当前位置:文档之家› 数据结构与算法实验——图的

数据结构与算法实验——图的

数据结构与算法实验——图的
数据结构与算法实验——图的

数据结构与算法实验——图的基本操作

图的基本操作实验报告

图的基本操作实验报告

实验名称

图的基本操作

实验目的

1.掌握图的各种存储结构,特别要熟练掌握邻接矩阵和邻接表的存储结构;

2.遍历是图各种应用的算法的基础,要熟练掌握图的深度优先遍历和广度优先

遍历的算法,复习栈和队列的应用;

3.掌握以邻接矩阵作为存储结构的生成图的最小生成树的普利姆算法;

实验内容

编制一个演示图的邻接表的创建、深度遍历、广度遍历操作的程序。

问题描述

用数据结构相关知识,实现邻接表的定义和操作。该程序包括图的邻接表的结点类型定义以及对图操作的具体的函数定义(包括:建立图的邻接表、深度优先遍历图、广度优先遍历图)。

问题分析

该实验是基于C语言和数据结构知识基础的对图的基本操作的检验,无需设计复杂的算法,程序语句也相对简单。因此,我直接按要求定义了对图操作的具体函数,并于主函数中实现对应的功能调用。

实验步骤

1.需求分析

本演示程序用VC++编写,完成图的邻接表的生成、遍历基本操作。

输入的形式和输入值的范围:在输入邻接表顶点信息前,必须先确定该信息能正确创建邻接表。

②输出的形式:在所有三种操作中都显示操作是否正确以及操作后图的内

容。

③程序所能达到的功能:完成图的邻接表的生成、深度优先遍历、广度优先

遍历基本操作。

④测试数据:创建操作中依次输入7,7作为顶点数和边数,以(0,1)(0,2)(1,3)(1,5)(3,4)(3,6)(4,5)作为各顶点信息生成一个邻接表。

2.概要设计

1)为了实现上述程序功能,需要定义二叉树的抽象数据类型:

ADT Graph {

数据对象:顶点的有穷非空集合和边的集合

数据关系:结点具有相同的数据类型及层次结构

基本操作:

Void InitGraph(ALGraph *G)

初始条件:无

操作结果:初始化图

Void DFSTraverse(ALGraph *G)

初始条件:图Graph已存在

操作结果:按深度优先遍历图的邻接表

Void BFSTraverse(ALGraph *G)

初始条件:图Graph已存在

操作结果:按广度优先遍历图的邻接表

2)本程序包含7个函数:

①主函数main() ②建立一个图的邻接表函数CreateGraphAL ()③深度优先遍历图 DFS ()④广度优先遍历 BFS()

函数说明

#include

#include

#define MaxVertexNum 100

#define QueueSize 30

typedef enum{FALSE,TRUE}Boolean;

Boolean visited[MaxVertexNum];

typedef char VertexType;

typedef int EdgeType;

typedef struct node //边表结点

{

int adjvex; //邻接点域

struct node *next; //域链

//若是要表示边上的权,则应增加一个数据域}EdgeNode;

typedef struct vnode //顶点边结点

{

VertexType vertex; //顶点域

EdgeNode *firstedge;//边表头指针

}VertexNode;

typedef VertexNode AdjList[MaxVertexNum];

//AdjList是邻接表类型

typedef struct

{

AdjList adjlist; //邻接表

int n,e; //图中当前顶点数和边数

}ALGraph;

void CreateGraphAL (ALGraph *G)

{

int i,j,k;

EdgeNode * s;

printf("请输入顶点数和边数(输入格式为:

顶点数,边数):\n");

scanf("%d,%d",&(G->n),&(G->e));

// 读入顶点数和边数

printf("请输入顶点信息(输入格式为:顶

点号)每个顶点以回车作为结束:\n");

for (i=0;in;i++) //

立有n个顶点的顶点表

{

scanf("\n%c",&(G->adjlist[i].vertex)); //

读入顶点信息

G->adjlist[i].firstedge=NULL; // 点的边表头指针设为空

}

printf("请输入边的信息(输入格式

为:i,j):\n");

for (k=0;ke;k++) // 建立边表

{

scanf("\n%d,%d",&i,&j); // 读入边的顶点对应序号

s=new EdgeNode; // 生成新边表结点s

s->adjvex=j; // 邻接点序号为j

s->next=G->adjlist[i].firstedge; // 将新边表结点s插入到顶点Vi的边表头部 G->adjlist[i].firstedge=s;

s=new EdgeNode;

s->adjvex=i;

s->next=G->adjlist[j].firstedge;

G->adjlist[j].firstedge=s;

}

}

/**************************************** ********************************/

/* 深度优先遍历*/

/**************************************** ********************************/

void DFS(ALGraph *G,int i)

{

//以vi为出发点对邻接表表示的图G进行深度优先搜索

EdgeNode *p;

printf("visit

vertex:%c\n",G->adjlist[i].vertex); // 访问顶点vi

visited[i]=TRUE; //标记vi已访问

p=G->adjlist[i].firstedge; //取vi 边表的头指针

while(p)

{ //依次搜索vi的邻接点vj,这里j=p->adjvex

if (!visited[p->adjvex]) //若vi尚未被访问

DFS(G,p->adjvex); //则以Vj为出发点向纵深搜索

p=p->next; //找vi的下一邻接点

}

}

void DFSTraverseM(ALGraph *G)

{

int i;

for(i=0;in;i++)

visited[i]=FALSE;

for(i=0;in;i++)

if(!visited[i])

DFS(G,i);

}

/**************************************** ********************************/

/* 广度优先遍历*/

/**************************************** ********************************/ typedef struct

{

int front;

int rear;

int count;

int data[QueueSize];

}CirQueue;

void InitQueue(CirQueue *Q)

{

Q->front=Q->rear=0;

Q->count=0;

}

int QueueEmpty(CirQueue *Q)

{

return Q->front==Q->rear;

}

int QueueFull(CirQueue *Q)

{

return

(Q->rear+1)%QueueSize==Q->front; }

void EnQueue(CirQueue *Q,int x) {

if (QueueFull(Q))

printf("Queue overflow"); else

{

Q->count++;

Q->data[Q->rear]=x;

Q->rear=(Q->rear+1)%QueueSize; }

}

int DeQueue(CirQueue *Q)

{

int temp;

if(QueueEmpty(Q))

{

printf("Queue underflow");

return false;

}

else

{

temp=Q->data[Q->front];

Q->count--;

Q->front=(Q->front+1)%QueueSize; return temp;

}

}

void BFS(ALGraph*G,int k)

{ // 以vk为源点对用邻接表表示的图G进行广

度优先搜索

int i;

CirQueue Q; //须将队列定义中DataType改为int

EdgeNode *p;

InitQueue(&Q); //队列初始化

printf("visit

vertex:%c\n",G->adjlist[k].vertex); //

访问源点vk

visited[k]=TRUE;

EnQueue(&Q,k); //vk已访问,将其人队。(实际上是将其序号人队)

while(!QueueEmpty(&Q))

{ //队非空则执行

i=DeQueue(&Q); //相当于vi出队

p=G->adjlist[i].firstedge; //取vi 的边表头指针

while(p)

{ //依次搜索vi的邻接点vj(令p->adjvex=j)

if(!visited[p->adjvex])

{ //若vj未访问过

printf("visit

vertex:%c\n",G->adjlist[p->adjvex].vertex ); //访问vj

visited[p->adjvex]=TRUE;

EnQueue(&Q,p->adjvex); //访问过的vj人队

}

p=p->next; //找vi的下一邻接点

}

}

}

void BFSTraverseM(ALGraph *G)

{

int i;

for (i=0;in;i++)

visited[i]=FALSE;

for (i=0;in;i++)

if (!visited[i])

BFS(G,i);

}

/****************************************

********************************/

/* 主函数调用*/

/**************************************** ********************************/

int main()

{

int n;

ALGraph G;

CreateGraphAL(&G);

printf("深度优先遍历:\n");

DFSTraverseM(&G);

p rintf("广度优先遍历:\n");

BFSTraverseM(&G);

return 0;

}

程序流程图

调试报告

发现问题:

1.在创建图的邻接表以后,得到的深度优先遍历和自己在草稿纸上演算得到的

序列不符。

2.在创建图的邻接表以后,得到的广度优先遍历和自己在草稿纸上演算得到的

序列不符。

调试:

1.仔细检查程序后,发现是因为创建邻接表的方法是头插法;

2.检查程序,发现依据队列的长度而判断队满和队空的条件不能实现。

解决方案:

1.我重新在草稿纸上对用头插法建立的邻接表进行深度遍历;

2.将队满的条件修改为:(rear+1)%QueueSize==front;将队空的条件修改为:

rear==front

结果:结果运行正确!

使用说明

建立邻接表

深度优先遍历

广度优先遍历

心得体会

数据结构顾名思义讲求的是一种存储结构,一路走来先后学习了表、树,最后学习的是图,对于每种存储结构学习之初都会学习一些基本操作,而操作之中又以创建和遍历为最基本的操作,只有熟练掌握了以后才能对其他操作进行研究和学习。

图的存储结构相比表和树都要复杂,其操作过程也较难进行掌握。仅仅是创建图的存储结构便分为矩阵、临接链表、十字链表等,对于每一种存储结构又分为有向与无向之分。然而,深度优先和广度优先是两种算法,其算法思想

并不依赖与元素的存储方式,也就是说算法思想不会因为存储结构的改变而发生改变,当然对于不同的存储结构仅仅是代码的表现形式不同而已,正所谓一同百通,只要熟悉存储结构的特点又对算法思想烂熟于心便可无往不胜。以下是存在的问题:

1.程序编写时,必须要细心。有时候问题出现了,可能会一直查不出来,自己

也不容易发现。在编写这个程序时,我就出现了这个问题,之后一定要尽量避免此类问题出现。

2.加强练习,提高能力。这几个子函数的名称都是我边看着书边写的,还没有

完全脱离书本,把这个程序真正变成自己建的东西,所以我还要加强记忆,加强练习。

数据结构与算法设计实验

《数据结构与算法设计》 实验报告 ——实验二 学院:自动化学院 班级: 学号: : 一、实验目的

按照四则运算加、减、乘、除、幂(^)和括号的优先关系和惯例,编写计算器程序。 二、实验容 简单计算器。 请按照四则运算加、减、乘、除、幂(^)和括号的优先关系和惯例,编写计算器程序。要求: ①从键盘输入一个完整的表达式,以回车作为表达式输入结束的标志。 ②输入表达式中的数值均为大于等于零的整数。中间的计算过程如果出现小数也只取 整。 例如,输入:4+2*5= 输出:14 输入:(4+2)*(2-10)= 输出:-48 三、程序设计 概要设计 1、宏定义 #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 2、基本函数: (1)void InitStack_char(SqStack *S) //char型栈初始化 (2)void InitStack_int(sqStack *S) //int型栈初始化 (3)void Push_char(SqStack *S,char ch) //char型元素进栈 (4)void Push_int(sqStack *S,int num) //int型元素进栈 (5)char GetTop_char(SqStack *S) //取char型栈顶元素 (6)int GetTop_int(sqStack *S) //取int型栈顶元素 (7)Status In(char c) //判断是否为运算符,若是运算符则返回,否则返回 (8)char Precede(char a,char b) //判断两运算符的先后次序 (9)Status Pop_char(SqStack *S,char &x) //char型栈出栈 (10)Status Pop_int(sqStack *S,int &x) //int型栈出栈 (11)int Operate(int a,char theta,int b) //计算a和b运算结果 3、流程图

数据结构实验报告

数据结构实验报告 一.题目要求 1)编程实现二叉排序树,包括生成、插入,删除; 2)对二叉排序树进行先根、中根、和后根非递归遍历; 3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。 4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、姓名、成绩3项),对比查找效率,并说明在什么情况下二叉排序树效率高,为什么? 二.解决方案 对于前三个题目要求,我们用一个程序实现代码如下 #include #include #include #include "Stack.h"//栈的头文件,没有用上 typedefintElemType; //数据类型 typedefint Status; //返回值类型 //定义二叉树结构 typedefstructBiTNode{ ElemType data; //数据域 structBiTNode *lChild, *rChild;//左右子树域 }BiTNode, *BiTree; intInsertBST(BiTree&T,int key){//插入二叉树函数 if(T==NULL) { T = (BiTree)malloc(sizeof(BiTNode)); T->data=key; T->lChild=T->rChild=NULL; return 1; } else if(keydata){ InsertBST(T->lChild,key); } else if(key>T->data){ InsertBST(T->rChild,key); } else return 0; } BiTreeCreateBST(int a[],int n){//创建二叉树函数 BiTreebst=NULL; inti=0; while(i

数据结构与算法C语言版期末复习题

《数据结构与算法》期末复习题 一、选择题。 1.在数据结构中,从逻辑上可以把数据结构分为 C 。 A.动态结构和静态结构B.紧凑结构和非紧凑结构 C.线性结构和非线性结构D.内部结构和外部结构 2.数据结构在计算机内存中的表示是指 A 。 A.数据的存储结构B.数据结构C.数据的逻辑结构D.数据元素之间的关系 3.在数据结构中,与所使用的计算机无关的是数据的 A 结构。 A.逻辑B.存储C.逻辑和存储D.物理 4.在存储数据时,通常不仅要存储各数据元素的值,而且还要存储 C 。 A.数据的处理方法B.数据元素的类型 C.数据元素之间的关系D.数据的存储方法 5.在决定选取何种存储结构时,一般不考虑 A 。 A.各结点的值如何B.结点个数的多少 C.对数据有哪些运算D.所用的编程语言实现这种结构是否方便。 6.以下说法正确的是 D 。 A.数据项是数据的基本单位 B.数据元素是数据的最小单位 C.数据结构是带结构的数据项的集合 D.一些表面上很不相同的数据可以有相同的逻辑结构 7.算法分析的目的是 C ,算法分析的两个主要方面是 A 。 (1)A.找出数据结构的合理性B.研究算法中的输入和输出的关系C.分析算法的效率以求改进C.分析算法的易读性和文档性 (2)A.空间复杂度和时间复杂度B.正确性和简明性 C.可读性和文档性D.数据复杂性和程序复杂性 8.下面程序段的时间复杂度是O(n2) 。 s =0; for( I =0; i

《数据结构与算法》课后习题答案

2.3 课后习题解答 2.3.2 判断题 1.线性表的逻辑顺序与存储顺序总是一致的。(×) 2.顺序存储的线性表可以按序号随机存取。(√) 3.顺序表的插入和删除操作不需要付出很大的时间代价,因为每次操作平均只有近一半的元素需要移动。(×) 4.线性表中的元素可以是各种各样的,但同一线性表中的数据元素具有相同的特性,因此属于同一数据对象。(√) 5.在线性表的顺序存储结构中,逻辑上相邻的两个元素在物理位置上并不一定相邻。(×) 6.在线性表的链式存储结构中,逻辑上相邻的元素在物理位置上不一定相邻。(√)7.线性表的链式存储结构优于顺序存储结构。(×) 8.在线性表的顺序存储结构中,插入和删除时移动元素的个数与该元素的位置有关。(√) 9.线性表的链式存储结构是用一组任意的存储单元来存储线性表中数据元素的。(√)10.在单链表中,要取得某个元素,只要知道该元素的指针即可,因此,单链表是随机存取的存储结构。(×) 11.静态链表既有顺序存储的优点,又有动态链表的优点。所以它存取表中第i个元素的时间与i无关。(×) 12.线性表的特点是每个元素都有一个前驱和一个后继。(×) 2.3.3 算法设计题 1.设线性表存放在向量A[arrsize]的前elenum个分量中,且递增有序。试写一算法,将x 插入到线性表的适当位置上,以保持线性表的有序性,并且分析算法的时间复杂度。【提示】直接用题目中所给定的数据结构(顺序存储的思想是用物理上的相邻表示逻辑上的相邻,不一定将向量和表示线性表长度的变量封装成一个结构体),因为是顺序存储,分配的存储空间是固定大小的,所以首先确定是否还有存储空间,若有,则根据原线性表中元素的有序性,来确定插入元素的插入位置,后面的元素为它让出位置,(也可以从高下标端开始一边比较,一边移位)然后插入x ,最后修改表示表长的变量。 int insert (datatype A[],int *elenum,datatype x) /*设elenum为表的最大下标*/ {if (*elenum==arrsize-1) return 0; /*表已满,无法插入*/ else {i=*elenum; while (i>=0 && A[i]>x) /*边找位置边移动*/ {A[i+1]=A[i]; i--; } A[i+1]=x; /*找到的位置是插入位的下一位*/ (*elenum)++; return 1; /*插入成功*/ } } 时间复杂度为O(n)。

数据结构实验十一:图实验

一,实验题目 实验十一:图实验 采用邻接表存储有向图,设计算法判断任意两个顶点间手否存在路径。 二,问题分析 本程序要求采用邻接表存储有向图,设计算法判断任意两个顶点间手否存在路径,完成这些操作需要解决的关键问题是:用邻接表的形式存储有向图并输出该邻接表。用一个函数实现判断任意两点间是否存在路径。 1,数据的输入形式和输入值的范围:输入的图的结点均为整型。 2,结果的输出形式:输出的是两结点间是否存在路径的情况。 3,测试数据:输入的图的结点个数为:4 输入的图的边得个数为:3 边的信息为:1 2,2 3,3 1 三,概要设计 (1)为了实现上述程序的功能,需要: A,用邻接表的方式构建图 B,深度优先遍历该图的结点 C,判断任意两结点间是否存在路径 (2)本程序包含6个函数: a,主函数main() b,用邻接表建立图函数create_adjlistgraph() c,深度优先搜索遍历函数dfs() d,初始化遍历数组并判断有无通路函数dfs_trave() e,输出邻接表函数print() f,释放邻接表结点空间函数freealgraph() 各函数间关系如右图所示: 四,详细设计 (1)邻接表中的结点类型定义:

typedef struct arcnode{ int adjvex; arcnode *nextarc; }arcnode; (2)邻接表中头结点的类型定义: typedef struct{ char vexdata; arcnode *firstarc; }adjlist; (3)邻接表类型定义: typedef struct{ adjlist vextices[max]; int vexnum,arcnum; }algraph; (4)深度优先搜索遍历函数伪代码: int dfs(algraph *alg,int i,int n){ arcnode *p; visited[i]=1; p=alg->vextices[i].firstarc; while(p!=NULL) { if(visited[p->adjvex]==0){ if(p->adjvex==n) {flag=1; } dfs(alg,p->adjvex,n); if(flag==1) return 1; } p=p->nextarc; } return 0; } (5)初始化遍历数组并判断有无通路函数伪代码: void dfs_trave(algraph *alg,int x,int y){ int i; for(i=0;i<=alg->vexnum;i++) visited[i]=0; dfs(alg,x,y); } 五,源代码 #include "stdio.h" #include "stdlib.h" #include "malloc.h" #define max 100 typedef struct arcnode{ //定义邻接表中的结点类型 int adjvex; //定点信息 arcnode *nextarc; //指向下一个结点的指针nextarc }arcnode; typedef struct{ //定义邻接表中头结点的类型 char vexdata; //头结点的序号 arcnode *firstarc; //定义一个arcnode型指针指向头结点所对应的下一个结点}adjlist; typedef struct{ //定义邻接表类型 adjlist vextices[max]; //定义表头结点数组

计算机学院数据结构与算法分析期末试题(2007级B)_无答案

四川大学期末考试试题 (2008-2009学年第1学期) 课程号:课程名称:数据结构与算法分析(B卷)任课教师: 1.数据类型为()。 A)数据项的集合B)值的集合及定义在其上的一组操作的总称 C)数据元素的集合D)关键字的集合 2.链表不具有的特点是()。 A)可随机直接访问任一元素B)插入删除不需要移动元素 C)不必事先估计元素个数D)所需空间与线性表长度成正比 3.设一个栈的入栈序列是ABCD,则借助于一个栈所得到的出栈序列不可能是()。 A)ABCD B)DCBA C)ABCD D)DABC 4.将对称矩阵A nxn压缩存储在一维数组B[m]中,则m的值至少为()。 A)n(n+1)/2 B)n(n-1)/2 C)n(n+1) D)n2 5.设二叉树中有n2个度为2的结点,n1个度为1的结点,n0个叶子结点,则此二叉树中空指针域个数为()。 A)n0+n1+n2 B)n2+n1+2n0 C)2n2+n1D)2n0+n1 6.对于具有n个顶点的强连图,其弧条数的最小值为()。 A)n+1 B)n C)n-1 D)n-2 7.一棵深度为k的平衡二叉树,其每个非终端结点的平衡因子均为0,则该树共有()个结点。 A)2k-1-1 B)2k-1C)2k-1+1 D)2k-1 8.归并排序的时间复杂度是()。 A)O(1) B)O(n) C)O(n2) D)O(nlogn) 9.每一趟都能选出一个元素放在其最终位置上,并且不稳定的排序算法是()。 A)冒泡排序B)简单选择排序C)希尔排序D)直接插入排序10.按照二叉树的定义,具有3个结点的不同形态(相似)的二叉树有()种。 A)3 B)4 C)5 D)6 二、(本题10分) 利用两个栈S1、S2模拟一个队列(如客户队列)时,如何用栈的运算实现队列的插入、删除运算,请简述算法思想。 三、(本题10分) 已知一棵二叉树的先序序列与中序序列分别如下,试画出此二叉树。 先序序列:ABCDEFGH IJ 中序序列:CBEDAGHFJI 注:试题字迹务必清晰,书写工整。本题2页,本页为第1页 教务处试题编号:

数据结构与算法基础知识总结

数据结构与算法基础知识总结 1 算法 算法:是指解题方案的准确而完整的描述。 算法不等于程序,也不等计算机方法,程序的编制不可能优于算法的设计。 算法的基本特征:是一组严谨地定义运算顺序的规则,每一个规则都是有效的,是明确的,此顺序将在有限的次数下终止。特征包括: (1)可行性; (2)确定性,算法中每一步骤都必须有明确定义,不充许有模棱两可的解释,不允许有多义性; (3)有穷性,算法必须能在有限的时间内做完,即能在执行有限个步骤后终止,包括合理的执行时间的含义; (4)拥有足够的情报。 算法的基本要素:一是对数据对象的运算和操作;二是算法的控制结构。 指令系统:一个计算机系统能执行的所有指令的集合。 基本运算和操作包括:算术运算、逻辑运算、关系运算、数据传输。 算法的控制结构:顺序结构、选择结构、循环结构。 算法基本设计方法:列举法、归纳法、递推、递归、减斗递推技术、回溯法。 算法复杂度:算法时间复杂度和算法空间复杂度。 算法时间复杂度是指执行算法所需要的计算工作量。 算法空间复杂度是指执行这个算法所需要的内存空间。 2 数据结构的基本基本概念 数据结构研究的三个方面: (1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构; (2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;(3)对各种数据结构进行的运算。 数据结构是指相互有关联的数据元素的集合。 数据的逻辑结构包含: (1)表示数据元素的信息; (2)表示各数据元素之间的前后件关系。 数据的存储结构有顺序、链接、索引等。 线性结构条件:

(1)有且只有一个根结点; (2)每一个结点最多有一个前件,也最多有一个后件。 非线性结构:不满足线性结构条件的数据结构。 3 线性表及其顺序存储结构 线性表由一组数据元素构成,数据元素的位置只取决于自己的序号,元素之间的相对位置是线性的。 在复杂线性表中,由若干项数据元素组成的数据元素称为记录,而由多个记录构成的线性表又称为文件。 非空线性表的结构特征: (1)且只有一个根结点a1,它无前件; (2)有且只有一个终端结点an,它无后件; (3)除根结点与终端结点外,其他所有结点有且只有一个前件,也有且只有一个后件。结点个数n称为线性表的长度,当n=0时,称为空表。 线性表的顺序存储结构具有以下两个基本特点: (1)线性表中所有元素的所占的存储空间是连续的; (2)线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。 ai的存储地址为:adr(ai)=adr(a1)+(i-1)k,,adr(a1)为第一个元素的地址,k代表每个元素占的字节数。 顺序表的运算:插入、删除。(详见14--16页) 4 栈和队列 栈是限定在一端进行插入与删除的线性表,允许插入与删除的一端称为栈顶,不允许插入与删除的另一端称为栈底。 栈按照“先进后出”(filo)或“后进先出”(lifo)组织数据,栈具有记忆作用。用top表示栈顶位置,用bottom表示栈底。 栈的基本运算:(1)插入元素称为入栈运算;(2)删除元素称为退栈运算;(3)读栈顶元素是将栈顶元素赋给一个指定的变量,此时指针无变化。 队列是指允许在一端(队尾)进入插入,而在另一端(队头)进行删除的线性表。rear指针指向队尾,front指针指向队头。 队列是“先进行出”(fifo)或“后进后出”(lilo)的线性表。 队列运算包括(1)入队运算:从队尾插入一个元素;(2)退队运算:从队头删除一个元素。循环队列:s=0表示队列空,s=1且front=rear表示队列满

数据结构实验---图的储存与遍历

数据结构实验---图的储存与遍历

学号: 姓名: 实验日期: 2016.1.7 实验名称: 图的存贮与遍历 一、实验目的 掌握图这种复杂的非线性结构的邻接矩阵和邻接表的存储表示,以及在此两种常用存储方式下深度优先遍历(DFS)和广度优先遍历(BFS)操作的实现。 二、实验内容与实验步骤 题目1:对以邻接矩阵为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接矩阵为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接矩阵表示,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 题目2:对以邻接表为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接表为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接表存贮,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 V0 V1 V2 V3 V4 三、附录: 在此贴上调试好的程序。 #include #include #include V0 V1 V4 V3 V2 ??? ? ??? ? ????????=010000000101010 1000100010A 1 0 1 0 3 3 4

#define M 100 typedef struct node { char vex[M][2]; int edge[M ][ M ]; int n,e; }Graph; int visited[M]; Graph *Create_Graph() { Graph *GA; int i,j,k,w; GA=(Graph*)malloc(sizeof(Graph)); printf ("请输入矩阵的顶点数和边数(用逗号隔开):\n"); scanf("%d,%d",&GA->n,&GA->e); printf ("请输入矩阵顶点信息:\n"); for(i = 0;in;i++) scanf("%s",&(GA->vex[i][0]),&(GA->vex[i][1])); for (i = 0;in;i++) for (j = 0;jn;j++) GA->edge[i][j] = 0; for (k = 0;ke;k++) { printf ("请输入第%d条边的顶点位置(i,j)和权值(用逗号隔开):",k+1); scanf ("%d,%d,%d",&i,&j,&w); GA->edge[i][j] = w; } return(GA); } void dfs(Graph *GA, int v) { int i; printf("%c%c\n",GA->vex[v][0],GA->vex[v][1]); visited[v]=1;

北京交通大学数据结构与算法期末测验考试参考答案

北京交通大学考试试题(A卷) 课程名称:数据结构与算法2011-2012学年第一学期出题教师:张勇 (请考生注意:(1)本试卷共有六道大题,(2)答案一律写在答题纸上,(3)试卷不得带出考场) 1. 在顺序表中访问任意一个元素的时间复杂度均为,因此顺序表也称为 的数据结构。 2.三维数组a[4][3][2](下标从0开始),假设a[0][0][0]的地址为50,数据以行序优先方式存储,每个元素的长度为2字节,则a[2][1][1]的地址是。 3. 直接插入排序用监视哨的作用是。 4. 已知广义表Ls=(a, (b, c), (d, e)), 运用head和tail函数取出Ls中的原子d的运算 是。 5.对有14个元素的有序表A[1..14]进行折半查找,当比较到A[4]时算法结束。被比较元素除A[4]外,还有。 6. 在AOV网中,顶点表示,边表示。 7. 有向图G可进行拓扑排序的判别条件是。 8. 若串S1=‘ABCDEFGHIJK’,S2=‘451223’,S3=‘####’,则执行 Substring(S1,Strlength(S3),Index(S2,‘12’,1))的结果是。 二、选择题(每空2分,共20分) 1.在下列存储形式中,哪一个不是树的存储形式?() A.双亲表示法B.孩子链表表示法 C.孩子兄弟表示法D.顺序存储表示法 2.查找n个元素的有序表时,最有效的查找方法是()。 A.顺序查找B.分块查找 C.折半查找D.二叉查找 3.将所示的s所指结点加到p所指结点之后,其语句应为()。 p (A) s->next=p+1 ; p->next=s;

(B) (*p).next=s; (*s).next=(*p).next; (C) s->next=p->next ; p->next=s->next; (D) s->next=p->next ; p->next=s; 4. 在有向图的邻接表存储结构中,顶点v 在链表中出现的次数是( )。 A. 顶点v 的度 B. 顶点v 的出度 C. 顶点v 的入度 D. 依附于顶点v 的边数 5. 算法的时间复杂度为O (nlog 2n )、空间复杂度为O(1)的排序算法是( )。 A. 堆排序 B. 快速排序 C. 归并排序 D.直接选择 6. 设矩阵A 是一个对称矩阵,为了节省存储,将其 下三角部分(如右图所示)按行序存放在一维数组B[ 1, n(n-1)/2 ]中,对下三角部分中任一元素ai,j(i ≤j), 在一维数组B 中下标k 的值是( ): A.i(i-1)/2+j-1 B.i(i-1)/2+j C.i(i+1)/2+j-1 D.i(i+1)/2+j 7. 由一个长度为11的有序表,按二分查找法对该表进行查找,在表内各元素等概率情 况下,查找成功的平均查找长度是( )。 A .29/11 B. 31/11 C. 33/11 D.35/11 8. AVL 树是一种平衡的二叉排序树,树中任一结点的( )。 A. 左、右子树的高度均相同 B. 左、右子树高度差的绝对值不超过1 C. 左子树的高度均大于右子树的高度 D. 左子树的高度均小于右子树的高度 9. 下列四种排序方法中,不稳定的方法是( )。 A. 直接插入排序 B. 冒泡排序 C. 归并排序 D. 堆排序 10. 设树的度为4,其中度为1,2,3,4的结点个数分别为4, 2, ,1, 1, 则T 中的叶子数为 ( )。 A .5 B .6 C .7 D .8 三、 判断题(10分,每小题1分) 1. 顺序存储方式的优点是存储密度大,且插入、删除运算效率高。( ) 2. 数组不适合作任何二叉树的存储结构。( ) 3. 广义表的取表尾运算,其结果通常是个表,但有时也可是个原子。( ) 4. 在含有n 个结点的树中,边数只能是n-1条。( ) 5. 所谓一个排序算法是否稳定,是指该算法在各种情况下的效率是否相差不大。( ) 6. 简单选择排序在最好情况下的时间复杂度为O(n)。( ) 7. 在二叉排序树中插入一个新结点,总是插入到叶结点下面。( ) 8. 采用线性探测处理冲突,当从哈希表中删除一个记录时,不应将该记录所在位置置 空,因为这会影响以后的查找。( ) 9. 有n 个数存放在一维数组A[1..n]中,在进行顺序查找时,这n 个数的排列有序或无 ?????? ? ???? ? ??=n n n n a a a a a a A ,2,1,2 ,21,21 ,1Λ Λ

数据结构实验报告图实验

邻接矩阵的实现 1. 实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现2. 实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历3.设计与编码MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; }

int vertexNum, arcNum; }; #endif MGraph.cpp #include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) { cout << "Please enter two vertexs number of edge: " cin >> i >> j; arc[i][j] = 1; arc[j][i] = 1; } }

数据结构与算法试题

数据结构与算法试题 一、单选题 1、在数据结构的讨论中把数据结构从逻辑上分为 (C ) A 内部结构与外部结构 B 静态结构与动态结构 C 线性结构与非线性结构 D 紧凑结构与非紧凑结构。 2、采用线性链表表示一个向量时,要求占用的存储空间地址(D ) A 必须就是连续的 B 部分地址必须就是连续的 C 一定就是不连续的 D 可连续可不连续 3、采用顺序搜索方法查找长度为n的顺序表时,搜索成功的平均搜索长度为( D )。 A n B n/2 C (n-1)/2 D (n+1)/2 4、在一个单链表中,若q结点就是p结点的前驱结点,若在q与p之间插入结点s,则执行( D )。 A s→link = p→link;p→link = s; B p→link = s; s→link = q; C p→link = s→link;s→link = p; D q→link = s;s→link = p; 5、如果想在4092个数据中只需要选择其中最小的5个,采用( C )方法最好。 A 起泡排序 B 堆排序 C 锦标赛排序 D 快速排序 6、设有两个串t与p,求p在t中首次出现的位置的运算叫做( B )。 A 求子串 B 模式匹配 C 串替换 D 串连接 7、在数组A中,每一个数组元素A[i][j]占用3个存储字,行下标i从1到8,列下标j从1到10。所有数组元素相继存放于一个连续的存储空间中,则存放该数

组至少需要的存储字数就是( C )。 A 80 B 100 C 240 D 270 8、将一个递归算法改为对应的非递归算法时,通常需要使用( A )。 A 栈 B 队列 C 循环队列 D 优先队列 9、一个队列的进队列顺序就是1, 2, 3, 4,则出队列顺序为( C )。 10、在循环队列中用数组A[0、、m-1] 存放队列元素,其队头与队尾指针分别为front与rear,则当前队列中的元素个数就是( D )。 A ( front - rear + 1) % m B ( rear - front + 1) % m C ( front - rear + m) % m D ( rear - front + m) % m 11、一个数组元素a[i]与( A )的表示等价。 A *(a+i) B a+i C *a+i D &a+i 12、若需要利用形参直接访问实参,则应把形参变量说明为( B )参数。 A 指针 B 引用 C 值 D 变量 13、下面程序段的时间复杂度为( C ) for (int i=0;i

数据结构与算法实验报告

竭诚为您提供优质文档/双击可除数据结构与算法实验报告 篇一:数据结构与算法实验报告-图 沈阳工程学院 学生实验报告 (课程名称:数据结构与算法) 实验题目: 班级网络本112学号27姓名郑乐乐地点F606指导教师吕海华祝世东实验日期:20XX年11月13日 1 2 3 4 篇二:《数据结构与算法》实验报告模板 软件工程系实验报告封面 课程名称:数据结构与算法 课程代码:ss1005 实验指导老师:钟迅科

实验报告名称: 本实验报告包括以下几个内容: 一、实验(实践)目的 二、实验(实践)环境 三、实验(实践)实现过程 四、实验(实践)分析与总结 五、指导教师评语与评分 我申明,本报告内的实验已按要求完成,报告完全是由我个人完成,并没有抄袭行为。我已经保留了这份实验报告的副本。 申明人(签名): 学生姓名:张三学号:1140888888教学班:FJ01递交日期:20XX年10月11日 篇三:数据结构与算法实验报告c++版 算法与数据结构 实验报告 实验一:栈与队列 一、实验目的 1、掌握栈和队列特点、逻辑结构和存储结构 2、熟悉对栈和队列的一些基本操作和具体的函数定义。 3、利用栈和队列的基本操作完成一定功能的程序。 二、实验任务

1.出顺序栈的类定义和函数实现,利用栈的基本操作完成十进制数n与其它d进制数 的转换。(如n=1357,d=8) 2.给出顺序队列的类定义和函数实现,并利用队列计算并打印杨辉三角的前n行的内 容。(n=8) 3.给出链栈的类定义和函数实现,并设计程序完成如下功能:读入一个有限大小的整 数n,并读入n个数,然后按照与输入次序相反的次序输出各元素的值。 三、实验原理 1、将十进制数n转化为d进制时,用除去余数法,用d 除n所得余数作为d进制当前个位,将相除所得的商的整数部分作为新的n值重复上述计算,直到n为0为止。将前所得到的各余数反过来连接便得到最终结果。将每次求出的余数入栈,求解结束后,再依次出栈。 2、在杨辉三角中可用上一行的数来求出对应位置的下一行的内容。用队列保存上行内容,每当由上行的两个数求出下行的一个数时,其中的前一个便需要删除,而求出的数就 入队。为便于求解,在每行的第一个位置添加一个0作为辅助。 3、输出操作应在读入所有输入的整数后才能进行,用

数据结构实验

实验1 (C语言补充实验) 有顺序表A和B,其元素值均按从小到大的升序排列,要求将它们合并成一 个顺序表C,且C的元素也是从小到大的升序排列。 #include main() { intn,m,i=0,j=0,k=0,a[5],b[5],c[10];/* 必须设个m做为数组的输入的计数器,不能用i ,不然进行到while 时i 直接为5*/ for(m=0;m<=4;m++)scanf("%d",&a[m]);// 输入数组a for(m=0;m<=4;m++)scanf("%d",&b[m]);// 输入数组b while(i<5&&j<5) {if(a[i]b[j]){c[k]=b[j];k++;j++;} else{c[k]=a[i];k++;i++;j++;}// 使输入的两组数组中相同的数只输出一 个 } if(i<5) for(n=i;n<5;n++) {c[k]=a[n];k++;} elseif(j<5) for(n=j;n<5;n++) {c[k]=b[n];k++;} for(i=0;i

求A QB #include main() { inti,j,k=0,a[5],b[5],c[5];//A=a[5],B=b[5],A n B=c[5] for(i=0;i<5;i++)scanf("%d",&a[i]);// 输入a 数组 for(i=0;i<5;i++)scanf("%d",&b[i]);〃输入b 数组 for(i=0;i<5;i++) {for(j=0;j<5;j++) if(a[i]==b[j]){c[k]=a[i];k++;}// 当有元素重复时,只取一个放入 c 中} for(i=0;i #defineN4 main() { inti,j,m,k,a[N+1];//k 为最后输出数组的长度变量

数据结构与算法第三版第章参考答案

习题参考答案 一.选择题 1.从逻辑上可以把数据结构分为(C)两大类。 A.动态结构、静态结构 B.顺序结构、链式结构 C.线性结构、非线性结构 D.初等结构、构造型结构 2.在下面的程序段中,对x的斌值语句的频度为(C)。 for( t=1;k<=n;k++) for(j=1;j<=n; j++) x=x十1; A. O(2n) B. O (n) C. O (n2). D. O(1og2n) 3.采用顺序存储结构表示数据时,相邻的数据元素的存储地址(A)。 A.一定连续B.一定不连续 C.不一定连续 D.部分连续,部分不连续 4.下面关于算法说法正确的是(D)。 A.算法的时间复杂度一般与算法的空间复杂度成正比 B.解决某问题的算法可能有多种,但肯定采用相同的数据结构 C.算法的可行性是指算法的指令不能有二义性 D.同一个算法,实现语言的级别越高,执行效率就越低 5.在发生非法操作时,算法能够作出适当处理的特性称为(B)。 A.正确性 B.健壮性 C.可读性 D.可移植性 二、判断题 1.数据的逻辑结构是指数据的各数据项之间的逻辑关系。(√) 2.顺序存储方式的优点是存储密度大,且插人、删除运算效率高。(×) 3.数据的逻辑结构说明数据元素之间的次序关系,它依赖于数据的存储结构。(×) 4.算法的优劣与描述算法的语言无关,但与所用计算机的性能有关。(×) 5.算法必须有输出,但可以没有输人。(√) 三、筒答题 1.常见的逻辑结构有哪几种,各自的特点是什么?常用的存储结构有哪几种,各自的特点是什么? 【答】常见的四种逻辑结构: ①集合结构:数据元素之间是“属于同一个集合” ②线性结构:数据元素之间存在着一对一的关系 ③树结构:数据元素之间存在着一对多的关系 ④结构:数据元素之间存在着多对多的关系。 常见的四种存储结构有: ①顺序存储:把逻辑上相邻的元素存储在物理位置相邻的存储单元中。顺序存储结构是一种最基本的存储表示方法,通常借助于程序设计语言中的数组来实现。 ②链接存储:对逻辑上相邻的元素不要求物理位置相邻的存储单元,元素间的逻辑关系通过附设的指针域来表示。 ③索引存储:通过建立索引表存储结点信息的方法,其中索引表一般存储结点关键字和一个地点信息,可通过该地址找到结点的其他信息。 ④散列存储:根据结点的关键字直接计算出该结点的存储地址的方法。 2.简述算法和程序的区别。 【解答】一个算法若用程序设计语言来描述,则它就是一个程序。算法的含义与程序十分相

数据结构与算法的实验报告

数据结构与算法第二次实验报告 电子105班 赵萌 2010021526

实验二:栈和队列的定义及基本操作 一、实验目的: . 熟练掌握栈和队列的特点 . 掌握栈的定义和基本操作,熟练掌握顺序栈的操作及应用 . 掌握对列的定义和基本操作,熟练掌握链式队列的操作及应用, 掌握环形队列的入队和出队等基本操作 . 加深对栈结构和队列结构的理解,逐步培养解决实际问题的编程能力 二、实验内容: 定义顺序栈,完成栈的基本操作:空栈、入栈、出栈、取栈顶元素; 实现十进制数与八进制数的转换; 定义链式队列,完成队列的基本操作:入队和出队; 1.问题描述: (1)利用栈的顺序存储结构,设计一组输入数据(假定为一组整数),能够对顺序栈进行如下操作: . 初始化一个空栈,分配一段连续的存储空间,且设定好栈顶和栈底; . 完成一个元素的入栈操作,修改栈顶指针; . 完成一个元素的出栈操作,修改栈顶指针; . 读取栈顶指针所指向的元素的值; . 将十进制数N 和其它d 进制数的转换是计算机实现计算的基本问题,其解决方案很多,其中最简单方法基于下列原理:即除 d 取余法。例如:(1348)10=(2504)8 N N div 8 N mod 8 1348 168 4 168 21 0 21 2 5 2 0 2 从中我们可以看出,最先产生的余数 4 是转换结果的最低位,这正好符合栈的特性即后进先出的特性。 所以可以用顺序栈来模拟这个过程。以此来实现十进制数与八进制数的转换; . 编写主程序,实现对各不同的算法调用。 (2)利用队列的链式存储结构,设计一组输入数据(假定为一组整数),能够对链式队列进行如下操作: . 初始化一个空队列,形成一个带表头结点的空队; . 完成一个元素的入队操作,修改队尾指针; . 完成一个元素的出队操作,修改队头指针; . 修改主程序,实现对各不同的算法调用。

数据结构与算法上海第二工业大学二工大期末考试试卷

选择题: 1、在数据结构中,线性结构中元素之间存在____关系。 A: 一对一 B: 一对多 C: 多对一 D: 多对多 2、数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象以及它们之间的____和运算等的学科。 A: 结构 B: 关系 C: 操作 D: 算法 3、算法分析的两个主要方面是____。 A: 空间复杂度和时间复杂度 B: 正确性和简明性 C: 可读性和文档性 D: 数据复杂性和程序复杂性 4、顺序表中逻辑上相邻的节点其物理位置也____。 A: 一定相邻 B: 不必相邻 C: 按某种规律排列 D: 无要求 5、在一个单链表中,已知q所指结点是p所指结点的前驱结点,若在q和p之间插入s结点,则执行____。 A: s->next=p->next; p->next=s; B: p->next=s->next; s->next=p; C: q->next=s; s->next=p; D: p->next=s; s->next=q; 6、一个栈的入栈序列是a,b,c,d,e,则栈的不可能的输出序列是____。 A: edcba B: decba C: dceab D: abcde 7、循环队列用数组A[0,m-1]存放其元素值,已知其头尾指针分别是front和rear,则当前队列中的元素个数是____。 A: (rear-front+m)%m B: rear-front+1 C: rear-front-1 D: rear-front 8、关于空格串,下列说法中正确的有____。 A: 空格串就是空串

B: 空格串是零个字符的串 C: 空格串的长度为零 D: 空格串的长度就是其包含的空格个数 9、数组A中,每个元素A的长度为3个字节,行下标i从1到8,列下标j从1到10,从首地址SA开始连续存放在存储器内,该数组按行存放时,元素A[8][5]的起始地址为____。A: SA+140 B: SA+144 C: SA+222 D: SA+225 10、对于一棵满二叉树,m个树叶,n个节点,深度为h,则____。 A: n=h+m B: h+m=2n C: m=h-1 D: n=2h-1 11、具有65个结点的完全二叉树其深度为____。(根的层次号为1) A: 8 B: 7 C: 6 D: 5 12、满二叉树____二叉树。 A: 一定是完全 B: 不一定是完全 C: 不是 D: 不是完全 13、将一棵有100个节点的完全二叉树从上到下,从左到右依次对节点进行编号,根节点的编号为1,则编号为49的节点的左孩子编号为____。 A: 99 B: 98 C: 50 D: 48 14、如果T2是由森林T转换而来的二叉树,那么T中结点的后序遍历就是T2中结点的____。A: 先序遍历 B: 中序遍历 C: 后序遍历 D: 层次遍历 15、将递归算法转换成对应的非递归算法时,通常需要使用____。 A: 栈 B: 队列 C: 链表 D: 树 16、如果某二叉树的前序为stuwv,中序为uwtvs,那么该二叉树的后序为____。 A: uwvts B: vwuts C: wuvts

数据结构实验报告图实验

图实验 一,邻接矩阵的实现 1.实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现 2.实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历 3.设计与编码 #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ } void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; int vertexNum, arcNum; }; #endif #include using namespace std; #include "" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0;

相关主题
文本预览
相关文档 最新文档