当前位置:文档之家› 陶瓷烧结炉工艺原理及烧结方式

陶瓷烧结炉工艺原理及烧结方式

陶瓷烧结炉工艺原理及烧结方式
陶瓷烧结炉工艺原理及烧结方式

陶瓷烧结炉工艺原理及烧结方式

陶瓷烧结是指坯体在高温下致密化过程和现象的总称。随着温度升高,陶瓷坯体中具有比表面大,表面能较高的粉粒,力图向降低表面能的方向变化,不断进行物质迁移,晶界随之移动,气孔逐步排除,产生收缩,使坯体成为具有一定强度的致密的瓷体。烧结的推动力为表面能。烧结可分为有液相参加的烧结和纯固相烧结两类。烧结过程对陶瓷生产具有很重要的意义。为降低烧结温度,扩大烧成范围,通常加入一些添加物作助熔剂,形成少量液相,促进烧结。

一般粗线条结炉的燃烧方法主要有以下几种:

热压烧结、热等静压、放电等离子烧结、微波烧结、反应烧结、爆炸烧结。固相烧结一般可表现为三个阶段,初始阶段,主要表现为颗粒形状改变;中间阶段,主要表现为气孔形状改变;最终阶段,主要表现为气孔尺寸减小。

烧结是在热工设备中进行的,这里热工设备指的是先进陶瓷生产窑炉及附属设备。烧结陶瓷的窑炉类型很多,同一制品可以在不同类型的窑内烧成,同一种窑也可以烧结不同的制品。主要常用的有间歇式窑炉,连续式窑炉和辅助设备。间歇式窑炉按其功能可分为电炉,高温倒焰窑,梭式窑和钟罩窑。连续式窑炉的分类方法有很多种,按制品的输送方式可分为隧道窑,高温推板窑和辊道窑。与传统间歇式窑炉相比较,连续式窑具有连续操作性,易实现机械化,大大改善了劳动条件和减轻了

劳动强度,降低了能耗等优点。

温度制度的确定,包括升温速度,烧成温度,保温时间和冷却速度等参数。通过飞行坯料在烧成过程中性状变化,初步得出坯体在各温度或时间阶段可以允许的升、降温速度(相图,差热-失重、热膨胀、高温相分析、已有烧结曲线等)。升温速度:低温阶段,氧化分解阶段,高温阶段。烧成温度与保温时间:相互制约,可在一定程度上相互补偿,以一次晶粒发展成熟,晶界明显、没有显著的二次晶粒长大,收缩均匀,致密而又耗能少为目的。冷却速度,随炉冷却,快速冷却。

压力制度的确定,压力制度起着保证温度和气氛制度的作用。全窑的压力分布根据窑内结构,燃烧种类,制品特性,烧成气氛和装窑密度等因素来确定。倒焰窑中,最重要的是在烟道内形成微负压,窑底处于零压。隧道窑的预热带和烧成带都为负压,冷却带一般在正压下操作。

常规真空烧结炉

常规真空烧结炉: 真空烧结炉是在真空环境中对被加热物品进行保护性烧结的炉子,其加热方式比较多,如电阻加热、感应加热、微波加热等。真空感应炉是利用感应加热对被加热物品进行保护性烧结的炉子,可分为工频、中频、高频等类型,可以归属于真空烧结炉的子类。 真空感应烧结炉 真空感应烧结炉是在真空或保护气氛条件下,利用中频感应加热的原理使硬质合金刀头及各种金属粉末压制体实现烧结的成套设备,是为硬质合金、金属镝、陶瓷材料的工业生产而设计的。 VSWF真空感应钨烧结氢气炉 一、主要原理及用途 真空感应钨烧结炉是在抽真空后充氢气保护状态下,利用中频感应加热的原理,使处于线圈内的钨坩埚产生高温,通过热辐射传导到工作上,适用于科研、军工单位对难熔合金如钨、钼及其合金的粉末成型烧结。 二、主要结构及组成 结构形式多为立式、下出料方式。其主要组成为:电炉本体、真空系统、水冷系统、气动系统、液压系统、进出料机构、底座、工作台、感应加热装置(钨加热体及高级保温材料)、进电装置、中频电源及电气控制系统等。 三、主要功能 在抽真空后充入氢气保护气体,控制炉内压力和气氛的烧结状态。可用光导纤维红外辐射温度计和铠装热电偶连续测温(0~2500℃),并通过智能控温仪与设定程序相比较后,选择执行状态反馈给中频电源,自动控制温度的高低及保温程序。 真空烧结炉安全操作规程 1.中频电源、真空炉炉体、感应圈之冷却水源——蓄水池之水必须充满,水中不得有杂质。 2.开动水泵,使其中频电源,真空炉感应圈、炉体冷却系统水循环正常,并调整水压控制在规定值。 3.检查真空泵电源系统,皮带盘皮带松紧,真空泵油是否位于油封观察孔中线。检查妥后,人工转动真空泵皮带盘,如无异常,可在关闭蝶阀的情况下,启动真空泵。 4.检查真空炉体内情况,要求真空炉体内一级卫生,感应圈绝缘良好,密封真空胶带具有弹性,尺寸合格。 5.检查真空炉体的杠杆手把启动是否灵活。 6.检查转动式麦氏真空计是否合乎要求。 7.检查石墨坩埚,装炉配件是否齐全。 8.在以上准备就绪后,接通电源,中频电源合闸,按中频启动规则,试启动变频,成功后停止变频,方可开炉。 9.真空炉体上盖的观察、测温孔,每次开炉均需清洁处理,以便观察和测温。

烧结炉介绍及原理.

■ 真空-热压烧结炉的介绍: 包括烧结炉和抽真空部分,烧结炉包括炉体和装设在炉体内的加热室,烧结炉上安装有六个引电电极,其特征是在炉体的上、下方分别设置有油压机上梁和油压机下梁,油压机上梁和油压机下梁由四个支柱连接成一整体;上压头由上水冷压头和上石墨压头连接构成,下压头由下水冷压头和下石墨压头连接构成,上压头和下压头分别从炉体和加热室的上、下端面上的压头通孔、插入炉体内,其上石墨压头和下石墨压头分别插入加热室内,上压头和下压头可上、下移动。 ■ 烧结的介绍: 1、烧结 粉末或压坯在低于主要组分熔点的温度下的热处理,目的在于通过颗粒间的冶金结合以提高其强度。 2、填料 在预烧或烧结过程中为了起分隔和保护作用而将压坯埋入其中的一种材料。 3、预烧 在低于最终烧结温度的温度下对压坯的加热处理。 4、加压烧结 在烧结同时施加单轴向压力的烧结工艺。 5、松装烧结 粉末未经压制直接进行的烧结。 6、液相烧结 至少具有两种组分的粉末或压坯在形成一种液相的状态下烧结。 7、过烧 烧结温度过高和(或)烧结时间过长致使产品最终性能恶化的烧结。 8、欠烧 烧结温度过低和(或)烧结时间过短致使产品未达到所需性能的烧结。 ■ 卧式真空烧结炉 卧式真空烧结炉 1、工作温度400°C-1200°C 2、恒温区400mm/±1°C 3、单点精度≤±1°C/24H 4、冷态真空度6.7×10-5Pa ■ 隧道式网带烧结炉 用途:厚膜电路、厚膜电阻等厚膜产品烧结;电子元件端头烧银,气氛保护下的烧结、钎焊等,也可用于电子陶瓷产品的预烧、低温烧结或热处理、排胶、退火特点:独特炉腔设计、均匀;远红外加热、高效;超轻质保温、节能;包括快烧炉和马弗式炉,系列齐全,选件丰

一烧结基本原理

一烧结基本原理集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

一、烧结 (1)、烧结基本原理 烧结是粉末冶金生产过程中最基本的工序之一。烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整, 例如适当改变温度,调节升降温时间与速度等而加以纠正。 烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以一定的方法和速度冷却到室温的过程。烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加。在烧结过程中发生一系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得具有所需物理,机械性能的制品或材料。烧结时,除了粉末颗粒联结外,还可能发生致密化,合金化,热处理,联接等作用。人们一般还把金属粉末烧结过程分类为:1、单相粉末(纯金属、古熔体或金属化合物)烧结;2、多相粉末(金属—金属或金属—非金属)固相烧结;3、多相粉末液相烧结;4、熔浸。 通常在目前PORITE微小轴承所接触的和需要了解的为前三类烧结。通常在烧结过程中粉末颗粒常发生有以下几个阶段的变化:1、颗粒间开始联结;2、颗粒间粘结颈长大;3、孔隙通道的封闭;4、孔隙球化;5、孔隙收缩;6、孔隙粗化。 上述烧结过程中的种种变化都与物质的运动和迁移密切相关。理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。

(2)、烧结工艺 2-1、烧结的过程 粉末冶金的烧结过程大致可以分成四个温度阶段: 1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O后会氧化,但在本体中可以被还原,同时还可以促进烧结。 2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。 3、高温保温完成烧结阶段,此阶段是烧结得主要过程,如扩散和流动充分地进行和接近完成,形成大量闭孔,并继续缩小,使得孔隙尺寸和孔隙总数均有减少,烧结体密度明显增加

高温真空烧结炉使用注意

高温真空烧结炉使用注意 【盛阳工业炉高温真空烧结炉】高温真空烧结炉是利用感应加热对被加热物品进行保护性烧结的炉子,可分为工频、中频、高频等类型,可以归属于真空烧结炉的子类。真空感应烧结炉是在真空或保护气氛条件下,利用中频感应加热的原理使硬质合金刀头及各种金属粉末压制体实现烧结的成套设备,是为硬质合金、金属镝、陶瓷材料的工业生产而设计的。 #详情咨询#【盛阳工业炉:高温真空烧结炉】 【高温真空烧结炉使用注意】 1、由于模具一般由用户自备,模具材料基本上选用高纯石墨,其耐压极限为40MPa,建议用户使

用在30MPa以下比较安全,加压前应计算模具上、下冲头的面积,再换算成压力,具体公式如下:系统允许加压(吨)=上或下冲头面积×30MPa 2、热电偶为钨铼型,使用过会发脆,不能接触。如损坏应及时更换。其型号是W2型。 3、冬天应注意循环水的保暖问题, 否则易发生水管爆裂。 4、使用后炉体应保持真空,因炉内 保温层易受潮,保真空这样下次抽真 空会快些。 5、因设备较复杂,建议专人使用, 专人负责,对新手严格实行用前培训, 用后检查,操作使用要有记录等设备 使用规定。 6、本热压炉也可当作真空烧结炉使 用,用于真空烧结炉时注意,在炉内放置坩埚后,在盖上保温屏盖后不要忘记再盖其中间的小盖。否则易烧损电炉。 7、操作前应做到清洁观察窗玻璃,清洁炉内壁,观察水压情况,观察炉内石墨是否有损坏,上电后观察仪表显示是否正常,测试液压系统能否正常工作。 8、电炉使用一年后应将仪表后送计量部门进行校对。 【高温真空烧结炉安全操作规程】 1.中频电源、真空炉炉体、感应圈之冷却水源——蓄水池之水充满,水中不得有杂质。真空炉2.开动水泵,使其中频电源,真空炉感应圈、炉体冷却系统水循环正常,并调整水压控制在规定值。3.检查真空泵电源系统,皮带盘皮带松紧,真空泵油是否位于油封观察孔中线。检查妥后,人工转

一烧结基本原理

一、烧结 (1)、烧结基本原理 烧结是粉末冶金生产过程中最基本的工序之一。烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整,例如适当改变温度,调节升降温时间与速度等而加以纠正。 烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以一定的方法和速度冷却到室温的过程。烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加。在烧结过程中发生一系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得具有所需物理,机械性能的制品或材料。烧结时,除了粉末颗粒联结外,还可能发生致密化,合金化,热处理,联接等作用。人们一般还把金属粉末烧结过程分类为:1、单相粉末(纯金属、古熔体或金属化合物)烧结;2、多相粉末(金属—金属或金属—非金属)固相烧结;3、多相粉末液相烧结;4、熔浸。 通常在目前PORITE微小轴承所接触的和需要了解的为前三类烧结。通常在烧结过程中粉末颗粒常发生有以下几个阶段的变化:1、颗粒间开始联结; 2、颗粒间粘结颈长大; 3、孔隙通道的封闭; 4、孔隙球化; 5、孔隙收缩; 6、孔隙粗化。 上述烧结过程中的种种变化都与物质的运动和迁移密切相关。理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。

(2)、烧结工艺 2-1、烧结的过程 粉末冶金的烧结过程大致可以分成四个温度阶段: 1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O 后会氧化,但在本体中可以被还原,同时还可以促进烧结。 2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。 3、高温保温完成烧结阶段,此阶段是烧结得主要过程,如扩散和流动充分地进行和接近完成,形成大量闭孔,并继续缩小,使得孔隙尺寸和孔隙总数均有减少,烧结体密度明显增加 4、冷却阶段:实际的烧结过程,都是连续烧结,所以从烧结温度缓慢冷却一段时间然后快冷,到出炉量达到室温的过程,也是奥氏体分解和最终组

烧结炉安全操作1

1.中频电源、真空炉炉体、感应圈之冷却水源——蓄水池之水必须充满,水中不得有杂质。 2.开动水泵,使其中频电源,真空炉感应圈、炉体冷却系统水循环正常,并调整水压控制在规定值。 3.检查真空泵电源系统,皮带盘皮带松紧,真空泵油是否位于油封观察孔中线。检查妥后,人工转动真空泵皮带盘,如无异常,可在关闭蝶阀的情况下,启动真空泵。 4.检查真空炉体内情况,要求真空炉体内一级卫生,感应圈绝缘良好,密封真空胶带具有弹性,尺寸合格。 5.检查真空炉体的杠杆手把启动是否灵活。 6.检查转动式麦氏真空计是否合乎要求。 7.检查石墨坩埚,装炉配件是否齐全。 8.在以上准备就绪后,接通电源,中频电源合闸,按中频启动规则,试启动变频,成功后停止变频,方可开炉。

9.真空炉体上盖的观察、测温孔,每次开炉均需清洁处理,以便观察和测温。 10.装炉时应根据不同烧结产品,采取相应装炉方式。按有关材质装炉规则装盘,不得随意更改。 11.为了保持恒温,防止热幅射,发热坩埚上加二层碳纤维,再罩上隔热屏。 12.垫好真空密封胶带。 13.操作杠杆手把,转动真空炉顶盖与炉体密切重合,放下顶盖,并锁好固定螺母。 14.徐徐打开蝶阀,抽炉体空气,至真空度达到规定值。 15.在真空度达到规定要求后,开始启动变频,调整中频功率,按有关材质的烧结规定操作;升温、保温冷却。 16.烧结完毕后,停止变频,按停止变频开关,逆变停止工作,断开中频电源分闸与断开电源总闸。

17.从炉体观察孔观察炉膛发黑后,先关闭真空泵蝶阀与断开真空泵电流,再接自来水继续冷却感应圈和炉体,最后停水泵。 18.中频电压750伏有触电危险。在整个操作和检查过程中,要注意操作安全,不要用手接触中频电柜。 19.在烧结过程中,随时从炉体侧面观察孔观察感应圈是否发生放弧现象,如发现异常现象,应立即报告有关人员处理。 20.启动真空蝶阀应缓慢,否则会因抽气过急而冒油,带来不良后果。 21.正确使用转动式麦氏真空计,否则会造成真空读数误差或因操作过急而使水银溢出造成公害。 22.注意真空泵皮带盘安全运行。 23.在垫真空密封胶带,盖炉体顶盖时,注意防止压手。 24.凡在真空条件下,容易挥发影响真空卫生,造成管道堵塞、真空泵脏化的工件或容器,不得入炉。

热压烧结炉使用

热压烧结炉使用

一、快速操作指南 (一)开机操作 1:检查电路和水路是否正常,如正常通电,通水。 2:打开机械泵,过30秒后缓慢打开预抽阀,1分钟后打开前级阀。 3:在真空度达到10Pa以下时打开扩散泵,给扩散泵加热 4:扩散泵加热到60分钟后,关闭预抽阀,打开高真空阀,真空度会逐渐达到高真空。 5:加热启动,在200度以下请你选用手动加热,在控制面板手动操作菜单中,注意第一次使用时,把拨钮上下波动一次,然后拨到手动位置,启动加热,输入50左右,确定。电流一般控制在300A以下, 自动加热:在温度控制界面设定温控表自动开始加热或开启手动位用手动开始加热。

以上设置说明:从200度用时120分钟到6 00度,600度时保温30分钟,从600度用时130分钟到1000度,在1000度时保温5个小时,从1000度降到600度用时60分钟,60分钟后程序自动停止(注:在时间上设定-1 21程序在此会自动停止)。 设定好加热工艺后,首先停止手动加热,然后把拨钮拨到自动位置,启动自动加热程序,如果需要记录数据请在数据保存见面打“√”。 6:在保温状态下,一定要保持循环水的正常循环。 7:保温时间到后,关闭加热开关,如果不需要高真空可以关闭扩散泵,打开预抽阀,关闭高真空阀,开始降温。注意:机械泵不要关闭 8:在温度降到200度时关掉机械泵(扩散泵达到常温),关闭所有阀门。 9:在常温下释放压力,冲入空气,将原料取出。

10:如不继续工作,应打开机械泵和预抽阀再抽5分钟真空,关闭机械泵和预抽阀。保持工作室里有真空度,防止水汽侵入。 11、压力操作:首先在手动操作界面,报压力模式拨到自动位置,可以直接用仪表操作,设定好程序后按run键3秒启动,按stop键3秒停止。 压力触摸屏控制如下说明: 从0到2MPa用时2分钟,在2MPa上保压2分钟,从2MPa到6.15MPa用时5分钟,保压60分钟后程序自动停止。(在时间上设定-121程序会自动停止)。设定完后一定要按“确定”键。 程序设定好以后,可以到手动控制界面中,启动自动压力开即可。 二、安装使用及维护 (一)、安装:安装电炉的场所应符合真空卫生的要求,周围的空气应清洁和干燥,并有良好的通风条件,工作场地不易扬起灰尘等。

第九章 陶瓷的烧结原理及工艺

第九章 陶瓷的烧结原理及工艺 1.烧结通常是指在高温作用下粉粒集合体(坯体)表面积减少,气孔率降低、致密度提高、颗粒间接触面积加大以及机械强度提高的过程。 2.陶瓷的烧结可以分为气相烧结、固相烧结、液相烧结 若物质的蒸汽压较高,以气相传质为主,叫做气相烧结; 若物质的蒸汽压较低,烧结以固相扩散为主,叫固相烧结; 有些物质因杂质存在或人为添加物在烧结过程中有液相出现,称为液相烧结; 3.烧结过程中的物质的传递即传质过程,包括:(1)蒸发和凝聚;(2)扩散;(3)粘性流动; (4)塑性流变;(5)溶解和沉淀 a 、气相传质(气相烧结)……公式要记住 气相烧结中的传质过程主要是蒸发和凝聚 b 、固相传质(固相烧结)………….. 公式要记住 目前公认的机制有(1)扩散机制;(2)粘滞性流动和塑性流变 c 、液相传质(液相烧结) s 与s 0分别为颗粒和大块物质的溶解度; γsl 为液固表面张力; V 0为摩尔体积;r 为颗粒半径 液相烧结可以分成三个阶段: (1)在成形体中形成具有流动性的液相,并在表面张力的作用下,使固体颗粒以更紧密方式重新排列的粘滞流动过程,称为重排过程; (2)通过颗粒向液相中溶解和重新淀析而发生致密度增大的阶段,称为溶解与沉淀过程; (3)液相的重新结晶和颗粒长大,最终形成固相陶瓷-凝结过程 二、影响烧结的因素 烧结时间,颗粒半径,气泡和晶界,杂质及添加剂 烧结促进剂、烧结阻滞剂、反应接触剂或矿化剂,烧结气氛 氧化性气氛、中性气氛、还原性气氛 9.2陶瓷的烧结方法 1、根据烧结时是否有外界加压可以将烧结方法分为常压烧结和压力烧结 常压烧结又称为普通烧结,指在通常的大气条件下无须加压进行烧结的方法(传统陶瓷大都在隧道窑中进行烧结,而特种陶瓷大都在电窑中烧成) 压力烧结可以分为热压烧结和热等静压烧结 a 、热压烧结是指在粉体加热时进行加压,以增大粉体颗粒间的接触应力,加大致 密化的动力,使颗粒通过塑性流动进行重新排列,改善堆积状况。 b 、热等静压烧结工艺是将粉体压坯或将装入包套的粉料放入高压容器中,在高温 和均衡的气体压力作用下,将其烧结为致密的陶瓷体。 2、根据烧结时是否有气氛可以将烧结方法分为普通烧结和气氛烧结 3、根据烧结时坯体内部的状态可以分为气相烧结、固相烧结、液相烧结、活化烧结,反 应烧结 反应烧结是通过多孔坯件同气相或液相发生反应,使坯体的质量增加、气孔率减少并烧结成具有一定强度和尺寸精度的成品的一种烧结工艺 9.3 陶瓷烧结后的处理 rRT V s s sl 0 02γ=ln

热压烧结炉使用

一、快速操作指南 (一)开机操作 1:检查电路和水路是否正常,如正常通电,通水。 2:打开机械泵,过30秒后缓慢打开预抽阀,1分钟后打开前级阀。 3:在真空度达到10Pa以下时打开扩散泵,给扩散泵加热 4:扩散泵加热到60分钟后,关闭预抽阀,打开高真空阀,真空度会逐渐达到高真空。 5:加热启动,在200度以下请你选用手动加热,在控制面板手动操作菜单中,注意第一次使用时,把拨钮上下波动一次,然后拨到手动位置,启动加热,输入50左右,确定。电流一般控制在300A以下, 自动加热:在温度控制界面设定温控表自动开始加热或开启手动位用手动开始加热。 以上设置说明:从200度用时120分钟到600度,600度时保温30分钟,从600度用时130分钟到1000度,在1000度时保温5个小时,从1000度降到600度用时60分钟,6 0分钟后程序自动停止(注:在时间上设定-121程序在此会自动停止)。 设定好加热工艺后,首先停止手动加热,然后把拨钮拨到自动位置,启动自动加热程序,如果需要记录数据请在数据保存见面打“√”。 6:在保温状态下,一定要保持循环水的正常循环。 7:保温时间到后,关闭加热开关,如果不需要高真空可以关闭扩散泵,打开预抽阀,关闭高真空阀,开始降温。注意:机械泵不要关闭 8:在温度降到200度时关掉机械泵(扩散泵达到常温),关闭所有阀门。 9:在常温下释放压力,冲入空气,将原料取出。 10:如不继续工作,应打开机械泵和预抽阀再抽5分钟真空,关闭机械泵和预抽阀。保持工作室里有真空度,防止水汽侵入。 11、压力操作:首先在手动操作界面,报压力模式拨到自动位置,可以直接用仪表操作,设定好程序后按run键3秒启动,按stop键3秒停止。 压力触摸屏控制如下说明:

(整理)陶瓷烧成与烧结

7 烧成与烧结 7.1 烧成原理 为制定合理的煅烧工艺,就必须对物料在烧成时所发生的物理化学变化的类型和规律有深入的了解。但是物料烧成时的变化较所用的原料单独加热时更为复杂,许多反应是同时进行的。一般而言,物料的烧成变化首先取决于物料的化学组成,正确的说是物料中的矿物组成。使用不同的地区的原料,即使物料的化学组成相同,也不能得到完全相同的烧成性质。其次,物料的烧成变化在很大程度上还取决于物料中各组分的物理状态,即粉碎细度、混合的均匀程度、物料的致密度等,因为物料的烧成是属于液相参与的烧结过程,因此物料的分散性和各组分的接触的密切程度直接影响固相反应、液相的生成和晶体的形成。此外,烧成温度、时间和气氛条件对物料的烧成变化影响也很大。要将这些复杂的因素在物料烧成过程中的变化上反映出来是困难的。为研究方便本书以长石质陶瓷坯体为例进行讨论。 7.1.1 陶瓷坯体在烧成过程中的物理化学变化 陶瓷坯体在烧成过程中一般经过低温阶段、氧化分解阶段和高温阶段。 1.低温阶段(由室温~300℃) 坯料在窑内进行烧成时,首先是排除在干燥过程中尚未除去的残余水分。这些残余水分主要是吸附水和少量的游离水,其量约为2~5%。 随着水分排除固体颗粒紧密靠拢,发生少量的收缩。但这种收缩并不能完全填补水分所遗留的空间,因此物料的强度和气孔率都相应的增加。 在120~140℃之前,由于坯体内颗粒间尚有一定的孔隙,水分可以自由排出,可以迅速升温,随着温度进一步提高,坯体中毛细管逐渐变小,坯体内汽化加剧,使得开裂倾向增大。例如,当加热至120℃时,一克水占有的水蒸气容积为:22.4×(1+120/273)/18=1.79(升)。如果坯体中含有4~5%的游离水,则100克坯体的水蒸气体积达7.16--8.95升,相当于坯体体积的155倍。这些水蒸气主要由坯体的边角部位排出。为了保证水分排出不致使坯体开裂,在此阶段应注意均匀升温,速度要慢(大制品30℃/时,中小制品50~60℃/时),尤其是厚度和形状复杂的坯体更应注意。此外,要求通风良好,以便使排出的水蒸气能迅速排出窑外,避免冷聚在坯体表面。 2.分解与氧化阶段(300~950℃) 此阶段坯体内部发生了较复杂的物理化学变化,粘土和其它含水矿物排除结构水;碳酸盐分解;有机物、碳素和硫化物被氧化,石英晶型转化等。这些变化与窑内温度气氛和升温速度等因素有关。 (1)粘土和其它含水矿物排除结构水 粘土矿物因其类型不同、结晶完整程度不同、颗粒度不同、坯体厚度不同,脱水温度也有所差别,见表11-1。 Al2O3·2SiO2·2H2O 加热——→Al2O3·2SiO2+2H2O↑ (高岭土) (偏高岭土)(水蒸气) 表11-1 各类粘土矿物脱水温度单位:℃ 原料 吸热交换放热效应 排除吸附 水 排除结晶水晶格破坏新结晶物质形成重结晶 高岭土450~600 950~1050 1200~1300

实验九 陶瓷材料烧结工艺实验

实验九陶瓷材料烧结工艺实验 姓名:许航学号:141190093 姓名:王颖婷学号:141190083 系别:材料科学与工程系专业:材料物理 组号:A9 实验时间:5月11号 1实验目的 1)掌握陶瓷主要制备工艺的原理、方法与一定的操作技能。 2)通过实验了解陶瓷产品的设计程序与工艺过程。 3)掌握制备陶瓷材料的典型工艺流程,包括配方计算、称量、混料、筛分、造粒、成型、排塑、烧结、加工、性能测试等 4)利用实验找出材料的最优烧结工艺,包括烧结温度和烧结时间 5)了解压敏陶瓷等功能陶瓷的制备和性能检测 2 实验背景知识 2.1陶瓷 陶瓷(ceramics)是我们日常生活接触较多,在国民经济中有许多重要应用的无机非金属材料之一。传统概念的陶瓷是指所有以粘土为主要原料,并与其他矿物原料经过破碎混和成型烧成等过程而制得的制品,主要是常见的日用陶瓷、建筑卫生陶瓷等普通陶瓷(ordinary ceramics )。随着社会的发展,出现了一类性能特殊,在电子、航空、生物医学等领域有广泛用途的陶瓷材料,称之为特种陶瓷(specieal ceramics )。 所有的陶瓷(材料及其制品)都有其特定的性能要求。如:日用餐具要有一定的强度(strength)、白度(whiteness)、抗热冲击性(热稳定性);对于电瓷有强度和介电性能要求;而特种陶瓷对性能及其热稳定性要求更高。 陶瓷的性能一方面受到其本征物理量(如热稳定系数、电阻率、弹性模量等)的影响,同时又与其显微结构密切相关。而决定显微结构和本征物理量的是陶瓷的组成及其加工工艺过程。其中陶瓷组成对显微结构、性能起决定作用。 2.2 陶瓷材料制备工艺 陶瓷材料制备的一般工艺流程如图1所示。

真空烧结炉使用技巧

真空烧结炉使用技巧 【盛阳工业炉真空烧结炉】真空烧结炉主要用于半导体元器件及电力整流器件的烧结工艺,可进行真空烧结,气体保护烧结及常规烧结。是半导体专用设备系列中一种新颖的工艺装备,它设计构思新颖,操作方便,结构紧凑,在一台设备上可完成多个工艺流程。亦可用于其他领域内的真空热处理,真空钎焊等工艺。真空烧结炉使用有哪些注意事项?日常使用中有哪些应急计划?跟小编一起来看看吧! #详情咨询#【盛阳工业炉:真空烧结炉】 【真空烧结炉安装注意】 真空烧结炉是在抽真空后充氢气保护状态下,利用中频感应加热的原理,使处于线圈内的钨坩埚产生

高温,通过热辐射传导到工作上,适用于科研、军工单位对难熔合金如钨、钼及其合金的粉末成型烧结。安装真空烧结炉的场所应符合真空卫生的要求,周围的空气应清洁和干燥,并有良好的通风条件,工作场地不易扬起灰尘等。在使用时,以下问题我们要知道。 #详情咨询#【盛阳工业炉:真空烧结炉】 1、检查控制柜中所有部件及配件是否完备、完好。 2、控制柜安装在相应的地基上,并固定。 3、安照接线图,并参考电气原理图,接通外接主回路及控制回路,并可靠接地,保证接线无误。 4、检查电器可动部分应活动自如,无卡死现象。 5、绝缘电阻应不低于2兆欧姆。真空炉

7、控制电源开关放在关位。 8、手动调压旋钮逆时针旋动头。 9、报警钮放在开位。 10、按平面图完成设备的循环冷却水联接,建议用户在设备总进出水管处再接入一备用水(可用自来水),防止循环水有故障或断电导致密封圈烧坏。 #详情咨询#【盛阳工业炉:真空烧结炉】 【真空烧结炉安使用技巧】 真空烧结炉是在抽真空后充氢气保护状态下,利用中频感应加热的原理,使处于线圈内的钨坩埚产生高温,通过热辐射传导到工作上,适用于科研、军工单位对难熔合金如钨、钼及其合金的粉末成型烧结。安装电炉的场所应符合真空卫生的要求,周围的空气应清洁和干燥,并有良好的通风条件,工作场地不易扬起灰尘等。 真空烧结炉的日常使用技巧: 1、检查控制柜中所有部件及配件是否完备、完好。 2、控制柜安装在相应的地基上,并固定。 3、安照接线图,并参考电气原理图,接通外接主回路及控制回路,并可靠接地,保证接线无误。 4、检查电器可动部分应活动自如,无卡死现象。 5、绝缘电阻应不低于2兆欧姆。

陶瓷材料的烧结与原理

陶瓷材料烧结原理与工艺 摘要:到目前为止,陶瓷烧结技术一直是人们不断突破的领域,本文从陶瓷烧结的分类、影响因素、反应机理分别加以介绍,并列举了一些传统和先进的烧结技术,分析了它们的优缺点及应用的范围。 关键词:陶瓷材料;影响因素;反应机理;烧结方法; Sintering Theory and Technology of Ceramics Abstract:So far, the people of ceramic sintering technology has been constantly breaking the field, this paper classification of ceramic sintering, influence factors, reaction mechanism be introduced separately, and listed some of the traditional and advanced sintering tech- nology, analyzes their advantages and disadvantages and application Range. Key words:Ceramic materials; factors; reaction mechanism; sintering method; 0 前言 陶瓷(Ceramic)的主要制备工艺过程包括坯料制备、成型和烧结。其生产工艺过程可简单地表示为:坯料制备、成型、干燥、烧结、后处理、成品。制备:通过机械或物理或化学方法制备坯料,在制备坯料时,要控制坯料粉的粒度、形状、纯度及脱水脱气,以及配料比例和混料均匀等质量要求。按不同的成型工艺要求,坯料可以是粉料、浆料或可塑泥团;成型:将坯料用一定工具或模具制成一定形状、尺寸、密度和强度的制品坯型(亦称生坯);烧结:生坯经初步干燥后,进行涂釉烧结或直接烧结。高温烧结时,陶瓷内部会发生一系列物理化学变化及相变,如体积减小,密度增加,强度、硬度提高,晶粒发生相变等,使陶瓷制品达到所要求的物理性能和力学性能[1]。 烧结是指成型后的坯体在低于熔点的高温作用下、通过坯体间颗粒相互粘结和物质传递,气孔排除,体积收缩,强度提高、逐渐变成具有一定的几何形状和坚固烧结体的致密化过程。 1 分类 人们根据不同的依据分别对陶瓷的烧结进行分类,通常体现在以下几个方面:

陶瓷烧结炉工艺原理及烧结方式

陶瓷烧结炉工艺原理及烧结方式 陶瓷烧结是指坯体在高温下致密化过程和现象的总称。随着温度升高,陶瓷坯体中具有比表面大,表面能较高的粉粒,力图向降低表面能的方向变化,不断进行物质迁移,晶界随之移动,气孔逐步排除,产生收缩,使坯体成为具有一定强度的致密的瓷体。烧结的推动力为表面能。烧结可分为有液相参加的烧结和纯固相烧结两类。烧结过程对陶瓷生产具有很重要的意义。为降低烧结温度,扩大烧成范围,通常加入一些添加物作助熔剂,形成少量液相,促进烧结。 一般粗线条结炉的燃烧方法主要有以下几种: 热压烧结、热等静压、放电等离子烧结、微波烧结、反应烧结、爆炸烧结。固相烧结一般可表现为三个阶段,初始阶段,主要表现为颗粒形状改变;中间阶段,主要表现为气孔形状改变;最终阶段,主要表现为气孔尺寸减小。 烧结是在热工设备中进行的,这里热工设备指的是先进陶瓷生产窑炉及附属设备。烧结陶瓷的窑炉类型很多,同一制品可以在不同类型的窑内烧成,同一种窑也可以烧结不同的制品。主要常用的有间歇式窑炉,连续式窑炉和辅助设备。间歇式窑炉按其功能可分为电炉,高温倒焰窑,梭式窑和钟罩窑。连续式窑炉的分类方法有很多种,按制品的输送方式可分为隧道窑,高温推板窑和辊道窑。与传统间歇式窑炉相比较,连续式窑具有连续操作性,易实现机械化,大大改善了劳动条件和减轻了

劳动强度,降低了能耗等优点。 温度制度的确定,包括升温速度,烧成温度,保温时间和冷却速度等参数。通过飞行坯料在烧成过程中性状变化,初步得出坯体在各温度或时间阶段可以允许的升、降温速度(相图,差热-失重、热膨胀、高温相分析、已有烧结曲线等)。升温速度:低温阶段,氧化分解阶段,高温阶段。烧成温度与保温时间:相互制约,可在一定程度上相互补偿,以一次晶粒发展成熟,晶界明显、没有显著的二次晶粒长大,收缩均匀,致密而又耗能少为目的。冷却速度,随炉冷却,快速冷却。 压力制度的确定,压力制度起着保证温度和气氛制度的作用。全窑的压力分布根据窑内结构,燃烧种类,制品特性,烧成气氛和装窑密度等因素来确定。倒焰窑中,最重要的是在烟道内形成微负压,窑底处于零压。隧道窑的预热带和烧成带都为负压,冷却带一般在正压下操作。

烧结动力学模型及其机理

第九章烧结动力学模型及其机理 烧结是粉末冶金、陶瓷、耐火材料、超高温材料和金属陶瓷等生产过程的一个重要工序。任何粉体经成型后必须烧结才能赋予材料各种特殊的性能。陶瓷烧结体是一种多晶材料。材料性能不仅与材料组成有关,而且还与材料的显微结构有密切关系。当配方、原料粒度、成型等工序完成以后,烧结是使材料获得预期的显微结构以使材料性能充分发挥的关键工序。因此了解粉末烧结过程及机理,了解烧结过程动力学对控制和改进材料性能有着十分重要的意义。 9.1 烧结的定义 烧结通常是指在高温作用下粉体颗粒集合体表面积减少、气孔率降低、颗粒间接触面加大以及机械强度提高的过程。烧结是一复杂的物理化学过程,除物理变化外,有的还伴随有化学变化,如固相反应。这种由固相反应促进的烧结,又称反应烧结。高纯物质通常在烧结温度下基本上无液相出现;而多组分物系在烧结温度下常有液相存在。有无液相参加其烧结机理有原则区别,所以将烧结分为无液相参加的烧结(或称纯固相烧结),及有液相参加的烧结(或称液相烧结)两类。另外还有一些烧结过程,如热压烧结等,其烧结机理有其特殊性。 陶瓷粉料成型后变成具有一定外形的坯体,坯体内一般包含着百分之几十的气孔(约25-60%),而颗粒之间只有点接触,如图9.1(a)所示。在高温下所发生的主要变化是:颗粒间接触界面扩大,逐渐形成晶界;气孔的形状变化,如图(b),体积缩小,从连通的气孔变成各自孤立的气孔并逐渐缩小,如图(c),以致最后大部分甚至全部气孔从坯体中排除。这就是烧结所包含的主要物理过程。

图9.1 气孔形状及尺寸的变化示意图 烧结必须在高温下进行,但烧结温度及烧结温度范围,因原料种类、制品要求及工艺条件不同而异。纯物质的烧结温度与其熔点间有一近似关系,如金属的开始烧结温度约为0.3-0.4T M(熔点),无机盐类约为0.57T M,硅酸盐类约为0.8-0.9T M。由此可见,开始烧结温度都低于其熔融温度。实验证明,物料开始烧结温度,常与其质点开始迁移的温度一致。在烧结过程中也可能出现液相,这通常是由于物料中出现低共熔物之故。烧结是在远低于固态物质的熔融温度下进行的。烧结与熔融之间有共同之处,同时又有本质的区别。其共同之处是:熔融过程和烧结过程都是由原子热振动引起的,即由晶格中原子的振幅在加热影响下增大,使原子间联系减弱而引起的。两者之区别是:熔融时,材料的全部组元都转变成液相;而在烧结时,至少有一种组元仍处于固态。固态物质的烧结与固相反应这两个过程的主要差别在于:前者突出物理变化,后者则为化学反应。从结晶化学观点来看,烧结体除可见的收缩外,微观晶相组成并未变化,仅是晶相在显微组织上排列更致密和结晶程度更完善。随着这些物理变化的出现,烧结体的性能与烧结前的细粉相比也有相应的变化。一般为促进烧结,可以人为地加入一些添加物,这些少量添加物与杂质的存在,就出现了烧结的第二组元、甚至第三组元,因此固态物质烧结时,就会同时伴随发生固相反应或出现液相。在实际生产中,烧结与固相反应往往是同时穿插着进行的。在有一些陶瓷材料烧结中还会出现晶型转变、化合物分解和形成气体等等的复杂过程。 虽然烧结是一个比较古老的工艺过程,人们很早就利用烧结来生产陶瓷、水

真空烧结炉说明书

真空高温烧结炉 说明书

目录 1 前言 (3) 2 设备的工作原理 (3) 3 技术指标 (3) 4 设备构成 (4) 4.1炉体总成 (4) 4.2保温套 (4) 4.3感应圈总成 (5) 4.4集电装置 (5) 4.5真空系统 (5) 4.6水冷系统 (5) 4.7电控系统 (5) 4.8辅助系统...................................................................................................... 错误!未定义书签。 5 安装调试 (6) 6 使用操作 (6) 6.1真空操作 (6) 6.2加热升温操作 (6) 6.3水路系统操作 (7) 6.4充气系统操作 (7) 6.5破真空操作 (7) 6.6炉盖升降操作 (7) 7注意事项 (7) 8设备的保养 (8)

1 前言 在使用本设备前,要充分阅读本说明书的各项要求及注意事项,熟悉设备的性能、功能及使用要求 高温烧结炉是在真空或特定气氛条件下进行高温烧结的设备,能够满足特定的工艺需求,适用科研单位或生产单位使用。 设备具有结构紧凑、操作简单、易于维护等特点。 2 设备的工作原理 本高温烧结炉的加热方式采用石墨电阻加热,在真空或特定气氛条件下利用石墨电阻发热,对物料进行加热来达到工艺要求。 3 技术指标 极限真空度:6.6×10-4 Pa; 系统漏率:停泵关机后残余气体压力≤0.66Pa/h; 工作区尺寸:立式加热区?280×450mm(H) 均温区尺寸:? 180×220mm(H) 工作区温度:最高加热温度2200℃;

设备验收报告——烧结炉

设备验收报告

设备验收报告附文 一、验收依据 1、年月日,甲、乙双方签订的SJ-1400型烘干烧结一体炉设备购销合 同。 2、年月日,甲、乙双方签订的SJ-1400型烘干烧结一体炉设备验收细 则。 二、验收项目 1、干燥区温控 2、烧结区温控 3、温度控制精度 4、升温速率 5、冷却速率 6、网带稳定性 7、烧结炉出口温度 8、气流稳定性 9、工艺效果验证 三、验收标准、方法 1.干燥区温控 校验方法:将干燥区的3个温区温度进行设定,设定范围控制在100~400℃之间,待温度稳 定(需30min)后,保温持续4小时,根据设定值与温控表测量出的实际值相比较得出该指 标。 验收标准:3个温区温度波动控制在±2℃以内 2.烧结区温控 校验方法:将烧结区的6个温区温度进行设定,设定范围控制在200~1000℃之间,待温度稳 定(需30min)后,保温持续4小时,根据设定值与温控表测量出的实际值相比较得出该指 标。 验收标准:6个温区温度波动控制在±2℃以内 3.温度控制精度 校验方法:待正常工艺运行稳定后,使用DataPAQ测温仪进行温度测试,以同一硅片在炉内 的多点温度曲线为检验手段。 验收标准:温度曲线峰值温度控制在±10℃以内 4.升温速率

校验方法:待正常工艺运行稳定后,使用DataPAQ测温仪进行温度测试,记录硅片在炉内的温度曲线,以温度从500-950℃温度上升的速率大小为检验手段。 验收标准:最大正斜率为45℃/s 5.冷却速率 校验方法:待正常工艺运行稳定后,使用DataPAQ测温仪进行温度测试,记录硅片在炉内的温度曲线,从930-600℃的温度下降速率大小为检验手段。 验收标准:最大负斜率为-90℃/s 6.网带稳定性 校验方法:对网带速度进行设定,设定范围50-610cm/min,待网带稳定后,根据设定值与操作界面显示值相比较得出该指标。 验收标准:≤±2%*设定值 7.烧结炉出口温度 校验方法:外围供水温度为20℃,待正常工艺运行稳定后,以操作界面显示值或用温度测试仪测试生产电池片表面温度得出该指标。 验收标准:≤60℃ 8.气流稳定性 校验方法:运行正常工艺配方后,外围供气稳定,以压力表显示为准,检测压缩空气在4个小时内的变化量得出该指标。 验收标准:变化量控制在±5%*显示值 9.工艺效果验证 校验方法:执行正确工艺配方,对单晶50方阻(多晶55方阻)电池片进行烧结测试。以烧结后电池片各电性能为该项指标(其中电池片选取必须是稳定片源)。 验收标准:测试数据无异常

烧结炉介绍及原理资料

■真空-热压烧结炉的介绍: 包括烧结炉和抽真空部分,烧结炉包括炉体和装设在炉体内的加热室,烧结炉上安装有六 个引电电极,其特征是在炉体的上、 下方分别设置有油压机上梁和油压机下梁, 油压机上梁 和油压机下梁由四个支柱连接成一整体; 上压头由上水冷压头和上石墨压头连接构成, 下压 头由下水冷压头和下石墨压头连接构成, 上压头和下压头分别从炉体和加热室的上、 下端面 上的压头通孔、插入炉体内,其上石墨压头和下石墨压头分别插入加热室内, 上压头和下压 头可上、下移动。 ■隧道式网带烧结炉 用途:厚膜电路、厚膜电阻等厚膜产品烧结;电子元件端头烧银,气氛保护下的烧结、钎焊 等,也可用于电子陶瓷产品的预烧、低温烧结或热处理、排胶、退火特点:独特炉腔设计、 均匀;远红外加热、高效;超轻质保温、节能;包括快烧炉和马弗式炉,系列齐全,选件丰 ■烧结的介绍: 1烧结 粉末或压坯在低于主要组分熔点的温度下的热处理, 其强度。 2、 填料 在预烧或烧结过程中为了起分隔和保护作用而将压坯埋入其中的一种 3、 预烧 在低于最终烧结温度的温度下对压坯的加热处理。 4、 加压烧结 在烧结同时施加单轴向压力的烧结工艺。 5、 松装烧结 粉末未经压制直接进行的烧结。 6、 液相烧结 至少具有两种组分的粉末或压坯在形成 7、 过烧 烧结温度过高和(或)烧结时间过长致使产品最终性能恶化的烧结。 8、 欠烧 烧结温度过低和(或)烧纟 勺状态下烧结。 ■卧式真空烧结炉 卧式 1 2、 恒j 3、 单点精度 <± 1 ° C/24H 4、 冷态真空度6.7 X0-5Pa 过短致使产品未达到所需性能的烧结。 提咼 目的在于通过颗粒间的冶金结合以 00 °C — 1200 °C 400mm/±1 °C

[.[.太阳电池片烧结炉的设计及其关键性能探讨

SOLARENERGY ___-=.:羔__=_=羔∑登=====∑∑!_j__=_______:羔二兰=∑羔!∑__===..!兰____芝羔兰=二::二∑-:羔蔓=__.童=. 太阳电池片烧结炉的设计及其关键性能探讨 中国电子科技集团公司第43研究所恒力公司 ■李争任志平 摘要:网带式红外加热快速烧结炉是生产太阳电池片的关键设备,它的性能指标直接关系到电池片的 转换率、成品率以及生产效率的高低。本文着重对几个关键性能进行了探讨,并介绍了实现这些性能的设备结构。 关键词:太阳电池片;烧结炉;关键性能 一刖吾 进入21世纪以来,光伏发电作为理想的可再生能源发电技术,得到了迅猛发展。在市场的拉动下,到2006年,我国已形成1200MW。的生产能力。在太阳电池片的整个生产工艺流程中,扩散、镀膜和烧结三道工序是最主要的,其中烧结是使晶体硅基片真正具有光电转换功能的至关重要的一步。因此,烧结设备的性能好坏直接影响着电池片的质量。 太阳电池片目前采用只需一次烧结的共烧工艺,同时形成上下电极的欧姆接触。银浆、银铝浆、铝浆印刷过的硅片,经过烘干使有机溶剂完全挥发,膜层收缩成为固状物紧密粘附在硅片上,这时可视为金属电极材料层和硅片接触在一起。当电极金属材料和半导体单晶硅加热达到共晶温度时,单晶硅原子以一定的比例溶入到熔融的合金电极材料中。单晶硅原子溶入到电极金属中的整个过程是相当快的,一般只需几秒钟时间。溶入的单晶硅原子数目取决于合金温度和电极材料的体积,烧结合金温度越高,电极金属材料体积越大,则溶入的硅原子数目也越多,这时的状态被称为晶体电极金属的合金系统。如果此时温度降低,系统开始冷却形成再结晶层,这时原先溶入到电极金属材料中的硅原子重新以固态形式结晶出来,也就是在金属和晶体接触界面上生长出一层外延层。如果外延层内含有足够量的与原先晶体材料导电类型相同的杂质成份,这就获得了用合金法工艺形成欧姆接触;如果 在结晶层内含有足够量的与原先晶体材料导电类型异型的杂质成份,这就获得了用合金法工艺形成P.N结。 典型的太阳电池片的烧结曲线如图1所示。整个时间约120s,分为烘干、预烧、烧结和降温四个阶段。其中烧结段从500℃迅速升温至850℃左右,然后急剧降温到500℃以下,这段时间约10s,而在850℃仅停留2~3s。这种陡升陡降的工艺曲线,要求烧结设备在加热元件、炉膛结构、气氛布置、控制原理、传动系统和冷却方式等方面必须要有专门的设计。 800r———————————————————————————^—————————————————————————————————————一 黧匡萎茎萋蓁蓁 4∞F二二二二二二二二二;三三二#!=三二二二二二二二二二二二二二j :::匡三至要三三三辜三奎三三三重萝L降温段 L烧结段\一预烧段\一烘干段 图1太阳电池片烧结工艺曲线 二加热元件的选择和固定方式 一般网带式烧结炉采用电热丝作为加热元件,主要通过热传导对工件进行加热,无法实现急速升温。只有辐射或微波能够迅速加热物体,而辐射加热具有使用经济、安全可靠、更换方便等优点。所以目前太阳电池片烧结炉基本都采用红外石英灯管作为主要加热元件。它的设计需注意以下三个问题: 1红外辐射吸收光谱 一——————————————≤弘——————————————一 SOLARENERGY 8/2007   万方数据

相关主题
文本预览
相关文档 最新文档