当前位置:文档之家› 卫星测高原理及应用领域

卫星测高原理及应用领域

卫星测高原理及应用领域
卫星测高原理及应用领域

卫星测高原理及应用领域

20 世纪80 年代以来, 随着计算机技术和空间技术的高速发展, 地球科学在宏观和微观的研究上进入了一个迅速发展和深入探索的时期。在此期间, 地球科学各分支学科出现了大量新的学科生长点, 提出了许多新学科、新概念、新技术。卫星测高学就是在这种形势下随着卫星遥感遥测技术的应用而发展起来的新型边缘学科, 它利用卫星上装载的微波雷达测

高仪, 辐射计和合成孔径雷达等仪器, 实时测量卫星到海面的距离、有效波高和后向散射系数, 并通过数据处理和分析, 来研究大地测量学、地球物理学和海洋学方面的问题。

卫星测高技术的发展至今虽然只有二十多年的历史,但大量的研究结果表明, 卫星测高在研究海洋大地水准面和重力异常方面, 在研究地球物理和海洋参数方面, 都显示出了巨大的潜力。卫星测高作为一项高科技测量技术,它以人造卫星作为测量仪器的载体, 借助着空间技术、电子技术、光电技术和微波技术等高新技术的发展, 在空间大地测量领域产生了一场深刻的变革。正如国际上著名的大地测量学家莫里兹教授1993 年所指出的那样:“同GPS 一样, 卫星测高也在空间大地测量学领域掀起了一场革命。”(Moritz, 1993) 。

一卫星测高原理

卫星测高仪是一种星载的微波雷达。测高仪的发射装置通过天线以一定的脉冲重复频率向地球表面发射调制后的压缩脉冲, 经海面反射后, 由接收机接收返回的脉冲, 并测量发射脉冲的时刻与接收脉冲的时刻的时间差。根据此时间差及返回的波形, 便可以测量出卫星到海面的距离。

二卫星测高的应用领域

卫星测高数据的应用随着卫星定轨精度和测高仪观测精度的提高以及数据处理方法的改进, 其应用范围越来越大, 社会效益及经济效益越来越明显。发射测高卫星之初的目的比较单一, 就是试图从空中采用遥测的方法确定海面形状, 以期研究大洋环流和其它海洋学参数。之后,由于测高数据的精度大大提高了, 卫星测高在地球物理学领域和大地测量学领域也得

到了空前应用。比如研究海洋大地水准面、海洋范围的重力异常、洋面波高、洋面风场等等, 此外, 卫星测高还被广泛用于研究海潮振幅的分布模式、探测南极大陆周围海冰的位置及格

陵兰冰帽的形态等。

(1)卫星测高在大地测量学中的应用

鉴于卫星测高仪的观测量是卫星到海面的距离, 又卫星的位置可以通过定轨方法得到, 经过各种误差改正之后, 就可以得到海平面到椭球面的距离。所以, 卫星测高在大地测量学中的第一个应用就是确定海面形状, 或者说确定海洋大地水准面( 差别在于海面地形) 。

众所周知, 大地测量学的一个重要任务就是确定地球形状及其外部重力场。而海洋面积占地球表面积的70%以上, 所以海平面的形状对于大地测量学者是至关重要的, 这是因为静止的海平面与大地水准面十分接近, 海平面的形状代表了地球形状的大部, 然而, 限于测量条件, 广阔的海洋里实测重力数据却很少, 尤其是几大洋里的深水区, 重力测量多数还是空白。由于测高卫所特有的几何观测条件,测高卫星一出现, 人们首先想到的就是利用测高数据研究海平面形状。

早期, 曾有Marsh等人,利用Geos-3和Seasat测高数据绘制了全球海洋大地水准面图, Rapp 等人也进行了类似的研究。利用这些全球海洋大地水准面图, 已可分辨出一些海底地貌( 如海山海沟等) 引起的小尺度的海洋大地水准面特征。值得说明的是, 欲分辨测高得到的海洋大地水准面的小尺度特征, 并不仅仅与测高数据的精度有关,而更为重要的是测高卫星地面轨迹的分布模式, 测高卫星覆盖全球的重复周期越短, 地面轨迹间距就越大, 也就越不易检测出海山海沟引起的小尺度的海洋大地水准面特征, 这样讲, 并不排除沿着地面轨迹检测海山海沟的能力。相反, 测高卫星的重复周期越长, 地面轨迹的间距就越小,也就越容易检测出海山海沟引起的小尺度的海洋大地水准面特征。当然, 除此以外, 测高卫星轨道倾角也是有影响的。

认识到卫星测高可以高精度地确定海洋大地水准面的能力之后, 美国发射了一颗主要用于大地测量目的的测高卫星Geosat,卫星升空后, 没有重复周期的限制, 而只是在飞行过程中随其漂移, 从而使得海洋面上的星下点足迹不是有规律地重复, 其地面轨迹间的平均距离为4km 左右。这批高质量的数据是研究海洋大地水准面形状和地球外部重力场极为宝贵的一批财富, 有鉴于此, 美国至今仍没有把这批数据全部公开, 对外提供。

后来多颗测高卫星升空, 人们又利用最新的测高数据对大地水准面的形状进行了研究。

详见Rapp,Marsh,Engelis,等人的文章。

除了利用卫星测高数据研究海洋大地水准面的形状之外, 利用大地水准面高和重力异常之间的关系, 还可反求出海洋范围的重力异常和重力扰动。重力异常是建立高阶地球重力场模型的必需量, 因此, 用卫星测高数据推求海洋范围的重力异常在已有发射测高卫星计划但尚未发射的初期, 就已得到了众多研究者的关注。后来Rapp等人利用Geos- 3, Seasat, Geosat 等卫星测高数据进行了大规模的重力异常推算工作。到目前为止, 利用测高数据推算的重力异常的精度, 在1°×1°时可达到±4mgal, 已可与船测重力精度相媲美。

(2)卫星测高在海洋学中的应用

海洋学的主要任务之一就是研究大洋环流模式。大洋环流由海水的水平压力梯度所引起, 表现为海平面高相对于大地水准面的倾斜。尽管区分海面高的这一动力分量和静态的海洋大地水准面信息存在一定的困难, 但测高仪还是能探测出海面高的随时间变化。

根据卫星测高数据, 可以求得海面地形, 再由海面地形与地转流的大小、方向之间的关系, 又可以求得大洋环流的分布模式。

另外, 平静的海洋面和存在波浪的海洋面对卫星测高仪发射的信号的反射能力大小不同, 前者反射率大且均匀一致, 后者反射率小且不均匀。据此, 对接收到的回波信号的波形进行分析, 又可以得到海洋面的有效波高。这也是海洋学中一个重要的信息。

由于测高卫星轨道是冻结轨道, 每隔一定的时间( 3天、10 天、17 天、35 天或168 天) 覆盖全球一次, 故可利用这种特性来研究海平面的变化。这时, 既可以采用“共线重复轨迹平差法( 简称为共线技术) ”, 也可以采用“交叉点平差法”来求海面变化, 同样是利用测高卫星轨道的这种特性, 还可以研究海潮的振幅。由于大洋海潮的振幅一般小于1m, 故分潮的振幅就更少了, 从而要求测高卫星的径向轨道误差要小。这一点可采用一定的数学方法来处理。目前这方面研究比较成功的例子是关于M2分潮的研究。其它分潮则由于振幅较小尚难以准确求定。另外, 测高卫星的轨道特征对海潮各主要分潮的估算有着至关重要的影响。比如海洋卫星Seasat 的径向轨道误差频率就是与K1和S2潮汐分量的频率相混淆的, 这不仅使得用测高数据估计潮汐的主要分潮感到困难, 而且估算的潮汐幅度的误差也会引起频带的误差, 该误差对海洋环流的研究是相当重要的。

(3)卫星测高在地球物理学中的应用

大地水准面是地球内部物质结构与运动的物理特性的一种几何表征, 它与地球深部构造有着密切的关系。因此, 利用卫星测高数据求得的大地水准面起伏和重力场异常的精细结构, 就可以反演出地球深部结构、地幔对流及板块运动等( 王广运等, 1995) 。其方法是通过建立大地水准面形态与板块削减带的相关性来研究地幔的形态与对流。通过比较观测数据( 重力、大地水准面、隆起等) 和理论估值, 人们可以获得弹性模型中弯曲强度D和弹性厚度H 的最佳估值, 从而利用海洋测深、隆起、下陷、重力以及附近的大地水准面数据, 对海洋岩石圈对表面负荷的机械响应或对弯曲应力的机械响应进行广泛的研究。全球覆盖的测高数据可以系统地用于研究海洋岩石圈在表面负荷下的弯曲响应, 而船载重力测量资料则做不到

这一点。

另外, 采用半空间( half- space) 模型和板块模型, 还可以研究扩张海脊和断裂带附近

的海洋岩石圈的热演化。这是因为海洋大地水准面高随板块年龄的增加而变小, 而且对称地偏离海脊顶端。由岩石圈的冷却而引起的大地水准面高在1000~ 2000km 的距离上, 随着年龄的绝对变化, 通常是5~ 10m 的量级。另一方面, 在断裂带, 板块的年龄存在着突变,

结果引起大地水准面起伏的短波部分具有阶梯状的特征, 从年轻、较浅的一边向年老、较深的一边下降, 其幅度在100~ 150km 的距离上为几厘米到几米之间。由于与海洋岩石圈的冷缩有关的热补偿作用, 对于半空间和板块这两种模型, 大地水准面高的变化是年龄的函数, 故通过对大地水准面起伏形态的分析, 可以研究岩石圈的变化。

(4)卫星测高在海洋测绘中的应用

为了保证舰船的航行安全, 测量海洋水深及地貌、出版航海图书资料等是海洋测绘的首要任务。由于测量条件的限制, 仍有大量的海域( 尤其是大洋里) 没有进行过详细的水深测量, 人们对大洋底的地貌形态仍知之甚少。

根据重力学知识, 人们知道局部的大地水准面异常与海山海沟的出现具有很强的相关性。因此, 在无图海域,由卫星测高得到的大地水准面数据可被用于探测和预报海深。由于每种类型的海底构造单元对大地水准面都有特定的响应, 人们已经通过系统地研究分析卫星测高

数据, 发现了许多未曾预料到的海山、海沟的存在, 在有些情况下还发现了断裂带、甚至消

减带。

在测高卫星发射之前, 人们关于海底海山总数的知识十分贫乏。例如, 1967 年人们借助强大的火山地震群才发现了麦克唐纳海山( 29°S, 140°W) , 而它的顶部离海面只有49m。

为了在事先不知道海山的情况下用卫星测高数据来预报海洋深度, 需要知道海底地形的地质构造以及负荷沉积层沉积物的相对密度。除了这个地球物理本身的问题以外, 还有一个更重要的卫星测高剖面的覆盖问题。当卫星的地面轨迹经过一海山的附近或经过两个海山的凹谷部时, 将得到正的大地水准面异常。很明显, 为了提供有价值的海底地貌图, 就需要密集的上升弧段和下降弧段的测高剖面。

然而需要指出的是, 仅利用上述方法研究海山海沟的检测, 其水平位置精度和垂直位置

精度都比较低, 只能达到500~ 1000m 的量级, 究其原因, 主要是缺乏必要的高精度的外

部控制, 而只利用相关性的缘故。为了克服这一不足, Smith 和Sandwell又提出了用稀疏的船载水深测量( 测线间隔数百千米) 作控制, 采用密集的测高卫星地面轨迹等数据来推测海底地形, 取得了较好的结果, 精度可达

1:100m 左右。可以预期, 如果缩小船载水深测量测线的间隔( 如数千米) , 则预测海底地形的精度将会大大提高。

总之, 卫星测高为人们提供了全球范围内的各个波长的大地水准面, 这一结果是空前的。利用卫星测高数据,既可以确定高精度的大地水准面、海面地形、重力异常, 又可研究大洋环流和大洋潮汐。大地水准面资料与海洋测深资料相结合, 提供了对地球弹性响应及海洋岩石圈的冷却过程的约束。另一方面, 在缺少足够海洋测深资料覆盖的情况下, 卫星测高对于研究无图区的海底地形特征也是一种十分有效的方法。卫星测高技术出现二十多年了, 但研究卫星测高技术、数据处理方法及测高数据应用的热潮长久不衰, 就是对卫星测高的科学价值、社会价值及经济价值的一种肯定。

三结论

卫星测高技术由于其大范围、高精度、快速、全覆盖等特点, 在海洋学、大地测量学、地球物理学等方面得到了广泛的应用。我国虽然开展卫星测高方面的研究较晚, 但也取得了瞩目的成果。国家海洋局、国家测绘局等单位均在卫星测高技术方面进行了大量研究和论证工

作, 发射我国自己的测高卫星也是不久将来的事情。可以预料, 随着我国测高卫星的发射, 这方面的研究和应用将会更加广泛。

四参考文献

【1】翟国君,黄谟涛,欧阳永忠,等. 卫星测高原理及其应用. 海洋测绘,2002,22. 【2】王广运,王海瑛. 卫星测高研究应用新进展. 地球科学进展,1993,8.

【3】黄文弿. 海洋测量信息处理技术的发展. 测绘工程,2004.

【4】郭华东等著. 雷达对地观测理论与应用. 北京:科学出版社,2000.

【5】李景刚,李纪人,阮宏勋,等. Jason-2 卫星测高数据在陆地水域水位变化监测中的应用——以南洞庭湖为例. 自然资源学报,2010,25.

【6】崔树红,谢志仁,钟鹤翔,等. 基于卫星平台的海面变化监测技术. 宁夏工程技术,2004,3.

【7】姚志青. 卫星测高的发展与应用—兼评《卫星测高原理》专著出版. 测绘工程. 1997.3.

【8】汪海洪,钟波,王伟1,于丹.卫星测高的局限与新技术发展.大地测量与地球动力学,2009,2.

【9】黄谟涛,翟国君. 卫星测高资料在反演海底地形中的应用( 海军海洋测绘研究所, 天津300061).

【10】张瑞华,彭富清,刘光明. 利用卫星测高资料确定全球海洋重力场,海洋测绘,2002. 9 .

《GPS原理与应用》复习资料整理

第一章绪论 1.GPS:是接收人造卫星电波,准确求顶接收机自身位置的系统。 目前世界上有那些全球性的卫星导航系统?(俄罗斯GLONASS、欧洲Galileo、中国北斗、美国GPS) 欧空局的全球卫星定位系统的名称是什么? 2. GPS系统组成: (1)空间星座部分:24颗卫星提供星历和时间信息,发射伪距和载波信号,提供其他辅助信息。 (2)用户部分:接收并观测卫星信号,记录和处理数据,提供导航定位信息。 (3)地面控制部分:中心控制系统,实现时间同步,跟踪卫星进行定轨。【5个监测站、1个主控站、3个注入站】 3. GPS按接收机用途分为三类:导航型、测量型、授时型; 接收机由天线单元、机主机单元和电源组成。 4、精密工程测量采用那种类型的GPS接收机? 5、GPS接收机中采用的是铷钟、铯钟还是石英钟? 6.与传统测量方法相比,GPS系统特点: 1)全球性---全球范围连续覆盖;(4~12颗);2)全能性-—三维位置、时间、速度;3)全天侯 4)实时性----定位速度快;;5)连续性;6)高精度;7)抗干扰性能好,保密性好; 8)控制性强;9)观测站之间无需通视;10)提供三维坐标;11)操作简便。 7、gps有哪些新的应用领域 8、GPS在测量上的用途有那些? 9.常见GPS卫星信号接收机(例举几个著名的中外GPS生产厂商):Ashtech系列GPS接收机、Trimble(天宝)系列GPS接收机、 Leica(莱卡) 系列GPS接收机、中纬系列GPS接收机、南方系列GPS接收机、中海达系列GPS接收机 第二章 GPS定位的坐标系统与时间系统 1.天球:是指以地球质心M为中心,半径r为任意长的一个假想的球体。 黄道:即当地球绕太阳公转时,地球上观测者所见到太阳在天球上运动的轨迹称为黄道 黄赤交角:黄道平面与赤道平面的夹角ε称为黄赤交角,约为23.5° 春分点:当太阳在黄道上从天球南半球向北半球运行时,黄道与天球赤道的交点γ称为春分点。

北斗卫星导航系统定位原理及应用

xxxx导航系统定位原理及其应用 北斗卫星定位系统是由中国建立的区域导航定位系统。该系统由四颗(两颗工作卫星、2颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。美国的GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。。 北斗一号导航定位卫星由中国空间技术研究院研究制造。四颗导航定位卫星的发射时间分别为: 2000年10月31日; 2000年12月21日; 2003年5月25日, 2007年4月14日,第三、四颗是备用卫星。2008年北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥?双保险?作用。北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。北斗二代卫星定位系统的英文为Compass(即指南针),在ITU登记的无线电频段为L波段。北斗一号系统的基本功能包括: 定位、通信(短消息)和授时。北斗二代系统的功能与GPS相同,即定位与授时。 其工作原理如下: ?北斗一号?卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标

(整理)常见遥感卫星基本参数

常见遥感卫星基本参数 前言: 遥感传感器是获取遥感数据的关键设备,由于设计和获取数据的特点不同,传感器的种类也就繁多,就其基本结构原理来看,目前遥感中使用的传感器大体上可分为如下一些类型: (1)摄影类型的传感器; (2)扫描成像类型的传感器; (3)雷达成像类型的传感器; (4)非图像类型的传感器。 无论哪种类型遥感传感器,它们都由如下图所示的基本部分组成: 1、收集器:收集地物辐射来的能量。具体的元件如透镜组、反射镜组、天线等。 2、探测器:将收集的辐射能转变成化学能或电能。具体的无器件如感光胶片、光电管、光 敏和热敏探测元件、共振腔谐振器等。 3、处理器:对收集的信号进行处理。如显影、定影、信号放大、变换、校正和编码等。具 体的处理器类型有摄影处理装置和电子处理装置。 4、输出器:输出获取的数据。输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带 记录仪、XY彩色喷笔记录仪等等。 虽然不同卫星的基本组成部分是相同的,但是由于,各个组成部分的具体构造的精细度又是不同的,的,所以不同的卫星具有不同的分辨率。 一、 CBERS中巴资源卫星CBERS-1 中巴资源卫星由中国与巴西于1999年10月14日合作发射,是我国的第一颗数字传输型资源卫星 卫星参数: 太阳同步轨道轨道高度:778公里,倾角:98.5o 重复周期:26天平均降交点地方时为上午10:30 相邻轨道间隔时间为4 天扫描带宽度:185公里星上搭载了CCD传感器、IRMSS红外扫描仪、广角成像仪,由于提供了从20米-256米分辨率的11个波段不同幅宽的遥感数据, 成为资源卫星系列中有特色的一员。 红外多光谱扫描仪:波段数:4波谱范围:B6:0.50 –1.10(um)B7:1.55 – 1.75(um)B8:2.08 – 2.35(um)B9:10.4 – 12.5(um)覆盖宽度:119.50公里空间分辨率:B6 – B8:77.8米B9:156米CCD相机:波段数:5波谱范围:B1:0.45 – 0.52(um)B2:0.52 – 0.59(um)B3:0.63 –0.69(um)B4:0.77 – 0.89(um)B5:0.51 – 0.73(um)覆盖宽度:113公里空间分辨率:19.5米(天 底点)侧视能力:-32 士32 广角成像仪:波段数:2波谱范围:B10:0.63 – 0.69(um)B11:0.77 – 0.89(um)覆盖宽度:890

GPS原理与应用 考试重点总结

名词解释: 天球:是以地球质心M为中心,半径r为任意长的一个假象的球体。 春分点:当太阳在黄道上从天球南半球向北半球运行时,黄道与天球赤道的交点γ。 大地经纬度:表示地面点在参考椭球面上的位置,用大地经度λ、大地纬度和大地高h表示。 天文经纬度:表示地面点在大地水准面上的位置,用天文经度和天文纬度表示。 黄道:地球公转的轨道面与天球相交的大圆,即当地球绕太阳公转时,地球上的观测者所见到的太阳在天球上的运动轨迹。黄道面与赤道面的夹角称为黄赤交角,约23.5°。 赤经:为过春分点的天球子午面与过天体的天球子午面之间的夹角。 赤纬:为原点至天体的连线与天球赤道面之间的夹角。 岁差:实际上地球接近于一个赤道隆起的椭球体,在日月和其它天体引力对地球隆起部分的作用下,地球在绕太阳运行时,自转轴方向不再保持不变,从而使春分点在黄道上产生缓慢西移,此现象在天文学上称为岁差。 章动:在太阳和其它行星引力的影响下,月球的运行轨道以及月地之间的距离在不断变化,北天极在天球上绕北黄极顺时针旋转的轨迹十分复杂。如果观测时的北天极称为瞬时北天极(或真北天极),相应的天球赤道和春分点称为瞬时天球赤道和瞬时春分点(或真天球赤道和真春分点)。则在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极产生旋转,轨迹大致为椭圆。这种现象称为章动。 极移:地球自转轴相对于地球体的位置不是固定的,地极点在地球表面上的位置随时间而变化的现象称为极移。 世界时:以平子夜为零时起算的格林尼治平太阳时称为世界时。 力学时:天文学中,天体的星历是根据天体动力学理论建立的运动方程而编算的,其中所采用的独立变量是时间参数T,这个数学变量T定义为力学时。 原子时:以物质内部原子运动的特征为基础的原子时系统。 协调时:以原子时秒长为基础,在时刻上尽量接近于世界时的一种折衷时间系统,称为世界协调时或协调时。 GPS时间系统:属于原子时系统,秒长与原子时相同,但与国际原子时的原点不同,即GPST 与IAT在任一瞬间均有一常量偏差。 GPS定位:GPS定位系统靠车载终端内置手机卡通过手机信号传输到后台来实现定位。指利用人造地球卫星确定测站点位置的技术。 GPS导航:利用GPS定位卫星,在全球范围内实时进行定位、导航的系统。 绝对定位:在地球协议坐标系中,确定观测站相对地球质心的位置。 相对定位:在地球协议坐标系中,确定观测站与地面某一参考点之间的相对位置。 动态定位:在定位过程中,接收机天线处于运动状态。 静态绝对定位:接收机安置在基线端点的接收机固定不动,通过观测,确定观测站相对地球质心的位置。 静态相对定位:接收机安置在基线端点的接收机固定不动,通过连续观测,取得充分的多余观测数据,确定观测站与地面某一参考点之间的相对位置。 优点:定位精度高;缺点:定位时间长。 差分动态定位:在已知坐标的点上安置一台GPS接收机(称为基准站),利用已知坐标和卫星星历计算出观测值的校正值,并通过无线电设备(称数据链)将校正值发送给运动中的GPS接收机(称为流动站),流动站应用接收到的校正值对自己的GPS观测值进行改正,以消除卫星钟差钟差、接收机钟差、大气电离层和对流层折射误差的影响。 整周未知数:是在全球定位系统技术的载波相位测量时,载波相位与基准相位之间相位差的

教你更好的学习GPS原理及应用这门课程

教你更好的学习GPS原理及应用这门课程随着中国北斗事业的不断发展,国家北斗行业的人才缺失,国家正大力培养北斗卫星导航相关的人才,现各大高校已经开设了相关课程,最基础最入门的一个课程——《GPS原理及应用》 一、GPS原理 GPS卫星定位基本原理:卫星不间断地发送自身的星历参数和时间信息,用户接收到这些信息后,经过计算求出接收机的三维位置,三维方向以及运动速度和时间信息。实际上是将卫星作为动态空间已知点,利用距离交会的原理确定接收机的三维位置。 GPS定位的各种常用的观测量: 1) L1载波相位观测值 2) L2载波相位观测值 3) 调制在L1上的C/A-code伪距 4) 调制在L2上的P-code伪距 5) Dopple观测值 GPS定位的分类: 1) 按定位方式,GPS定位分为单点定位和相对定位(差分定位)。 单点定位就是根据一台接收机的观测数据来确定接收机位置的方式,它只能采用伪距观

测量,可用于车船等的概略导航定位。 相对定位(差分定位)是根据两台以上接收机的观测数据来确定观测点之间的相对位置的方法,它既可采用伪距观测量也可采用相位观测量,测量或工程测量均应采用相位观测值进行相对定位。 2) 按接收机的运动状态,可分为动态定位、静态定位。 在定位观测时,若接收机相对于地球表面运动,则称为动态定位; 在定位观测时,若接收机相对于地球表面静止,则称为静态定位。 二、GPS应用 1、GPS在控制测量中的应用 GPS定位技术以其精度高、速度快、费用省、操作简便等优良特性被广泛应用于控制测量中。时至今日,可以说GPS定位技术已完全取代了常规测角、测距手段建立控制网。我们一般将应用GPS卫星定位技术建立的控制网叫GPS网。归纳起来大致可以将GPS网分为两大类:一类是全球或全国性的高精度GPS网,这类GPS网中相邻点的距离在数千公里至上万公里,其中主要任务是作为全球高精度坐标框架或全国高精度坐标框架,为全球性地球动力学和空间科学方面的科学研究工作服务,或用以研究地区性的板块运动或地壳形变规律等问题。另一类是区域性的GPS网,包括城市或矿区GPS网,GPS工程网等,这这类网中的相邻点间的距离为几公里至几十公里,其主要任务是直接为国民经济建设服务。 1)全球或全国性的高精度GPS网; 2)区域性GPS控制网。 所谓区域GPS网是指国家C、D、E级GPS网或专为工程项目布测的工程GPS网。这类网的的特点是控制区域有限(或一个市或一个地区),边长短(一般从几百米到20km),观测时间短(从快速静态定位的几分钟至一两个小时)。由于GPS定位的高精度、快速度、省费用等优点,建立区域控制网的手段我国已基本被GPS技术所取代。就其作用而言分为建立新的地面控制网;检核和改善已有地面网;对已有的地面网进行加密;拟合区域水准面。

最新GPS原理与应用复习题及参考答案资料

GPS原理与应用复习参考 一、判断题(本大题共5小题,每小题1分,共5分)(请在答题纸上判断题答题区域作答) 1. ( V)对于GPS网的精度要求,主要取决于网的用途和定位技术所能达到的精度。精度指标通常是以相临点间弦长的标准差来表示。 2. ( X)GPS的测距码(C/A码和P码)是伪随机噪声码。 3. ( X )电离层延迟的大小与载波频率无关。 4. ( X)GPS定位直接获得的高程是似大地水准面上的正常高。 5. ( X )图形强度因子是一个直接影响定位精度、但又独立于观测值和其它误差之外的 一个量。其值恒大于1,最大值可达100,其大小随时间和测站位置而变化。在GPS测量中, 希望DOF越小越好。 二、判断题(本大题共5小题,每小题1分,共5分)(请在答题纸上判断题答题区域作答) 1. (X)GPS测得的站星之间的伪距就是指GPS卫星到地面测站之间的几何距离。 2. ( V ) C/A码的码长较短,易于捕获,但码元宽度较大,测距精度较低,所以C/A码又称为捕获码或粗码。 3. ( V) GPS的空间部分(卫星星座部分)由21颗工作卫星、3颗备用卫星组成,均匀分布在6个轨道上。 4. ( X ) GPS定位直接获得的高程是似大地水准面上的正常高。 5. ( X ) GPS静态定位之所以需要观测较长时间,其主要目的是为了削弱卫星星历误差的 影响。 三、填空题(本题共15空,每空1分,共15分)(请在答题纸上填空题答题区域作答) 1. 按照《规范》规定,我国GPS测量按其精度依次划分为AA A、B、CD E六级,其中 C级网的相邻点之间的平均距离为15?10km最大距离为40 km 。 2. GPS定位系统包括空间部分、地面控制部分和用户设备部分。 3. 从误差来源分析,GPS测量误差大体上可分为以下三类:与卫星有关的误差,与信号传播有关的误差和与接收设备有关的误差。 4. 美国国防部制图局(DMA于1984年发展了一种新的世界大地坐标系,称之为美国国防 部1984年世界大地坐标系,简称WGS-84 。 5. 三台或三台以上接收机同步观测所获得的基线向量构成的闭合环称为同步环。 6. 在定位工作中,可能由于卫星信号被暂时阻挡,或受到外界干扰影响,引起卫星跟踪的 暂时中断,使计数器无法累积计数,这种现象叫周跳。 7. 在接收机和卫星间求二次差,可消去两测站接收机的相对钟差改正。 8. 利用GPS进行定位有多种方式,如果就用户接收机天线所处的状态而言,定位方式分为 . 静态定位禾口动态定位;若按参考点的不同位置,又可分为单点定位和相对 定位。 9. GPS卫星信号是由载波、导航电文、和测距码三部分组成的。 10. 对流层延迟改正模型中的大气折射指数N与温度、气压、湿度等 因素有关。 11. 差分GPS按观测值的类型可分为伪距差分和相位差分。 12. 目前正在运行的全球卫星导航定位系统有GPS 和GLONASS 。我国组建的第一代卫星导航定位系统称为北斗卫星导航系统,欧盟计划组建的卫星导航定位系统称 为Galileo 系统。 13. 在接收机间求一次差后可消除卫星钟差参数,继续在卫星间求二次差后可消除接_

卫星海洋学-考试复习资料整理

§1 §1.1 卫星海洋遥感的应用 p1 卫星海洋学涉及的详细内容有: ①海洋遥感的远离和方法:包括遥感信息形成的机理、各种波段的电磁波(可见光、红外光、微波)在大气和海洋介质中传输的规律以及海洋的波谱特征; ②海洋信息的提取:包括与海洋参数相关的物理模型、从遥感数据到海洋参数的反演算法、遥感图像处理和海洋学解释、卫星遥感数据与常规海洋数据在各类海洋模式中的同化和融合。 ③满足海洋学研究和应用的传感器的最佳设计和工作模式:包括光谱波段和微波频率的选择、光谱分辨率和空间分辨率的要求、观测周期和扫描方式的研究以及传感器噪声水平的要求。 ④反演的海洋参数在海洋学各领域中的应用。 卫星遥感所获得的海洋数据特点: 1.观测区域大 2.时空同步 3.连续 *卫星遥感资料和卫星海洋学的研究成果在海洋天气和海况预报、海洋环境监测和保护、海洋资源的开发和利用、海岸带绘测、海洋工程建设、全牛气候变化以及厄尔尼诺现象检测等科学问题上有着广泛的应用。(有问答题时加上) §1.2中国气象卫星的发展p6 我国气象卫星包括两个主要系统: 1.极轨卫星系统;2.地球静止卫星系统。 【了解】第一代极轨气象卫星“风云一号”,第一代静止气象卫星“风云二号”,第二代太阳同步轨道气象卫星“风云三号”,第二代静止气象卫星“风云四号”。(风云单号极轨,双号静止) §1.3中国海洋遥感的进步p8 2002年5月15日,我国第一颗海洋探测卫星“海洋一号A”与“风云一号”D气象卫星作为一箭双星同时发射升空; 2007年4月11日,“海洋一号”B卫星发射。 发射海洋一号卫星的主要目的是:观测海水光学特征、叶绿素浓度、海表面温度、悬浮泥沙含量、可溶有机物和海洋污染物质,并兼顾观测浅海地形、海流特征、海面上空气溶胶等要素,掌握海洋初级生产力分布、海洋渔业及养殖业资源状况和环境质量,了解重点河口港湾的悬浮泥沙分布规律,为海洋生物资源合理开发利用、沿岸海洋工程、河口港湾治理、海洋环境监测、环境保护和执法管理等提供科学依据和基础数据。 我国计划发展3个系列的海洋卫星: 1.以可见光、红外波段遥感探测海洋水色和水温为主的“海洋一号”系列卫星; 2.以微波遥感探测可全天候获取海面风场、海面高度和海表面温度场为主的“海洋二号”系列卫星; 3.同时配备光学传感器和微波传感器的可对海洋环境进行综合监测的“海洋三号”系列卫星。 §2 气象卫星与水色卫星 §2.1 遥感和遥感技术p30

卫星定位原理与应用试卷

卫星定位原理与应用2014—2015学年 山东科技大学测绘学院遥感12级 一填空题(每空一分,30分) 1 GPS是的英文简写;IGS是的英文简写。 2 L1载波的波长是,频率是;L2载波的波长是,频率是;L5载波的波长是,频率是。L1载波上调制的是,,。 3 GPS三大功能是,,。 4 GPS软件写出两个,。 5 卫星定位在建的和已经建成的四大系统,美国的,俄罗斯的,欧洲的,以及中国的。 6 协议天球坐标系转换到协议地球坐标系, , , 。 7 站间求差消去,星间求差消去,历元求差。 二判断题(20分) 1 测相应用于单点动态定位,精度10m。 2 3颗卫星即可求解接收机坐标。 3 GPST和UTC一样,都是原子时。 4 数据删除率是同一时段删除数据和剩余数据个数的比值。 5 RINEX是通用格式,常应用于多类型接收机联合作业。 6 卫星钟差Sti=a0+a1(t0-t)+a2(t0-t2) 。 7 同步环闭合差时独立基线组成的闭合环的误差。 8 站间求差可以消除卫星钟差和接收机钟差。 9 GPS解算的到是正常高 10 GPS高精度定位使用测距码。 三问答题(50分) 1 GPS相对于常规测量优越性。(5分) 2 电离层误差减小方法,推导双频改正公式。(10分) 3 测相观测方程。叙述GPS数据处理过程,以及使用某一GPS软件处理过程。(10分) 4 8个控制点分布如图,3台接收机,请做出接收机调度表。(10分) 5 40个点,2次,4台接收机,计算总观测时段,基线总数,独立基线数,必要基线数,多余基线数。(10分) 6 谈谈你对GPS与遥感专业的关系的看法,以及未来十年你可能应用到GPS的地方。 (5分)

GPS原理与应用复习总结

《GPS定位原理及应用》 第一章绪论 1.1 GPS卫星定位技术的发展 1.1.1 早期的卫星定位技术 1、无线电导航系统 罗兰--C:工作在100KHZ,由三个地面导航台组成,导航工作区域2000KM,一般精度200-300M。 Omega(奥米茄):工作在十几千赫。由八个地面导航台组成,可覆盖全球。精度几英里。 多卜勒系统:利用多卜勒频移原理,通过测量其频移得到运动物参数(地速和偏流角),推算出飞行器位置,属自备式航位推算系统。误差随航程增加而累加。 缺点:覆盖的工作区域小;电波传播受大气影响;定位精度不高 2、早期的卫星定位技术 卫星三角网: 以人造地球卫星作为空间观测目标,由地面观测站对其进行摄影测量,测定测站至卫星的方向,来确定地面点的位置的三角网。 卫星测距网: 用激光技术测定测站至卫星的距离作为观测值的网则称为卫星测距网。 20世纪60~70年代,美国国家大地测量局在英国和德国测绘部门协助下,建立了一个共45个点的全球卫星三角网,点位精度5米。 卫星三角网的缺点: 易受卫星可见条件和天气条件影响,费时费力,定位精度低。 1.1.2 子午卫星导航(多普勒定位)系统及其缺陷 多普勒频移: 多普勒效应是为纪念Christian Doppler而命名的,他于1842年首先提出了这一理论。 他认为电磁波频率在电磁源移向观察者时变高,而在波源远离观察者时变低。因此可利用频率的变化多少来确定距离的变化量。 多普勒效应的一个常被使用的例子是火车,当火车接近观察者时,其汽鸣声会比平常更刺耳。你可以在火车经过时听出刺耳声的变化。同样的情况还有:警车的警报声和赛车的发动机声。 子午卫星导航系统(NNSS): 将卫星作为空间动态已知点,通过在测站上接受子午卫星发射的无线电信号,利用多普勒定位技术,进行测速、定位的卫星导航系统。 子午卫星导航系统的优点: 经济快速、精度均匀、不受天气和时间的限制,且可获得测站的三维地心坐标。 子午卫星导航系统的缺点: 由于卫星数量少,故不能实时定位、定位时间长、定位精度也低。 1958年,美国为解决北极星核潜艇在深海航行和执行军事任务而需要精确定位的问题,开始研制军用导航卫星,命名为“子午仪计划”。1960年4月,美国发射了世界第一颗子午导航卫星,传统的无线电导航系统从此被这种新的导航方式取代。美国1964年建成子午导航卫星系统,主要由美国海军使用,到1967年开始正式向民用开放。由于该系统卫星数目较小(5-6颗),运行高度较低(平均1000KM),从地面站观测到卫星的时间隔较长(平均1.5h),因而它无法提供连续的实时三维导航,而且精度较低。单点定位精度约为30—40米,每次定位约需8—10分钟。而各测站观测了公共的17次合格的卫星通过时,联测定位的精度才能达到0.5米左右。子午导航卫星系统是低轨道导航卫星,它集中了远程无线电导航台全球覆盖和近程无线电导航台定位精度高的优点,仅用4颗卫星组成的太空导航星座就能提供全天候全球导航覆盖和周期性二维(经纬度)定位能力,使全球用户统一于地心坐标系进行高精度定位,使导航技术产生了革命性突破。 70年代中期,我国利用引进的多普勒接收机进行了西沙群岛的大地测量基准联测,国家测绘总局和总参测绘局联合测设了全国卫星多普勒大地网,石油和地质勘探部门也在西北地区测设了卫星多普勒定位网。

卫星测高技术及其应用

卫星测高技术及应用课程回顾 ●卫星测高技术发展及应用概述 (2) 1卫星测高任务概况 (2) 2、卫星测高任务中搭载辐射计的主要目的 (2) 3、双频雷达高度计 (2) 4、卫星测高任务中使用的主要 (2) 5、一般卫星测高任务中需要搭载哪些基本仪器设备,各主要目的是什么? (2) 6、传统的指向星下点的雷达高度计的主要不足?可能存在哪些技术改进? (3) 7、GNSS测高的工作方式?优缺点? (3) 8、Ka波段测高优缺点? (3) 9、卫星测高技术应用概况 (3) 10、基本概念 (3) ●卫星雷达高度计观测基本原理 (3) 1、卫星测高的基本原理 (3) 2、卫星测高两种基本方式的特点 (3) 3、当前测高任务主要使用哪些频段,各频段有何有点和不足? (4) 4、高度计测风基本原理 (4) 5、有哪些主要遥感方式进行海面风速观测 (4) 6、卫星雷达高度计的观测信息包括哪些?精度如何? (4) ●卫星高度计观测误差 (5) 2、基本概念: (5) 3、影响测高卫星轨道误差的主要因素? (5) ●卫星测高波形理论与处理方法 (5) 1、测高回波形成原理与过程 (5) 2、布朗模型的基本假设 (5) 3、测高波形模型公式的基本意义? (6) 4、图形的几何物理意义 (6) ●卫星测高数据处理 (6) 1、卫星测高数据有哪些基本等级? (6) 2、地球物理产品有哪些分类和特点? (6) 3、测高数据编辑的目的? (6) 4、为什么进行多测高数据处理时要进行基准统一? (6) 5、共线法的基本思想是什么? (6) 6、交叉点平差的主要目的? (7) 7、交叉点计算的主要步骤? (7) ●卫星测高反演海洋重力场理论 (7) 1、斯托克斯公式:由已知的重力异常Δg计算大地水准面高N (7) 2、逆斯托克斯公式:由已知的大地水准面N计算重力异常Δg (7) 3、测高剖面计算垂线偏差 (7) 4、Molodensky公式计算高程异常:垂线偏差计算大地水准面 (7) 6、卫星测高数据计算海洋大地水准面的主要步骤? (7) ●卫星测高技术的其它应用 (7)

武汉大学遥感课件整理

第一章 遥感的基本概念:广义的遥感: 泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。实际工作中,重力、磁力、声波、地震波等的探测被划为物探,只有电磁波探测属于遥感的范围。狭义的遥感: 应用探测仪器,不与探测目标接触,从远距离把目标物的电磁波记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 遥感系统:目标物的电磁波特征、信息的获取、信息的接收、信息的处理、信息的应用 遥感分类:按平台分:航天遥感(卫星太空站)航空遥感(飞机气球)地面遥感(高塔、车、船)按传感器探测波段分可见光/红外遥感、热红外遥感、微波遥感。按研究对象分:1资源遥感以地球资源为调查对象2环境遥感对自然与社会环境的动态变化监测。按工作方式分:主动遥感、被动遥感。按空间尺度分:1全球遥感全球性资源环境、2区域遥感区域资源开发3城市遥感城市规划土地利用/覆盖 遥感的特点:1大面积同步观测2时效性动态监测,快速更新监测范围数据3数据的综合性与可比性4经济性5局限性 遥感应用:一、遥感在资源调查方面的应用 1,在农业、林业方面的应用:农、林土地资源调查、土地覆盖调查、农林病虫害、土壤干旱、盐化、沙化的调查及监测,以及农作物长势的监测与估产、森林资源的清查、牧场草场资源,野生动物生态环境、农用水资源等。2,在地质矿产方面的应用:客观真实地反映各种地质现象,形象地反映区域地质构造,地质找矿工程地质、地震地质、水文地质和灾害地质3、在水文、水资源方面的应用:水资源调查、流域规划、水土流失调查、海洋调查等。青藏高原水资源调查夏威夷群岛淡水资源 第二章 电磁波:交互变化的电场和磁场在空间的传播。 电磁波谱:将整个电磁波按产生的方式和物理特性的不同可划分为不同的波谱区。 绝对黑体:能够吸收全部入射辐射能量的物体 斯忒藩-玻尔兹曼定律:1cm2 面积的黑体辐射到半球空间里的总辐射通量密度的表达式为:W = σT T的四次方 σ= 5.67Х10 W/ cm ? K 黑体辐射的特性: 1,斯忒藩-玻耳兹曼定律:辐射强度随温度升高而迅速高。2,维恩位移定律:随着温度的升高,辐射最大值所对应的波长移向短波方向。3,每根曲线不相交,温度越高所有波长上的波谱辐射通量密度也越大。 太阳辐射:太阳辐射包括了整个电磁波波谱范围,波长从短于1埃(1埃=10-10米)的γ射线到波长大于10KM的无线电波。各波长范围内辐射能量大小不同,可见光波谱段辐射强度最大。 大气散射的概念:电磁波与物质相互作用后电磁波偏离原来的传播方向的一种现象。 大气窗口:电磁波通过大气层时较少被反射,吸收和散射的,透射率较高的波段 地物反射波谱特性 地物反射波谱:是研究可见光至近红外波段上地物反射率随波长的变化规律。 表示方法:一般采用二维几何空间内的曲线表示,横坐标表示波长,纵坐标表示反射率。植被的波谱特性 在可见光波段 在0.45um附近(蓝色波段)有一个吸收谷; 在0.55um附近(绿色波段)有一个反射峰;

GPS原理及应用题目及答案

GPS原理及应用题目及答案 GPS原理及应用复习题目 一.名词解释 1二体问题:2真近点角、平近点角、偏近点角:3多路径效应:4无约束平差和约束平差5.章动6.异步观测7.接收机钟差8.周跳9.三维平差10.岁差11.同步观测12.卫星钟差13.整周未知数14.二维平差 二.填空题 1.GPS工作卫星的地面监控系统包括__________、__________、__________。 2.GPS系统由__________、__________、__________三大部分组成。 3.按照接收的载波频率,接收机可分为__________和__________接收机。 4.GPS卫星信号由、、三部分组成。 5.接收机由、、三部分组成。 6.GPS卫星信号中的测距码和数据码是通过技术调制到载波上的。 7.1973年12月,GPS系统经美国国防部批准由陆海空三军联合研制。自1974年以来其经历了、、三个阶段。 8.GPS卫星星座基本参数为:卫星数目为、卫星轨道面个数为、卫星平均地面高度约20200公里、轨道倾角为度。

9.GPS定位成果属于坐标系,而实用的测量成果往往属于某国的国家或地方坐标系,为了实现两坐标系之间的转换,如果采用七参数模型,则该七个参数分别为,如果要进行不同大地坐标系之间的换算,除了上述七个参数之外还应增加反映两个关于地球椭球形状与大小的参数,它们是和。 10.真春分点随地球自转轴的变化而不断运动,其运动轨迹十分复杂,为了便于研究,一般将其运动分解为长周期变化的和短周期变化的。 11.GPS广播星历参数共有16个,其中包括1个,6个对应参考时刻的参数和9个反映参数。 12.GNSS的英文全称是。 13.载体的三个姿态角是、、。 14、GPS星座由颗卫星组成,分布在个不同的轨道上,轨道之间相距°,轨道的倾角是°,在地球表面的任何地方都可以看见至少颗卫星,卫星距地面的高度是km。 15、GPS使用L1和L2两个载波发射信号,L1载波的频率是MHZ,波长 是cm,L2载波的频率是MHZ,波长是cm。 16、GPS卫星除了受到引力之外,还受到地球引力场摄动力、光压摄动力、大气阻力、摄动力等的摄动力的影响,因此卫星的运动实际上是。 16、GPS卫星星历有两种,一种是,另一种是。前者包含时间二

浅谈GPS原理及其应用

浅谈GPS原理及其应用 随着科技和制造业的进步,众多科技含量较高的产品被越来越广泛地应用在生活中,卫星导航定位系统就是一个很好的应用实例,其中以美国的GPS系统应用最为普遍,常见的如:车载GPS导航仪、智能手机中的电子地图导航功能等。在本人的教学工作中,多次遇到学生询问于此相关的问题,本文就GPS的原理及应用进行简述。 1.卫星导航定位系统含义及概况 定位,顾名思义就是确定某一个目标的位置,就是要搞明白“我在哪里”的问题。导航,就是对某一目标(汽车或者飞机等)运动时的连续定位,就是搞明白“我走了哪些路”,或者“我将要走哪条路”。随着航天、通讯等科技的发展,人造卫星也被用来定位和导航,其能够提供全球性的,全天候的,高精度、实时的导航定位服务,以及授时服务。 全球卫星导航系统有好几种,美国的GPS 、俄罗斯的GLONASS、我国的Compass(北斗)、欧洲的伽利略(Galileo)系统,可用卫星数目达到100颗以上[1]。其中在全球范围内应用最成熟、最广泛的就是美国的GPS系统。GPS系统始于1973年的美国国防部批准的“导航卫星定时和测距/全球定位系统”,简称GPS(即Global Positioning System,全球定位系统),被誉为人类在20世纪仅次于计算机之后的最为重大的发明。 2.GPS系统的基本定位原理 GPS系统的基本配置是24颗卫星构成,卫星位于6个地心轨道上,每个轨道有4颗卫星,每个轨道接近于圆形,与赤道面的倾斜夹角为55°,沿赤道以60°间隔均匀分布[2],形成了对地球的网络包围,图1表述了GPS卫星的星座分布。轨道的半径约为26600km,也就是高度大约离地面20200km,轨道的周期是半个恒星日,约11.976个小时。理论上,在地球表面的绝大多数地点都能观测到的有效卫星颗数≥4颗。而4颗或者更多的GPS卫星就能够确定每天24小时内地球表面上任何地点观测者(观测设备)的位置了。如图2所示。 图2 GPS定位示意图 每一颗GPS卫星都携带有铯原子钟和(或)铷原子钟,为发射信号提供高精度时间信息的,GPS卫星在工作时,以一定的频率(两个频率,1575.42MHz 和1227.6MHz)向地球发射无线电波信号,其报文的主要信息是该电波信号发出时刻的时间信息,用户接收机无源工作(即只接收信号),接收能观测到GPS卫星的电波信号,并标记出收到该电波信号的接收时刻,算出该电波从发射到被接收的传播时间,已知电波是以光速传播的,就可以用传播时间来计算出到接收机到GPS卫星的距离。 在以地心为坐标原点的WGS-84地心坐标系三维空间中,如果能够知道到达不在同一条直线上的3颗卫星的距离,那么就可以确定该接收机在地球附近所在的位置。在一段时间内连续观测,就可以得出接收机的经纬度和高度变化情况,于是就得出了接收机移动的方向和速度了。由于GPS定位是依靠时间差来实现距离计算的,所以必须需要第4颗卫星给接收装置提供时钟修正信息,使接收机时钟与卫星时钟同步。 实现定位之后,就可以在应用设备上记录目标移动时所经过的路径,并且可以经过估计和计算,对某预定地点提供导航服务。

《GPS定位原理与应用》习题集答案

第一篇《GPS定位原理与应用》习题集 一、名词解释 一、名词解释 I、卫星星历:是描述卫星运行轨道的信息。 2、天线高:指天线的相位中心至观测点标志中心顶面的垂直距离。 3,春分点:当太阳在黄道上从天球南半球向北半球运行时,黄道与地球赤道的交点。 4、开普勒第一定律:卫星运行的轨道是一个椭圆,而该椭圆的一个焦点与地球的月心相重合。这一定律表明,在中心引力场中,卫星绕地球运行的轨道面,是一个通过划球质心的静止平面。 5、同步环:由多台接收机同步观测的结果所构成的闭合环称为同步环。 6、多路朽效应:在GPS测量中,如果测站周围的反射物所反射的卫星信号(反射波)进入接收衫 天线,这就将和直接来自卫星的信号(直接波)产生干涉,从而使观测值偏离真值产且 所谓的多路径误差。这种山于多路径的信号传播所引起的干涉时延效应称为多路径效应。 7、周跳:在接收机跟踪GPS卫星进行观测的过程中,常常山于多种原因(例如接 收机天线被阻挡、外界噪声信号的千扰等),可能使载波相位观测值中的9周数不正确但其不足1整周的小数部分仍然是正确的,这种现象成为整周变跳,简称周跳。 8、绝对定位:利用GPS卫星和用户接收机间的距离观测值直接确定用户接收机天 线在在WGS-84坐标系中相对地球质心的绝对位置。 9,恒星时:以春分点为参考点,由春分点的周日视运动所确定的时间,称为恒星 时。恒星时是地方时。 10、卫星的无摄运动:卫星在轨运动受到中心力和摄动力的影响。假设地球为匀质球体,其对卫星的引力称为中心力(质量集中于球体的中心)。中心力决定着卫星运动的4本规律和特征,此时卫星的运动称为无摄运动,山此所决定的卫星轨道可视为理想的轨道,又称卫星的无摄运动轨道。 11,精密星历:是一些国家的某些部门,根据各自建立的跟踪站所获得的精密观测 资料,应用与确定预报星历相似的方法,而计算的卫星星历。它可以向用户提供在用户观测时间的卫星星历,避免了预报星历外推的误差。 12、相对定位:用两台或多台接收机分别安置在基线的两端,并同步观测相同的GPS 卫星,以确定4线端点在协议地球坐标系中的相对位置或4线向量的定位方法。 13、星历误差:卫星的在轨位置由广播星历或精密星历提供,山星历计算的卫星位置与其实际位置之差,称为卫星星历误差。 14,重复观测边:同一系线边,若观测了多个时段(>-2),则可得到多个从线边长。这种具有多个独立观测结果的幕线边,称为重复边。 15,异步环:在构成多边形环路的所有基线向量中,只要有非同步观测琴线向量, 则该多边形环路叫异步观测环,简称异步环。 16、定位星座:在用GPS卫星进行导航定位时,为了求得测站的三维位置,必须观测4颗GPS卫星,称之为定位星座。 17、间隙段: GPS卫星的星座,在个别地区仍可能在其一短时间内(例如数分钟)只

GPS原理及应用题目及答案

GPS原理及应用复习题目 一.名词解释 1二体问题:2真近点角、平近点角、偏近点角:3多路径效应:4无约束平差和约束平差5.章动6.异步观测7.接收机钟差8.周跳9.三维平差10.岁差11.同步观测12.卫星钟差13.整周未知数14.二维平差 二.填空题 1.GPS工作卫星的地面监控系统包括__________ 、__________ 、__________ 。 2.GPS系统由__________ 、__________ 、__________ 三大部分组成。 3.按照接收的载波频率,接收机可分为__________ 和__________接收机。 4.GPS卫星信号由、、三部分组成。 5.接收机由、、三部分组成。 6.GPS卫星信号中的测距码和数据码是通过技术调制到载波上的。 7. 1973年12月,GPS系统经美国国防部批准由陆海空三军联合研制。自1974年以来其经历了、、三个阶段。 8.GPS 卫星星座基本参数为:卫星数目为、卫星轨道面个数为、卫星平均地面高度约20200公里、轨道倾角为度。 9.GPS定位成果属于坐标系,而实用的测量成果往往属于某国的国家或地方坐标系,为了实现两坐标系之间的转换,如果采用七参数模型,则该七个参数分别为,如果要进行不同大地坐标系之间的换算,除了上述七个参数之外还应增加反映两个关于地球椭球形状与大小的参数,它们是和。 10.真春分点随地球自转轴的变化而不断运动,其运动轨迹十分复杂,为了便于研究,一般将其运动分解为长周期变化的和短周期变化的。 11.GPS广播星历参数共有16个,其中包括1个,6个对应参考时刻的参数和9个反映参数。 12.GNSS的英文全称是。 13.载体的三个姿态角是、、。 14、GPS星座由颗卫星组成,分布在个不同的轨道上,轨道之间相距°,轨道的倾角是°,在地球表面的任何地方都可以看见至少颗卫星,卫星距地面的高度是km。 15、GPS使用L1和L2两个载波发射信号,L1载波的频率是MHZ,波长 是cm,L2 载波的频率是MHZ,波长是cm。 16、GPS卫星除了受到引力之外,还受到地球引力场摄动力、光压摄动力、大气阻力、摄动力等的摄动力的影响,因此卫星的运动实际上是。

遥感原理与应用复习重点整理 .doc

学习好资料欢迎下载 绪论 1、遥感的概念:在不直接接触的情况下,在地面,高空和外层空间的各种平台上,运用各 种传感器获取各种数据,通过传输,变换和处理,提取有用的信息,实现研究地物空间形状、 位置、性质、变化及其与环境的关系的一门现代应用技术学科。 遥感概念:在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术。 2、遥感的分类:按照遥感的工作平台分类:地面遥感、航空遥感、航天遥感。 按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感、多光谱遥感等。 按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等。 按照资料的记录方式:成像方式、非成像方式。 按照传感器工作方式分类:主动遥感、被动遥感。 3、遥感起源于航空摄影、摄影测量等。 第一章 1、电磁波:通过变化电场周围产生变化的磁场,而变化的磁场又产生变化的电场之间的相 互联系传播的过程。电磁波的特性:具有二象性,即波动性(干涉、衍射、偏振现象)和粒 子性。 2、波长最长的是无线电波,最短的是γ 射线。 3、电磁波谱图:按电磁波在真空中传播的波长或频率递增或递减顺序排列制成的图案。 4、地物的反射率概念:地物对某一波段的反射能量与入射能量之比。反射率随入射波长变 化而变化。反射类型:漫反射、镜面反射、方向反射。 5、影响地物反射率的 3 个因素:入射电磁波的波长,入射角的大小,地表颜色与粗糙程度。 附:影响地物光谱反射率变化的因素: a 太阳的高度角和方位角。 B 传感器的观测角和方位角 c 不同的地理位置 d 地物本身的变异 e时间、季节的变化 6、地物反射光谱曲线:根据地物反射率与波长之间的关系而绘成的曲线。 1.不同地物在不 同波段反射率存在差异 2. 同类地物的反射光谱具有相似性,但也有差异性。不同植物;植 物病虫害 3. 地物的光谱特性具有时间特性和空间特性。(同物异谱,同谱异物)。 7、地物发射电磁波的能力以发射率作为衡量标准;地物的发射率是以黑体辐射作为参照 标准。 8、绝对黑体:对任何波长的电磁波辐射都全部吸收的物体。(灰体发射率小于1)。 9、黑体辐射的三个特性: a.辐射通量密度随波长连续变化,每条曲线只有一个最大值。 b. 温度越高,辐射通量密度越大,不同温度的曲线不同。(绝对黑体表面,单位面积发出的总 辐射能与绝对温度的四次方成正比) c.随着温度的升高,辐射最大值所对应的波长向短波方向 移动。(维恩位移定律) 10、大气的垂直分层:对流层(航空遥感活动区)、平流层、电离层和外大气层。在可见光波段, 引起电磁波衰减的主要原因是分子散射。在紫外、红外与微波区,引起衰减的主要原因是大气吸 收。引起大气吸收的主要成分是:氧气、水( 0.7~1.95)、臭氧( 0.3 以下)、二氧化碳 ( 2.6~2.8)。 11、散射作用:太阳辐射在长波过程中遇到小微粒而使传播方向改变,并向各个方向散开。 改变了电磁波的传播方向;干扰传感器的接收;降低了遥感数据的质量、影像模糊,影响判 读。 12、三种散射方式:米氏散射:当微粒的直径与辐射波长差不多时的大气散射。 均匀散射:当微粒的直径比辐射波长大得多时发生的散射。 瑞利散射:当微粒的直径比辐射波长小得多时发生的散射。 13、大气窗口的概念:通过大气而较少被反射、吸收或散射,衰减程度较小,透过率较高的

GPS原理与应用复习资料、课后思考题

1、坐标转换需要那几个参数? 七参数布尔莎模型:即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z 旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。 2、子午面、黄道、天球赤道面、天轴、春分点、升交点、升交点赤径几大参数的含义? 天球:天文学等领域中,天球是一个想象的旋转的球体,理论上具有无限大的半径,与地球同心。天空中所有的物体都想象成是在天球上。与地球相对应,它有天赤道,天极。 子午面:与地球自转轴平行,或包含地球椭球体短轴的平面。是量度经度的起始面或终止面,通过物点和光轴的截面称为子午面。轴上物点有无数个子午面,而轴外物点只有一个子午面。与子午面垂直相交的面称为弧矢面。 黄道:地球绕太阳公转的轨道平面与天球相交的大圆。由于地球的公转运动受到其他行星和月球等天体的引力作用,黄道面在空间的位置产生不规则的连续变化。但在变化过程中,瞬时轨道平面总是通过太阳中心。这种变化可以用一种很缓慢的长期运动再迭加一些短周期变化来表示。 天球赤道面:天球赤道是把我们的天空想象成一个密闭的球,将我们地球的赤道投射到这个天球上.天赤道有无限的直径和周长. 天轴:将地轴无限延长,所得到的直线叫天轴,当然,天轴也是一根假想的轴。天轴与天球的交点就叫天极,和地球上北极所对应的那一点叫北天极,或天球北极;和地球上南极对应的那一点叫南天极,也称天球南极. 春分点:从地球上看,太阳沿黄道逆时针运动,黄道和赤道在天球上存在相距180°的两个交点,其中太阳沿黄道从天赤道以南向北通过天赤道的那一点,称为春分点,与春分点相隔180°的另一点,称为秋分点,冬至后,太阳从南向北移动,在春分那一天通过这一点。太阳分别在每年的春分(3月21日前后)和秋分(9月23日前后)通过春分点和秋分点。 升交点:卫星自南向北运动,卫星轨道上升段和赤道面的交点 升交点赤径:含地轴和春分点的子午面与含地轴和升交点的子午面之间的交角 3、岁差、章动的含义 岁差:地轴绕着一条通过地球中心而又垂直于黄道面的轴线的缓慢圆锥运动,周期为26000年,由太阳、月球和其他行星对地球赤道隆起物的吸引力所造成,结果是春分点逐渐向西移动。 章动:由于月球、太阳和各大行星与地球之间的相对位置存在周期性变化,因此作用在地球赤道隆起部分的力矩也在发生变化,地月系质心绕日公转的轨道面也存在周期性的摄动,因此,在岁差上的基础上还存在各种大小和周期各不相同的微小的周期性变化。 4、参心坐标系、地心坐标系的定义及差异 参心坐标系:是以参考椭球几何中心为原点的大地坐标系;通常分为:参心空间直角坐标系(以X,Y,Z为其坐标元素)和参心大地坐标系(以B,L,H为其坐标元素)参心坐标系是在参考椭球内建立的O-XYZ坐标系,原点O为参考椭球的几何中心,X轴与赤道面和首子午面的交线重合,向东为正。Z轴与旋转椭球的短轴重合,向北为正。Y轴与XZ平面垂直构成右手系。 地心坐标系:以地球质心为原点建立的空间直角坐标系,或以球心与地球质心重合的地球椭球面为基准面所建立的大地坐标系,通常分为地心空间直角坐标系(以x,y,z为其坐标元素)和地心大地坐标系(以B,L,H为其坐标元素)。地心坐标系是在大地体内建立的O-XYZ坐标系。原点O设在大地体的质量中心,用相互垂直的X,Y,Z三个轴来表示,X

相关主题
文本预览
相关文档 最新文档