当前位置:文档之家› 弹性力学基本概念和考点汇总

弹性力学基本概念和考点汇总

弹性力学基本概念和考点汇总
弹性力学基本概念和考点汇总

基本概念:

(1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理:

作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定:

连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变;

设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时,

0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。

设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律,

0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。 (5) 一点的应力状态;

过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6) 圣维南原理;(提边界条件)

如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。 (7) 轴对称;

在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 一、 平衡微分方程:

(1) 平面问题的平衡微分方程;

00yx

x x xy y

y f x y

f x y

τστσ??++=????++=??(记)

(2) 平面问题的平衡微分方程(极坐标);

10210f f ρρ?ρ?

ρ?ρ?ρ?

??σ?τσσ?ρρ??ρ

?σ?ττρ???ρρ

-+++=+++=

1、平衡方程仅反映物体内部的平衡,当应力分量满足平衡方程,则物体内部是平衡的。

2、平衡方程也反映了应力分量与体力(自重或惯性力)的关系。 二、 几何方程;

(1) 平面问题的几何方程;

x y xy u

x v y v u x y

εεγ?=

??=???=+

??(记)

(2) 平面问题的几何方程(极坐标);

1212

121u

u v v u v ρρρ???ρ?ρ?ρ?εεερ

εεερρ??

γγγρρ?ρ

?=+=??=+=+

??=+=

+-??

1、几何方程反映了位移和应变之间的关系。

2、当位移完全确定时,应变也确定;反之,当应变完全确定时,位移并不能确定。(刚体位移) 三、 物理方程;

(1) 平面应力的物理方程;

()()()1

1

21x x y y y x xy xy

E E

E

εσμσεσμσμγτ=

-=-+=(记)

(2) 平面应变的物理方程;

()22111121x x

y y y

x xy

xy

E E E

μμ

εσσμμμεσσμμγτ??-=- ?-????-=- ?-??

+= (3) 极坐标的物理方程(平面应力);

1

()1

()12(1)E E G E

ρρ???ρρ?ρ?ρ?

εσνσεσνσνγττ=

-=-+==

(4) 极坐标的物理方程(平面应变);

221()

11()12(1)E E E

ρρ???ρρ?ρ?

μμεσσμμμεσσμμγτ-=---=--+=

四、 边界条件; (1) 几何边界条件;

平面问题:()()

()()

s s u u s v v v == 在u s 上;

(2) 应力边界条件;

平面问题:

()()x

yx x

s

xy

y y

s

l m f l m f σ

ττ

σ+=+=(记)

(3) 接触条件;

光滑接触:()()n n

σσ'= n 为接触面的法线方向 非光滑接触:()()

()()

n n n n u u σσ'='= n 为接触面的法线方向

(4) 位移单值条件;

()()2u u θπθ+=

(5) 对称性条件:

在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。

一﹑概念

1.弹性力学,也称弹性理论,是固体力学学科的一个分支。

2.固体力学包括理论力学、材料力学、结构力学、塑性力学、振动理论、断裂力学、复合材料力学。

3基本任务:研究由于受外力、边界约束或温度改变等原因,在弹性体内部所产生的应力、形变和位移及其分布情况等。.

4研究对象是完全弹性体,包括杆件、板和三维弹性体,比材料力学和结构力学的研究范围更为广泛

5.弹性力学基本方法:差分法、变分法、有限元法、实验法.

6弹性力学研究问题,在弹性体内严格考虑静力学、几何学和物理学 三方面条件,在边界上考虑边界条件,求解微分方程得出较精确的解答;.

7.弹性力学中的基本假定:连续性、完全弹性、均匀性、各向同性、小变形假定。 8.几何方程反映的是形变分量与位移分量之间的关系。 9.物理方程反映的是应力分量与形变分量之间的关系。

10.平衡微分方程反映的是应力分量与体力分量之间的关系。

11当物体的位移分量完全确定时,形变分量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。

12.边界条件表示在边界上位移与约束、或应力与面力之间的关系式。它可以分为位移边界条件、应力边界条件和混合边界条件。

13.圣维南原理主要内容:如果把物体表面一小部分边界上作用的外力力系,变换为分布不同但静力等效的力系(主失量相同,对同一点的主矩也相同),那么只在作用边界近处的应力有显著的改变,而在距离外力作用点较远处,其影响可以忽略不计。 14. 圣维南原理的推广:如果物体一小部分边界上的面力是一个平衡力系(主失量和主矩都等于零),那么,这个面力就只会使近处产生显著的应力,而远处的应力可以不计。这是因为主失量和主矩都等于零的面力,与无面力状态是静力等效的,只能在近处产生显著的应力。 15.求解平面问题的两种基本方法:位移法、应力法。

16.弹性力学的基本原理:解的唯一性原理﹑解的叠加原理﹑圣维南原理。

会推导两种平衡微分方程

17.逆解法步骤:(1)先假设一满足相容方程(2-25)的应力函数 (2)由式(2-24),根据应力函数求得应力分量

(3)在确定的坐标系下,考察具有确定的几何尺寸和形状的弹性体,根据主

要边界上的面力边界条件(2-15)或次要边界上的积分边界条件, 分析这些应力分量对应于边界上什么样的面力,从而得知所选取的应力函数可以解决什么样的问题。(或者根据已知面力确定应力函数或应力分量表达式中的待定系数

18.半逆解法步骤:(1)对于给定的弹性力学问题,根据弹性体的几何形状、受力特征和变形

的特点或已知的一些简单结论,如材料力学得到的初等结论,假设部分或全部应力分量的函数形式

(2)按式(2-24),由应力推出应力函数f 的一般形式(含待定函数项); (3)将应力函数f 代入相容方程进行校核,进而求得应力函数f 的具体表达形式;

(4)将应力函数f 代入式(2-24),由应力函数求得应力分量

(5)根据边界条件确定未知函数中的待定系数;考察应力分量是否满足全

5.平面问题的应力边界条件为

7.圣维南原理的三个积分式

如果给出单位宽度上面力的主矢量和主矩,则三个积分边界条件变为 8.艾里应力函数

)()()

()(s f m l s f m l y s y xy x s xy x =+=+σττσ?

?

?

??

?--±=--±=--±=?±=??±=??±=?2

/2

/2/2/2

/2/2/2/2/2

/2/2/1

)(1)

(1

)(1)

(1

)(1)(h h y h h l

x xy h h x

h h l x x h h x

h h l x x dy y f dy ydy y f ydy dy y f dy τσσs

h h l x xy h h l x x N h h l x x F dy M ydy F dy =?=?=??

??-=-=-=2

/2

/2

/2/2

/2/1)(1)(1)(τσσy

x y x y f x y x x f y y x xy

y y x x ???-

=-??=-??=)

,(,),(,),(22

2

22φτφσφσ填空 计 算 理 解

计算

一、单项选择题(按题意将正确答案的编号填在括弧中,每小题2分,共10分)

1、弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。

A .相容方程

B .近似方法

C .边界条件

D .附加假定

2、根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )

的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。

A .几何上等效

B .静力上等效

C .平衡

D .任意 3、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。

A .平衡方程、几何方程、物理方程完全相同

B .平衡方程、几何方程相同,物理方程不同

C .平衡方程、物理方程相同,几何方程不同

D .平衡方程相同,物理方程、几何方程不同

在研究方法方面:材力考虑有限体ΔV 的平衡,结果是近似的;弹力考虑微分体dV 的平,结果比较精确。

4、常体力情况下,用应力函数表示的相容方程形式为024422444=??+???+??y

Φ

y x Φx Φ,

6、设有函数???

?

??-+???? ??-+-=Φh y h y qy h y h y qx 332332251344, (1)判断该函数可否作为应力函数(3分)

(2)选择该函数为应力函数时,考察其在图中所示的矩形板和坐标系(见题九图)中能解决什么问题(l >>h )。(15分)

解:

(1)将φ代入相容方程024422444=??+???+??y

Φ

y x Φx Φ,显然满足。因此,该函数可以作为

应力函数。

弹性力学试题参考答案与弹性力学复习题

弹性力学复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系在应用这些方程时,应注意些什么问题 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和

混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定试将它们写出。如何确定它们的正负号 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz 、、zx 。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定什么是“理想弹性体”试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题什么叫平面应变问题各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑各方面反映的是那些变量间的关系 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之 间的关系,也就是平面问题中的物理方程。 7.按照边界条件的不同,弹性力学平面问题分为那几类试作简要说明 答:按照边界条件的不同,弹性力学平面问题可分为两类: (1)平面应力问题 : 很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。这一类问题可以简化为平面应力问题。例如深梁在横向力作用下的受力分析问题。在该种问题中只存在 yx xy y x ττσσ=、、三个应力分量。 (2)平面应变问题 : 很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,而且体力

(完整word版)徐芝纶弹性力学主要内容及知识点,推荐文档

1.弹性力学是研究弹性体由于受到外力作用、边界约束或温度改变等原因而引起的应力、形变和位移。 2外力分为体积力和面积力。体力是分布在物体体积内的力,重力和惯性力。体积分量,以沿坐标轴正方向为正,沿坐标轴负方向为负。面力是分布在物体表面上的力,面力分量以沿坐标轴正方向为正,沿坐标轴负方向为负。 3内力,即物体本身不同部分之间相互作用的力。 3弹性力学中的基本假定:连续性,完全弹性,均匀性,各向同性,小变形假定。凡是符合连续性、完全弹性、均匀性、各向同性等假定的物体称之为理想弹性体。连续性,假定整个物体的体积被组成这个物体的介质所填满,不留下任何空隙。完全弹性,指的是物体能完全恢复原形而没有任何剩余形变。均匀性,整个物体时统一材料组成。各向同性,物体的弹性在所有各个方向都相同。 4求解弹性力学问题,即在边界条件上,根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。弹性力学、材料力学、结构力学的研究对象分别是弹性体,杆状构件和杆件系统。解释在物体内同一点,不同截面上的应力是不同的。应力的符号不同:在弹性力学和材料力学中,正应力规定一样,拉为正,压为负。切应力:弹性力学中,正面沿坐标轴正方向为正,沿负方向为负。负面上沿坐标轴负方向为正,沿正方向为负。材料力学中,所在的研究对象上任一点弯矩转向顺时针为正,逆时针为负。 5.形变:所谓形变,就是形状的改变。包括线应变(各各线段每单位长度的伸缩,即单位伸缩和相对伸缩,伸长时为正,收缩时为负);切应变(各线段直接直角的改变,用弧度表示,以直角变小时为正,变大为负) 6试述弹性力学平面应力问题与平面应变问题的主要特征及区别:平面应力问题:几何形状,等厚度薄板。外力约束,平行于板面且不沿厚度变化。平面应变问题:几何形状,横断面不沿长度变化,均匀分布。外力约束,平行于横截面并不沿长度变化。 7.主应力:设经过P点的某一斜面上的切应力等于0,则该斜面上的正应力称为P点的一个主应力;应力主向:该斜面的法线方向称为该斜面的一个应力主向。 6. 平衡微分方程表示的是弹性体内任一点应力分量与体力分量之间的关系式。在推导平衡微分方程时我们主要用了连续性假定。 7几何方程表示的是形变分量与位移分量之间的关系式。当物体的位移分量完全确定时,形变分量即完全确定,反之,等形变分量完全确定时,位移分量却不能完全确定。在推导几何方程主要用了小变形假定。 8.在平面问题中,为了完全确定位移,就必须有3个适当的刚体约束条件。为什么?既然物体在形变为零时可以有刚体位移,可见,当物体发生一定形变时,由于约束条件的不同,他可能具有不同的刚体位移,因而它的位移并不是完确定的,在平面问题中,常数U0 V0 W的任意性就反应位移的不确定性,而为了安全确定位移,就必须有三个何时得刚体约束来确定这三个常数。 9.物理方程表示的应力分量与应变分量之间的关系式。两种平面问题的物理方程是不一样的,然而如果在平面应力问题的物理方程,降E换为E/1-μ2,将μ换为μ/1-μ,就可以得到平面应变问题的物理方程。推导物理方程时,主要用了完全弹性、各向同性以及均匀性(此处写小变形假定也可以)等假设。 10.边界条件表示在边界上位移与约束,或应力与面力之间的关系式。它可以分为应力边界条件、位移边界条件以及混合边界条件。

《弹性力学》、《岩体力学》复习大纲2015

第一章绪论 1-1弹性力学的内容 1-2弹性力学中的几个基本概念 1-3弹性力学中的基本假定 习题 第二章平面问题的基本理论 2-1平面应力问题与平面应变问题 2-2平衡微分方程 2-3平面问题中一点的应力状态 2-4几何方程刚体位移 2-5物理方程 2-6边界条件 2-7圣维南原理及其应用 2-8按位移求解平面问题 2-9按应力求解平面问题相容方程 2-10常体力情况下的简化应力函数 习题 第三章平面问题的直角坐标解答 3-1逆解法与半逆解法多项式解答 .3-2矩形梁的纯弯曲 3-3位移分量的求出 3-4简支梁受均布荷载 3-5楔形体受重力和液体压力 习题 第四章平面问题的极坐标解答 4-1极坐标中的平衡微分方程 4-2极坐标中的几何方程及物理方程 4-3极坐标中的应力函数与相容方程 4-4应力分量的坐标变换式 4-5轴对称应力和相应的位移 4-6圆环或圆筒受均布压力 4-7压力隧洞 4-8圆孔的孔口应力集中 4-9半平面体在边界上受集中力 4-10半平面体在边界上受分布力 习题 要求:了解弹性力学的基本概念,发展历史与基本假设,理解两类平面问题的解法,掌握三大方程的建立,边界的确定,有限单元法在解弹性力学问题的应用,了解空间问题的求解的方法。

第1章绪论 1.1 岩石与岩体(二者的区别) 1.2 岩体力学的研究任务与内容(岩体的力学特征) 1.3 岩体力学的研究方法 1.4 岩体力学在其他学科中的地位 1.5 岩体力学的发展简史 基本要求:了解岩石力学、岩体力学定义及其它们的联系和区别;理解岩石力学的发展、研究对象和研究方法;了解岩石力学研究现状及热点问题。 重点与难点:岩石力学的定义、任务、研究方法。 第2章岩石的基本物理力学性质 2.1 岩石的基本物理力学性质 2.2 岩石的强度特性 2.3 岩石的变形特性 2.4 岩石的强度理论 基本要求:掌握岩石的成分、结构及其力学性质;了解岩石的变形特征和流变性;理解岩石的各种强度及其测定方法。 重点与难点:岩石的物理指标、强度与变形特征。 第3章岩石动力学基础 3.1 岩石的波动特性 3.2 影响岩体波速的因素 3.3 岩体的其他动力学特性 基本要求:理解岩石的波动特性,了解影响岩体波速的因素,了解岩体的其他动力学特性。重点与难点:岩石的动力学特性。 第4章岩体的基本力学性能 4.1 岩体结构面的分析 4.2 结构面的变形特性 4.3 结构面的力学效应 4.4 碎块岩体的破坏 4.5岩体的应力-应变分析 基本要求:理解岩石和岩体的区别,了解结构面的相关性质,了解岩体的变形特征和强度测定方法,理解岩体的破坏条件及应力-应变分析。 重点与难点:理解岩体的相关特性。

弹性力学教材习题及解答

1-1. 选择题 a. 下列材料中,D属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃钢; D. 沥青。 b. 关于弹性力学的正确认识是A。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。 c. 弹性力学与材料力学的主要不同之处在于B。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 d. 所谓“完全弹性体”是指B。 A. 材料应力应变关系满足胡克定律; B. 材料的应力应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足线性弹性关系。 2-1. 选择题 a. 所谓“应力状态”是指B。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截面的应力不同,因此应力矢量是不可确定的。 2-2. 梯形横截面墙体完全置于水中,如图所示。已知水的比重为 ,试写出墙体横截面边界AA',AB,BB’的面力边界条件。 2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。根据材料力学分析结果,该梁 横截面的应力分量为 试检验上述分析结果是否满足平衡微分方程和面力边界条件。

2-4. 单位厚度的楔形体,材料比重为γ,楔形体左侧作用比重为γ1的液体,如图所示。试写出楔形体的边界条件。 2-5. 已知球体的半径为r,材料的密度为ρ1,球体在密度为ρ1(ρ1>ρ1)的液体中漂浮,如图所示。试写出球体的面力边界条件。

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135'ο。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。

弹性力学主要内容

1、弹性力学的研究对象、内容及范围 弹性力学是研究在外界因素(外力、温度变化)的影响下,处于弹性阶段的物体所产生的应力、应变及位移。 弹性力学的研究对象为一般及复杂形状的构件、实体结构、板、壳等。 2、弹性力学的基本假设(即满足什么样条件的物体是我们在弹性力学中要研究的) (1)均匀性假设即物体是由同一种材料所组成的,在物体内任何部分的材料性质都是相同的。(用处:物体的弹性参数,如弹性模量E,不会随 位置坐标的变化而变化) (2)连续性假设即物体的内部被连续的介质所充满,没有任何孔隙存在。 (用处:弹性体的所用物理量均可用连续的函数去表示) (3)完全弹性假设即当我们撤掉作用于物体的外力后,物体可以恢复到原状,没有任何的残余变形;应力(激励)与应变(响应)之间呈正比关 系。(用处:可以使用线性虎克定律来表示应力与应变的关系) (4)各向同性假设即物体内任意一点处,在各个方向都表现出相同的材料性质。(用处:物体的弹性参数可以取为常数) (5)小变形假设即在外力的作用下,物体所产生的位移和形变都是微小的。(用处:可以在某些方程的推导中略去位移和形变的高阶微量)3、弹性力学的基本量 表1 直角坐标表示的各种基本量情况

4、两类平面问题的概念 (1)平面应力问题(应力是平面的;变形是空间的) 如图所示薄板,其z方向的尺寸比其他两个方向上的尺寸小得多;外力和体力都平行于板面,并且沿着板的厚度没有变化,这样的问题称为平面应力问题。(2)平面应变问题 若物体在z方向的尺寸比在其他两个方向上的尺寸大得多,如图所示很长的坝体,外力及体力沿着z方向没有变化,则这类问题称为平面应变问题。 (3)两类平面问题的一些特征 空间问题的基本未知量共有8个,每个基本未知量仅仅是坐标(),x y的函数。 表2 两类平面问题的一些特征

弹性力学岩石力学

弹性力学基本知识考试 一、 基本概念: 1. 面力、体力与应力、应变、位移的概念及正负号规定 体力是作用于物体体积 内的力,以单位体积力来度量,体力分量的量纲为 L -2MT -2 ;面力是作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为 L -1MT -2 ;体力和面力符号的规定为以 沿坐标轴正向 为正,属 外 力;应力是作用于截面单位面积的力,属 内 力,应力的量纲为 L -1MT -2 ,应力符号的规定为: 正面正向、负面负向为正,反之为负 。 (1) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (2) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 平面应力与平面应变; (8分)弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特征? 答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为: 平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于xy 平面,外力沿板厚均匀分布,只有平面应力分量x σ,y σ,xy τ存在,且仅为x,y 的函数。 平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于xy 平面,外力沿z 轴无变化,只有平面应变分量x ε,y ε,xy γ存在,且仅为x,y 的函数。 (3) 圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。 (4) 轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。

弹塑性力学定理和公式

应力应变关系 弹性模量 ||广义虎克定律 1.弹性模量 对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括: a 弹性模量单向拉伸或压缩时正应力与线应变之比,即 b 切变模量切应力与相应的切应变之比,即 c 体积弹性模量三向平均应力 与体积应变θ(=εx+εy+εz)之比,即 d 泊松比单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即 此外还有拉梅常数λ。对于各向同性材料,这五个常数中只有两个是独立的。常用弹性常数之间的关系见表3-1 弹性常数间的关系。室温下弹性常数的典型值见表3-2 弹性常数的典型值。 2.广义虎克定律 线弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质。 A 各向同性材料的广义虎克定律表达式(见表3-3 广义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应力公式中的x 、y、z分别用r、θ、z和r、θ、φ代替。对于平面极坐标,表中平面应力和平面应变公式中的x、y、z用r、θ、z代替。 B 用偏量形式和体积弹性定律表示的广义虎克定律应力和应变张量分解为球张量和偏张量两部分时,虎克定律可写成更简单的形式,即 体积弹性定律 应力偏量与应变偏量关系式 在直角坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,φ。

弹性力学基本方程及其解法 弹性力学基本方程 || 边界条件 || 按位移求解的弹性力学基本方法 || 按应力求解的弹性力学基本方程 || 平面问题的基本方程 || 基本方程的解法 || 二维和三维问题常用的应力、位移公式 1.弹性力学基本方程 在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。这15个未知量可由15个线性方程确定,即 (1)3个平衡方程[式(2-1-22)],或用脚标形式简写为 (2)6个变形几何方程[式(2-1-29)],或简写为 (3)6个物性方程[式(3-5)或式(3-6)],简写为 或 2.边界条件 弹性力学一般问题的解,在物体内部满足上述线性方程组,在边界上必须满足给定的边界条件。弹性力学问题按边界条件分为三类。 a 应力边界问题在边界Sσ表面上作用的表面力分量为F x、F y、F z.。面力与该点在物体内的应力分量之间的关系,即力的边界条件为 式中,l nj=cos(n,j)为边界上一点的外法线n对j轴的方向余弦。 这一类问题中体积力和表面力是已知的,求解体内各点的位移、应变和应力。 b 位移边界问题在边界S x上给定的几何边界条件为

弹性力学教案.doc

弹性力学教案 第一章绪论(4学时) 介绍弹性力学研究的内容、基本概念和基本假设。 1、主要内容: 第一节弹性力学的内容 第二节弹性力学的基本概念 第三节弹性力学的基本假设 2、本章重点: 弹性力学的基本概念。 3、本章难点: 弹性力学的基本概念。 4、本章教学要求: 理解弹性力学的基本假设、基本概念。 5、教学组织: 弹性力学是在学习了理论力学、材料力学等课程的基础上开设的专业课程。学生已经建立了关于应力、应变、位移的概念。而且能够用材料力学的方法对杆件进行应力计算;并进一步对其进行强度、刚度和稳定性的分析。 在本章第一节的教学中,要明确弹性力学、材料力学和结构力学在研究对象上的分工的不同;在研究方法上的不同;及其不同的原因。并且让学生初步了解弹性力学的研究方法。 在本章第二节的教学中,要进一步深入研究作用在弹性体上的力。明确内力与外力、体力与面力、应力矢量与应力张量等概念及其表达方式。 在本章第三节的教学中,研究弹性力学的基本假设。通过基本假设的讲解,让学生明白合理的科学假设在科学研究中的必要性和重要性。要启发学生理解弹性力学的各个假设及其限定的缘由。 第二章弹性力学平面问题的基本理论(14学时) 本章研究平面问题的基本方程、边界条件及其解法。 1、主要内容: 第一节平面问题 第二节平衡微分方程 第三节斜截面上的应力、主应力 第四节几何方程、刚体位移 第五节斜截面上的应变及位移 第六节物理方程 第七节边界条件 第八节圣维南原理 第九节按位移求解的平面问题 第十节按应力求解的平面问题、相容方程 第十一节常体力情况下的简化 第十二节应力函数、逆解法与半逆解法 2、本章重点: 平面问题的基本方程、应力函数及边界条件。 3、本章难点: 平面问题的基本方程及边界条件的确定。

弹性力学课后习题详解

第一章习题 1-1 试举例证明,什么是均匀的各向异性体,什么是非均匀的各向同性体,什么是非均匀的各向异性体。 1.均匀的各向异性体: 如木材或竹材组成的构件。整个物体由一种材料组成,故为均匀的。材料力学性质沿纤维方向和垂直纤维方向不同,故为各向异性的。 2.非均匀的各向同性体: 实际研究中,以非均匀各向同性体作为力学研究对象是很少见的,或者说非均匀各向同性体没有多少可讨论的价值,因为讨论各向同性体的前提通常都是均匀性。设想物体非均匀(即点点材性不同),即使各点单独考察都是各向同性的,也因各点的各向同性的材料常数不同而很难加以讨论。 实际工程中的确有这种情况。如泌水的水泥块体,密度由上到下逐渐加大,非均匀。但任取一点考察都是各向同性的。 再考察素混凝土构件,由石子、砂、水泥均组成。如果忽略颗粒尺寸的影响,则为均匀的,同时也必然是各向同性的。反之,如果构件尺寸较小,粗骨料颗粒尺寸不允许忽略,则为非均匀的,同时在考察某点的各方向材性时也不能忽略粗骨料颗粒尺寸,因此也必然是各向异性体。因此,将混凝土构件作为非均匀各向同性体是很勉强的。 3.非均匀的各向异性体: 如钢筋混凝土构件、层状复合材料构件。物体由不同材料组成,故为非均匀。材料力学性质沿纤维方向和垂直纤维方向不同,故为各向异性的。 1-2一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体一般的岩质地基和土质地基能否作为理想弹性体 理想弹性体指:连续的、均匀的、各向同性的、完全(线)弹性的物体。 一般的混凝土构件(只要颗粒尺寸相对构件尺寸足够小)可在开裂前可作为理想弹性体,但开裂后有明显塑性形式,不能视为理想弹性体。 一般的钢筋混凝土构件,属于非均匀的各向异性体,不是理想弹性体。 一般的岩质地基,通常有塑性和蠕变性质,有的还有节理、裂隙和断层,一般不能视为理想弹性体。在岩石力学中有专门研究。 一般的土质地基,虽然是连续的、均匀的、各向同性的,但通常具有蠕变性质,变形与荷载历史有关,应力-应变关系不符合虎克定律,不能作为理想弹性体。在土力学中有专门研究。 1-3 五个基本假定在建立弹性力学基本方程时有什么用途 连续性假定使变量为坐标的连续函数。完全(线)弹性假定使应力应变关系明确为虎克定律。均匀性假定使材料常数各点一样,可取任一点分析。各向同性使材料常数各方向一样,坐标轴方位的任意选取不影响方程的唯一性。小变形假定使几何方程为线性,

第10章 弹性力学空间问题

第十章弹性力学空间问题知识点 空间柱坐标系 空间轴对称问题的基本方程空间球对称问题的基本方程布西内斯科解 分布载荷作用区域外的沉陷弹性球体变形分析 热应力的弹性力学分析方法坝体热应力 质点的运动速度与瞬时应力膨胀波与畸变波柱坐标基本方程 球坐标的基本方程 位移表示的平衡微分方程乐普位移函数 载荷作用区域内的沉陷球体接触压力分析 受热厚壁管道 弹性应力波及波动方程应力波的相向运动 一、内容介绍 对于弹性力学空间问题以及一些专门问题,其求解是相当复杂的。 本章的主要任务是介绍弹性力学的一些专题问题。通过学习,一方面探讨弹性力学空间问题求解的方法,这对于引导大家今后解决某些复杂的空间问题,将会有所帮助。另一方面,介绍的弹性力学专题均为目前工程上普遍应用的一些基本问题,这些专题的讨论有助于其它课程基本问题的学习,例如土建工程的地基基础沉陷、机械工程的齿轮接触应力等。 本章首先介绍空间极坐标和球坐标问题的基本方程。然后讨论布希涅斯克问题,就是半无限空间作用集中力的应力和沉陷。通过布希涅斯克问题的求解,进一步推导半无限空间作用均匀分布力的应力和沉陷、以及弹性接触问题。 另一方面,本章将介绍弹性波、热应力等问题的基本概念。 二、重点 1、空间极坐标和球坐标问题; 2、布希涅斯克问题; 3、半无限空间作 用均匀分布力的应力和沉陷;弹性接触问题;4、弹性波;5、热应力。

§10.1 柱坐标表示的弹性力学基本方程 学习思路: 对于弹性力学问题,坐标系的选择本身与问题的求解无关。但是,对于某些问题,特别是空间问题,不同的坐标系对于问题的基本方程、特别是边界条件的描述关系密切。某些坐标系可以使得一些特殊问题的边界条件描述简化。因此,坐标系的选取直接影响问题求解的难易程度。 例如对于弹性力学的轴对称或者球对称问题,如果应用直角坐标问题可能得不到解答,而分别采用柱坐标和球坐标求解将更为方便。 本节讨论有关空间柱坐标形式的基本方程。特别是关于空间轴对称问题的基本方程。 学习要点: 1、空间柱坐标系; 2、柱坐标基本方程; 3、空间轴对称问题的基本方程。 1、空间柱坐标系 在直角坐标系下,空间任意一点M的位置是用3个坐标(x,y,z)表示的,而在柱坐标系下,空间一点M的位置坐标用(ρ,?,z)表示。 直角坐标与柱坐标的关系为:x =ρ cos ?,y =ρ sin ? ,z = z 柱坐标下的位移分量为:uρ,u? , w 柱坐标下的应力分量为:σρ,σ? σz,τρ?,τ? z,τzρ 柱坐标下的应变分量为:ερ,ε? εz,γρ?,γ? z,γzρ 以下讨论柱坐标系的弹性力学基本方程。 2、柱坐标基本方程

弹性力学基本知识考试必备

弹性力学基本知识考试必备 一、 基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时,0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律,0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变 问题。

(5)一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6)圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。(7)差分法的基本概念: 是微分方程的近似解法,具体的讲,差分法就是把微分用差分来代替,把导数用差分商来代替,从而把基本方程和边界条件(微分方程)近似用差分方程来表示,把求解微分方程的问题变成求解代数方程问题。 (8)极小势能原理: 在给定外力作用下,在满足位移边界条件的所有各组位移中间,实际存在的一组位移应使总势能成为极值,对于稳定平衡状态,这个值是极小值。 (9)轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。

岩石力学知识点

岩石的结构:岩石中矿物颗粒相互之间的关系,包括颗粒大小,形状,排列结构连接特点及岩石中的微结构面。 岩石:由一种或几种矿物按一定的方式结合而成的天然集合体。 岩石的结构联结类型:结晶联结、胶结联结 碎屑岩胶结类型:基质胶结、接触胶结、孔隙胶结。 结晶联结:岩石中矿物颗粒通过结晶相互嵌合在一起。 胶结联结:颗粒与颗粒之间通过胶结物在一起的联结。 微结构面:是指存在于矿物颗粒内部或矿物颗粒及矿物集合体之间微小的弱面及空隙。 解理面:矿物晶体或晶粒受力后沿一定结晶方向分裂成的光滑平面。 微裂缝:发育于矿物颗粒内部及颗粒之间的多呈闭合状态的破裂迹线。 层理:在垂直方向上岩石成分变化情况。 片理:岩石沿平行的平面分裂为薄片的能力。 颗粒密度:岩石固体相部分的质量与其体积之比。 块状密度:岩石单位体积内的质量。 吸水率:岩石试件在大气压条件下自由吸入水的质量与岩样干质量之比。 岩石的膨胀性:岩石浸水后体积增大的性质。 岩石的软化性:岩石浸水饱和后强度降低的性质。 岩石的崩解性:岩石与水相互作用时失去粘结性并变成完全丧失强度的松散物质的性质。体胀系数:温度上升1°所引起的体积增量与其初始体积之比。 线胀系数:温度上升1°所引起的长度增量与其初始长度之比。 岩石的非均质性:岩石的物理力学性质随空间而变化的一种行为 饱和吸水率:岩石在高压或真空条件下吸入水的质量与岩样干质量之比 抗冻性:岩石抵抗冻融破坏的能力 水理性质:岩石在水溶液作用下表现的物理性质 粒度组成:构成砂岩的各种粒组含量,通常以百分数表示 岩石的热导率:度量岩石传热导能力的参数 圆度:碎屑颗粒表面的光滑程度 岩石的变形特征:岩石试件在各种载荷作用下的变形规律,其中包括岩石的弹性变形,塑性变形,粘度流动和破坏规律反映力学属性 岩石强度:岩石试件在载荷作用下开始破坏时的最大应力以及应力与破坏之间的关系 单轴压缩强度:在单轴压缩载荷作用下所承受的最大压应力 岩石的抗压强度:岩石试件在单轴压力下达到破坏的极限值 岩石的抗剪强度:岩石抵抗剪切滑动的能力 三轴抗压强度:岩石在三向压缩载荷作用下,达到破坏时所承受的最大应力 岩石的变形:岩石在任何物理作用因素作用下形状和大小的变化 岩石本构关系:岩石应力或应力速度与其应变速率的关系 岩石的流变性:是指岩石的应力或应变随时间的变化关系 岩石的蠕变:在应力不变的情况下岩石变形随时间增长而增长的现象 古地应力:泛指燕山运动以前的地应力,有时也特指某一地质时期以前的地应力 原地应力:工程施工开始前存在于岩体中的应力 现今地应力:目前存在或正在变化的地应力 重力应力:指由于上覆岩层的重力引起的地应力分量,特别指由于上覆岩层的重力所产生的应力 扰动应力:是指由于地表或地下加载或解载及开挖等,引起原地应力发生改变所产生的应力

弹性力学基本概念

弹性力学中的基本假定1连续性假定在物体体积内都被连续介质所充满,没有任何空隙,亦即从宏观角度上认为物体是连续的。因此,所有的物理量均可以用连续函数来表示,从而可以应用数学分析工具2完全弹性假定物体是完全弹性的。这个假定包含两点含义:a.当外力取消时,物体回复到原状,不留任何残余变形,即所谓“完全弹性”b.应力与相应的应变成正比,即所谓“线性弹性”。根据完全弹性假定,物体中的应力与应变之间的物理关系可以用胡克定律来表示3均匀性物体是由同种材料组成的,物体内任何部分的材料性质均相同。这样,物体的弹性常数等不随位置坐标而变化4各向同性物体内任一点各方向的材料性质都相同。这样,弹性常数等也不随方向而变化。凡符合以上四个假定的物体,称为理想弹性体5小变形假定假定物体的位移和应变是微小的。物体在受力后,其位移远小于物体的尺寸,其应变远小于1。用途:a.简化几何方程,使几何方程成为线性方程。b.简化平衡微分方程面力是作用于物体表面上的外力 体力是作用于物体体积内的外力 应力单位截面积上的内力 切应力互等定理作用于两个互相垂直面上,并且垂直于该两面交线的切应力是互等的 形变就是物体形状的改变。通过任一点作3个沿正坐标方向的微分线段,并以这些微分线段的应变来表示该点的形变 成为平面应力问题条件1等厚度薄板2面力只作用于板边,其方向平行与中面,且沿厚度不变3体力作用于体积内,其方向平行于中面,且沿厚度不变4约束只作用于板边,其方向平行于中面,且沿厚度不变 成为平面应变问题条件1常截面长住体2面力作用于柱面上,其方向平行于横截面,且沿长度方向不变3体力作用于体积内,其方向平行于横截面,且沿长度方向不变4约束作用于柱面上,其方向平行于横截面,且沿长度方向不变 平衡微分方程表示区域内任一点(x,y)的微分体的平衡条件 平衡问题中一点应力状态1求斜面应力分量2由斜面应力分量求斜面上的正应力和切应力3求一点的主应力及应力方向4求一点的最大和最小的正应力和切应力 几何方程表示任一点的微分线段上,形变分量与位移分量之间的关系式 形变与位移的关系1如果物体的位移确定,则形变完全确定2当物体的形变分量确定时,位移分量不完全确定 边界条件表示在边界上位移与约束,或应力与面力之间的关系式。可分为:位移边界条件、应力边界条件和混合边界条件 位移边界条件实质上是变形连续条件在约束边界上的表达式 应力分量和正的面力分量的正负号规定不同在正坐标面上,应力分量与面力分量同号;在负坐标面上,应力分量与面力分量异号 应力边界条件两种表达方式:1在边界点取出一个微分体,考虑其平衡条件2在同一边界上,应力分量应等于对应的面力分量(数值相同,方向一致) 圣维南原理如果把物体的一小部分边界上的面力,变化为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同)那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计只能应用于一小部分边界上(又称局部边界、小边界和次要边界) 圣维南原理推广如果物体一小部分边界上的面力是一个平衡力系(主矢量及主矩都等于零),那么这个面力就只会使近处产生显著的应力而远处的应力可以不计 应力边界条件上应用圣维南原理就是在小边界上将精确的应力边界条件式,代之为静力等效的主矢量和主矩的条件 形变协调条件的物理意义1形变协调条件是连续体中位移连续性的必然结果2形变协调条件是形变对应的位移存在且连续的必要条件

弹性力学教材习题及解答完整版

弹性力学教材习题及解 答 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

1-1. 选择题 a. 下列材料中,D属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃 钢; D. 沥青。 b. 关于弹性力学的正确认识是A。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没 有困难的应用于工程结构分析。 c. 弹性力学与材料力学的主要不同之处在于B。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 d. 所谓“完全弹性体”是指B。 A. 材料应力应变关系满足胡克定律; B. 材料的应力 应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足 线性弹性关系。 2-1. 选择题 a.所谓“应力状态”是指B。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不 同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截 面的应力不同,因此应力矢量是不可确定的。 2-2. 梯形横截面墙体完全置于水中,如图所示。已知水的比重为,试写出墙体横截面边

界AA',AB,BB’的面力边界条件。 2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。根据材料力学分析结果,该梁横截面的应力分量为 试检验上述分析结果是否满足平衡微分方程和面力边界条件。 2-4. 单位厚度的楔形体,材料比重为,楔形体左侧作用比重为的液体,如图所示。试写出楔形体的边界条件。 2-5. 已知球体的半径为r,材料的密度为1,球体在密度为1(1>1)的液体中漂浮,如

最全面弹性力学基本方程和岩石力学介绍(精华版)

第二章 弹性力学的基本原理 §2.1 应力分析 2.1.1 应力与应力张量 应力被定义为:用假想截面将物体截开,在截面上一点 设 S 的外法 P 的周围取一微元 S , 线为 ν , S 上的力为 T ,如极限 存在,则称 T 为 P 点在该截面上的应力矢量。 lim T / S T S 0 (1 ) ( 2) (3 ) 考察三个面为与坐标面平行的截面 (即以 x 1 , x 2 , x 3 三个坐标轴为法线的三个截面 ), T , T , T 分别表示三个截面上的应力矢量。每一个应力矢量又分解为沿三个坐标轴的应力分量,有 (i ) T ij e j (i,j =1,2,3) (2.1) 这里的张量运算形式满足 “求和约定” ,即凡是同一指标字母在乘积中出现两次时, 3 则理解为 对所有同类求和, 即 ij e j ij e j 应理解为 。这样的求和指标 j 称之为假指标或哑指标。 由此得到 j 1 九个应力分量表示一点的应力状态,这九个分量组成应力张量: 11 12 13 xx xy xz 或 (2.2) ij 21 22 23 ij yx yy yz 31 32 33 zx zy zz 在本书第一章致第九章,应力分量符号 (正负号 )规定如下:对于正应力,我们规定张应力为 正,压应力为负。对于剪应力,如果截面外法向与坐标轴的正方向一致,则沿坐标轴正方向的剪 应力为正,反之为负。如果沿截面外法向与坐标轴的正方向相反,则沿坐标轴正方向的剪应力为 负。 2.1.2 柯西 (Cauchy)方程 记 S 为过 P 点的外法向 为 n 的斜截面。外法线 n 的方向可由其方向余弦记为 cos(n , x 1 ), n1 cos(n , x 3 ) 。 cos(n , x 2 ) , 设此斜截面 坐标面平行的截面 n3 n2 ABC (即以 的面积为 S, 则如图 2.1, 过此点所取的小四面体 OABC 另外三个面为与 x 1 , x 2 , x 3 三个坐标轴为法线的三个截面 其面积分别为 ), OBC : S 1 OAC : S 2 OAB : S 3 S S S cos(n , x 1 ) cos(n , x 2 ) cos(n , x 3 ) S S S n1 (2.3) n 2 n3 ( n) 此截面上的应力矢量记为 即 T , ( n ) ( n) T T j e j T 。 (2.4) (1) ( 2) , (3) 另外三个面上的应力矢量分别为 T , T 考虑此微元 (四面体 OABC 的平衡,其平衡方程为 1 3 ( n) (1) ( 2 ) ( 3 ) T S T S 1 T S 2 T S 3 f S h 0 (2.5) 1 S 3 其中 f 为作用于此单元上的体力, h 为 O 点至截面 ABC 的垂直距离, h 为此微元的体积。当

弹性力学简明习题提示与参考答案

题提示和答案 《弹性力学简明教程》 习题提示和参考答案 第二章习题的提示与答案 2-1 是 2-2 是 2-3 按习题2-1分析。 2-4 按习题2-2分析。 2-5 在的条件中,将出现2、3阶微量。当略去3阶微量后,得出的切 应力互等定理完全相同。 2-6 同上题。在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。其区别只是在3阶微量(即更高阶微量)上,可以略去不计。 2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。 2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。 2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。 2-10 参见本章小结。 2-11 参见本章小结。 2-12 参见本章小结。 2-13 注意按应力求解时,在单连体中应力分量必须满足 (1)平衡微分方程, (2)相容方程, (3)应力边界条件(假设)。 2-14 见教科书。 2-15 见教科书。 2-16 见教科书。 2-17 取

它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。 2-18 见教科书。 2-19 提示:求出任一点的位移分量和,及转动量,再令,便可得 出。 第三章习题的提示与答案 3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解: (1)校核相容条件是否满足, (2)求应力, (3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。 3-2 用逆解法求解。由于本题中 l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。 3-3 见3-1例题。 3-4 本题也属于逆解法的问题。首先校核是否满足相容方程。再由求出 应力后,并求对应的面力。本题的应力解答如习题3-10所示。应力对应的面力是:主要边界: 所以在边界上无剪切面力作用。下边界无法向面力;上边 界有向下的法向面力q。 次要边界: x=0面上无剪切面力作用;但其主矢量和主矩在 x=0 面上均为零。 因此,本题可解决如习题3-10所示的问题。 3-5 按半逆解法步骤求解。 (1)可假设 (2)可推出 (3)代入相容方程可解出f、,得到

相关主题
文本预览
相关文档 最新文档