当前位置:文档之家› 清华大学数值分析实验报告

清华大学数值分析实验报告

清华大学数值分析实验报告
清华大学数值分析实验报告

数值分析实验报告

一、 实验3.1 题目:

考虑线性程组b Ax =,n n R A ?∈,n R b ∈,编制一个能自动选取主元,又能手动选取主元的求解线性代数程组的Gauss 消去过程。

(1)取矩阵????????????????=6816816816 A ,??

?

??

???

????????=1415157 b ,则程有解()T

x 1,,1,1*?=。取10

=n 计算矩阵的条件数。分别用顺序Gauss 消元、列主元Gauss 消元和完全选主元Gauss 消元法求解,结果如?

(2)现选择程序中手动选取主元的功能,每步消去过程都选取模最小或按模尽可能小的元素作为主元进行消元,观察并记录计算结果,若每步消去过程总选取按模最大的元素作为主元,结果又如?分析实验的结果。

(3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。

(4)选取其他你感兴趣的问题或者随机生成的矩阵,计算其条件数,重复上述实验,观察记录并分析实验的结果。

1. 算法介绍

首先,分析各种算法消去过程的计算公式, 顺序高斯消去法:

第k 步消去中,设增广矩阵B 中的元素()

0k kk a ≠(若等于零则可以判定系数

矩阵为奇异矩阵,停止计算),则对k 行以下各行计算()

()

,1,2,,k ik

ik k kk

a l i k k n a ==++,

分别用ik l -乘以增广矩阵B 的第k 行并加到第1,2,

,k k n ++行,

则可将增广矩阵B 中第k 列中()

k kk

a 以下的元素消为零;重复此法,从第1步进行到第n-1步,则可以得到最终的增广矩阵,即()()(),n n n B A

b ??=?

?; 列主元高斯消去法:

第k 步消去中,在增广矩阵B 中的子阵()()()()k k

kk

kn

k k nk

nn a a a a ???

??

?????

中,选取()

k k i k a 使得()(k)

max k k i k ik k i n

a a ≤≤=,当k i k ≠时,对B 中第k 行与第k i 行交换,然后按照和顺序消去

法相同的步骤进行。重复此法,从第1步进行第n-1步,就可以得到最终的增广矩阵,即(

)

()()111,n n n B A b ??=?

?; 完全主元高斯消去法:

第k 步消去中,在增广矩阵B 中对应的子阵()()()()k k

kk

kn

k k nk

nn a a a a ???

??

?????

中,选取()k k k i j a 使得()(k)

max k k k i j ij k i n

k j n

a a ≤≤≤≤=,若k i k ≠或k j k ≠,则对B 中第k 行与第k i 行、第k 列与第k j 列

交换,然后按照和顺序消去法相同的步骤进行即可。重复此法,从第1步进行到

第n-1步,就可以得到最终的增广矩阵,即(

)

()()222,n n n B A b ??=?

?; 接下来,分析回代过程求解的公式,容易看出,对上述任一种消元法,均有以下计算公式:

()

()()

()

()1;

;1,2,

,1

n

n

n n nn

n

n n k kj

j

j k k n kk

b x a b a

x x k n n a

=+=-=

=--∑

2. 实验程序的设计

一、输入实验要求及初始条件;

二、计算系数矩阵A 的条件数及程组的理论解; 三、对各不同法编程计算,并输出最终计算结果。

3. 计算结果及分析

(1)

先计算系数矩阵的条件数,结果如下,

12()2557.500000,()1727.556025,()2557.50000cond A cond A cond A ∞===

可知系数矩阵的条件数较大,故此问题属于病态问题,b 或A 的扰动都可能引起解的较大误差;

采用顺序高斯消去法,计算结果为:

最终解为x=(1.0000, 1.0000, 1.0000, 1.0001, 0.9998, 1.0004, 0.9993, 1.0012, 0.9979, 1.0028)T

使用无穷数衡量误差,得到*X X ε∞

=-=2.0401e-14,可以发现,采用顺

序高斯消元法求得的解与精确解之间误差较小。通过进一步观察,可以发现,按照顺序高斯消去法计算时,其选取的主元值和矩阵中其他元素大小相近,因此顺序高斯消去法式并没有对结果造成特别大的影响。 若采用列主元高斯消元法,则结果为:

最终解为x=(1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)T

同样使用无穷数衡量误差,有*X X ε∞

=-=0;

若使用完全主元高斯消元法,则结果为

最终解x=(1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)T

同样使用无穷数衡量误差,有*X X ε∞

=-=0;

(2)

若每步都选取模最小或尽可能小的元素为主元,则计算结果为

最终解x=(1.0000 1.0000 1.0000 1.0001 0.9998 1.0004 0.9993 1.0012 0.9979 1.0028)T

使用无穷数衡量误差,有*X X ε∞

=-为2.0401e-14;而完全主元消去法的

误差为*X X ε∞

=-=0。

从(1)和(2)的实验结果可以发现,列主元消去法和完全主元消去法都得到了精确解,而顺序高斯消去法和以模尽量小的元素为主元的消去法没有得到精确解。在后两种消去法中,由于程序计算时的舍入误差,对最终结果产生了一定的影响,但由于程组的维度较低,并且元素之间相差不大,所以误差仍比较小。

为进一步分析,计算上述4种法每步选取的主元数值,并列表进行比较,结果如下:

从上表可以发现,对这个程组而言,顺序高斯消去选取的主元恰好事模尽量小的元素,而由于列主元和完全主元选取的元素为8,与4在数量级上差别小,所以计算过程中的累积误差也较小,最终4种法的输出结果均较为精确。

在这里,具体解释一下顺序法与模最小法的计算结果完全一致的原因。该矩阵在消元过程中,每次选取主元的一列只有两个非零元素,对角线上的元素为4左右,而其正下的元素为8,该列其余位置的元素均为0。在这样的情况下,默认的主元也就是该列最小的主元,因此两种法所得到的计算结果是一致的。

理论上说,完全高斯消去法的误差最小,其次是列主元高斯消去法,而选取模最小的元素作为主元时的误差最大,但是由于程组的特殊性(元素相差不大并且维度不高),这个理论现象在这里并没有充分体现出来。

20

n=时,重复上述实验过程,各种法的计算结果如下所示,在这里,仍采用无穷数衡量绝对误差ε。

李庆扬数值分析第五版习题复习资料清华大学出版社

第一章 绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= = = 而ln x 的误差为()1 ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -=Q , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈?Q 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,* 57 1.0.x =? 解:* 1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中**** 1234,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ===g g (*)(*)3(*)r p r r V C R R εεε∴≈=g 又(*)1r V ε=Q

清华大学数值分析A第一次作业

7、设y0=28,按递推公式 y n=y n?1? 1 100 783,n=1,2,… 计算y100,若取≈27.982,试问计算y100将有多大误差? 答:y100=y99?1 100783=y98?2 100 783=?=y0?100 100 783=28?783 若取783≈27.982,则y100≈28?27.982=0.018,只有2位有效数字,y100的最大误差位0.001 10、设f x=ln?(x? x2?1),它等价于f x=?ln?(x+ x2?1)。分别计算f30,开方和对数取6位有效数字。试问哪一个公式计算结果可靠?为什么? 答: x2?1≈29.9833 则对于f x=ln x?2?1,f30≈?4.09235 对于f x=?ln x+2?1,f30≈?4.09407 而f30= ln?(30?2?1) ,约为?4.09407,则f x=?ln?(x+ x2?1)计算结果更可靠。这是因为在公式f x=ln?(x? x2?1)中,存在两相近数相减(x? x2?1)的情况,导致算法数值不稳定。 11、求方程x2+62x+1=0的两个根,使它们具有四位有效数字。 答:x12=?62±622?4 2 =?31±312?1 则 x1=?31?312?1≈?31?30.98=?61.98 x2=?31+312?1= 1 31+312?1 ≈? 1 ≈?0.01613

12.(1)、计算101.1?101,要求具有4位有效数字 答:101.1?101= 101.1+101≈0.1 10.05+10.05 ≈0.004975 14、试导出计算积分I n=x n 4x+1dx 1 的一个递推公式,并讨论所得公式是否计算稳定。 答:I n=x n 4x+1dx 1 0= 1 4 4x+1x n?1?1 4 x n?1 4x+1 dx= 1 1 4 x n?1 1 dx?1 4 x n?1 4x+1 dx 1 = 1 4n ? 1 4 I n?1,n=1,2… I0= 1 dx= ln5 1 记εn为I n的误差,则由递推公式可得 εn=?1 εn?1=?=(? 1 )nε0 当n增大时,εn是减小的,故递推公式是计算稳定的。

清华大学高等数值计算(李津)实践题目一(共轭梯度CG法,Lanczos算法与MINRES算法)

高等数值计算实践题目一 1. 实践目的 本次计算实践主要是在掌握共轭梯度法,Lanczos 算法与MINRES 算法的基础上,进一步探讨这3种算法的数值性质,主要研究特征值特征向量对算法收敛性的影响。 2. 实践过程 (一)生成矩阵 (1)作5个100阶对角阵i D 如下: 1D 对角元:1,1,...,20,1+0.1(-20),21,...,100j j d j d j j ==== 2D 对角元:1,1,...,20,1+(-20),21,...,100j j d j d j j ==== 3D 对角元:,1,...,80,81,81,...,100j j d j j d j ==== 4D 对角元:,1,...,40,41,41,...,60,41+(60),61,...,100j j j d j j d j d j j =====-= 5D 对角元:,1,...,100j d j j == 记i D 的最大模特征值和最小模特征值分别为1i λ和i n λ,则i D 特征值分布有如下特点: 1D 的特征值有较多接近于i n λ,并且1/i i n λλ较小, 2D 的特征值有较多接近于i n λ,并且1/i i n λλ较大, 3D 的特征值有较多接近于1i λ,并且1/i i n λλ较大, 4D 的特征值有较多接近于中间模特征值,并且1/i i n λλ较大, 5D 的特征值均匀分布,并且1/i i n λλ较大 (2)随机生成10个100阶矩阵j M : (100(100))j M fix rand = 并作它们的QR 分解,得j Q 和j R ,这样可得50个对称的矩阵T ij j i j A Q DQ =,其中i D 的对角元就是ij A 的特征值,若它们都大于0,则ij A 正定,j Q 的列就是相应的特征向量。结合(1)可知,ij A 都是对称正定阵。

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

数值分析实验报告

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p Λ 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a Λ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a Λ 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots +

清华大学贾仲孝老师高等数值分析报告第二次实验

高等数值分析第二次实验作业

T1.构造例子特征值全部在右半平面时, 观察基本的Arnoldi 方法和GMRES 方法的数值性态, 和相应重新启动算法的收敛性. Answer: (1) 构造特征值均在右半平面的矩阵A : 根据实Schur 分解,构造对角矩阵D 由n 个块形成,每个对角块具有如下形式,对应一对特 征值i i i αβ± i i i i i S αββα-?? = ??? 这样D=diag(S 1,S 2,S 3……S n )矩阵的特征值均分布在右半平面。生成矩阵A=U T AU ,其中U 为 正交阵,则A 矩阵的特征值也均在右半平面。不妨构造A 如下所示: 2211112222 /2/2/2/2N N A n n n n ?-?? ? ? ?- ? = ? ? ? - ? ?? ? 由于选择初值与右端项:x0=zeros(2*N,1);b=ones(2*N,1); 则生成矩阵A 的过程代码如下所示: N=500 %生成A 为2N 阶 A=zeros(2*N); for a=1:N A(2*a-1,2*a-1)=a; A(2*a-1,2*a)=-a; A(2*a,2*a-1)=a; A(2*a,2*a)=a; end U = orth(rand(2*N,2*N)); A1 = U'*A*U; (2) 观察基本的Arnoldi 和GMRES 方法 编写基本的Arnoldi 函数与基本GMRES 函数,具体代码见附录。 function [x,rm,flag]=Arnoldi(A,b,x0,tol,m) function [x,rm,flag]=GMRES(A,b,x0,tol,m) 输入:A 为方程组系数矩阵,b 为右端项,x0为初值,tol 为停机准则,m 为人为限制的最大步数。 输出:x 为方程的解,rm 为残差向量,flag 为解是否收敛的标志。 外程序如下所示: e=1e-6; m=700;

数值分析实验报告

数值分析实验报告 姓名:周茹 学号: 912113850115 专业:数学与应用数学 指导老师:李建良

线性方程组的数值实验 一、课题名字:求解双对角线性方程组 二、问题描述 考虑一种特殊的对角线元素不为零的双对角线性方程组(以n=7为例) ?????????? ?????? ? ???? ?d a d a d a d a d a d a d 766 55 44 3 32 211??????????????????????x x x x x x x 7654321=?????????? ? ???????????b b b b b b b 7654321 写出一般的n (奇数)阶方程组程序(不要用消元法,因为不用它可以十分方便的解出这个方程组) 。 三、摘要 本文提出解三对角矩阵的一种十分简便的方法——追赶法,该算法适用于任意三对角方程组的求解。 四、引言 对于一般给定的d Ax =,我们可以用高斯消去法求解。但是高斯消去法过程复杂繁琐。对于特殊的三对角矩阵,如果A 是不可约的弱对角占优矩阵,可以将A 分解为UL ,再运用追赶法求解。

五、计算公式(数学模型) 对于形如????? ?? ????? ??? ?---b a c b a c b a c b n n n n n 111 2 2 2 11... ... ...的三对角矩阵UL A =,容易验证U 、L 具有如下形式: ??????? ????? ??? ?=u a u a u a u n n U ...... 3 3 22 1 , ?? ????? ? ?? ??????=1 (1) 1132 1l l l L 比较UL A =两边元素,可以得到 ? ?? ??-== = l a b u u c l b u i i i i i i 111 i=2, 3, ... ,n 考虑三对角线系数矩阵的线性方程组 f Ax = 这里()T n x x x x ... 2 1 = ,()T n f f f f ... 2 1 = 令y Lx =,则有 f Uy = 于是有 ()?????-== --u y a f y u f y i i i i i 1 1 11 1 * i=2, 3, ... ,n 再根据y Lx =可得到

数值分析实验报告

实验一、误差分析 一、实验目的 1.通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; 2.通过上机计算,了解误差、绝对误差、误差界、相对误差界的有关概念; 3.通过上机计算,了解舍入误差所引起的数值不稳定性。 二.实验原理 误差问题是数值分析的基础,又是数值分析中一个困难的课题。在实际计算中,如果选用了不同的算法,由于舍入误差的影响,将会得到截然不同的结果。因此,选取算法时注重分析舍入误差的影响,在实际计算中是十分重要的。同时,由于在数值求解过程中用有限的过程代替无限的过程会产生截断误差,因此算法的好坏会影响到数值结果的精度。 三.实验内容 对20,,2,1,0 =n ,计算定积分 ?+=10 5dx x x y n n . 算法1:利用递推公式 151--=n n y n y , 20,,2,1 =n , 取 ?≈-=+=1 00182322.05ln 6ln 51dx x y . 算法2:利用递推公式 n n y n y 51511-= - 1,,19,20 =n . 注意到 ???=≤+≤=10 10202010201051515611261dx x dx x x dx x , 取 008730.0)12611051(20120≈+≈y .: 四.实验程序及运行结果 程序一: t=log(6)-log(5);

n=1; y(1)=t; for k=2:1:20 y(k)=1/k-5*y(k-1); n=n+1; end y y =0.0884 y =0.0581 y =0.0431 y =0.0346 y =0.0271 y =0.0313 y =-0.0134 y =0.1920 y =-0.8487 y =4.3436 y =-21.6268 y =108.2176 y =-541.0110 y =2.7051e+003 y =-1.3526e+004 y =6.7628e+004 y =-3.3814e+005 y =1.6907e+006 y =-8.4535e+006 y =4.2267e+007 程序2: y=zeros(20,1); n=1; y1=(1/105+1/126)/2;y(20)=y1; for k=20:-1:2 y(k-1)=1/(5*k)-(1/5)*y(k); n=n+1; end 运行结果:y = 0.0884 0.0580 0.0431 0.0343 0.0285 0.0212 0.0188 0.0169

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

清华大学杨顶辉数值分析第6次作业

清华大学杨顶辉数值分析第6次作业

9.令*()(21),[0,1]n n T x T x x =-∈,试证*{()}n T x 是在[0,1]上带权 2 ()x x x ρ= -****0123(),(),(),()T x T x T x T x . 证明: 1 1 **2 1 1 * *20 12 2 1**20 ()()()(21)(21)211()()()()()211()22 ()()1()1()()()()()1n m n m n m n m n m n n m n m x T x T x dx x T x dx x x t x x T x T x dx t T t dt t t t T t dt t T x x x T x T x dx t T t t ρρρ---=---=-=++-= --= -???? ?令,则 由切比雪夫多项式1 01=02 m n dt m n m n ππ ≠??? =≠??==??? 所以*{()}n T x 是在[0,1]上带权2 ()x x x ρ= - *00*11* 2 2 2 2*33233()(21)1()(21)21 ()(21)2(21)188()(21)4(21)3(21)3248181 T x T x T x T x x T x T x x x x T x T x x x x x x =-==-=-=-=--=-=-=---=-+- 14.已知实验数据如下: i x 19 25 31 38 44 i y 19.0 32.3 49.0 73.3 97.8 用最小二乘法求形如2y a bx =+的经验公式,并求均方误差 解: 法方程为

数值分析实验报告

学生实验报告实验课程名称 开课实验室 学院年级专业班 学生姓名学号 开课时间至学年学期

if(A(m,k)~=0) if(m~=k) A([k m],:)=A([m k],:); %换行 end A(k+1:n, k:c)=A(k+1:n, k:c)-(A(k+1:n,k)/ A(k,k))*A(k, k:c); %消去end end x=zeros(length(b),1); %回代求解 x(n)=A(n,c)/A(n,n); for k=n-1:-1:1 x(k)=(A(k,c)-A(k,k+1:n)*x(k+1:n))/A(k,k); end y=x; format short;%设置为默认格式显示,显示5位 (2)建立MATLAB界面 利用MA TLAB的GUI建立如下界面求解线性方程组: 详见程序。 五、计算实例、数据、结果、分析 下面我们对以上的结果进行测试,求解:

? ? ? ? ? ? ? ? ? ? ? ? - = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - - 7 2 5 10 13 9 14 4 4 3 2 1 13 12 4 3 3 10 2 4 3 2 1 x x x x 输入数据后点击和,得到如下结果: 更改以上数据进行测试,求解如下方程组: 1 2 3 4 43211 34321 23431 12341 x x x x ?? ???? ?? ???? ?? ???? = ?? ???? - ?? ???? - ???? ?? 得到如下结果:

数值分析2016上机实验报告

序言 数值分析是计算数学的范畴,有时也称它为计算数学、计算方法、数值方法等,其研究对象是各种数学问题的数值方法的设计、分析及其有关的数学理论和具体实现的一门学科,它是一个数学分支。是科学与工程计算(科学计算)的理论支持。许多科学与工程实际问题(核武器的研制、导弹的发射、气象预报)的解决都离不开科学计算。目前,试验、理论、计算已成为人类进行科学活动的三大方法。 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。现在面向数值分析问题的计算机软件有:C,C++,MATLAB,Python,Fortran等。 MATLAB是matrix laboratory的英文缩写,它是由美国Mathwork公司于1967年推出的适合用于不同规格计算机和各种操纵系统的数学软件包,现已发展成为一种功能强大的计算机语言,特别适合用于科学和工程计算。目前,MATLAB应用非常广泛,主要用于算法开发、数据可视化、数值计算和数据分析等,除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。 本实验报告使用了MATLAB软件。对不动点迭代,函数逼近(lagrange插值,三次样条插值,最小二乘拟合),追赶法求解矩阵的解,4RungeKutta方法求解,欧拉法及改进欧拉法等算法做了简单的计算模拟实践。并比较了各种算法的优劣性,得到了对数值分析这们学科良好的理解,对以后的科研数值分析能力有了极大的提高。

目录 序言 (1) 问题一非线性方程数值解法 (3) 1.1 计算题目 (3) 1.2 迭代法分析 (3) 1.3计算结果分析及结论 (4) 问题二追赶法解三对角矩阵 (5) 2.1 问题 (5) 2.2 问题分析(追赶法) (6) 2.3 计算结果 (7) 问题三函数拟合 (7) 3.1 计算题目 (7) 3.2 题目分析 (7) 3.3 结果比较 (12) 问题四欧拉法解微分方程 (14) 4.1 计算题目 (14) 4.2.1 方程的准确解 (14) 4.2.2 Euler方法求解 (14) 4.2.3改进欧拉方法 (16) 问题五四阶龙格-库塔计算常微分方程初值问题 (17) 5.1 计算题目 (17) 5.2 四阶龙格-库塔方法分析 (18) 5.3 程序流程图 (18) 5.4 标准四阶Runge-Kutta法Matlab实现 (19) 5.5 计算结果及比较 (20) 问题六舍入误差观察 (22) 6.1 计算题目 (22) 6.2 计算结果 (22) 6.3 结论 (23) 7 总结 (24) 附录

数值分析实验报告资料

机电工程学院 机械工程 陈星星 6720150109 《数值分析》课程设计实验报告 实验一 函数插值方法 一、问题提出 对于给定的一元函数)(x f y =的n+1个节点值(),0,1,,j j y f x j n ==。试用Lagrange 公式求其插值多项式或分段二次Lagrange 插值多项式。 数据如下: (1 求五次Lagrange 多项式5L ()x ,计算(0.596)f ,(0.99)f 的值。(提示:结果为(0.596)0.625732f ≈, (0.99) 1.05423f ≈) 实验步骤: 第一步:先在matlab 中定义lagran 的M 文件为拉格朗日函数 代码为: function[c,l]=lagran(x,y) w=length(x); n=w-1; l=zeros(w,w); for k=1:n+1 v=1; for j=1:n+1 if(k~=j) v=conv(v,poly(x(j)))/(x(k)-x(j)); end end l(k,:)=v; end c=y*l; end

第二步:然后在matlab命令窗口输入: >>>> x=[0.4 0.55 0.65 0.80,0.95 1.05];y=[0.41075 0.57815 0.69675 0.90 1.00 1.25382]; >>p = lagran(x,y) 回车得到: P = 121.6264 -422.7503 572.5667 -377.2549 121.9718 -15.0845 由此得出所求拉格朗日多项式为 p(x)=121.6264x5-422.7503x4+572.5667x3-377.2549x2+121.9718x-15.0845 第三步:在编辑窗口输入如下命令: >> x=[0.4 0.55 0.65 0.80,0.95 1.05]; >> y=121.6264*x.^5-422.7503*x.^4+572.5667*x.^3-377.2549*x.^2+121.9718 *x-15.0845; >> plot(x,y) 命令执行后得到如下图所示图形,然后 >> x=0.596; >> y=121.6264*x.^5-422.7503*x.^4+572.5667*x.^3-377.2549*x.^2+121.9718 *x-15.084 y =0.6257 得到f(0.596)=0.6257 同理得到f(0.99)=1.0542

清华大学杨顶辉数值分析第6次作业

9.令*()(21),[0,1]n n T x T x x =-∈,试证*{()}n T x 是在[0,1] 上带权()x ρ=的正交多项式,并求****0123(),(),(),()T x T x T x T x . 证明: 1 1 * *0 1 1 * *011**0 ()()()(21)(21)211()()()()()2()()()()()()()()n m n m n m n m n m n n m n m x T x T x dx x T x dx t x x T x T x dx t T t dt t T t dt T x x T x T x dx t T t ρρρ---=--=-== = ???? ?令,则 由切比雪夫多项式1 01=02 m n dt m n m n ππ ≠??? =≠??==??? 所以*{()}n T x 是在[0,1] 上带权()x ρ= *00*11* 22 2 2*33233()(21)1()(21)21 ()(21)2(21)188()(21)4(21)3(21)3248181 T x T x T x T x x T x T x x x x T x T x x x x x x =-==-=-=-=--=-=-=---=-+- 14.已知实验数据如下: 用最小二乘法求形如2y a bx =+的经验公式,并求均方误差 解: 法方程为

22222(1,)(1,1)(1,)(,)(,1)(,)a y x b x y x x x ?????? =???? ?????? ?? 即 5 5327271.453277277699369321.5a b ??????=???????????? 解得 0.972579 0.050035a b =?? =? 拟合公式为20.9725790.050035y x =+ 均方误差 2 4 2 2 0[]0.015023i i i y a bx σ==--=∑ 21.给出()ln f x x =的函数表如下: 用拉格朗日插值求ln 0.54的近似值并估计误差(计算取1n =及2n =) 解:1n =时,取010.5,0.6x x == 由拉格朗日插值定理有 1 100.60.5 0.693147 0.510826 0.50.(60.60.51.82321)0 1.()6047()52 j j j x x x L x f x l x ==------=-=∑ 所以1ln0.54(0.54)0.620219L ≈=- 误差为ln 0.54(0.620219)= 0.004032ε=-- 2n =时,取0120.4,0.5,0.6x x x === 由拉格朗日插值定理有

清华大学高等数值计算(李津)实践题目二(SVD计算及图像压缩)(包含matlab代码)

第1部分 方法介绍 奇异值分解(SVD )定理: 设m n A R ?∈,则存在正交矩阵m m V R ?∈和n n U R ?∈,使得 T O A V U O O ∑??=?? ?? 其中12(,, ,)r diag σσσ∑=,而且120r σσσ≥≥≥>,(1,2, ,)i i r σ=称为A 的 奇异值,V 的第i 列称为A 的左奇异向量,U 的第i 列称为A 的右奇异向量。 注:不失一般性,可以假设m n ≥,(对于m n <的情况,可以先对A 转置,然后进行SVD 分解,最后对所得的SVD 分解式进行转置,就可以得到原来的SVD 分解式) 方法1:传统的SVD 算法 主要思想: 设()m n A R m n ?∈≥,先将A 二对角化,即构造正交矩阵1U 和1V 使得 110T B n U AV m n ?? =?? -?? 其中1200n n B δγγδ??? ???=?????? 然后,对三角矩阵T T B B =进行带Wilkinson 位移的对称QR 迭代得到:T B P BQ =。 当某个0i γ=时,B 具有形状12B O B O B ?? =? ??? ,此时可以将B 的奇异值问题分解为两个低阶二对角阵的奇异值分解问题;而当某个0i δ=时,可以适当选取'Given s 变换,使得第i 行元素全为零的二对角阵,因此,此时也可以将B 约化为两个低 阶二对角阵的奇异值分解问题。 在实际计算时,当i B δε∞≤或者() 1j j j γεδδ-≤+(这里ε是一个略大于机器精度的正数)时,就将i δ或者i γ视作零,就可以将B 分解为两个低阶二对角阵的奇异值分解问题。

数值分析实验报告1

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =

清华大学高等数值分析作业李津1——矩阵基础

20130917题目 求证:在矩阵的LU 分解中,1 11n n T n ij i j j i j L I e e α-==+??=- ??? ∑∑ 证明: 在高斯消去过程中,假设0jj a ≠ ,若a=0,可以通过列变换使得前面的条件成立,这里不考虑这种情况。 对矩阵A 进行LU 分解,()() () ()()1 11 1111L M n M M M n ---=-=??-………… , 其中()1n T n ij i j i j M j I e e α=+??=+ ??? ∑ ,i e 、j e 为n 维线性空间的自然基。 ()M j 是通过对单位阵进行初等变换得到, 通过逆向的变换则可以得到单位阵,由此很容易得到()M j 的逆矩阵为1n T n ij i j i j I e e α=+??- ???∑。故111n n T n ij i j n j i j L I e e I α-==+?? ??=- ? ? ????? ∏∑ 上式中的每一项均是初等变换,从右向左乘,则每乘一次相当于对右边的矩阵进行一次 向下乘法叠加的初等变换。由于最初的矩阵为单位阵,变换从右向左展开,因而每一次变换不改变已经更新的数据,既该变换是从右向左一列一列更新数据,故 11n n T n ij i j j i j L I e e α==+??=- ??? ∑∑。 数学证明:1n T ij i j i j e e α=+?? ???∑具有 ,0 00n j j A -?? ??? 和1,1000n j n j B -+-+?? ?? ? 的形式,且有 +1,-11,10000=000n j j n j n j A B --+-+???? ?????? ? 而1 1n n T ij i j j k i j e e α-==+?? ??? ∑∑具有1,1000n k n k B -+-+?? ???的形式,因此: 1 311111211121==n n n n n n T T T n ij i j n ij i j n ik i k j i j j i j k n i k n n T n i i n ik i i i k L I e e I e e I e e I e e I e ααααα---==+==+=-=+==+??????????????=---?? ? ? ? ? ? ? ? ???????????????????????=-- ? ? ?????∏∑∏∑∑∑∑∑……11211n n n T T k n ik i k k k i k e I e e α--===+????=- ?? ?????? ∑∑∑#

清华大学杨顶辉数值分析第5次作业答案

2.定义映射22:B R R →,()B x y =,满足y Ax =,其中 0.80.40.10.4A ??=????,2,x y R ∈ 则对任意的2 ,u v R ∈ 1111119 ||()()||||||||()||||||||||||||10B u B v Au Av A u v A u v u v -=-=-≤-=- 故映射B 对一范数是压缩的 由范数定义 ||||1 ||||max |||| 1.2 x A Ax ∞∞∞===,知必然存在0 x , 0||||1 x ∞= 使得0|||||||| 1.2 Ax A ∞∞== 设012(,)T x x x = 取 12(,0),(0,)T T u x v x ==-,则 u v x -=,有 00||()()||||||||()|||||||||| 1.21||||||||B u B v Au Av A u v Ax A x u v ∞∞∞∞∞∞∞ -=-=-===>==- 故有||()()||B u B v ∞->||||u v ∞ -,从而映射B 对无穷范数不是压缩的 4. 证明:对任意的,[,]x y a b ∈ 由拉格朗日中值定理,有 ()()'()()() 1e G x G y G x y x y e ξ ξξ-=-=-+ 其中0111b b e e e e ξξ<≤<++ 所以 |()()||()||| 11b b e e G x G y x y x y e e ξξ-=-≤-++ 故G 为[,]a b 上的压缩映射 而 ()ln(1)ln x x G x e e x =+>= 即()G x x =无根

相关主题
文本预览
相关文档 最新文档