当前位置:文档之家› 大学dsp实验心得体会

大学dsp实验心得体会

大学dsp实验心得体会
大学dsp实验心得体会

大学dsp实验心得体会

通过本次大学dsp实验,加深了我对DSP的认识,使我对DSP 实验的操作有了更进一步的理解。基本掌握了CCS实验环境的使用,并能够使用C语言进行简单的DSP程序设计。下面是为大家收集整理的大学dsp实验心得体会,欢迎大家阅读。

大学dsp实验心得体会篇1 实验报告

一、实验室名称:数字信号处理实验室

二、实验项目名称:多种离散时间信号的产生

三、实验原理:

1、基本离散时间信号

利用MATLAB强大的数值处理工具来实现信号的分析和处理,首先就是要学会应用MATLAB函数来构成信号。常见的基本信号可以简要归纳如下:

(1).单位采样序列

1n=0 (n)= 0 n 0

在MATLAB中可以利用zeros()函数实现。

x=zeros(1,N);

x(1)=1;

如果(n)在时间轴上延迟了k个单位,得到(n-k)即:

(n-k)=

(2).单位阶跃序列1n=k 0n 0

1n 0u(n)= 0n 0

在MATLAB中可以利用ones()函数实现。

x=ones(1,N);

(3).正弦序列

x(n)=Asin(2 fn+ )

采用MATLAB的实现方法,如:

n=0:N-1

x=A*sin(2*pi*f*n+ )

(4).实指数序列

x(n)=A an

其中,A、a为实数。采用MATLAB的实现方法,如:n=0:N-1

x=a.

(5).复指数序列

x(n)=A e n=0:N-1 采用MATLAB的实现方法,如:x=A*exp(( +j* 0)*n)

为了画出复数信号x[n],必须要分别画出实部和虚部,或者幅值和相角。MATLAB函数real、imag、abs和angle可以逐次计算出一个复数向量的这些函数。

2、基本数字调制信号

(1).二进制振幅键控(2ASK)

最简单的数字调制技术是振幅键控(ASK),即二进制信息信号直接调制模拟载波的振幅。二进制幅度键控信号的时域表达式:SASK(t)=[ ang(t-nTs)]cos ct

其中,an为要调制的二进制信号,gn(t)是单极性脉冲信号的时间波形,Ts表示调制的信号间隔。( +j 0)n 典型波形如下:

图1 1二进制振幅键控信号时间波形

(2).二进制频移键控(2FSK)

在二进制数字调制中,若正弦载波的频率随二进制基带信号在f1和f2两个频率点间变化,则产生

二进制移频键控信号(2FSK信号)。二进制频域键控已调信号的时域表达式为: S2FSK(t)= ang(t-nTS) cos 1t+ ng(t-nTS) cos 2t n n 这里,1=2 f1, 2=2 f2,an是an的反码。

an

载波信号1 t 载波信号2 t

2FSK信号t

(3).二进制相移键控(2PSK或BPSK)

在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号。通常用已调信号载波的0 和180 分别表示二进制数字基带信号的1 和0。二进制移相键控信号的时域表达式为:

S2PSK(t)= ang(t-nTS) cos( ct+ i), i=0或

n

(3).二进制相移键控(2PSK或BPSK)

在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号。通常用已调信号载波的0 和180 分别表示二进制数字基带信号的1 和0。二进制移相键控信号的时域表达式为:

S2PSK(t)= ang(t-nTS) cos( ct+ i), i=0或

n

因此,DTMF信号可以看作两个有限长度的正弦序列相加,正弦信号的频率由按键数字或字母符号对应的频率决定。如,数字8 由行频852Hz和列频1336Hz决定。

四、实验目的:

1、掌握几种基本的离散时间信号(包括单位采样序列,单位阶跃序列,单频正弦序列,单频复指

数序列,实指数序列等)。

2、能够熟练利用MATLAB产生这些基本的离散时间信号。

3、理解双音多频DTMF信号、ASK、FSK、BPSK等信号的产生原理。

4、学习并运用MATLAB产生各种通信中的调制信号及双音多频信号。

五、实验内容:

1、对几种基本离散时间信号(包括单位采样序列,单位阶跃序列,正弦序列,复指数序列,实指数序列等)在MATLAB中编程产生。

2、(拓展要求)利用MATLAB编程产生2ASK,2FSK,2PSK等数字调制信号。

3、(拓展要求)利用MATLAB编程产生理解双音多频DTFM信号。

4、(拓展要求)利用MATLAB编程产生高斯白噪声序列。

5、(拓展要求)利用MATLAB中的谱分析函数对正弦信号的频谱进行分析。

6、通过硬件(DSP)实验箱演示上述信号的时域(示波器)波形与频域波形(计算结果)。

六、实验器材(设备、元器件):

安装MATLAB软件的PC机一台,DSP实验演示系统一套。

七、实验步骤:

1、在-20 n 20内,画出单位下列信号:

(a).单位采样序列x1[n]= [n]和单位阶跃序列x2[n]=u[n]的时域波形图。

(b).y1[n]=x1[n+5]、y2[n]=x2[n-8]的波形。说明x1[n]与y1[n]、x2[n]与y2[n]之间的关系。

2、画出下列信号在0 n 100内的波形。n x3[n]=sin 16

n x4[n]=sin 2

n 3 n x5[n]=cos +cos 12 8

观察x3[n]、x4[n]、x5[n]是否周期信号。如果是周期信号,信号的基波周期是什么?如果不是

周期信号,说明原因。

3、在0 n 30内,画出下列信号:nx6[n]=0.2(0.8) (-1/12+j /6)nx7[n]=e对于复数序列,要求分别画出实部和虚部;幅值和相角。若把x6[n]中的底数0.8分别改为1.2、

-0.8,讨论产生的时域波形有何变化。总结指数序列的底数对序列变化的影响。

4、(拓展要求)设计产生数字二进制序列:1 0 1 0 1 0 的2ASK、2FSK、2PSK调制信号。已

知符号速率Fd=10Hz(即时间间隔Ts为0.1),输出信号的采样频率为20Hz。

(a).2ASK信号的载波频率Fc=5Hz,

(b).2FSK信号载波1频率F1=5Hz,载波2频率F2=1Hz。

(c).2PSK载波频率Fc=1Hz。

分别画出以上信号调制前后的时域波形图。

5、(拓展要求)利用MATLAB产生DTMF双音多频信号。画出数字0 的时域波形图。

6、(拓展要求)MATLAB函数randn(1,N)可以产生均值为0,方差为1的高斯随机序列,也就是

白噪声序列。试利用randn函数产生均值为0.15,方差为0.1的高斯白噪声序列x8[n],要求序列时域范围为0 n 100。画出时域波形图。同时将实验步骤2中产生的信号x2[n]与x8[n]相加,将得到的波形与x2[n]的波形做比较。

7、(拓展要求)利用MATLAB中的谱分析函数画出x3[n]、x4[n]、x5[n]的频谱。与理论上根据傅

立叶变换的定义计算出的x3[n]、x4[n]、x5[n]的频谱进行比较。

8、通过硬件(DSP)实验箱演示上述信号的时域(示波器)波形与频域波形(计算结果)。

八、实验数据及结果分析:

程序:

(1)产生x1[n]、x2[n]、y1[n]、y2[n]、x3[n]、x4[n]、x5[n]、x6[n]、x7[n]序列的程序

(2)产生2ASK、2FSK、2PSK调制信号的程序(拓展要求)

(3)产生DTMF信号的程序(拓展要求)

(4)高斯白噪声序列的产生程序(扩展要求) (4)正弦信号频谱分析的程序(扩展要求) clear all;

clc;

n=101;

%单位采样序列

x1=zeros(1,n);

x1(1)=1;

x1=[zeros(1,100),x1];

%单位阶跃序列

x2=ones(1,n);

x2=[zeros(1,100),x2];

%

n1=0:n-1;

yn1=n1-5;

yn2=n1+8;

%100;

Fs=1000;

n2=0:100;

%正弦序列

x3=sin(2*pi*n2/32);

x4=sin(n2/2);

x5=sin(pi*n2/12)+cos(3*pi*n2/8); %指数序列

n3=0:30;

x61=0.2*(0.8.

3);%实指数序列

x62=0.2*(1.2.

x63=0.2*((-0.8).

x7=exp((-1/12+1i*pi/6)*n3);%复指数序列

%画出图形

figure(1)

subplot(2,2,1),stem(n1,x1),title( x1 ),axis([-20,20,0,1]);

subplot(2,2,2),stem(n1,x2),title( x2 ),axis([-20,20,0,1]);

subplot(2,2,3),stem(yn1,x1),title( y1 ),axis([-20,20,0,1]);

subplot(2,2,4),stem(yn2,x2),title( y2 ),axis([-20,20,0,1]);

figure(2)

subplot(3,1,1),stem(n2,x3),title( x3 ),axis([0,100,-1,1]);

subplot(3,1,2),stem(n2,x4),title( x4 ),axis([0,100,-1,1]);

subplot(3,1,3),stem(n2,x5),title( x5 ),axis([0,100,min(x5),max(x5 )]);

figure(3)

subplot(3,1,1),stem(n3,x61),title( x6 a=0.8 ),axis([0,30,min(x61),max(x61)]);

subplot(3,1,2),stem(n3,x62),title( x6 a=1.2 ),axis([0,30,min(x62),max(x62)]);

subplot(3,1,3),stem(n3,x63),title( x6 a=-0.8 ),axis([0,30,min(x63),max(x63)]);

figure(4)

subplot(4,1,1),stem(n3,abs(x7)),title( x7幅值),axis([0,30,min(abs(x7)),max(abs(x7))]);

subplot(4,1,2),stem(n3,angle(x7)),title( x7相角),axis([0,30,min(angle(x7)),max(angle(x7))]); subplot(4,1,3),stem(n3,imag(x7)),title( x7虚部),axis([0,30,min(imag(x7)),max(imag(x7))]); subplot(4,1,4),stem(n3,real(x7)),title( x7实部),axis([0,30,min(real(x7)),max(real(x7))]); %调制

x_base=[1,0,1,0,1,0];

Fd=10000;

t=linspace(0,0.6,6*Fd);

if(x_base(1)==1)

m=ones(1,Fd);

elseif(x_base(1)==0)

m=zeros(1,Fd);

end

for i=2:6

if(x_base(i)==1)

m=[m,ones(1,Fd)];

elseif(x_base(i)==0)

m=[m,zeros(1,Fd)];

end

end

%2ASK

Fc_A=5;

S_ask=m.*cos(2*pi*Fc_A*t);

%

figure(5)

subplot(4,1,1),stem(0:0.1:0.5,x_base),title( 序列An ),axis([0,0.6,0,1]),xlabel( s

subplot(4,1,2),plot(t,m),title( mt ),axis([0,0.6,0,1.5]),title( mt ),xl abel( s

subplot(4,1,3),plot(t,cos(2*pi*Fc_A*t)),title( mt ),axis([0,0.6,-1.2, 1.2]),title( 载波信号),xlabel( s subplot(4,1,4),plot(t,S_ask),title( mt ),axis([0,0.6,-1.2,1.2]),title( 2ASK调制信号),xlabel( s %2FSK

F1=5;F2=1;

s1=m.*cos(2*pi*F1*t);

s2=(1-m).*cos(2*pi*F2*t);

S_fsk=s1+s2;

figure(6)

subplot(4,1,1),plot(t,m),axis([0,0.6,0,1.5]),title( mt ),xlabel( s subplot(4,1,2),plot(t,s1),axis([0,0.6,-1.2,1.2]),title( 载波信号1 F=5Hz) ),xlabel( s

subplot(4,1,3),plot(t,s2),axis([0,0.6,-1.2,1.2]),title( 载波信号2 F=1Hz ),xlabel( s

subplot(4,1,4),plot(t,S_fsk),axis([0,0.6,-1.2,1.2]),title( 2FSK 调制信号),xlabel( s

%2PSK

Fc_P=1;

S_psk=(2*m-1).*cos(2*pi*Fc_P*t+pi);

figure(7)

subplot(4,1,1),plot(t,2*m-1),axis([0,0.6,-1.5,1.5]),title( mt ),xlab el( s

subplot(4,1,2),plot(t,cos(2*pi*Fc_P*t+pi)),axis([0,0.6,-1.2,1.2]),ti tle( 正相载波信号),xlabel( s subplot(4,1,3),plot(t,-cos(2*pi*Fc_P*t+pi)),axis([0,0.6,-1.2,1.2]),t itle( 反相载波信号),xlabel( s subplot(4,1,4),plot(t,S_psk),axis([0,0.6,-1.2,1.2]),title( 2PSK调制信号),xlabel( s

%DTFM

t_dt=linspace(0,0.02,10000);

x_dtfm=cos(2*pi*941*t_dt)+cos(2*pi*1366*t_dt);

plot(t_dt,x_dtfm);

%rand

N=201;

x8=sqrt(0.1)*randn(1,N)+0.15;

x_rnd=x2+x8;

figure(8)

subplot(3,1,1),stem(n1,x2),title( X2

subplot(3,1,2),stem(n1,x8),title( 高斯信号

subplot(3,1,3),stem(n1,x_rnd),title( 加噪声后X2

%FFT

N_smp=length(n2);

fre=linspace(-1,1,N_smp)*Fs/2;

y3=abs(fftshift(fft(x3)));

y4=abs(fftshift(fft(x4)));

y5=abs(fftshift(fft(x5)));

figure(9)

subplot(3,1,1),plot(fre,y3),xlabel( Hz ),title( X3频谱),xlabel( 频率Hz ),axis([-100,100,1.2*min(y3),1.2*max(y3)]);

subplot(3,1,2),plot(fre,y4),xlabel( Hz ),title( X4频谱),xlabel( 频率Hz ),axis([-200,200,1.2*min(y4),1.2*max(y4)]);

subplot(3,1,3),plot(fre,y5),xlabel( Hz ),title( X5频谱),xlabel( 频率Hz ),axis([-300,300,1.2*min(y5),1.2*max(y5)]);

结果:

(1)x1[n]、x2[n]、y1[n]、y2[n]、x3[n]、x4[n]、x5[n]、x6[n]、x7[n]的时域波形

(2)信号的时移:x1[n]与y1[n]、x2[n]与y2[n]之间的关系。答:y1[n]相当于x1[n]向左平移5个单位,y2[n]相当于将x2[n]向右平移8个单位

大学dsp实验心得体会篇2 基础实验

一、实验目的

二、实验设备

三、实验原理

浮点数的表达和计算是进行数字信号处理的基本知识;产生正弦信号是数字信号处理1. 一台装有CCS软件的计算机; 2. DSP实验箱的TMS320F2812主控板; 3. DSP硬件仿真器。1. 掌握CCS实验环境的使用; 2. 掌握用C语言编写DSP程序的方法。中经常用到的运算;C语言是现代数字信号处理表达的基础语言和通用语言。写实现程序时需要注意两点:(1)浮点数的范围及存储格式;(2)DSP的C语言与ANSI C语言的区别。

四、实验步骤

1. 打开CCS 并熟悉其界面;

2. 在CCS环境中打开本实验的工程(Example_base.pjt),编译

并重建 .out 输出文件,然后通过仿真器把执行代码下载到DSP芯片中;

3. 把X0 , Y0 和Z0添加到Watch窗口中作为观察对象(选中变量名,单击鼠标右键,在弹出菜单中选择Add Watch Window 命令);

4. 选择view- graph- time/frequency 。设置对话框中的参数: 其中Start Address

设为sin_value ,Acquisition buffer size 和Display Data size 都设为100 ,并且把DSP Data Type 设为32-bit floating point ,

设置好后观察信号序列的波形(sin函数,如图);

5. 单击运行;

6. 观察三个变量从初始化到运算结束整个过程中的变化;观察正弦波形从初始化到运算结束整个过程中的变化;

7. 修改输入序列的长度或初始值,重复上述过程。

五、实验心得体会

通过本次实验,加深了我对DSP的认识,使我对DSP实验的操作有了更进一步的理解。基本掌握了CCS实验环境的使用,并能够使用C语言进行简单的DSP程序设计。

从软件的安装到使用软件进行程序设计与仿真,锻炼了自己的动手能力,也遇到了不少的坎坷,例如芯片的选择,不能因为麻烦而省略该步骤,否则将会运行出错。

大学dsp实验心得体会篇 3 //EnablePWMpins;GpioMuxRegs.GPAMUX.all=0;GpioMuxReg s.GPBMUX.all=0;EDIS;;//Step3.Clearallinterrup;//DisableCPUin terrupts;DINT;;//InitializethePIEcontro;//ThedefaultstateisallPI; //ar

// Enable PWM pins

GpioMuxRegs.GPAMUX.all = 0x00FF; // EVA PWM 1-6 pins

GpioMuxRegs.GPBMUX.all = 0x00FF; // EVB PWM 7-12 pins

EDIS;

// Step 3. Clear all interrupts and initialize PIE vector table:

// Disable CPU interrupts

DINT;

// Initialize the PIE control registers to their default state.

// The default state is all PIE interrupts disabled and flags // are cleared.

// This function is found in the DSP281x_PieCtrl.c file.

InitPieCtrl();

// Disable CPU interrupts and clear all CPU interrupt flags:

IER = 0x0000;

IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt

// Service Routines (ISR).

// This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes.

// The shell ISR routines are found in DSP281x_DefaultIsr.c.

// This function is found in DSP281x_PieVect.c.

InitPieVectTable();

// Step 4. Initialize all the Device Peripherals:

// This function is found in DSP281x_InitPeripherals.c

// InitPeripherals(); // Not required for this example

InitXintf(); // For this example, init the Xintf

// Step 5. User specific code, enable interrupts:

init_eva();

//init_evb();

while(1)

{

for(i=0;i 65535;i+=1000)

生物化学实验六——酵母RNA的提取与含量测定 山东大学实验报告

实验六——酵母RNA的提取与含量测定 13生物基地 201300140059 刘洋 2015-05-10 同组者:张奕 一、实验目的 1.掌握稀碱法提取酵母RNA的原理和方法。 2.掌握紫外分光光度计的使用。 3.了解和掌握紫外吸收法测定RNA浓度的原理。 二、实验原理 酵母核酸中RNA含量较多,DNA则少于2%。RNA可溶于碱性溶液,当碱被中和后,可加乙醇使其沉淀,由此即可得到RNA制品。但是用碱液提取的RNA有不同的降解。 核酸及其衍生物,核苷酸、核苷、嘌呤和嘧啶有吸收紫外光的性质,其吸收高峰在260nm 左右,且一定浓度范围内其浓度与吸光度成正比(浓度为5μg/ml—45μg/ml吸光度与浓度成正比),利用此性质,可用RNA标准液绘制RNA吸光标准曲线(标准曲线的斜率为0.022-0.024左右),测定样品RNA浓度。由于蛋白质在280nm的光吸收,对核酸测定有一定的干扰作用,最大吸收峰在280nm处,原因是蛋白质组成中常含有酪氨酸和色氨酸等芳香族氨基酸。所以如果有蛋白质的干扰必须得先测260nm处的吸光度,再测280nm处的吸光度,通过计算消除其对核酸的影响。 三、实验器材 干酵母粉 电子天平 量筒 容量瓶100ml 磁力搅拌器 试管 100℃水浴锅pH试纸(pH1-14)烧杯 离心机 722型分光光度计锥形瓶 离心管 四、实验试剂 0.2%氢氧化钠溶液95%乙醇 无水乙醚酸性乙醇(5ml浓Hcl加入到500ml95%乙醇中混匀)RNA标准蛋白溶液(200μg/ml)

1.RNA的提取 (1)称取4g干酵母粉,放入200ml锥形瓶中,加入40ml0.2%的氢氧化钠溶液混匀,在沸水浴中煮沸30min中并冷却; (2)冷却后,把液体倒入离心管中,在4000r/min的条件下离心15min; (3)离心后留上清液加入95%的酸性乙醇40ml,边加边搅拌,静置5min左右,再4000r/min的条件下离心5min; (4)离心后保留沉淀,用20ml 95%乙醇分两次洗涤沉淀,每次洗后在3000r/min的条件下离心5min; (5)离心后的沉淀再用无水乙醇10ml洗涤两次,每次用3000r/min离心5min; (6)离心结束后,收集沉淀与滤纸上,称重备用。 2.RNA样液的配制 (1)取粗RNA0.2-0.25g与烧杯中,加入5mlNaOH溶液,搅拌,溶解,调成糊状。 (2)再加入蒸馏水40ml,搅拌混匀,调PH至7.0后,放入100ml容量瓶中定容。 (3)再分3-4次分别取2ml定容后溶液于100ml容量瓶中继续定容待测,并且把容量瓶依次编号为A、B、C。 3.RNA标准曲线的绘制 (1)取洁净的试管,依次标号为1-10、A、B、C后,按照下表分别往各试管中加所需液体,并用磁力搅拌器混匀。 (2)混匀后以0号试管为参比液,在260nm下测各试管的吸光度A,并根据0-9试管的吸光值绘制出RNA标准曲线,并最终得出样品的浓度。 六、注意事项 1.离心机的使用,使用前一定要将两离心液(包括外壳)在天平上调平,对称放置在离 心机上,防止力臂不对称而损坏离心机。 2.紫外分光光度计的使用,要先预热10分钟,往比色皿中到液体只需到三分之二即可, 防止液体溢出腐蚀仪器,爱护仪器。

DSP实验报告

实验0 实验设备安装才CCS调试环境 实验目的: 按照实验讲义操作步骤,打开CCS软件,熟悉软件工作环境,了解整个工作环境内容,有助于提高以后实验的操作性和正确性。 实验步骤: 以演示实验一为例: 1.使用配送的并口电缆线连接好计算机并口与实验箱并口,打开实验箱电源; 2.启动CCS,点击主菜单“Project->Open”在目录“C5000QuickStart\sinewave\”下打开工程文件sinewave.pjt,然后点击主菜单“Project->Build”编译,然后点击主菜单“File->Load Program”装载debug目录下的程序sinewave.out; 3.打开源文件exer3.asm,在注释行“set breakpoint in CCS !!!”语句的NOP处单击右键弹出菜单,选择“Toggle breakpoint”加入红色的断点,如下图所示; 4.点击主菜单“View->Graph->Time/Frequency…”,屏幕会出现图形窗口设置对话框 5.双击Start Address,将其改为y0;双击Acquisition Buffer Size,将其改为1; DSP Data Type设置成16-bit signed integer,如下图所示; 6.点击主菜单“Windows->Tile Horizontally”,排列好窗口,便于观察 7.点击主菜单“Debug->Animate”或按F12键动画运行程序,即可观察到实验结果: 心得体会: 通过对演示实验的练习,让自己更进一步对CCS软件的运行环境、编译过程、装载过程、属性设置、动画演示、实验结果的观察有一个醒目的了解和熟悉的操作方法。熟悉了DSP实验箱基本模块。让我对DSP课程产生了浓厚的学习兴趣,课程学习和实验操作结合为一体的学习体系,使我更好的领悟到DSP课程的实用性和趣味性。

化学实验心得体会

化学实验心得体会 化学是一门以实验为基础与生活生产息息相关的课程。化学知识的实用性很强,因此实验就显得非常重要。 刚开始做实验的时候,由于学生的理论知识基础不好,在实验过程遇到了许多的难题,也使学生们感到了理论知识的重要性。让学生在实验中发现问题,自己看书,独立思考,与老师探讨,最终解决问题,从而也就加深了学生对课本理论知识的理解,达到了“双赢”的效果。在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,实验前理论知识的准备,也就是要事前了解将要做的实验的有关资料,如:实验要求,实验内容,实验步骤,最重要的是要记录实验现象等等. 否则,在老师讲解时,可能听不懂,这将使你在做实验时会感觉实验难度加大,浪费做实验的宝贵时间。比如用电解饱和食盐水的方法制取氯气的的实验要清楚各实验仪器的接法,如果不清楚,在做实验时才去摸索,这将使你极大地浪费时间,会事倍功半. 虽然做实验时,老师一般都会讲解一下实验步骤,但是如果自己没有一些基础知识,那时是很难作得下去的,惟有胡乱按老师指使做,其实自己也不知道在做什么。做实验时,一定要亲力亲为,务必要将每个步骤,每个细节弄清楚,弄明白,实验后,还要复习,思考,这样,印象才深刻,记得才牢固,否则,过后不久就会忘得一干二净,这还不如不做.做实验时,老师会根据自

己的亲身体会,将一些课本上没有的知识教给学生,拓宽学生的眼界,使学生认识到这门课程在生活中的应用是那么的广泛. 学生做实验绝对不能人云亦云,要有自己的看法,这样就要有充分的准备,若是做了也不知道是个什么实验,那么做了也是白做。实验总是与课本知识相关的在实验过程中,我们应该尽量减少操作的盲目性提高实验效率的保证,有的人一开始就赶着做,结果却越做越忙,主要就是这个原因。在做实验时,开始没有认真吃透实验步骤,忙着连接实验仪器、添加药品,结果实验失败,最后只好找其他同学帮忙。特别是在做实验报告时,因为实验现象出现很多问题,如果不解决的话,将会很难的继续下去,对于思考题,有不懂的地方,可以互相讨论,请教老师。 我们做实验不要一成不变和墨守成规,应该具有改良创新的精神。实际上,在弄懂了实验原理的基础上,我们的时间是充分的,做实验应该是游刃有余的,如果说创新对于我们来说是件难事,那改良总是有可能的。比如说,在做金属铜与浓硫酸反应的实验中,我们可以通过自制装置将实验改进。 在实验的过程中要培养学生们独立分析问题和解决问题的能力。培养这种能力的前题是学生对每次实验的态度。如果学生在实验这方面很随便,等老师教怎么做,拿同学的

山东大学操作系统实验报告4进程同步实验

山东大学操作系统实验报告4进程同步实验

计算机科学与技术学院实验报告 实验题目:实验四、进程同步实验学号: 日期:20120409 班级:计基地12 姓名: 实验目的: 加深对并发协作进程同步与互斥概念的理解,观察和体验并发进程同步与互斥 操作的效果,分析与研究经典进程同步与互斥问题的实际解决方案。了解 Linux 系统中 IPC 进程同步工具的用法,练习并发协作进程的同步与互斥操作的编程与调试技术。 实验内容: 抽烟者问题。假设一个系统中有三个抽烟者进程,每个抽烟者不断地卷烟并抽烟。抽烟者卷起并抽掉一颗烟需要有三种材料:烟草、纸和胶水。一个抽烟者有烟草,一个有纸,另一个有胶水。系统中还有两个供应者进程,它们无限地供应所有三种材料,但每次仅轮流提供三种材料中的两种。得到缺失的两种材料的抽烟者在卷起并抽掉一颗烟后会发信号通知供应者,让它继续提供另外的两种材料。这一过程重复进行。请用以上介绍的 IPC 同步机制编程,实现该问题要求的功能。 硬件环境: 处理器:Intel? Core?i3-2350M CPU @ 2.30GHz ×4 图形:Intel? Sandybridge Mobile x86/MMX/SSE2 内存:4G 操作系统:32位 磁盘:20.1 GB 软件环境: ubuntu13.04 实验步骤: (1)新建定义了producer和consumer共用的IPC函数原型和变量的ipc.h文件。

(2)新建ipc.c文件,编写producer和consumer 共用的IPC的具体相应函数。 (3)新建Producer文件,首先定义producer 的一些行为,利用系统调用,建立共享内存区域,设定其长度并获取共享内存的首地址。然后设定生产者互斥与同步的信号灯,并为他们设置相应的初值。当有生产者进程在运行而其他生产者请求时,相应的信号灯就会阻止他,当共享内存区域已满时,信号等也会提示生产者不能再往共享内存中放入内容。 (4)新建Consumer文件,定义consumer的一些行为,利用系统调用来创建共享内存区域,并设定他的长度并获取共享内存的首地址。然后设定消费者互斥与同步的信号灯,并为他们设置相应的初值。当有消费进程在运行而其他消费者请求时,相应的信号灯就会阻止它,当共享内存区域已空时,信号等也会提示生产者不能再从共享内存中取出相应的内容。 运行的消费者应该与相应的生产者对应起来,只有这样运行结果才会正确。

dsp学习心得体会

dsp学习心得体会 篇一:DSP学习总结 DSP学习总结 摘要:本总结介绍了数字信号技术(DSP)的基本结构,特点,发展及应用现状。通过分析与观察,寄予了DSP 美好发展前景的希望。 关键字:数字信号处理器,DSP,特点,应用 1 DSP介绍 数字信号处理简称DSP,是进行数字信号处理的专用芯片,是伴随着微电子学、数字信号处理技术、计算机技术的发展而产生的新器件,是对信号和图像实现实时处理的一类高性能的CPU。所谓“实时实现”,是指一个实际的系统能在人们听觉、视觉或按要求所允许的时间范围内对输入信号进行处理,并输出处理结果。 数字信号是利用计算机或专用的处理设备,以数值计算的方式对信号进行采集、变换、综合、估计与识别等加工处理,从而达到提取信息和方便应用的目的。数字信号处理的实现是以数字信号处理理论和计算技术为基础的。 2 结构

32位的C28xDSP整合了DSP和微控制器的最佳特性,能够在一个周期内完成32*32位的乘法累加运算。 所有的C28x芯片都含一个CPU、仿真逻辑以及内存和片内外设备的接口信号(具体结构图见有关书籍)。CPU的主要组成部分有: 程序和数据控制逻辑。该逻辑用来从程序存储器取回的一串指令。实时和可视性的仿真逻辑。 地址寄存器算数单元(ARAU)。ARAU为从数据存储器取回的数据分配地址。算术逻辑单元(ALU)。32位的ALU执行二进制的补码布尔运算。 预取对列和指令译码。 为程序和数据而设的地址发生器。 定点MPY/ALU。乘法器执行32位*32位的二进制补码乘法,并产生64位的计算结果。中断处理。 3 特点 采用哈佛结构。传统的冯·诺曼结构的数据总线和指令总线是公用的,因此在高运算时在传输通道上会出拥堵现象。而采用哈佛结构的DSP 芯片片内至少有4 套总线:程序的地址总线与数据总线,数据的地址总线与数据总线。由于这

化学实验活动心得体会

化学实验活动心得体会 化学实验活动心得体会化学是一门以实验为基础 与生活生产息息相关的课程。化学知识的实用性很强,因 此实验就显得非常重要。 刚开始做实验的时候,由于学生的理论知识基础不好, 在实验过程遇到了许多的难题,也使学生们感到了理论知识 的重要性。让学生在实验中发现问题,自己看书,独立思考,最终解决问题,从而也就加深了学生对课本理论知识的 理解,达到了“双赢”的效果。 在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,实验前理论知识的准备,也就是要事前了解将 要做的实验的有关资料,如:实验要求,实验内容,实验步骤,最重要的是要记录实验现象等等. 否则,老师讲解时就会听不懂,这将使做实验的难度加大,浪费做实验的宝贵时间。比如用电解饱和食盐水的方法制取氯气的的实验要清 楚各实验仪器的接法,如果不清楚,在做实验时才去摸索,这将使你极大地浪费时间,会事倍功半。 虽然做实验时,老师会讲解一下实验步骤,但是如果自 己没有一些基础知识,那时是很难作得下去的,惟有胡乱按 老师指使做,其实自己也不知道做什么。做实验时,一定要亲力亲为,务必要将每个步骤,每个细节弄清楚,弄明白,实验后,还要复习,思考,这样,印象才深刻,记得才牢固,否则,

过后不久就会忘得一干二净,这还不如不做.做实验时,老师会根据自己的亲身体会,将一些课本上没有的知识教给学生,拓宽学生的眼界,使学生认识到这门课程在生活中的应用是 那么的广泛. 学生做实验绝对不能人云亦云,要有自己的看法,这样 就要有充分的准备,若是做了也不知道是个什么实验,那么 做了也是白做。实验总是与课本知识相关的在实验过程中,我们应该尽量减少操作的盲目性提高实验效率的保证,有的 人一开始就赶着做,结果却越做越忙,主要就是这个原因。 在做实验时,开始没有认真吃透实验步骤,忙着连接 实验仪器、添加药品,结果实验失败,最后只好找其他同学 帮忙。特别是在做实验报告时,因为实验现象出现很多问 题,如果不解决的话,将会很难的继续下去,对于思考题, 有不懂的地方,可以互相讨论,请教老师。 我们做实验不要一成不变和墨守成规,应该有改良创新 的精神。实际上,在弄懂了实验原理的基础上,我们的时间 是充分的,做实验应该是游刃有余的,如果说创新对于我 们来说是件难事,那改良总是有可能的。比如说,在做金属 铜与浓硫酸反应的实验中,我们可以通过自制装置将实验改 进。 在实验的过程中要培养学生独立分析问题和解决问题 的能力。培养这种能力的前题是学生对每次实验的态度。如

大学化学实验报告

大学化学实验报告 大学化学实验报告格式1):实验目的,专门写实验达到的要求和任务来实现。(例如,为了研究添加硫酸铜条件的溶液中的氢氧化钠溶液反应) 2):实验原理,该实验是对写的操作是什么通常是实验室书世外桃源基础上做在那里,你总结就行了。(您可以使用上述反应式) 3):实验用品,包括在实验中,液体和固体药品使用的设备。(如酒精灯,滤纸,以及玻璃棒,后两者用于过滤,这应该是在右侧。) 4):实验步骤:实验书籍有(即上面的话,氢氧化钠硫酸铜溶液加到生成蓝色沉淀,再加热蓝色沉淀,观察的现象 5)的反应):实验数据记录和处理。 6):分析与讨论 大学化学实验报告范文实验题目:溴乙烷的合成实验目的:1. 学习从醇制备溴乙烷的原理和方法 2. 巩固蒸馏的操作技术和学习分液漏斗的使用。 实验原理: 主要的副反应: 反应装置示意图: (注:在此画上合成的装置图) 实验步骤及现象记录: 实验步骤现象记录

1. 加料: 将9.0ml水加入100ml圆底烧瓶,在冷却和不断振荡下,慢慢地加入19.0ml浓硫酸。冷至室温后,再加入10ml95%乙醇,然后在搅拌下加入13.0g研细的溴化钠,再投入2-3粒沸石。 放热,烧瓶烫手。 2. 装配装置,反应: 装配好蒸馏装置。为防止产品挥发损失,在接受器中加入5ml 40%nahso3溶液,放在冰水浴中冷却,并使接受管(具小咀)的末端刚好浸没在接受器的水溶液中。用小火加热石棉网上的烧瓶,瓶中物质开始冒泡,控制火焰大小,使油状物质逐渐蒸馏出去,约30分钟后慢慢加大火焰,直到无油滴蒸出为止。 加热开始,瓶中出现白雾状hbr。稍后,瓶中白雾状hbr 增多。瓶中原来不溶的固体逐渐溶解,因溴的生成,溶液呈橙黄色。 3. 产物粗分: 将接受器中的液体倒入分液漏斗中。静置分层后,将下层的粗制溴乙烷放入干燥的小锥形瓶中。将锥形瓶浸于冰水浴中冷却,逐滴往瓶中加入浓硫酸,同时振荡,直到溴乙烷变得澄清透明,而且瓶底有液层分出(约需4ml浓硫酸)。用干燥的分液漏斗仔细地分去下面的硫酸层,将溴乙烷层从分液漏斗的上口倒入30ml蒸馏瓶中。 接受器中液体为浑浊液。分离后的溴乙烷层为澄清液。

山东大学信息安全实验报告

山东大学软件学院 信息安全导论课程实验报告 学号:201300301385 姓名:周强班级: 2013级八班 实验题目:缓冲区溢出实验 实验学时:日期: 实验目的: (1)了解缓冲区溢出的原理 (2)利用缓冲区溢出现象构造攻击场景 (3)进一步思考如何防范基于缓冲区溢出的攻击 硬件环境: 软件环境: WindowsXP操作系统 VS2008 实验步骤与内容: (1)了解缓冲区溢出的原理 缓冲区溢出简单来说就是计算机对接收的输入数据没有进行有效的检测(理情况下是程序检测数据长度并不允许输入超过缓冲区长度的字符),向缓冲区内填充数据时超过了缓冲区本身的容量,而导致数据溢出到被分配空间之外的内存空间,使得溢出的数据覆盖了其他内存空间的数据。 看一个代码实例,程序如下: void function(char *str) { char buffer[16]; strcpy(buffer,str); } 上面的strcpy()将直接把str中的内容copy到buffer中。这样只要str的长度大于16,就会造成buffer的溢出,使程序运行出错。

(2)利用缓冲区溢出现象构造攻击场景 首先打开Microsoft Visual C++,新建工程和cpp文件,复制实验指导书的代码进行编译连接: 单击运行按钮,然后第1次输入“zhouqianga”,第2次输入2个“ga”,即可看到输出“correct”。

按F10开始进行逐步调试: 当第一次执行gets()函数之前,内存情况如下图所示

在最新的版本中gets被认为是不安全的,gets从标准输入设备读字符串函数。可以无限读取,不会判断上限,以回车结束读取,所以程序员应该确保buffer的空间足够大,以便在执行读操作时不发生溢出。现在都被要求改为get_s。来防止溢出。 如下图所示。 (3)学习例子程序2:数据被执行 在xp系统下,直接运行Exploit-1.1.exe,如下图所示:

DSP实验二

实验三 IIR 滤波器设计 一、实验目的: 1.认真复习滤波器幅度平方函数的特性,模拟低通滤波器的巴特沃思逼近、切比雪夫型逼近方法;复习从模拟低通到模拟高通、带通、带阻的频率变换法;从模拟滤波器到数字滤波器的脉冲响应不变法、双线性变换法的基本概念、基本理论和基本方法。 2掌握巴特沃思、切比雪夫模拟低通滤波器的设计方法;利用模拟域频率变换设计模拟高通、带通、带阻滤波器的方法.。 3.掌握利用脉冲响应不变法、双线性变换法设计数字滤波器的基本方法;能熟练设计巴特沃思、切比雪夫低通、带通、高通、带阻数字滤波器。 4.熟悉利用MATLAB 直接进行各类数字滤波器的设计方法。 二、实验内容 a. 设计模拟低通滤波器,通带截止频率为10KHz,阻带截止频率为16KHz,通带最大衰减1dB,阻带最小衰减20dB。 (1) 分别用巴特沃思、切比雪夫I、切比雪夫II 型、椭圆型滤波器分别进行设计,并绘制所设计滤波器的幅频和相频特性图。 (2) 在通带截止频率不变的情况下,分别用n=3,4,5,6 阶贝塞尔滤波器设计所需的低通滤波器,并绘制其相应的幅频响应和相频响应图。 %%%%%%%%%----巴特沃思-----%%%%%%% clc;clear all; omegap=10000*2*pi;omegas=16*10^3*2*pi; Rp=1;As=20; [N,omegac]=buttord(omegap,omegas,Rp,As,'s');%低通的节次 [b,a]=butter(N,omegac,'s'); [H,w]=freqs(b,a); %设计滤波器的幅频和相频特性图 subplot(211) plot(w/2*pi/1000,20*log10(abs(H)))

山东大学-中间件实验报告

山东大学软件学院 中间件技术课程实验报告

onResize(); }, error : function(e) { alert('初始化数据错误!'); } }); }); 并从bootstrap上找一些已经写好的布局,作为参考。加入到网页的界面中。 一、数据库操作的封装 1、AutoCreateDB——自动创建数据库 (1)可以根据下列query的结果判断数据库是否存在: Object obj = dao.QueryOnly("SELECT COUNT(*) FROM INFORMATION_SCHEMA.SCHEMATA WHERE SCHEMA_NAME=?",new Object[] { DATABASE }); 不存在则创建数据库,则执行executeCreate方法。 (2)AutoCreateDB自动创建数据库的表 遍历表,对于数据库中的每一个表,都执行“检测、若不存在则创建”操作,可以根据该query的结果判断数据库的表是否存在,不存在则创建数据库表,则执行executeCreate方法。 2、JdbcDao数据库相关操作 (1)在JdbcDao 中定义应用与数据库建立连接,其相关参数从 config.properties中获取: /**获取Connection连接*/ public Connection getConnection(){ Connection conn = null; System.out.println(JDBC_URL); System.out.println(USER_NAME); System.out.println(USER_PWD); try { conn = DriverManager.getConnection(JDBC_URL,USER_NAME,USER_PWD);

dsp实验报告5

一、实验原理: 1、无限冲击响数字滤波器的基础理论; 2、模拟滤波器原理(巴特沃斯滤波器、切比雪夫滤波器、贝塞尔滤波器); 3、双线性变换的设计原理。 二、实验内容: 1、复习有关巴特沃斯滤波器设计和用双线性变换法设计IIR数字滤波器的知识; 2、阅读本实验所提供的样例子程序; 3、运行CCS软件,对样例程序进行跟踪,分析结果; 4、填写实验报告。 5、样例程序实验操作说明 1)正确完成计算机、DSP仿真器和实验箱连接后,开关K9拨到右边,即仿真器选择连接右边的CPU:CPU2; 2)“A/D转换单元”的拨码开关设置: JP3 3)检查:计算机、DSP仿真器、实验箱是否正确连接,系统上电; 4)置拨码开关S23的1、2拨到OFF,用示波器分别观测模拟信号源单元的2号孔“信号源1”和“信号源2”输出的模拟信号,分别调节信号波形选择、信号频率、信号输出幅值等旋钮,直至满意,置拨码开关S23的1到ON,两信号混频输出; 三、程序分析: cpu_init(); //CPU初始化 fs = 25000; //设置采样频率为2500HZ nlpass = 0.18; //设置通带上限频率归一化参数为0.18 nlstop = 0.29; //设置阻带下限截止频率归一化参数为0.29 biir2lpdes(fs,nlpass,nlstop,a,b); 根据双线性变换法求滤波器的系数a和b set_int(); //调用低通滤波器子程序对信号进行滤波 中断程序注释: interrupt void int1()

{ in_x[m] = port8002; //读取port8002端口的数值 in_x[m] &= 0x00FF; //取后八位送入X[m] m++; //每取一个数字m加1 intnum = m; if (intnum == Len) //当取到128个字节时,重新读取port8002端口的数值 { intnum = 0; xmean = 0.0; for (i=0; i

心得体会 煤化学实验心得体会 化学实验心得体会1500三篇

煤化学实验心得体会化学实验心得体会 1500三篇 做煤化学实验,给我最大的感触是:一种知识的融会贯通后的实践,在实践中寻觅知识的脚步,在巩固中感受实践的印证,使理论与实践做到良好的水乳交融,相得益彰。 当然,整个实验里程并不是想象中那样,操作简易,程序,流程便捷。整个过程,虽谈不上错综复杂,烟雾缭绕,盘曲错节,但,实验前若不能做好充分的准备和确实有效的预习工作,实验过程中会遇到各种各样之前没有预见到的问题。所以,预习是实验前必要的准备之一,也是整个实验里程是否顺利成功的关键元素。这是我最大的体会。 在做煤化学实验的过程中,最令人兴奋的是,在忙忙碌碌,有条不紊的实验步骤之后,经过了或漫长或短暂的等待之后,揭开实验结果面纱的那一刻,犹如园丁辛勤开垦,浇灌之后等待含苞待放的花朵的那样兴奋与紧张,在看到自己亲力亲为后的实验成果,内心的喜悦与自豪是无法自抑的。当然,其中也不乏实验失败的时候,我觉得这时候是对人最大的考验,既是考验人耐心的时候,更是对一个人毅力和责任心的考验,因为,做实验对每个人来说是一次对知识的巩固和运用的过程,是对知识的变相提高与升华,所以, 机会既珍贵又难得,我们应该珍惜机会,不该仅仅以得到实验数据为目的而轻易地放弃不断探索与求知的机会,因为,知识永远不是一成不变的,也许通过自己的亲身实践能令我们发现学术界所没有发

掘的知识,难道这不是一种别样的收获吗?那才是我们身为学者的真正求知的态度。 在做实验的整个过程中,我觉得获益匪浅,我感受到了知识带给我的震撼与快乐,原来知识的海洋远不是我们所理解的那样狭隘与有限,它是那么地浩淼,广阔无垠,无边无际。我学到了很多,也掌握了很多,充分地感知到实践与理论是不可分割的有机整体。像是,煤的工业分析,也称煤的技术分析或实用分析,工业分析的结果是煤炭加工利用和煤炭科学研究的基础技术参数。碳氢元素是构成煤中有机质的主要元素,碳氢的含量可作为表征煤化程度的指标,碳氢元素含量是煤炭加工利用的重要依据。如液化用煤要求氢的含量高些,气化用煤要求碳的含量高些,碳氢元素含量也可用于燃烧和气化过程的热量平衡,物料平衡及计算燃烧热和理论燃烧温度等。所以测定碳氢元素含量是煤炭加工利用和煤炭科学研究必不可少的指标。煤炭发热量的测定是评价煤炭质量的一项重要指标通过没的发热量可以粗略估计煤的许多性质,如变质程度,粘结性,氢含量等。正是这些理论在现实中的运用,才使得众多发达的科技成果有实现的可能,所以我们在以后的学习生活中,要注意理论与实践的完美结合,这才更有利于我们汲取与掌握这门知识。煤化学实验心得体会:化学实验心得体会1500 化学是一门实验科目,需要考生不断地做实验,从实验中真实地看到各种元素发生化学反应,看到各种化学现象的产生。做完化学实验之后,学生们要写化学实验心得体会,将自己在化学实验中的所感

山东大学软件测试实验报告

实验一。黑盒测试 一、等价类划分 电话号码问题某城市电话号码由三部分组成。它们的名称和内容分别是: (1)地区码:空白或三位数字; (2)前缀:非'0'或'1'的三位数字; (3)后缀:4 位数字。 假定被测程序能接受一切符合上述规定的电话号码,拒绝所有不符合规定的电话号码。根据该程序的规格说明,作等价类的划分,并设计测试方案。 根据题目,分别将地区码、前缀、后缀进行分类,分析结果如下: 输入有效等价类编号无效等价类编号 地区码空白 1 包含其他字符 3 三位数字 2 少于三位 4 多于三位 5 前缀非0或 非1的三位数6 包含其他字符8 包含0的三位数9 包含1的三位数10 少于三位数11 多于三位数12 后缀四位数字7 包含其他字符13 少于四位数14 多于四位数15 根据上图的分析,可的测试用例 测试数据预期结果覆盖类地区码前缀后缀 空白555 4344 接受(有效)1、6、7 232545 4343 接受(有效)2、6、7 A23 322 4343 拒绝(无效) 3 21322 4343 拒绝(无效) 4 2323322 4343 拒绝(无效) 5 232 32A4343 拒绝(无效)8 232 208 4343 拒绝(无效)9 232 1114343 拒绝(无效)10

232 32 4343 拒绝(无效)11 232 322224343 拒绝(无效)12 232 322 4AS2 拒绝(无效)13 232 322 434拒绝(无效)14 232 322 434311拒绝(无效)15 三角形问题根据下面给出的规格说明,利用等价类划分的方法,给出足够的测试用例。一个程序读入三个整数。把此三个数值看成是一个三角形的三个边。这个程序要打印出信息,说明不是三角形、三角形是三边不等的、是等腰的、还是等边的。 分析题目中给出和隐含的对输入条件的要求: (1)整数(2)三个数(3)非零数(4)正数 (5)两边之和大于第三边(6)等腰(7)等边 如果 a 、 b 、 c 满足条件( 1 ) ~ ( 4 ),则输出下列四种情况之一: 1)如果不满足条件(5),则程序输出为 " 非三角形 " 。 2)如果三条边相等即满足条件(7),则程序输出为 " 等边三角形 " 。 3)如果只有两条边相等、即满足条件(6),则程序输出为 " 等腰三角形 " 。 4)如果三条边都不相等,则程序输出为 " 一般三角形 " 。 列出等价类表并编号

DSP实验报告

学校代码学号分类号密级 DSP实验报告 院系名称 专业名称 年级 学生姓名 指导老师 年月日

实验一数据存储实验 一、实验目的 1. 掌握 TMS320C54X 程序空间的分配; 2. 掌握 TMS320C54X 数据空间的分配; 3. 能够熟练运用TMS320C54X 数据空间的指令。 二、实验设备 计算机,CCS 3.1版软件,DSP仿真器,E300实验箱,DSP-54XP CPU板。 三、实验系统相关资源介绍 1. 本实验指导书是以TMS320VC5416为例,介绍其相关的内部和外部存储器资源。对于其他类型的CPU请参考查阅相关的数据手册。) 下面给出TMS320VC5416的存储器分配表: 对于数据存储空间而言,映射表相对固定。值得注意的是内部寄存器都映射到数据存储器空间内。因此在编程时这些特定的空间不能作其他用途。 对于程序空间而言,其映射表和CPU 的工作模式有关。当MP/MC 引脚为高电平时,CPU 工作在微处理器模式;当MP/MC引脚为低电平时,CPU工作在微计算机模式。具体的MP和MC模式下的程序和数据映射关系如上图所示。 2. 样例程序实验操作简单说明: 本实验程序将对0x1000 开始的8 个地址空间,填写入0xAAAA 的数据,然后读出,并存储到以0x1008开始的8个地址空间,在CCS中可以观察DATA存储器空间地址0x1000~0x100F 值的变化。 四、实验步骤与内容 1. 在进行 DSP实验之前,需先连接好仿真器、实验箱及计算机,连接方法如下所示: 2. E300 底板的开关SW4 的第1位置ON,其余位置OFF,SW5全部置ON,其余开关不做设置要求。 3. 上电复位 在硬件安装完成后,确认安装正确、各实验部件及电源连接无误后,启动计算机,接通仿真器电源,此时,仿真器上的“红色指示灯”应点亮,否则DSP开发系统与计算机连接存

化学实验心得体会

化学实验心得体会 分析化学实验心得体会 分析化学是人们获得物质化学组成和结构信息的科学,它所要解决的问题是物质中含有哪些组分,各个组分的含量多少,以及这些组分是以怎样的状态构成物质的。而这些就需要科学工作者通过严谨的实验获得。在做实验时,我们应注意: 做实验之前,应仔细阅读实验讲义,明确实验目的、原理、步骤和计算方法以及实验中误差的,写出实验预习报告,做好实验的准备工作。实验时听从老师指导,遵从实验室工作人员的工作。认真按规范化操作,仔细观察实验现象,实事求是的记录实验数据。积极独立思考,不谈笑和高声喧哗不擅自离开实验室。实验后认真按时完成实验报告。 做实验时,应该严格遵守实验室安全守则:进入实验室首先了解实验环境。弄清水、电源及防火设备。了解药品特别是易燃、易爆、毒和强腐蚀性药品的贮存和使用方法。注意安全、防火、防毒、防爆和防灼伤等。如遇意外事故时,不要惊慌,应立即报告老师妥善处理。 我们应养成良好的科学作风。在实验过程中,应注意保持实验室和实验台的整洁,各种仪器、药品摆放要井然有序,不能随意丢弃废

液、废物。并且注意节约水、电、药品。每次实验完,应将仪器洗净,清理自己的实验台。 本学期共做了十个实验:氢氧化钠标准溶液的滴定,工业醋 酸含量的测定,氯化氢标准溶液的标定,工业纯碱的分析,EDTA 标准溶液的标定,水的总硬度的测定,高锰酸钾标准溶液的标定,石灰石中钙含量的测定,水样中氯化物的测定,水样中化学含氧量的测定。通过做实验,更进一步对课本中知识的理解与应用,并且学习到许多非常宝贵的实验操作经验及不同的数据处理方法。例如:工业纯碱的分析实验中,我们就应该通过数据分析来选取最恰当的指示剂来减少误差,以及用二次滴定通过氯化氢的使用量来判断工业纯碱中碳酸钠和碳酸氢钠的含量。高锰酸钾标准溶液的标定溶液中,注意温度的控制,温度过低的话开始反应就会很慢。石灰石钙含量的测定实验中重点在于草酸钙沉淀的生成陈化以及沉淀的处理,在进行实验操作时,应该注意滤纸的正确使用方法以及干扰离子的洗涤。水样中化学耗氧量的测定试验中,实验步骤繁杂,应该认真按照实验讲义进行,溶液认真添加,不能出现丝毫差错,否则前功尽弃。并且在每一次实验之后,都认真分析误差原因,应该用什么样的方法来进一步减少误差。若是需要计算类的,则通过不同的数学方法计算出较为准确的实验结果。

小鼠脾脏细胞原代培养及观察计数实验报告-山东大学

小鼠脾脏细胞原代培养及观察计数 【实验目的】 1.学习掌握细胞培养的基本原理以及具体方法,并对小鼠脾细胞进行原代培养; 2.掌握无菌操作的具体过程及无菌操作台的使用; 3.学习掌握染色法鉴别细胞的生死状态的原理及方法; 4.学习使用血球计数板对细胞总数及活细胞数进行计数; 【实验原理】 1.细胞培养 细胞培养指的是在无菌条件下,把动、植物细胞从组织中取出,在体外模拟体的生理环境,使离体的细胞在体外生长和繁殖,并且维持其结构和功能的一种培养技术。动物细胞培养可分为原代培养和传代培养。从供体获得组织细胞,在无菌条件下,用胰蛋白酶消化或机械分散等方法,将动物组织分散成单个细胞开始首次培养长出单层细胞的方法称为细胞的原代培养。当培养的动物细胞生长增殖达到一定密度,形成致密的单层细胞时,用胰蛋白酶将细胞消化分散成单细胞,从一个容器中以1:2或其他比例转移到另一个容器中扩大培养的方法,称为细胞的传代培养。传代培养的累计次数就是细胞的培养代数。 高等生物是由多细胞构成的整体,在整体条件下要研究单个细胞或某一群细胞在体的功能活动是十分困难的。但如果把活细胞拿到体外培养、增殖并进行观察和研究,则要方便和简单得多。被培养的动物细胞是非常好的实验对象和实验研究材料,对体外培养的活细胞进行研究可以帮助人类揭开生、老、病、死的规律,探索优生、抗衰老和防治各种疾病的途径和机制,也可以人为地诱导和改变细胞的遗传性状和特性,使其向有利于人类健康长寿的方向发展。因此动物细胞体外培养技术是研究细胞分子机制非常重要的实验手段,被广泛应用于医学、生物技术、基因工程等研究领域。 细胞培养的意义:具有其他生物技术无可比拟的优点;培养条件易改变和控制,便于单因子分析;便于人们直接对细胞结构、细胞生长及发育等过程的观察;在生物学的各个领域(如分子生物学、细胞生物学、遗传学、免疫学、肿瘤学及病毒学等)已被广泛应用。 细胞培养的局限性:在脱离机体复杂环境下,细胞培养条件与躯体环境有一定距离;观察到的结果有时难以正确反映机体的状况;细胞培养得到的产物少。 培养细胞的条件有水的质量、无菌环境,最适温度、渗透压、气体条件、最适PH、营养条件和培养基质等。 2.细胞死活鉴定 细胞生死状态的鉴别方法主要是化学染色法和荧光染色法。 活细胞和死亡细胞在生理技能和性质上主要存在一下差异: ①细胞膜通透性的差异:活细胞的细胞膜是一种选择性膜,对细胞起保护和屏障作用,只允许物质选择性地通过;而细胞死后,细胞膜受损,其通透性增加。基于此,发展出了以台盼蓝、伊红、苯胺黑、赤藓红、甲基蓝以及荧光染料碘化丙啶或溴化乙啶等为染料鉴别细胞生死状态的方法,上述染料能使死亡细胞着色,而活细胞不被着色。此外,应用植物质壁分离的性质也可鉴定植物细胞的生死状态。活细胞的原生质具有选择透过性,死细胞因其原生质的选择透过性已遭破坏,故与高渗透压溶液接触时不产生质壁分离。 ②代上的差异:活细胞中新代作用强,细胞的酶具有较强的活性和还原能力。基于此,发展处了以荧光素二乙酸酯(FDA)、荧光素二丙酸酯、荧光素二丁酸酯或荧光素二苯甲酰酯等酯化的荧光素鉴别细胞生死状态的方法,上述酯化的荧光素亲脂性提高,容易被细胞吸收进入,活细胞的酯酶具有较强的活性,可将酯化的荧光素分解而释放出能发荧光的荧光素,该物质不能自由透过活的细胞膜,积累在细胞,荧光显微镜下显示有明亮的绿色或黄绿色荧光;而死亡细胞的酯酶因失去活性,不能分解酯化的荧光素,荧光显微镜下显示不发光。另外,可用亚甲基蓝为染料鉴定酵母细胞的生死状态。亚甲基蓝是一无毒染料,氧化型为蓝色,还原型为无色。活细胞因具有较强的还原能力,能使亚甲蓝从蓝色的氧化型变成无色的还原型,故活的酵母细胞在用亚甲基蓝染色后显示无色;死亡酵母细胞或代缓慢的衰老酵母细胞,因无还原能力或还原能力极弱,使亚甲蓝仍处于氧化态,故呈现蓝色或淡蓝色。 3.血球计数板的使用

DSP实验报告

数字信号处理课程实验报告 题目:P30-2-6和P63-3-22-d 信道编码 专业:xxx 学号:xxx 姓名:xx

一、书上习题运算 一、实验内容 2.6一个特定的线性和时不变系统,描述它的差分方程如下:y(n)+0.1y(n-1)-0.06y(n-2) = x(n)-2x(n-1)求系统脉冲响应的前10个样本。 如果此系统输入为x(n)=[5+3cos(0.2πn)+4sin(0.6πn)]μ(n),在0≤n≤20求出y(n)的响应。 3.22计算下列序列的N点循环卷积z(n)。 D x1(n)=nR N(n);x2=(N-n)R N(n);N=10 二、实验程序代码 2.6程序: function[x,n]=impseq(np,ns,nf) if ns>np|ns>nf|np>nf error('输入位置参数不满足ns<=np<=nf') else n=[ns:nf]; x=[(n-np)==0]; end a=[1,0.1,0.06];b=[1-2]; x=impseq(0,0,20); h=filter(b,a,x); n=0:20; x=5+3*cos(0.2*pi*n)+4*sin(0.6*pi*n); y=conv(h,x) stem(y) 3.22程序: function y=circonvt(x1,x2,N) x1=[x1,zeros(1,N-length(x1))]; x2=[x2,zeros(1,N-length(x2))]; m=[0:N-1]; x2m=x2(mod(-m,N)+1); H=toeplitz(x2m,[0,x2(2:N)]); y=x1*H; n=0:9; x1=n; x2=10-n; y=circonvt(x1,x2,10) stem(y) 三、实验结果 2.6

做化学实验心得体会

做化学实验心得体会 化学实验是化学课上不可缺少的一个环节。化学实验能够培养和提高学生的诸多能力。下面是带来的做化学实验的心得体会,欢迎欣赏。 做化学实验心得体会篇一: 化学是一门实验科目,需要考生不断地做实验,从实验中真实地看到各种元素发生化学反应,看到各种化学现象的产生。做完化学实验之后,学生们要写化学实验心得体会,将自己在化学实验中的所感所想写出来。下面小编为大家提供化学实验心得体会,供大家参考。 化学是一门以实验为基础与生活生产息息相关的课程。化学知识的实用性很强,因此实验就显得非常重要。 刚开始做实验的时候,由于学生的理论知识基础不好,在实验过程遇到了许多的难题,也使学生们感到了理论知识的重要性。让学生在实验中发现问题,自己看书,独立思考,最终解决问题,从而也就加深了学生对课本理论知识的理解,达到了"双赢"的效果。在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,实验前理论知识的准备,也就是要事前了解将要做的实验的有关资料,如:实验要求,实验内容,实验步骤,最重要的是要记录实验现象等等. 否则,老师讲解时就会听不懂,这将使做实验的难度加大,浪费做实验的宝贵时间。比如用电解饱和食盐水的方法制取氯气的的实验要清楚各实验仪器的接法,如果不清楚,在做实验时才去摸索,这将使你极大地浪费时间,会事倍功半. 虽然做实验时,老师会讲解一下实验步骤,

但是如果自己没有一些基础知识,那时是很难作得下去的,惟有胡乱按老师指使做,其实自己也不知道做什么。做实验时,一定要亲力亲为,务必要将每个步骤,每个细节弄清楚,弄明白,实验后,还要复习,思考,这样,印象才深刻,记得才牢固,否则,过后不久就会忘得一干二净,这还不如不做.做实验时,老师会根据自己的亲身体会,将一些课本上没有的知识教给学生,拓宽学生的眼界,使学生认识到这门课程在生活中的应用是那么的广泛. 学生做实验绝对不能人云亦云,要有自己的看法,这样就要有充分的准备,若是做了也不知道是个什么实验,那么做了也是白做。实验总是与课本知识相关的在实验过程中,我们应该尽量减少操作的盲目性提高实验效率的保证,有的人一开始就赶着做,结果却越做越忙,主要就是这个原因。在做实验时,开始没有认真吃透实验步骤,忙着连接实验仪器、添加药品,结果实验失败,最后只好找其他同学帮忙。特别是在做实验报告时,因为实验现象出现很多问题,如果不解决的话,将会很难的继续下去,对于思考题,有不懂的地方,可以互相讨论,请教老师。 我们做实验不要一成不变和墨守成规,应该有改良创新的精神。实际上,在弄懂了实验原理的基础上,我们的时间是充分的,做实验应该是游刃有余的,如果说创新对于我们来说是件难事,那改良总是有可能的。比如说,在做金属铜与浓硫酸反应的实验中,我们可以通过自制装置将实验改进。 在实验的过程中要培养学生独立分析问题和解决问题的能力。培

相关主题
文本预览
相关文档 最新文档