utility Menu>File>Change Jobname

然后进入PREP7并建立子模型。应该记住下列几点:

使用与粗糙模型中同样的单元类型。同时应指定相同的单元实参(如壳厚)和材料特性。(另一种子模型技术——壳到体技术——允许从粗糙模型的壳单元转换为体单元,见后。)

子模型的位置(相对全局坐标原点)应与粗糙模型的相应部分相同,见图5-3。

图5-3 叠加在粗糙模型上的子模型

指定合适的结点旋转位移。切割边界结点的旋转角在插值步骤一写入结点文件时不应改变(见第三步:生成切割边界插值)。用下列方法指定结点旋转:Command:NROTAT

GUI: Main Menu>Preprocessor>Create>Nodes>-Rotate Node CS-To Active CS

Main Menu>Preprocessor>Move/Modify>-Rotate Node CS-To ACtive CS

注意结点旋转角会因为施加结点约束,传递线上约束或面上约束等操作而改变,同样也会为更加明显的操作如[NROTAT和NMODIF]等改变。

粗糙模型中结点旋转角的出现或缺省并不影响子模型。

子模型的载荷和边界条件将在后面两步中施加。

第三步:生成切割边界插值

本步是子模型的关键步骤。用户定义切割边界的结点,ANSYS程序用粗糙模型结果插值方法计算这些点上的自由度数值(位移等)。对于子模型切割边界上的所有结点,程序用粗糙模型网格中相应的单元确定自由度数值,然后这些数值用单元形状功能插值到切割边界上。

在切割边界插值中有下面几步操作:

1.指定子模型切割边界的结点并将其写入一个文件(缺省为Jobname.NODE)中。可以在PREP7 中选择切割边界的结点,用下列命令将其写入文件:Command: NWRITE

GUI: Main Menu>Preprocessor>Create>Nodes>Write Node File

下面是一个NWRITE命令的例子:

NSEL,... !选择切割边界上的结点

NWRITE !将其写入Jobname.NODE

图5-4 子模型切割边界

在这里讨论一下温度插值的问题。在包含特性随温度变化的材料的分析中,或热-应力耦合分析中,粗糙模型和子模型中的温度分布是相同的。在这种情况下,必须将粗糙模型的温度插值到子模型中的所有结点上。要完成这步操作,要选择子模型中所有结点并写入另外一个文件中,使用NWRITE,Filename,Ext。记住必须另外指定一个文件名,否则切割边界结点文件将被覆盖!第7步中说明了关于温度插值的命令。

2.重新选择所有结点并将数据库存入Jobname.DB中,然后退出PREP7。必须将数据库写入文件,因为在后面子模型分析中要使用到。

用下列命令重新选择所有结点:

Command: ALLSEL

GUI: Utility Menu>Select>Everything

用下列命令存储数据库:

Command: SAVE

GUI: Utility Menu>File>Save as Jobname.db

3.要进行切割边界插值(和温度插值),数据库中必须包含粗糙模型的几何特征。因此要用下列一种方法读入粗糙模型数据库:

Command: RESUME

GUI: Utility Menu>File>Resume from

如,粗糙模型文件名为COARSE,就输入命令RESUME,COARSE,DB。

4.进入POST1,即通用处理器(/POST1或Main Menu>General Postproc)。插值只有在POST1中进行。

5.指向粗糙模型结果文件(FILE或Main Menu>General Postproc>Data & File Opts)。

6.读入结果文件中相应的数据(SET或Main Menu>General Postproc>-Read

Results-option)。

7.开始切割边界插值。用下列方法完成本步操作:

Command: CBDOF

GUI: Main Menu>General Postproc>Submodeling>Interpolate DOF

缺省状态下,CBDOF命令假定切割边界结点在文件Jobname.NODE中。ANSYS 程序将计算切割边界的DOF数值并用D命令的形式写入文件Jobname.CBDO中。

用下列方法作温度插值,但要保证文件包含所有子模型结点:

Command: BFINT

GUI: Main Menu>General Postproc>Submodeling>Interp Body Forc

温度插值以BF命令的格式写入文件Jobname.BFIN中。

注——如果数据包括实部和虚部的话,步骤6和7就要作两遍。先用SET 命令读入实部的数据并作插值[CBDOF和/或BFINT],然后用SET命令将域设为1 读入虚部的数据并重新进行插值,但这次将虚部插值写入另一个文件。

8.至此,所有的插值任务完成,退出POST1[FINISH]并读入子模型数据库(RESUME或Main Menu>File>Resume from)。

第四步:分析子模型

在本步中,用户指定分析类型和分析选项,加入插值的DOF数值(和温度数值),施加其他的载荷和边界条件,指定载荷步选项,并对子模型求解。

第一步是进入求解器(/SOLU或Main Menu>Solution)。

然后定义分析类型(一般为静态)和分析选项。

要施加切割边界自由度约束,用下列命令读入CBDOF命令生成的由D命令组成的文件:

Command: /INPUT

GUI: Utility Menu>File>Read Input from

要施加温度插值,用下列命令读入BFINT命令生成的由BF命令组成的文件:Command: /INPUT

GUI: Utility Menu>File>Read Input from

如果数据有实部和虚部,先读入实部数据文件,指定自由度约束数值和(/或)结点体载荷是否计算,然后读入虚部数据文件。

用下列方法指定计算自由度约束数值:

Command: DCUM,ADD

GUI: Main Menu>Preprocessor>Loads>-Loads-Settings>Contraints

Main Menu>Solution>-Loads-Settings>Constraints

用下列方法指定计算结点体载荷数值:

Command: BFCUM,ADD

GUI: Main Menu>Preprocessor>Loads>-Loads-Settings>Nodal Body Ld Main Menu>Solution>-Loads-Settings>Nodal Body Ld

注意在执行DCUM和BFCUM命令时要先将其初始状态设为初始值。

重要的一点是要将粗糙模型上所有其他载荷和边界条件复制到子模型上。比如对称边界条件,面力,惯性载荷(如重量),集中力等(见图5-5)。

图5-5 子模型的载荷

然后指定载荷步选项(如输出控制)并开始计算:

Command: SOLVE

GUI: Main Menu>Solution>Current LS

Main Menu>Solution>Run FLOTRAN

在求解完成后,退出SOLUTION。[FINISH]

子模型的数据流向(无温度插值)见图5-6。

图5-6 子模型分析(无温度插值)的数据流向

第五步:验证切割边界和应力集中位置的距离是否足够

最后一步是验证子模型切割边界是否远离应力集中部分。可以通过比较切割边界上的结果(应力,磁通密度等)与粗糙模型相应位置的结果是否一致来验证。如果结果符合得很好,证明切割边界的选取是正确的。如果不符合的话,就要重新定义离感兴趣部分更远一些的切割边界重新生成和计算子模型。

一个比较结果的有效方法是使用云图显示和路径显示,见图5-7和5-8。

图5-7 比较结果时的云图显示

图5-8 比较结果时的路径显示

输入示例

下面列出了一个子模型分析的输入示例:

!开始子模型分析

/FILNAME,coarse !工作文件名为coarse

/PREP7 !进入PREP7

....

.... !生成粗糙模型

FINISH

/SOLU !进入求解器

ANTYPE,... !分析类型和分析选项

...

D,.... !载荷和载荷步选项

DSYMM,...

ACEL,...

...

SAVE !粗糙模型数据库文件coarse.db

SOLVE !求解粗糙模型

!结果在文件coarse.rst(或rmg等) FINISH

!生成子模型

/CLEAR !清除数据库(或退出ANSYS并重新进入)

/FILNAME,submod !新工作文件名为submod

/PREP7 !重新进入PREP7

...

... !生成子模型

!进行切割边界插值

NSEL,... !选择切割边界上的结点

NWRITE !将其写入文件submod.node

ALLSEL !读入所有实体

NWRITE,temp,node !将所有结点写入文件temp.node(用于

温度插值)

SAVE !存储子模型数据库文件submod.db

FINISH

RESUME,coarse,db !读入粗糙模型数据库(coarse.db)

/POST1 !进入POST1

FILE,coarse,rst !使用粗糙模型结果文件

SET,... !读入需要的结果数据

CBDOF !从submod.node中读入切割边界结点并

将D命令写入submod.cbdo BFINT,temps,node !从temps.node中读入所有子模型结点

并将BF命令写入文件submod.bfin(用

于温度插值)

FINISH !结束插值过程

RESUME !读入子模型数据库(submod.db)

/SOLU !进入求解器

ANTYPE,... !分析类型和选项

...

/INPUT,submod,cbdo !切割边界自由度

/INPUT,submod,bfin !温度插值

DSYMM,... !其他载荷和载荷步选项

ACEL,...

...

SOLVE !子模型求解

FINISH

/POST1 !进入POST1

...

... !验证子模型数据

FINISH

壳到体子模型

在壳到体子模型技术中,粗糙模型为壳模型而子模型为三维实体模型。图5-9所示为三维实体子模型添加到粗糙壳模型上的例子。

图5-9 3-D实体模型叠加到壳单元模型上

壳到体子模型分析与体对体子模型分析大致一致。下面的几点是要记住的:壳到体子模型分析是将DBDOF命令(Main Menu>General Postproc>Submodeling>Interpolate DOF)和BFINT命令(Main Menu>General>Submodeling>Interp Body Forc)中KSHS域设为1实现的。本特性不适用于SHELL91或SHELL99(KEYOPT(11)不等于0)。

子模型切割边界应为垂直于壳平面的端面(见图5-10)。切割边界上的结点写入文件中[NWRITE](Main Menu>Preprocessor>Create>Node>Write Node File)。

要确定切割边界上结点的自由度数值[CBDOF],程序首先将结点延伸到壳平面的最近的单元上,该延伸结点的自由度数值就插值并赋值给相应的结点。温度插值是由计算最近壳单元的中面平均温度得到的。

注-切割边界上的结点位置必须在最近壳单元平均厚度的0.75倍之间,见图5-10。也就是说,子模型应大致在粗糙模型的中间。

图5-10结点旋转:a)CBDOF命令之前,b)CBDOF命令之后

在结构分析中,切割边界结点只计算平动自由度,但其数值是根据延伸结点的平动和转动自由度得到的。而且,结点旋转以使结点的UY自由度始终垂直于壳平面,见图5-10。UY自由度只有当结点在壳平面平均厚度的10%之内时才计算。这防止了子模型在反向的过度位移。

由CBDOF命令写的.CBDO文件包括两个部分:(1)一组NMODIF命令(表示结点旋转角度)和DDELE命令(删除UY约束),(2)一组D命令(施加自由度插值)。这两个部分用/EOF命令和一个:CBnn标记分开(nn为结果序列迭代次数)。

用户必须将.CBDO文件读入PREP7中,因为NMODIF命令只能在PREP7中适用。要完成这步操作,进入前处理器,然后用下列命令:

Command: /INPUT

GUI: Utility Menu>File>Read Input from

同时,要读入.CBDO文件两次,因为两个命令部分被/EOF命令分开了。在第二次读入文件时,用/INPUT命令的LINE域指定程序从:CBnn处开始读入,见下:

/PREP7 !.CBDO文件必须在PREP7中读入

/INPUT,,cbdo !读入Jobname.cbdo到/EOF处

/INPUT,dbdo,,:cb1 !从:cb1处读入同一文件

子模型分析实例(命令行格式)

问题描述

求解矩形平板中心开孔,承受横向拉力时的应力集中情况。材料特性和模型的几何形状见下图。

/FILNAM,coarse

/PREP7

smrt,off

/TITLE, STRESS CONCENTRATION AT A HOLE IN A PLATE

/NOPR

ANTYPE,STATIC ! 静力分析

ET,1,PLANE2

MP,EX,1,30E6

MP,NUXY,1,0.3

K,1,6 ! 关键点

K,2,6,6

K,3,,6

K,4,,.5

K,5,.5

K,6

L,1,2

L,2,3

L,3,4

LESIZE,3,,,4,.25 ! 定义线3的分段数 LARC,4,5,6,0.5

LESIZE,4,,,6 ! 定义线4的分段数 L,5,1

LESIZE,5,,,4,4 ! 定义线5的分段数 AL,1,2,3,4,5

ESIZE,,4 ! 每条线分为4段 AMESH,ALL

/AUTO,1

/PLOPTS,INFO,0

/PLOPTS,WINS,0

/WINDOW,,LTOP

LSEL,S,LINE,,3,5,2

DL,ALL,,SYMM

LSEL,S,LINE,,1

NSLL,,1

SF,ALL,PRES,-1000. ! 施加拉力

LSEL,ALL

NSEL,ALL

CSYS,1

FINISH

/SOLU

SOLVE

FINISH

SAVE ! 存储文件VM142.DB

/POST1

SET,1,1

NSORT,S,X,,,3

PRNSOL,S,COMP

/WINDOW,1,OFF

/NOERASE

/DSCALE,2,1

/WINDOW,2,RTOP

PLNSOL,S,X

*GET,CRSESTR,NODE,18,S,X

*STATUS

*DIM,LABEL,CHAR,1,2

*DIM,VALUE,,1,3

LABEL(1,1) = 'MX STR '

LABEL(1,2) = 'CRS MODEL'

*VFILL,VALUE(1,1),DATA,3018

*VFILL,VALUE(1,2),DATA,CRSESTR

*VFILL,VALUE(1,3),DATA,ABS(CRSESTR/3018)

SAVE,TABLE_1

FINISH

/CLEAR, NOSTART ! CLEAR THE DATABASE

/FILNAM,SUBMODEL ! 定义子模型文件名

/PREP7

smrt,off

/NOPR

/TITLE, STRESS CONCENTRATION AT A HOLE IN A PLATE ANTYPE,STATIC

ET,1,PLANE42

MP,EX,1,30E6

MP,NUXY,1,0.3

CSYS,1

K,10,.5,45

K,11,.5,90

K,12,1.5,45

K,13,1.5,90

A,10,12,13,11

ESIZE,,8

MSHK,1

MSHA,0,2D

AMESH,1

/WINDOW,2,OFF

/NOERASE

/PLOPTS,INFO,0

/PLOPTS,WINS,0

/WINDOW,1,LTOP

/USER ! 用户定义的比例

/DIST,1,3.3

/FOCUS,1,3,3

EPLOT

LSEL,S,LINE,,1,2

NSLL,,1 ! 选择切割边界的结点

NWRITE ! 将结点写入文件SUBMODEL.NODE

LSEL,ALL

NSEL,ALL

FINISH

SAVE ! 存储子模型数据库文件SUBMODEL.DB

/POST1

RESUME,coarse,db

FILE,coarse,rst

CBDOF,,,,,,,0,,0 !激活边界条件插值

FINISH

/PREP7

smrt,off

RESUME !从文件SUBMODEL.DB中读入子模型

/NOPR

/INPUT,,cbdo,,:cb1 ! 从文件SUBMODEL.CBDO中读入插值边界条件 /GOPR

LSEL,S,LINE,,3 ! 施加其余的边界条件

DL,ALL,,SYMM

FINISH

/SOLU

SOLVE

FINISH

/POST1

SET,1,1

NSORT,S,X,,,3

PRNSOL,S,COMP

/WINDOW,1,OFF

/AUTO,3

/WINDOW,3,BOT

/NOERASE

/PLOPTS,MINM,1

/USER,3

/DIST,3,.2

/FOCUS,3,.2,.5

/CONTOUR,3,,AUTO

PLNSOL,SX

*GET,SUBSTR,NODE,18,S,X

*DIM,LABEL,CHAR,1,2

*DIM,VALUE,,1,3

LABEL(1,1) = 'MAX STRS'

LABEL(1,2) = ' SUBMOD'

*VFILL,VALUE(1,1),DATA,3018

*VFILL,VALUE(1,2),DATA,SUBSTR

*VFILL,VALUE(1,3),DATA,ABS(SUBSTR/3018 )

SAVE,TABLE_2

FINISH

/CLEAR,NOSTART

/FILNAM,SUBMODEL

/PREP7

smrt,off

/TITLE, STRESS CONCENTRATION AT A HOLE IN A PLATE /NOPR

ANTYPE,STATIC

ET,1,PLANE146

MP,EX,1,30E6

MP,NUXY,1,0.3

K,1,6 ! 关键点

K,2,6,6

K,3,,6

K,4,,.5

K,5,.5

K,6

L,1,2

L,2,3

L,3,4

LESIZE,3,,,4,.25

LARC,4,5,6,0.5

LESIZE,4,,,6

L,5,1

LESIZE,5,,,4,4

AL,1,2,3,4,5

ESIZE,,4

AMESH,ALL

/AUTO,1

/PLOPTS,INFO,0

/PLOPTS,WINS,0

/WINDOW,,LTOP

LSEL,S,LINE,,3,5,2

DL,ALL,,SYMM

LSEL,S,LINE,,1

NSLL,,1

SF,ALL,PRES,-1000.

LSEL,ALL

NSEL,ALL

CSYS,1

FINISH

/SOLU

SOLVE

FINISH

/POST1

SET,1,1

PRNSOL,S,COMP

/WINDOW,1,OFF

/NOERASE

/DSCALE,2,1

/WINDOW,2,RTOP

PLNSOL,S,X

*GET,SUBSTR,NODE,18,S,X

*DIM,LABEL,CHAR,1,2

*DIM,VALUE,,1,3

LABEL(1,1) = 'MAX STRS'

LABEL(1,2) = 'CRS MOD '

*VFILL,VALUE(1,1),DATA,3018

*VFILL,VALUE(1,2),DATA,SUBSTR

*VFILL,VALUE(1,3),DATA,ABS(SUBSTR/3018 ) SAVE,TABLE_3

FINISH

《ANSYS Verification Manual》中例子:

VM142 盘孔处的应力集中

ANSYS树形结构的材料模型库

ANSYS树形结构的材料模型库(?第一级●第二级?第三级?第四级?第五级) ?Linear:材料的线性行为 ●Elastic:弹性性能参数 ?Isotropic:各向同性弹性性能参数 ?Orthtropic:正交各向异性弹性性能参数 ?Anisotropic:各向异性弹性性能参数 ?Nonlinear:材料的非线性行为 ●Elastic:非线性的弹性模型 ?Hyperelastic:超弹材料模型(包含多个模型) ?Curve Fitting:通过材料实验数据拟合获取材料模型 ?Mooney-Rivilin:Mooney-Rivilin模型(包含2 、3、 5 与9 参数模型) ?Ogden:Ogden模型(包含1~5 项参数模型与通用模型) ?Neo-Hookean:Neo-Hookean模型 ?Polynomial Form:Polynomial Form模型(包含1~5 项参数模型与通用模型)?Arruda-Boyce:Arruda-Boyce:模型 ?Gent:Gent模型 ?Yeoh:Yeoh模型 ?Blatz-Ko(Foam):Blatz-Ko(泡沫)模型 ?Ogden(Foam) Ogden:(泡沫)模型 ?Mooney-Rivlin(TB,MOON):Mooney-Rivlin(TB,MOON) 模型 ?Multilinear Elastic:多线性弹性模型 ●Inelastic:非线性的非弹性模型 ?Rate Independent:率不相关材料模型 ?Isotropic Hardening Plasticity:各向等向强化率不相关塑性模型 ?Mises Plasticity:各向等向强化的Mises 率不相关塑性模型 Bilinear:双线性模型 Multilinear:多线性模型 Nonlinear:非线性模型 ?Hill Plasticity:各向等向强化的Hill 率不相关塑性模型 Bilinear:双线性模型 Multilinear:多线性模型 Nonlinear:非线性模型 ?Generalized Anisotropic Hill Potenial:广义各向异性Hill 势能率不相关模型 ?Kinematic Hardening Plasticity:随动强化率不相关塑性模型 ?Mises Plasticity:随动强化的Mises率不相关塑性模型 Bilinear:双线性模型 Multilinear(Fixed table):多线性模型 Nonlinear(General) :非线性模型 Chaboche Chaboche:模型 ?Hill Plasticity:随动强化的Hill 率不相关塑性模型 Bilinea:双线性模型 Multilinear(Fixed table):多线性模型 Nonlinear(General):非线性模型 Chaboche Chaboche:模型

ANSYS命令流实例

/PREP7 !进入前处理 ANTYPE,STATIC !设置分析类型为静力结构分析 PSTRES,ON !用于后面的模态分析中考虑预应力(该开关不影响静力分析) ET,1,LINK10 !选取单元类型1(单向杆单元) KEYOPT,1,3,0 !设置仅承受拉应力,KEYOPT(3)=0 R,1,306796E-8,543248E-8 !设置实常数,包括绳索截面积(306796E-8),初始应变(543248E-8) MP,EX,1,30E6 !定义材料的弹性模量(1号材料) MP,DENS,1,73E-5 !定义材料的密度(1号材料) N,1 ! 定义第1号节点 N,14,100 ! 定义第14号节点 FILL ! 均分填满第2号至第13号节点 E,1,2 !由节点1及节点2生成单元 EGEN,13,1,1 !依序复制生成13个单元 D,ALL,ALL ! 对所有节点施加固定约束 FINISH ! 前处理结束 /SOLU ! 进入求解模块,求解预应力引起的应力状态 SOLVE ! 求解 FINISH ! 退出求解模块 /POST1 ! 进入一般的后处理 ETABLE,STRS,LS,1 !针对LINK10单元,建立单元列表STRS,通过LS及特征号1来获得单元的轴向应力 *GET,STRSS,ELEM,13,ETAB,STRS !针对单元列表STRS, 提取13号单元的应力 FINISH ! 后处理结束 /POST26 ! 进入时间历程后处理,处理支反力 RFORCE,2,1,F,X !将1号节点上的x方向支反力提取,并存储到2号变量中 STORE ! 存储 *GET,FORCE,V ARI,2,EXTREM,VMAX !将2号变量的最大值赋给参数FORCE /SOLU ! 再次进入求解模块,模态分析 ANTYPE,MODAL ! 模态分析 MODOPT,SUBSP,3 ! 选择子空间迭代法,求3阶模态 MXPAND,3 ! 设定3阶模态扩展 PSTRES,ON ! 用于在模态分析中考虑预应力(还需在前面的静力分析中也同时打开) DDELE,2,UX,13 ! 删除从2号节点到13号节点上的UX约束 DDELE,2,UY,13 !删除从2号节点到13号节点上的UY约束 SOLVE !求解 *GET,FREQ1,MODE,1,FREQ ! 提取第1阶模态共振频率,并赋值给参数FREQ1 *GET,FREQ2,MODE,2,FREQ ! 提取第2阶模态共振频率,并赋值给参数FREQ2 *GET,FREQ3,MODE,3,FREQ ! 提取第3阶模态共振频率,并赋值给参数FREQ3 *STATUS !列出所有参数的实际内容

ansys模态分析及详细过程

压电变换器的自振频率分析及详细过程 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

ansys材料模型.doc

B.2.1. Isotropic Elastic Example: High Carbon Steel MP,ex,1,210e9 ! Pa MP,nuxy,1,.29 ! No units MP,dens,1,7850 ! kg/m3

B.2.7. Bilinear Isotropic Plasticity Example: Nickel Alloy MP,ex,1,180e9 ! Pa MP,nuxy,1,.31 ! No units MP,dens,1,8490 ! kg/m3 TB,BISO,1 TBDATA,1,900e6 ! Yield stress (Pa) TBDATA,2,445e6 ! Tangent modulus (Pa)

B.2.10. Bilinear Kinematic Plasticity Example: Titanium Alloy MP,ex,1,100e9 ! Pa MP,nuxy,1,.36 ! No units MP,dens,1,4650 ! kg/m3 TB,BKIN,1 TBDATA,1,70e6 ! Yield stress (Pa) TBDATA,2,112e6 ! Tangent modulus (Pa)

B.2.11. Plastic Kinematic Example: 1018 Steel MP,ex,1,200e9 ! Pa MP,nuxy,1,.27 ! No units

MP,dens,1,7865 ! kg/m3 TB,PLAW,,,,1 TBDATA,1,310e6 ! Yield stress (Pa) TBDATA,2,763e6 ! Tangent modulus (Pa) TBDATA,4,40.0 ! C (s-1) TBDATA,5,5.0 ! P TBDATA,6,.75 ! Failure strain

ansys实例命令流-弹塑性分析命令流

/FILNAME,Elastic-Plasitc,1 /TITLE, Elastic-Plasitc Analysis !前处理。 /PREP7 !**定义梁单元189。 ET,1,BEAM189 !定义单元。 !**梁截面1。 SECTYPE, 1, BEAM, HREC, , 0 !定义梁截面。SECOFFSET, CENT SECDATA,50,100,6,6,6,6,0,0,0,0 !定义梁截面完成。 !**定义材料。 MPTEMP,,,,,,,, !定义弹塑性材料模型。MPTEMP,1,0 MPDATA,EX,1,,2.05e5 MPDATA,PRXY,1,,0.3 TB,BISO,1,1,2, TBTEMP,0 TBDATA,,150,18600,,,, !定义弹塑性材料模型。!**建立几何模型。 K,1, , , , K,2 ,900, K,3 ,,50 LSTR, 1, 2 !**网格划分。 FLST,5,1,4,ORDE,1 !定义网格密度。FITEM,5,1 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1, , ,50, , , , ,1 !定义网格密度完成。CM,_Y,LINE !网格划分。 LSEL, , , , 1 CM,_Y1,LINE CMSEL,S,_Y CMSEL,S,_Y1 LATT,1, ,1, , 3, ,1 CMSEL,S,_Y CMDELE,_Y CMDELE,_Y1 LMESH, 1 !网格划分完成。 !施加载荷及求解。 FINISH /SOL

!**施加约束。 FLST,2,1,3,ORDE,1 !施加约束。FITEM,2,1 /GO DK,P51X, , , ,0,UX,UY,UZ,ROTX, , , FLST,2,1,3,ORDE,1 FITEM,2,2 /GO DK,P51X, , , ,0,UY,UZ,ROTX, , , , !施加约束完成。 !**加载。 FLST,2,50,2,ORDE,2 FITEM,2,1 FITEM,2,-50 SFBEAM,P51X,1,PRES,100, , , , , , LSWRITE,1, !定义载荷步1完成。FLST,2,50,2,ORDE,2 !定义载荷步2。FITEM,2,1 FITEM,2,-50 SFEDELE,P51X,1,PRES LSWRITE,2, !定义载荷步2完成。!设定求解步并求解。 LSSOLVE,1,2,1,

Ansys非线性接触分析和设置

Ansys非线性接触分析和设置 5.4.9 设置实常数和单元关键选项 程序使用20个实常数和数个单元关键选项,来控制面─面接触单元的接触。参见《ANSYS Elements Reference》中对接触单元的描述。 5.4.9.1 实常数 在20个实常数中,两个(R1和R2)用来定义目标面单元的几何形状。剩下的用来控制接触面单元。 R1和R2 定义目标单元几何形状。 FKN 定义法向接触刚度因子。 FTOLN 是基于单元厚度的一个系数,用于计算允许的穿透。 ICONT 定义初始闭合因子。 PINB 定义“Pinball"区域。 PMIN和PMAX 定义初始穿透的容许范围。 TAUMAR 指定最大的接触摩擦。 CNOF 指定施加于接触面的正或负的偏移值。 FKOP 指定在接触分开时施加的刚度系数。 FKT 指定切向接触刚度。 COHE 制定滑动抗力粘聚力。 TCC 指定热接触传导系数。 FHTG 指定摩擦耗散能量的热转换率。 SBCT 指定 Stefan-Boltzman 常数。 RDVF 指定辐射观察系数。 FWGT 指定在接触面和目标面之间热分布的权重系数。

FACT 静摩擦系数和动摩擦系数的比率。 DC 静、动摩擦衰减系数。 命令: R GUI:main menu> preprocessor>real constant 对实常数 FKN, FTOLN, ICONT, PINB, PMAX, PMIN, FKOP 和 FKT,用户既可以定义一个正值,也可以定义一个负值。程序将正值作为比例因子,将负值作为绝对值。程序将下伏单元的厚度作为ICON,FTOLN,PINB,PMAX 和 PMIN 的参考值。例如 ICON = 0.1 表明初始闭合因子是“0.1*下层单元的厚度”。然而,ICON = -0.1 则表示真实调整带是 0.1 单位。如果下伏单元是超单元,则将接触单元的最小长度作为厚度。参见图5-8。 图5-8 下层单元的厚度 在模型中,如果单元尺寸变化很大,而且在实常数如 ICONT, FTOLN, PINB, PMAX, PMIN 中应用比例系数,则可能会出现问题。因为从比例系数得到的实际结果,取决于下层单元的厚度,这就可能引起大、小单元之间的重大变化。如果出现这一问题,请用绝对值代替比例系数。 TCC, FHTG, SBCT, RDVF 和 FWGT 仅用于热接触分析[KEYOPT(1)=1]。 5.4.9.2 单元关键选项 每种接触单元都包括数个关键选项。对大多的接触问题,缺省的关键选项是合适的。而在某些情况下,可能需要改变缺省值。下面是可以控制接触行为的一些关键选项: 自由 度 KEYOPT(1) 接触算法(罚函数+拉格朗日乘子或罚函数) KEYOPT(2) 存在超单元时的应力状态(仅2D) KEYOPT(3)

ANSYS建模两种方法和给材料添加材料属性

ansys 实体建模详细介绍3--体 用于描述三维实体,仅当需要体单元的时候才需要定义体。生成体时自动生成低级别的对象,如点、线、面等。 Main menu / preprocessor / modeling / create / volumes 展开体对象创建菜单 1.1 Arbitrary :定义任意形状 a) Through kps :通过关键点定义体 b) By areas :通过边界面生成体 1.2 Block :定义长方体 a) By 2 corners & Z :通过一角点和长、宽、高来确定长方体。 b) By center,corner,Z:用外接圆在工作平面定义长方体的底,用Z方向的坐标定义长方体的厚度。 c) By dimensions :通过指定长方体对角线两端点的坐标来定义长方体。 1.3 Cylinder :定义圆柱体 a)solid cylinder :圆柱体,通过圆柱底面的圆心和半径,以及圆柱的长度定义圆柱 b)hollow cylinder(空心圆柱体):通过空心圆柱体底面圆心和内外半径,以及长度定义空心圆柱 c)partial cylinder(部分圆柱):通过空心圆柱底面圆心和内外半径,以及圆柱开始和结束角度,长度来定义任意弧长空心圆柱。 d)by end pts&Z :通过圆柱体底面直径两端的坐标和圆柱长度来定义圆柱 e)By dimensions:通过圆柱内外半径、圆柱两底面Z坐标、起始和结束角度来定义圆柱。 1.4 Prism :棱柱体 a) Triangular:通过定义正三棱柱底面外接圆圆心与棱柱高度来定义正三棱柱 b) Square、pentagonal、hexagonal、septagonal、octagonal分别为正四棱柱、五棱柱、六棱柱、七棱柱、八棱柱。其体操作与正三棱柱生产方法类似。 c) By inscribed rad:通过正棱柱底面内切圆和棱柱高来定义正棱柱。 d) By circumscr rad:通过正棱柱底面外接圆和棱柱高来定义正棱柱。 e) By side length:通过正棱柱底面边长、边数、棱柱高来定义正棱柱。 f) By vertices :通过棱柱底面多边形定点和棱柱高来定义不规则的棱柱。 1.5 Sphere :球体 a) Solid sphere(实心球体):通过球心和半径来定义实心球体。 b) Hollow sphere(空心球体):通过球心和内外球半径来定义空心球体。 c) By end points:通过球直径定义球体。 d) By dimensions:通过球的尺寸定义球体。 1.6 Cone :圆锥体 a) By picking:通过在工作平面上定位圆锥体底部圆的圆心和半径以及圆锥体的高来定义圆锥体。 b) By dimensions:通过圆锥体尺寸定义圆锥体 1.7 Torus :圆环体

ANSYS-结构稳态(静力)分析之经典实例-命令流格式

ANSYS 结构稳态(静力)分析之经典实例-命令流格式.txt两人之间的感情就像织毛衣,建立 的时候一针一线,小心而漫长,拆除的时候只要轻轻一拉。。。。/FILNAME,Allen-wrench,1 ! Jobname to use for all subsequent files /TITLE,Static analysis of an Allen wrench /UNITS,SI ! Reminder that the SI system of units is used /SHOW ! Specify graphics driver for interactive run; for batch ! run plots are written to pm02.grph ! Define parameters for future use EXX=2.07E11 ! Young's modulus (2.07E11 Pa = 30E6 psi) W_HEX=.01 ! Width of hex across flats (.01m=.39in) *AFUN,DEG ! Units for angular parametric functions定义弧度单位 W_FLAT=W_HEX*TAN(30) ! Width of flat L_SHANK=.075 ! Length of shank (short end) (.075m=3.0in) L_HANDLE=.2 ! Length of handle (long end) (.2m=7.9 in) BENDRAD=.01 ! Bend radius of Allen wrench (.01m=.39 in) L_ELEM=.0075 ! Element length (.0075 m = .30 in) NO_D_HEX=2 ! Number of divisions on hex flat TOL=25E-6 ! Tolerance for selecting nodes (25e-6 m = .001 in) /PREP7 ET,1,SOLID45 ! 3维实体结构单元;Eight-node brick element ET,2,PLANE42 ! 2维平面结构;Four-node quadrilateral (for area mesh) MP,EX,1,EXX ! Young's modulus for material 1;杨氏模量 MP,PRXY,1,0.3 ! Poisson's ratio for material 1;泊松比 RPOLY,6,W_FLAT ! Hexagonal area创建规则的多边形 K,7 ! Keypoint at (0,0,0) K,8,,,-L_SHANK ! Keypoint at shank-handle intersection K,9,,L_HANDLE,-L_SHANK ! Keypoint at end of handle L,4,1 ! Line through middle of hex shape L,7,8 ! Line along middle of shank L,8,9 ! Line along handle LFILLT,8,9,BENDRAD ! Line along bend radius between shank and handle! 产生 一个倒角圆,并生成三个点 /VIEW,,1,1,1 ! Isometric view in window 1 /ANGLE,,90,XM ! Rotates model 90 degrees about X! 不用累积的旋转 /TRIAD,ltop /PNUM,LINE,1 ! Line numbers turned on LPLOT

ansys接触定义

1概述 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触。 (1)刚-柔接触 在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触。 (2)柔-柔接触 柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 2ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSYS使用的接触单元和使用它们的过程,下面分类详述。 2.1点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─面的接触问题的典型例子。

ansys实例命令流-谱分析命令流

/FILNAME, Beam,1 !定义工作文件名。 /TITLE, Beam Analysis !定义工作标题。/PREP7 !定义单元。 ET,1,BEAM188 !定义材料属性。 MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,2.1e5 MPDATA,PRXY,1,,0.3 MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,DENS,1,,7.9e-6 ! 定义杆件截面■200。 SECTYPE, 1, BEAM, RECT, , 0 SECOFFSET, CENT SECDATA,10,10,0,0,0,0,0,0,0,0 !建立几何模型。 K,1, ,, , K,2,350,, , !生成立柱。 LSTR, 1, 2 !以上完成几何模型。 !以下进行网格划分。 FLST,5,1,4,ORDE,1 FITEM,5,1 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1, , ,50, , , , ,1 !定义单元大小。!分配、划分平板结构。 LMESH, 1 !分析类型施加载荷并求解。 FINISH /SOLUTION ANTYPE,2 !定义分析类型及求解设置。MSAVE,0 !模态提取方法。

MODOPT,LANB,10 EQSLV,SPAR MXPAND,10, , ,0 !模态扩展设置。 LUMPM,0 PSTRES,0 MODOPT,LANB,10,0,0, ,OFF MXPAND,10,0,0,1,0.001, !施加约束。 FLST,2,2,3,ORDE,2 FITEM,2,1 FITEM,2,-2 /GO DK,P51X, , , ,0,ALL, , , , , , !求解。 FINISH /SOL /STATUS,SOLU SOLVE !定义谱分析。 FINISH /SOLUTION ANTYPE,8 SPOPT,PSD,10,1 PSDUNIT,1,DISP,386.4, PSDFRQ,1, ,13.8,40,50.6,73,120 !定义谱—频率表。PSDFRQ,1, ,134,178,233, , PSDV AL,1,1,4,0.6,3,5 PSDV AL,1,6,2,6, , FLST,2,2,1,ORDE,2 !施加谱。 FITEM,2,1 FITEM,2,-2 D,P51X,UX,1.0 PFACT,1,BASE, !计算PSD激励参与系数。PSDRES,DISP,REL !设置输出选项。PSDRES,VELO,OFF PSDRES,ACEL,OFF

ANSYS—接触单元说明

参考ANSYS的中文帮助文件 接触问题(参考ANSYS的中文帮助文件) 当两个分离的表面互相碰触并共切时,就称它们牌接触状态。在一般的物理意义中,牌接触状态的表面有下列特点: 1、不互相渗透; 2、能够互相传递法向压力和切向摩擦力; 3、通常不传递法向拉力。 接触分类:刚性体-柔性体、柔性体-柔性体 实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。 ――罚函数法。接触刚度 ――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。 三种接触单元:节点对节点、节点对面、面对面。 接触单元的实常数和单元选项设臵: FKN:法向接触刚度。这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。 FTOLN:最大穿透容差。穿透超过此值将尝试新的迭代。这是一个与接触单元下面的实体单元深度(h)相乘的比例系数,缺省为0.1。此值太小,会引起收敛困难。 ICONT:初始接触调整带。它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03= PINB:指定近区域接触范围(球形区)。当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的)PMIN和PMAX:初始容许穿透容差。这两个参数指定初始穿透范围,ANSYS把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。 TAUMAX:接触面的最大等效剪应力。给出这个参数在于,不管接触压力值多大,只要等效剪应力达到最大值TAUMAX,就会发生滑动。该剪应力极限值通常用于接触压力会变得非常大的情况。 CNOF:指定接触面偏移。+CNOF增加过盈、-CNOF减少过盈或产生间隙、CNOF能与几何穿透组合应用。 FKOP:接触张开弹簧刚度。针对不分离或绑定接触模型,需要设臵实常数FKOP,该常数为张开接触提供了一个刚度值。FKOP阻止接触面的分离;FKOP默认为1.0,用于建立粘结模型,用一个较小值(1e-5)去建立软弹簧模型。 FKT:切向接触刚度。作为初值,可以采用-FKT=0.01*FKN,这是大多数ANSYS 接触单元的缺省值。 COHE:粘滞力。即没有法向压力时开始滑动的摩擦应力值。 FACT,DC:定义摩擦系数变化规律

ANSYS中文翻译官方手册_接触分析

一般的接触分类 (2) ANSYS接触能力 (2) 点─点接触单元 (2) 点─面接触单元 (2) 面─面的接触单元 (3) 执行接触分析 (4) 面─面的接触分析 (4) 接触分析的步骤: (4) 步骤1:建立模型,并划分网格 (4) 步骤二:识别接触对 (4) 步骤三:定义刚性目标面 (5) 步骤4:定义柔性体的接触面 (8) 步骤5:设置实常数和单元关键字 (10) 步骤六: (21) 步骤7:给变形体单元加必要的边界条件 (21) 步骤8:定义求解和载步选项 (22) 第十步:检查结果 (23) 点─面接触分析 (25) 点─面接触分析的步骤 (26) 点-点的接触 (35) 接触分析实例(GUI方法) (38) 非线性静态实例分析(命令流方式) (42) 接触分析 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。

一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。

ansys材料定义

混凝土 $ *MAT_ELASTIC_PLASTIC_HYDRO $1,2.3,0.13,3.2E-4,,-5.E-5,1. $,,3 2,2.4,0.126,2.5E-4,,-5.E-5,0.4 ,,3. *EOS_GRUNEISEN 2,0.2500,1.0,0.,0.,1.9,0.0 0.,1. $ $国际单位 *MAT_ELASTIC_PLASTIC_HYDRO_SPALL $1,2.3,0.13,3.2E-4,,-5.E-5,1. $,,3 2,2.4E+03,0.126E+11,2.5E+7,,-5.E+6,0.4E+11 ,,3. *EOS_GRUNEISEN 2,0.2500E+4,1.0,0.,0.,1.9,0.0 0.,1. $ 混凝土参数 密度 2.4g/cm剪切模量 12.6Cpa屈服应力 25Mpa抗拉强度 5Mpa失效应变 0.4 GRUNEISEN状态方程参数 C=2500m/s S1=1.0 S2=0 S3=0 ω=1.9 A=0 E0=0 V0=1 sdyyds混凝土随动硬化模型 *mat_plastic_kinematic 3 2100 3.00e+10 0.18 2.0e+07 0 0 0.002 *mat_plastic_kinematic 2 2600 4.75e+10 0.18 6.0e+07 4.75e+09 0 99.3 1.94 0.004

取自龚自明防护工程混凝土靶体尺寸及边界约束对侵彻深度影响的数值模拟*MAT_JOHNSON_HOLMQUIST_CONCRETE 4,2.4,0.123,0.79,1.60,0.007,0.61,2.4E-4 2.7e-5,1.0e-6,0.01,7.0,8.0e-5,5.6e-4,1.05e-2,0.1 0.04,1.0,0.174,0.388,0.298 取自龚自明防护工程 BLU-109B侵彻厚混凝土靶体的计算与分析 *MAT_JOHNSON_HOLMQUIST_CONCRETE 4,2.4,0.132,0.79,1.60,0.007,0.61,3.22E-4 3.15e-5,1.0e-6,0.01,7.0,1.08e-4,7.18e-4,1.05e-2,0.1 0.04,1.0,0.174,0.388,0.298 取自蔡清裕国防科技大学学报模拟刚性动能弹丸侵彻混凝土的FE-SPH方法*MAT_JOHNSON_HOLMQUIST_CONCRETE mid RO G A B C N FC 1, 2.2,0.164,0.75,1.65,0.007,0.61,4.4e-4 T EPS0 EFMIN SFMAX PC UC PL UL 2.4e-5,1.0e-6,0.01,11.7,1.36e-4,5.8e-4,1.05e-2,0.1 D1 D2 K1 K2 K3 FS 0.03,1.0,0.174,0.388,0.298 取自凤国爆炸与冲击《大应变。高应变率及高压下混凝土的计算模型〉 *MAT_JOHNSON_HOLMQUIST_CONCRETE 2,2.44,0.1486,0.79,1.60,0.007,0.61,4.8E-4 4.0e-5,1.0e-6,0.01,7.0,1.6E-4,0.001,8.0E-3,0.1 0.04,1.0,0.85,-1.71,2.08 取自宋顺成爆炸与冲击弹丸侵彻混凝土的SPH算法 *MAT_JOHNSON_HOLMQUIST_CONCRETE 1,2.4,0.1486,0.79,1.60,0.007,0.61,1.4e-4 4.0e-5,1.0e-6,0.01,7.0,1.6e-4,0.001,8.0E-3,0.1 0.04,1.0,0.174,0.388,0.298 *Mat_johnson_holmquist_concrete

几个ansys经典实例(长见识)

平面问题斜支座的处理 如图5-7所示,为一个带斜支座的平面应力结构,其中位置2及3处为固定约束,位置4处为一个45o的斜支座,试用一个4节点矩形单元分析该结构的位移场。 (a)平面结构(b)有限元分析模型 图5-7 带斜支座的平面结构 基于ANSYS平台,分别采用约束方程以及局部坐标系的斜支座约束这两种方式来进行处理。 (7) 模型加约束 左边施加X,Y方向的位移约束 ANSYS Main Menu: Solution →Define Loads →Apply →-Structural→Displacement On Nodes →选取2,3号节点→OK →Lab2: All DOF(施加X,Y方向的位移约束) →OK 以下提供两种方法处理斜支座问题,使用时选择一种方法。 ?采用约束方程来处理斜支座 ANSYS Main Menu:Preprocessor →Coupling/ Ceqn →Constraint Eqn :Const :0, NODE1:4, Lab1: UX,C1:1,NODE2:4,Lab2:UY,C2:1→OK 或者?采用斜支座的局部坐标来施加位移约束 ANSYS Utility Menu:WorkPlane →Local Coordinate System →Create local system →At specified LOC + →单击图形中的任意一点→OK →XC、YC、ZC分别设定为2,0,0,THXY:45 →OK ANSYS Main Menu:Preprocessor →modeling →Move / Modify →Rotate Node CS →To active CS → 选择4号节点 ANSYS Main Menu:Solution →Define Loads →Apply →Structural →Displacement On Nodes →选取4号节点→OK →选择Lab2:UY(施加Y方向的位移约束) →OK 命令流; !---方法1 begin----以下的一条命令为采用约束方程的方式对斜支座进行处理 CE,1,0,4,UX,1,4,UY,-1 !建立约束方程(No.1): 0=node4_UX*1+node_UY*(-1) !---方法1 end --- !--- 方法2 begin --以下三条命令为定义局部坐标系,进行旋转,施加位移约束 !local,11,0,2,0,0,45 !在4号节点建立局部坐标系 !nrotat, 4 !将4号节点坐标系旋转为与局部坐标系相同 !D,4,UY !在局部坐标下添加位移约束 !--- 方法2 end

ansys面与面接触分析实例

面与面接触实例:插销拨拉问题分析 定义单元类型 Element/add/edit/delete 定义材料属性 Material Props/Material Models Structural/Linear/Elastic/Isotropic 定义材料的摩擦系数 … 建立几何模型 Modeling/Create/Volumes/Block/By Dimensions X1=Y1=0,X2=Y2=2,Z1=,Z2=

Modeling/Create/Volumes/Cylinder/By Dimensions Modeling/Operate/Booleans/Subtract/Volumes 先拾取长方体,再拾取圆柱体。 Modeling/Create/Volumes/Cylinder/By Dimensions 、 划分掠扫网格 Meshing/Size Cntrls/ManualSize/Lines/Picked Lines 拾取插销前端的水平和垂直直线,输入NDIV=3再拾取插座前端的曲线,输入NDIV=4

PlotCtrls/Style/Size and Shape,在Facets/element edge列表中选择2 facets/edge 建立接触单元 : Modeling/Create/Contact pair,弹出Contact Manager对话框,如图所示。 单击最左边的按钮,启动Contact Wizard(接触向导),如图所示。

单击Pick Target,选择目标面。 选择接触面 定义位移约束 施加对称约束,Define Loads/Apply/Structural/Displacement/Symmetric On Areas,选择对称面。 再固定插座的左侧面。 ) 设置求解选项 Analysis Type/Sol’s Control

ANSYS建模apdl命令流实例应用

大桥全长2996.8m,其中主桥采用跨度为101.5+188.5+580+217.5+159.5+116m的钢桁梁斜拉桥;非通航孔正桥采用6孔跨径64m预应力混凝土简支箱梁;东引桥采用16孔梁长32.6m预应力混凝土简支箱梁;跨大堤桥采用48.9+86+48.8m预应力混凝土连续箱梁;西引桥采用15孔梁长32.6m预应力混凝土简支梁及2孔梁长24.6m预应力混凝土简支梁,其中宁安线采用箱梁,阜景线采用T梁。 主桥采用103+188.5+580+217.5+159.5+117.5m两塔钢桁斜拉桥方案,全长1366m。主梁为三片主桁钢桁梁,桁间距2x14m,节间长14.5m,桁高15m。主塔为钢筋混凝土结构,塔顶高程+204.00m,塔底高程-6.00m,斜拉索为空间三索面,立面上每塔两侧共18对索,全桥216根斜拉索。所有桥墩上均设竖向和横向约束,4#塔与主梁之间设纵向水平约束,3#塔与梁间使用带限位功能的粘滞阻尼器。主梁为”N”字型桁式,横向采用三片桁结构,主桁的横向中心距各为14m,桁高15m,节间距14.5m[2]。 结构构造 主桥采用两塔钢桁斜拉桥方案,主梁为三片主桁钢桁梁,主桁上下弦杆均为箱型截面,上弦杆内高1000mm,内宽1200mm,板厚20~48mm。下弦杆内高1400mm,宽1200mm,板厚20~56mm。下弦杆顶板向桁内侧加宽700mm与整体桥面板焊接。腹杆主要采用H型截面。H型杆件宽1200mm,高720和760mm,板厚20~48mm。根据不同的受力区段选用不同的杆件截面,在辅助墩附近的压重区梁段,腹杆采用箱型截面杆件。主桁采用焊接杆件,整体节点。在节点外以高强度螺栓拼接的结构形式,上下弦杆四面等强对接拼装。H型腹杆采用插入式连接。箱型腹杆采用四面与主桁节点对拼的连接形式。主桁拼接采用M30高强螺栓。

相关主题
文本预览
相关文档 最新文档