当前位置:文档之家› 浅析有限元方法的发展与应用

浅析有限元方法的发展与应用

浅析有限元方法的发展与应用
浅析有限元方法的发展与应用

浅析有限元方法的发展与应用

1965年“有限元”这个名词第一次在我国出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。有限元法(Finite Element Method,简写为FEM)是求解微分方程的一种非常有效的数值计算方法,用这种方法进行波动数值模拟受到越来越多的重视。

绪论

有限元法是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。它是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。有限单元法是随着电子计算机的发展而迅速发展起来的一种现代计算方法。

一、有限元的发展历程

有限元法的发展历程可以分为提出(1943)、发展(1944-1960)和后期(1961-二十世纪九十年代)三个阶段。有限元法是受内外动力的综合作用而产生的。

1943年,柯朗在《美国数学学会公报》(Bulletin of The American Mathematical Society)上发表了《平衡和振动问题的变分解法》(Variational Methods for The Solution of Problems of Equilibrium And Vibration)一文,这篇文章实际上是他1941年在美国数学学会演讲的书面稿,在其中柯朗提出了有限元法的核心思想。大约与柯朗同时,工程师阿格瑞斯在另一个领域独立地提出了有限元法。柯朗和阿格瑞斯各自在数学和工程学领域独立提出了有限元法,他们分别开创了有限元法的数学传统和工程学传统。

有限元法被提出来以后,经过一段时间的沉寂期,在二十世纪五十年代和六十年代初有了很大的发展。主要表现为在代数表达形式、单元划分、单元类型选择和解的收敛性研究上取得的突破。1960年,克劳夫在《平面应力分析中的有限元》(The Finite Element in Plan Stress Analysis)的论文中,第一次从数学上说明了将定义域划分成有限的单元能够成功的原因:他表明对一些特定类型的单元来说,随着单元尺寸的减小,近似解将收敛到精确解,这就在某些情况下证明了有限元法的收敛性。并第一次提出了“有限元法”这个名称,这个名称一直沿用至今,标志着有限元法早期发展阶段的结束。

有限元法后期阶段的发展有国外和国内两条线索。在国外的发展表现为: 第一,建立了严格的数学和工程学基础;第二,应用范围扩展到了结构力学以外的领域;第三,收敛性得到了进一步研究,形成了系统的误差估计理论;第四,发展起了相应的商业软件包。

在国内,我国数学家冯康在特定的环境中独立于西方提出了有限元法。1965年,他发表论文《基于变分原理的差分格式》,标志着有限元法在我国的诞生。冯康的这篇文章不但提出了有限元法,而且初步发展了有限元法。他得出了有限元法在特定条件下的表达式,独创了“冯氏大定理”并且初步证明了有限元法解的收敛性。虽然冯康创造的有限元法不成熟,但他能在当时的条件下独立提出有限元法已十分不易。对于他的这项成就,国内外专家学者和国家领导人都有很高的评价。

半个世纪来,有限单元法蓬勃发展,不仅已经成为结构分析中必不可少的工具,而且成为现象分析的一种手段。其应用已由弹性力学平面问题扩展到空间问题、板壳问题,由静力平衡问题扩展到稳定问题、动力问题和波动问题。分析的对象从弹性材料扩展到塑性、粘弹性、粘塑性和复合材料等,从固体力学扩展到流体力学、渗流与固结理论、热传导与热应力问题、磁场问题以及建筑声学与噪音问题。不仅涉及稳态场问题,还涵盖材料非线性、几何非线性、时间维问题和断裂力学等。

已出现多种新单元(先后有等参元、高次元、不协调元、拟协调元、杂交元、样条元、边界元、罚单元,还有半解析的有限条等不同单元)和求解方法(如半带宽与变带宽消去法、超矩阵法、波前法、子结构法、子空间迭代法等)。能解决各种复杂耦合问题的软件和软件系统不断涌现。对网格自动剖分和网格自适应过程的研究,大大加强了有限元法的解题能力,使有限单元法逐渐趋于成熟。有限元法作为一种离散化的数值解法,也已成为应用数学的一个新的分支。

二、有限元法解题思路

有限元法分析计算的思路和做法可归纳如下:1.物体离散化;2.单元特性分析;3.单元组集;4.求解未知结点位移。

1.物体离散化

将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算精度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。

2.单元特性分析

(1)选择位移模式,通常,有限元法我们就将位移表示为坐标变量的简单函数。这种函数称为位移模式或位移函数。

(2)分析单元的力学性质,据单元的材料性质、形状、尺寸、节点数目、位置及其含义等,找出单元节点力和节点位移的关系式,这是单元分析中的关键一步。此时需要应用弹性力学中的几何方程和物理方程来建立力和位移的方程式,从而导出单元刚度矩阵。

(3)计算等效节点力,物体离散化后,假定力是通过节点从一个单元传递到另一个单元。但是,对于实际的连续体,力是从单元的公共边传递到另一个单元中去的。因而,这种作用在单元边界上的表面力、体积力和集中力都需要等效的移到节点上去,也就是用等效的节点力来代替所有作用在单元上的力。

3.单元组集

利用结构力的平衡条件和边界条件把各个单元按原来的结构重新连接起来,形成整体的有限元方程。

4.求解未知结点位移

最后利用已求出结点位移计算各个单元的应力,并经后处理软件整理、显示计算结果。有限元法是应用局部的近似解来建立整个定义域的解的一种方法。先把注意力集中在单个单元上,进行上述所谓的单元分析。基本前提是每一单元要尽可能小,以致其边界值在整个边界上的变化也是小的。这样,边界条件就能取某一在结点间插值的光滑函数来近似,在单元内也容易建立简单的近似解。因此,比起经典的近似法,有限元法具有明显的优越性。

三、有限元方法的实施过程

有限元法在计算机软件中应用尤为突出,可以说有限元法与生俱来就是为了使用计算来进行复杂的计算。有限元方法的实施过程可以分为三个步骤:

1.前处理。将整体结构或其一部分简化为理想的数学模型,用离散化的网格代替连续的实体结构。

2.计算分析。分析计算结构的受力、变形及特性。

3.将计算结果进行整理和归纳。

对于有限元程序使用者而言,第一步和第三步的工作量最大,一个有限元程序的好坏,在很大程度上取决于第一步的前处理和第三步的后处理功能是否强大。

前处理:对于第一步的前处理而言,要根据计算的目的和所关心的区域,将结构模型化、离散化。需要给出下列信息:

(1)节点的空间位置。

(2)单元与节点的连接信息。

(3)结构的物质特性和材料参数。

(4)边界条件或约束。

(5)各类载荷。

在构成离散模型时,为了使模型较为合理,必须遵循以下的原则:

1.使计算模型尽量简化,以减少计算时间和容量,但又必须抓住主要因素以不影响计算精度。

2.在所关心的区域加密计算网格。

后处理:有限元计算是一种大规模的科学计算,其特点是除了要花费巨大的计算机处理能力外,在计算过程中还会产生巨大数量的数字信息。只有在计算输出信息进行仔细分析理解之后,才能洞察计算中发生的情况和问题,才能获得对被研究对象的认识和见解。

在大多数情况下,被研究的对象都是三维介质中的场分布问题(应力分布、位移分布、压力分布、电场分布等),即所谓的“四维”问题。鉴于其计算结果分析的复杂性,人们提出了科学计算可视性的要求,即把四维的数据进行图形处理或称为可视化处理,使人们能够看到场的分布图象,从图象上直接进行分析、判断来获得有用的结论。这大大加快和加深了人们对计算对象的物理变化过程的认识,发现通常通过数值信息发现不了的现象,甚至获得意料之外的启发和灵感,从而缩短了研究和设计周期,提高了效率,获得更多的结果。

四、有限元的应用是在于多物理场的耦合

随着计算机技术的迅速发展,在工程领域中,有限元分析(FEA)越来越多地用于仿真模拟,来求解真实的工程问题。这些年来,越来越多的工程师、应用数学家和物理学家已经证明这种采用求解偏微分方程(PDE)的方法可以求解许多物理现象,这些偏微分方程可以用来描述流动、电磁场以及结构力学等等。有限元方法用来将这些众所周知的数学方程转化为近似的数字式图象。

早期的有限元主要关注于某个专业领域,比如应力或疲劳,但是,一般来说,物理现象都不是单独存在的。例如,只要运动就会产生热,而热反过来又影响一些材料属性,如电导率、化学反应速率、流体的粘性等等。这种物理系统的耦合就是我们所说的多物理场,分析起来比我们单独去分析一个物理场要复杂得多。很明显,我们现在需要一个多物理场分析工具。在上个世纪90年代以前,由于计算机资源的缺乏,多物理场模拟仅仅停留在理论阶段,有限元建模也局限于对单个物理场的模拟,最常见的也就是对力学、传热、流体以及电磁场的模拟。看起来有限元仿真的命运好像也就是对单个物理场的模拟。

现在这种情况已经开始改变。经过数十年的努力,计算科学的发展为我们提供了更灵巧简洁而又快速的算法,更强劲的硬件配置,使得对多物理场的有限元模拟成为可能。新兴的有限元方法为多物理场分析提供了一个新的机遇,满足了工程师对真实物理系统的求解需要。

下面通过几个例子来展示多物理场的有限元分析在未来的一些潜在应用:

压电扩音器(Piezoacoustic transducer)可以将电流转换为声学压力场,或者反过来,将声场转换为电流场。这种装置一般用在空气或者液体中的声源装置上,比如相控阵麦克风,超声生物成像仪,声纳传感器,声学生物治疗仪等,也可用在一些机械装置比如喷墨机和压电马达等。压电扩音器涉及到三个不同的物理场:结构场,电场以及流体中的声场。只有具有多物理场分析能力的软件才能求解这个模型。压电材料选用PZT5-H晶体,这种材料在压电传感器中用得比较广泛。在空气和晶体的交界面处,将声场边界条件设置为压力等于结构场的法向加速度,这样可以将压力传到空气中去。另外,晶体域中又会因为空气压力对其的影响而产生变形。仿真研究了在施加一个幅值200V,震荡频率为300 KHz的电流后,晶体产生的声波传播。这个模型的描述及其完美的结果表明在任何复杂的模型下,我们都可以用一系列的数学模型进行表达,进而求解。

将基片的电磁、电阻以及传热行为耦合起来需要一个真正的多物理场分析工具。一个典型的应用是在半导体的加工和退火的工艺中,有一种利用感应加热的热壁熔炉,它用来让半导体晶圆生长,这是电子行业中的一项关键技术。

例如,金刚砂在2000℃的高温环境下可以取代石墨接收器,接收器由功率接近10KW的射频装置加热。在如此高温下要保持炉內温度的均匀,炉腔的设计至关重要。经过多物理场分析工具的分析,发现热量主要是通过辐射的方式进行传播的。在模型內不仅可以看到晶圆表面温度的分布,还可以看到熔炉的石英管上的温度分布。在电路设计中,影响材料选择的重要方面是材料的耐久性和使用寿命。电器小型化的趋势使得可在电路板上安装的电子元件发展迅猛。众所周知,安装在电路板上的电阻以及其他一些元件会产生大量的热,进而可能使得元件

的焊脚处产生裂缝,最后导致整个电路板报废。多物理场分析工具可以分析出整个电路板上热量的转移,结构的应力变化以及由于温度的上升导致的变形。这样做可以用来提升电路板设计的合理性以及材料选择的合理性。

计算机能力的提升使得有限元分析由单场分析到多场分析变成现实,未来的几年内,多物理场分析工具将会给学术界和工程界带来震惊。单调的“设计-校验”的设计方法将会慢慢被淘汰,虚拟造型技术将让你的思想走得更远,通过模拟仿真将会点燃创新的火花。

五、总结

本文阐述了有限元法的发展历史、解题思路以及对未来发展应用的展望,总结了有限元法在计算机程序中的实现过程。使大家对有限元法的理论有了进一步的了解,并使有限元法这高级计算方法更接近我们的生活,更容易地理解到有限元法的实施过程。随着科技的发展与软件的更新,有限元法将得到更广泛的应用。

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

现代设计方法

考试科目:《现代设计方法》 (总分100分) 时间:90分钟 __________学习中心(教学点) 批次: 层次: 专业: 学号: 身份证号: 姓名: 得分: 一、单项选择题(每小题1.5分,共27分) 1.试判别矩阵1111???? ? ?,它是( ) A 、单位矩阵 B 、正定矩阵 C 、负定矩阵 D 、不定矩阵 2.约束极值点的库恩——塔克条件为:-?=?=∑F X g X i i q i ()()* * λ1 ,当约束函数是g i (X)≤0和 λi >0时,则q 应为( ) A 、等式约束数目 B 、不等式约束数目 C 、起作用的等式约束数目 D 、起作用的不等式约束数目 3.在图示极小化的约束优化问题中,最优点为( ) A 、A B 、B C 、C D 、D 4.下列优化方法中,不需计算迭代点一阶导数和二阶导数的是( ) A 、可行方向法 B 、复合形法 C 、DFP 法 D 、BFGS 法 5.内点罚函数Φ(X,r (k) )=F(X)-r (k) 1 01g X g X u u u m () ,(())≤=∑,在其无约束极值点X ·(r (k))逼近原 目标函数的约束最优点时,惩罚项中( ) A 、r (k) 趋向零, 11 g X u u m ()=∑ 不趋向零 B 、r (k) 趋向零,11g X u u m ()=∑ 趋向零 C 、r (k) 不趋向零, 11 g X u u m ()=∑ 趋向零 D 、④r (k) 不趋向零,11g X u u m ()=∑ 不趋向零 6.0.618法在迭代运算的过程中,区间的缩短率是( )

A 、不变的 B 、任意变化的 C 、逐渐变大 D 、逐渐变小 7.对于目标函数F(X)受约束于g u (X)≥0(u=1,2,…,m)的最优化设计问题,外点法惩罚函数的表 达式是( ) A 、Φ(X,M (k) )=F(X)+M (k) {max[(),]},() g X M u u m k 012=∑为递增正数序列 B 、Φ(X,M (k))=F(X)+M (k){max[(),]},() g X M u u m k 012 =∑为递减正数序列 C 、Φ(X,M (k))=F(X)+M (k){min[(),]},()g x M u u m k 01 2 =∑为递增正数序列 D 、Φ(X,M (k))=F(X)+M (k){min[(),]},() g x M u u m k 01 2 =∑为递减正数序列 8.标准正态分布的均值和标准离差为( ) A 、μ=1,σ=0 B 、μ=1,σ=1 C 、μ=0,σ=0 D 、μ=0,σ=1 9.在约束优化方法中,容易处理含等式约束条件的优化设计方法是( ) A 、可行方向法 B 、复合形法 C 、内点罚函数法 D 、外点罚函数法 10.若组成系统的诸零件的失效相互独立,但只有某一个零件处于工作状态,当它出现故障后, 其它处于待命状态的零件立即转入工作状态。这种系统称为( ) A 、串联系统 B 、工作冗余系统 C 、非工作冗余系统 D 、r/n 表决系统 11.对于二次函数F(X)=1 2 X T AX+b T X+c,若X *为其驻点,则▽F(X *)为( ) A 、零 B 、无穷大 C 、正值 D 、负值 12.平面应力问题中(Z 轴与该平面垂直),所有非零应力分量均位于( ) A 、XY 平面内 B 、XZ 平面内 C 、YZ 平面内 D 、XYZ 空间内 13当选线长度l ,弹性模量E 及密度ρ为三个基本量时,用量纲分析法求出包含振幅A 在内的 相似判据为(E 的量纲为( )[ML -1T -2 ] A 、A=l E 1 1212- ρ B 、A=l E -- 1 121 2 ρ C 、A=l E 100ρ D 、A l E =-11 12ρ 14.平面三角形单元内任意点的位移可表示为三个节点位移的( ) A 、算术平均值 B 、代数和车员 C 、矢量和 D 、线性组合 15.已知F(X)=(x 1-2)2+x 22,则在点X (0)=00???? ??处的梯度为( ) A 、?=?????? F X ()()000 B 、?=-?????? F X ()() 020

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限单元法与有限元分析

有限单元法与有限元分析 1.有限单元法 在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。它通过变分方法,使得误差函数达到最小值并产生稳定解。类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 随着电子计算机的发展,有限单元法是迅速发展成一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 1.1.有限元法分析本质 有限元法分析计算的本质是将物体离散化。即将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算精度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 1.2.特性分析 1)选择位移模式: 在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。 当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如

有限元法及其在工程中的应用

机械与汽车学院 曹国强 主要内容: 1、有限元法的基本思想。 2、结构力学模型的简化和结构离散化。 3、有限元法的实施过程。 一、有限元法的基本思想 有限元法是随着计算机的发展而发展起来的一种有效的数值方法。其基本思想是:将连续的结构分割成数目有限的小单元体(称为单元),这些小单元体彼此之间只在数目有限的指定点(称为节点)上相互连接。用这些小单元体组成的集合体来代替原来的连续结构。再把每个小单元体上实际作用的外载荷按弹性力学中的虚功等效原理分配到单元的节点上,构成等效节点力,并按结构实际约束情况决定受约束节点的约束。这一过程称为结构的离散化。其次,对每个小单元体选择一个简单的函数来近似地表示其位移分量的分布规律,并按弹性力学中的变分原理建立起单元节点力和节点位移之间的关系(单元刚度方程),最后,把全部单元的节点力和节点位移之间的关系组集起来,就得到了一组以结构节点位移为未知量的代数方程组(总体刚度方程),同时考虑结构的约束情况,消去那些结构节点位移为零的方程,再由最后的代数方程组就可求得结构上有限个离散节点的各位移分量。求得了结构上各节点的位移分量之后,即可按单元的几何方程和物理方程求得各单元的应变和应力分量。 有限元法的实质就是把具有无限个自由度的连续体,理想化为有限个自由度的单元的集合体,使问题简化为适合于数值解法的结构型问题。 经典解法(解析法)与有限元法的区别 解析法 { } 建立一个描述连续体性质的偏微分方程组 有限元解法 连续体 数目增加到∞ 大小趋于0 微元 有限元 离散化 (单元分析)集合 总体分析 求得近似解

二、结构力学模型的简化和结构离散化 (一)结构力学模型的简化 用有限元法研究实际工程结构问题时,首先要从工程实际问题中抽象出力学模型,即要对实际问题的边界条件、约束条件和外载荷进行简化,这种简化应尽可能地反映实际情况,不至于使简化后的解答与实际差别过大,但也不要带来计算上的过分复杂,在力学模型的简化过程中,必须判断实际结构的问题类型,是二维问题还是三维问题。如果是平面问题,是平面应力问题,还是平面应变问题。同时还要搞清楚结构是否对称,外载荷大小和作用位置,结构的几何尺寸和力学参数(弹性模量E、波松比μ等)。 (二)结构的离散化 将已经简化好的结构力学模型划分成只在一些节点连续的有限个单元,把每个单元看成是一个连续的小单元体,各单元之间只在一些点上互相联结,这些点称作节点,每个单元体称为一个单元。用只在节点处连接的单元的集合体代替原来的连续结构,把外载荷按虚功等效原理移置到有关受载的节点上,构成节点载荷,把连续结构进行这样分割的过程称为结构的离散化。现举例说明。 设一平面薄板,中间有一个园孔,其左端固定,右端受面力载荷q,试对其进行有限元分割和力学模型简化。

有限元方法理论及其应用

1 课程论文:弹性力学有限元位移法原理(30分) 撰写一篇论文,对有限元位移法的原理作一般性概括和论述。要求论文论及但不限于下列内容:1)弹性力学有限元位移法的基本思想和数学、力学基础;2)有限元法求解的原理和过程,推导计算列式;对基本概念和矩阵符号进行解释和讨论;3)等参单元的概念、原理和应用。 1.1 对一维杆单元有限元形式的理解 我对此提出了几点疑问: 1)为什么边界条件u1=0,就要划去刚度矩阵[K]中对应的行列再解方程? 2)为什么刚度矩阵[K]会奇异? 3)为什么平衡方程本身是矛盾的,而加上边界条件u1=0之后就能解出一 个唯一的近似解? 4)为什么刚度矩阵[K]是对称的? 下面我谈谈自己的理解:节点平衡方程是在u1不定的前提下,假设单元内位移都是线性变化推导出来的,由此u1相当于一个不确定的定值约束,再加上中间两个节点的连续性要求,系统实际上只有三个独立的自由度(广义坐标)。 对于第一个问题,其实刚度矩阵[K]中的元素不是一成不变的,相反它是伴随边界条件动态变化的。当u1=0时由刚度矩阵的推导过程可以知道,刚度矩阵的第一行和第一列都会变为0,所以此时第一行和第一列对于求解方程是没有作用的。 对于第二个问题,由于系统自由度(广义坐标)只有三个,而我们的方程却列出

了四个,显然

这四个方程不可能线性无关,所以刚度矩阵奇异。 对于第三个问题,首先我们应该明确方程区别于等式,虽然左右两边都是用“=”连接,但是方程只在特殊条件下取得定解。由于平衡方程是在没有约束的条件下推导出来的,显然它不可能满足等式要求。宏观上看,系统在没有外部约束,而又施加有外力,显然系统会产生加速度而绝不会平衡。所以平衡方程本身是矛盾的。而加上边界条件之后,不但满足了平衡的前提,还改变了矩阵的结构和性质,所以有解。但是,由于我们提前假设了位移线性变化,相当于人为对单元施加了额外约束,让位移按照我们假设的规律变化,所以得到的解是过刚的近似解。但对于方程本身而言是精确解。 对于第四个问题,其力学的作用机理类似于作用力与反作用力,由于刚度矩阵不表征方向,所以其大小是相等的。 1.2 有限元法的思想 有限元法是求解连续介质力学问题的数值方法,更一般意义是一种分析结构问题和连续场数学物理问题的数值方法。 有限元法的基本思想是离散化和分片插值。 即把连续的几何机构离散成有限个单元,并在每一个单元中设定有限个节点,从而将连续体看作仅在节点处相连接的一组单元的集合体,同时选定场函数的节点值作为基本未知量并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律,再建立用于求解节点未知量的有限元方程组,从而将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题。 求解得到节点值后就可以通过设定的插值函数确定单元上以至个集合体上的场函数。对每个单元,选取适当的插值函数,使得该函数在子域内部、在子域分界面上以及子域与外界面上都满足一定的条件。单元组合体在已知外载荷作用下处于平衡状态时,列出一系列以节点、位移为未知量的线性方程组,利用计算机解出节点位移后,再用弹性力学的有关公式,计算出各单元的应力、应变,当各单元小到一定程度,那么它就代表连续体各处的真实情况。

现代设计方法(关于有限元)作业

《现代设计方法》作业关于有限元法的研究 学院:机械工程学院 专业:机械制造及其自动化

0.有限元法 有限元法分析起源于50年代初杆系结构矩阵的分析。随后,Clough于1960年第一次提出了“有限元法”的概念。其基本思想是利用结构离散化的概念,将连续介质体或复杂结构体划分成许多有限大小的子区域的集合体,每一个子区域称为单元(或元素),单元的集合称为网格,实际的连续介质体(或结构体)可以看成是这些单元在它们的节点上相互连接而组成的等效集合体;通过对每个单元力学特性的分析,再将各个单元的特性矩阵组集成可以建立整体结构的力学方程式,即力学计算模型;按照所选用计算程序的要求,输入所需的数据和信息,运用计算机进行求解。 当前,有限元方法/理论已经发展的相当成熟和完善,而计算机技术的不断革新,又在很大程度上推进了有限元法分析在工程技术领域的应用。然而,如此快速地推广和应用使得人们很容易忽视一个前提,即有限元分析软件提供的计算结果是否可靠、满足使用精度的前提,是合理地使用软件和专业的工程分析。有限元法分析一般包括四个步骤:物理模型的简化、数学模型的程序化、计算模型的数值化和计算结果的分析。每一个步骤在操作过程中都或多或少地引入了误差,这些误差的累积最终可能会对计算结果造成灾难性的影响,进而蒙蔽我们的认识和判断。 1.受内压空心圆筒的轴对称有限元分析 例图1.1所示为一无限长的受内压的轴对称圆筒,该圆筒置于内径为120mm的刚性圆孔中,试求圆筒内径处的位移。结构的材料参数

为:200 =,0.3 E GPa μ=。 图1 结构图 对该问题进行有限元分析的过程如下。 (1)结构的离散化与编号 由于该圆筒为无限长,取出中间一段(20mm高),采用两个三角形轴对称单元,如图1.2所示。对该系统进行离散,单元编号及结点编号如图1.3所示,有关结点和单元的信息见表1.1。 图1.2 有限元模型

有限元法理论及应用参考答案分析

有限元法理论及应用大作业 1、试简要阐述有限元理论分析的基本步骤主要有哪些? 答:有限元分析的主要步骤主要有: (1)结构的离散化,即单元的划分; (2)单元分析,包括选择位移模式、根据几何方程建立应变与位移的关系、根据虚功原理建立节点力与节点位移的关系,最后得到单元刚度方程; (3)等效节点载荷计算; (4)整体分析,建立整体刚度方程; (5)引入约束,求解整体平衡方程。 2、有限元网格划分的基本原则是什么?指出图示网格划分中不合理的地方。 题2图 答:一般选用三角形或四边形单元,在满足一定精度情况,尽可能少一些单元。 有限元划分网格的基本原则: 1.拓扑正确性原则。即单元间是靠单元顶点、或单元边、或单元面连接 2.几何保持原则。即网络划分后,单元的集合为原结构近似 3.特性一致原则。即材料相同,厚度相同 4.单元形状优良原则。单元边、角相差尽可能小 5.密度可控原则。即在保证一定精度的前提下,网格尽可能的稀疏一些。(a)(b)中节点没有有效的连接,且(b)中单元边差相差很大。 (c)中没有考虑对称性,单元边差很大。 3、分别指出图示平面结构划分为什么单元?有多少个节点?多少个自由度?

题3图 答:(a )划分为杆单元, 8个节点,12个自由度。 (b )划分为平面梁单元,8个节点,15个自由度。 (c )平面四节点四边形单元,8个节点,13个自由度。 (d )平面三角形单元,29个节点,38个自由度。 4、什么是等参数单元?。 答:如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函数一样,则称这种变换为等参变换,这样的单元称为等参单元。 5、在平面三节点三角形单元中,能否选取如下的位移模式,为什么? (1). ?????++=++=2 65432 21),(),(y x y x v y x y x u αααααα (2). ?????++=++=2 65242 3221),(),(y xy x y x v y xy x y x u αααααα 答:(1)不能,因为位移函数要满足几何各向同性,即单元的位移分布不应与人为选取的 坐标方位有关,即位移函数中的坐标x,y 应该是能够互换的。所以位移多项式应按巴斯卡三角形来选择。 (2)不能,位移函数应该包括常数项和一次项。

现代设计方法基础 有限元法

现代设计方法基础 题目:有限元法的简介 系部:机电系 专业:机械设计制造及其自动化 班级: 姓名: 学号: 2010年5月20日 1.有限元法的概述 1.1 什么是有限元

有限元分析,定义为:将一个连续系统(物体)分隔成有限个单元,对每一个单元给出一个近似解,再将所有单元按照一定的方式进行组合,来模拟或者逼近原来的系统或物体,从而将一个连续的无限自由度问题简化成一个离散的有限自由度问题分析求解的一种数值分析方法。 1.2有限元法的基本思想 许多工程分析问题,如固体力学中位移场和应力场分析、振动特性分析、传热学中的温度场分析、流动力学中的流场分析等都可归结为在给定边界条件下求解其控制方程的问题。 有限元分析的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。 目前工程中使用的偏微分方程的数值解法主要有三种:有限差分法、有限元法和边界元法。 有限差分法的出发点是用结点量的差商代表控制方程中的导数。以矩形域二维无源稳定传热问题为例,起控制方程为拉普拉斯方程,即无源场中各点的散度为零: (5-1) 边界条件为 (5-2) 式中,()y ,x u 为区域Ω内任意点()y ,x 的温度;n 为区域Ω边界Γ上任意点的外向法线; u 代表在1Γ上给定的温度(例如左边界C 200。,右边界为C 20。);n u ??代表边界2Γ上 给定的热流密度。 则式中的二阶偏导数可用结点温度的二阶差商近似表达为 ()()()Ω∈=??+??y ,x 0y y ,x u x y ,x u 2222()()?????=??=q n y ,x u u y ,x u ()()21y ,x y x,ΓΓ∈∈

有限元方法的发展及应用

有限元方法的发展及应用 摘要:有限元法是一种高效能、常用的计算方法。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描 述的各类物理场中。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法或最小二乘法等同样获得了有限元方程,因而有限元法可应用于 以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值 问题有所联系。基本思想:由解给定的泊松方程化为求解泛函的极值问题。 1有限元法介绍 1.1有限元法定义 有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。它是起源于20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。 有限元法的基本思想是将求解域看成是由许多称为有限元的小的互连子域 组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总 的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而 是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得 到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行 之有效的工程分析手段。有限元法最初应用在工程科学技术中,用于模拟并且解 决工程力学、热学、电磁学等物理问题。 1.2有限元法优缺点 有限元方法是目前解决科学和工程问题最有效的数值方法,与其它数值方 法相比,它具有适用于任意几何形状和边界条件、材料和几何非线性问题、容 易编程、成熟的大型商用软件较多等优点。 (1)概念浅显,容易掌握,可以在不同理论层面上建立起对有限元法的理解,既可以通过非常直观的物理解释来理解,也可以建立基于严格的数学理论 分析。 (2)有很强的适用性,应用范围极其广泛。它不仅能成功地处理线性弹性

有限元分析方法

百度文库- 让每个人平等地提升自我 第1章有限元分析方法及NX Nastran的由来 有限元分析方法介绍 计算机软硬件技术的迅猛发展,给工程分析、科学研究以至人类社会带来急剧的革命性变化,数值模拟即为这一技术革命在工程分析、设计和科学研究中的具体表现。数值模拟技术通过汲取当今计算数学、力学、计算机图形学和计算机硬件发展的最新成果,根据不同行业的需求,不断扩充、更新和完善。 有限单元法的形成 近三十年来,计算机计算能力的飞速提高和数值计算技术的长足进步,诞生了商业化的有限元数值分析软件,并发展成为一门专门的学科——计算机辅助工程CAE(Computer Aided Engineering)。这些商品化的CAE软件具有越来越人性化的操作界面和易用性,使得这一工具的使用者由学校或研究所的专业人员逐步扩展到企业的产品设计人员或分析人员,CAE在各个工业领域的应用也得到不断普及并逐步向纵深发展,CAE工程仿真在工业设计中的作用变得日益重要。许多行业中已经将CAE分析方法和计算要求设置在产品研发流程中,作为产品上市前必不可少的环节。CAE仿真在产品开发、研制与设计及科学研究中已显示出明显的优越性: ?CAE仿真可有效缩短新产品的开发研究周期。 ?虚拟样机的引入减少了实物样机的试验次数。 ?大幅度地降低产品研发成本。 ?在精确的分析结果指导下制造出高质量的产品。 ?能够快速对设计变更作出反应。 ?能充分和CAD模型相结合并对不同类型的问题进行分析。 ?能够精确预测出产品的性能。 ?增加产品和工程的可靠性。 ?采用优化设计,降低材料的消耗或成本。 ?在产品制造或工程施工前预先发现潜在的问题。 ?模拟各种试验方案,减少试验时间和经费。 ?进行机械事故分析,查找事故原因。 当前流行的商业化CAE软件有很多种,国际上早在20世纪50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国1

现代设计方法(第三章 有限元法)

1.在有限元法中,将求解对象看成由许多小的、彼此相连的杆和梁、一定形状的板和壳所组成。在使用有限元法进行分析时,该结构可近似地看成由若干能过节点彼此相连的单元所组成。根据已知的原始数据,按照有限元法规定的运算步骤,首先可求出各节点位移的数值解,进而可求出整个结构各点的响应。 2.有限元法的基本思路:化整为零,集零为整,把复杂结构看成由若干通过节点相连的单元组成的整体。 3.平衡或稳态问题、特征值问题、瞬态问题; 4.平衡问题:若是固体力学问题或结构力学问题,刚需求出稳态时位移和应力的分布;若是热传导问题,则要找出温度或热流量的分布;若是液体力学问题,则要得到压力和速度的分布规律; 特征值问题:所获得的解呈周期性变化,它可看成是平衡问题的延伸。这需求出某些参数的临界值及相应的稳态形态。在这类问题中,如果研究固体力学或结构力学问题,需求出结构的自然频率以及相应的振型;若是液体力学问题,则是研究层流的稳定特性;对电路问题,是分析其共振特性; 瞬态问题与时间相关。在固体力学问题中,研究在随时间变化的力作用下,物体的响应;在研究热传导问题时,则要找出物体突然受热或冷却时热场的分布等。 5.工程技术人员的任务是:首先,将复杂的工程实际问题简化,分清属哪一类问题,然后,选择合理的、可供使用的计算机程序;下一步,根据程序的说明和要求,准备好并向计算机输入全部所需的数据和信息,最后,一定要检查计算结果的合理性,看所作的简化及所选的程序是否合理。 6.k ij都称为单元刚度系数。它表示该单元内节点j处产生单位位移时,在节点i处所引起的载荷fi。 7.K ij:在整个结构中除节点j产生单位位移外,其余各节点的位移均为零时,在节点i处所引起的载荷F i. 8.有限元法求解问题最重要的几个步骤: 1)对整个结构进行简化。将其分割成若干个单元,单元间彼此通过节点相连。 2)求出各单元的刚度矩阵; 3)集成总体刚度矩阵并写出总体平衡方程; 4)引入支承条件,求出每个节点的位移。 5)求出各单元内的应力和应变。 1.平面刚架问题要比前一节的问题复杂些,主要表现在以下两个方面: 1)节点位移不再只是轴向位移。对于一根平面杆件的两个端点,除轴向位移外,还有垂直于轴向的横向位移和角位移。选定杆的端点为节点,每个节点的位移分量由一个增加到三个。 2)刚架由许多杆件组成,各杆件的取向不同。将每个杆件看成是一个单元,各单元的轴线方向不再相同。 2.总体刚度矩阵集成步骤: 1.对一个有n个节点的结构,将总体刚度矩阵【K】划分成nXn个子区间,然后按节点总码的顺序进行编号。 2.将整体坐标系中单元刚度矩阵的各子矩阵,根据其下标的两个总码对号入座,写在总体刚度矩阵相应的子区间内。 3.同一子区间内的子矩阵相加,成为总体刚度矩阵中相应的子矩阵。 3.没有任何约束的结构是一个悬空结构,可以在空间做刚体运动。 4.刚架结构的节点,从支承条件的角度可分成两类:一些是在支承处,另一些是在无支承处。 5.计算机上:在支承处对某处一位移分量的约束可以有两种情况:一种是该位移分量的值为零,另一种是它等于一个已知的非零值。 支承情况:节点n的水平位移Un=0,在总体刚度矩阵中,与位移Un对应的行码和列码均是3n-2。需对原矩阵作如下修改: 1.在矩阵的第3n-2行与列中,将主对角线元素改为1,其余元素改为零。 2.将等式右边力矢量中的第3n-2个元素改为零。 支承情况2:节点的水平位移Un为给定的非零值。 1.主对角线刚度系数K3n-2,3n-2乘以一个大数A。 2. 将等式右边矢量{F}中的第3n-2个元素改为AK3n-2,3n-2U n*;其余各项保持不变。 3.将式中的第3n-2个方程展开后,除包含大数的两项个,其余各项相对比较小,可以忽略不计。因此,所反映的是给定的支承条件Un=Un*。 6.说明在进行有限元分析时,对刚架单元的非节点载荷的处理原理和计算方法。 载荷移置原理:处理非节点载荷一般可以在整体坐标系进行,其过程包括:将杆单元各自看成是一根两端都固定的梁,各自求出两个固定端的约束反力,然后,将各固定端的约束反力变号,按节点进行集成,获得各节点的等效载荷。 固定端反力和反力矩的计算直接利用材料办学的公式计算。 1.平板问题时存在着两个刚度矩阵:一个是反映平板在其平面内载荷与位移关系的刚度矩阵。另一个是薄板弯曲的刚度矩阵。 2.节点位置的选择:若结构在几何形状、材料性质和外部条件无突变时,该结构应等分成几个单元,节点呈等距分布。若存在不连续性,节点应选在这些突变处。简述有限元分析结果的后处理 后处理所显示的结果主要有两类:意识结构的变形,另一 类是应力和应变在结构中分布的情况。一般用结构的三维 线框图,采用与结构不同的比例尺,放大地显示其变形的 情况,在受动载荷时,也可用动画显示其振动的形态。结 构中应力、应变或唯一的分布用云图或等值线图来显示。 ·有限元分析中,为什么要引入支撑条件? 总体刚度矩阵[K],它是节点力矢量[F]与节点位移矢量[Φ] 之间的转移矩阵[K][Φ]=[F]结构的总体刚度矩阵是一个 奇异矩阵,她的逆矩阵不存在,因而从式中无法求得各节 点的位移矢量。因为,没有任何约束的结构运算是一个悬 空结构,可以在空间坐刚体运动。这是,即使各节点力量 是已知的,各节点位移矢量也不存在唯一确定的解。所以, 还必须引入支撑条件。 ·在有限元分析中,为什么要采用半带存储? 1)单元尺寸越小,单元数越多,分析计算净度越高。单元 数越多,总刚度矩阵的阶数越高,所需计算机的内存量和 计算量越大2)总刚度矩阵具有对称性、稀疏性以及非零元 素带型分布规律 3)只储存对焦线元素以及上(或下)三角 矩阵中宽为NB的斜带形区内的元素,可以大大减小所需内 存量。 ·简述有限元分析过程中,求总体刚度矩阵的两种主要方 法和特点 1)直接根据总体刚度矩阵系数的电议分别求出它们,从而 写出总体刚度矩阵,概念清晰,但是在分析复杂结构式运 算极其复杂。 2)分别求出各单元的刚度矩阵,然后根 据叠加原理,利用集成的方法,求出总体刚度矩阵。从单 元刚度矩阵出发,单元刚度矩阵求法统一,简单明了,但 总体刚度需要集成 ·有限元分析过程中,如何决定单元数量? 单元数量取决于要求的精度、单元的尺寸、以及自由度的 数量,虽然,单元的数量越多精密度越高,但是也存在一 个界限,超过这个值,精度的提高就不明显。单元数量大, 自自由度数也越大,计算机内存量有时会不够 ·在现有的有限元分析程序中,其前处理程序一般包含哪 些主要功能? 1)单元的自动分割生成网格 2)单元和节点的自动优化 编码实现带宽最小。3)各节点坐标值确定 4)可以使用图 形系统显示单元分割情况 ·简述平面应力和平面应变的区别 1)应力状态不用:平面应力问题中平板的厚度与长度、高 度相比尺寸小很多,所受的载荷都在平面内并沿厚度方向 均匀分布,可以认为沿厚度方向的应力为零平面应力问 题中由于Z项尺寸大,该方向上的变形是被约束住的,沿Z 项应变为零 2)弹性矩阵不同:将平面应力问题弹性矩 阵中的E换成、把Πμ换成μ/(1-μ),就成为平面应 变问题的弹性矩阵。 在有限元分析中,对结构划分的单元数是否越多越好?为 什么? 答:不是。单元的数量取决于要求的精度、单元的尺寸和 自由度数。 虽然一般单元的数量越多精度越高,但也有一个界限,超 过这个值,精度的提高就不明显。 简述有限元法的前处理主要包括哪些内容? (1)单元的自动分割生成网格(2)节点的自动优化编码(3) 使用图形系统显示单元分割情况(4)带宽优化(5)节点坐标 的确定(6)检查单元分割的合理性(7)局部网格的自适应加 密(8)有限元模型的尺寸优化 在有限元分析时,什么情况下适合选择一维、二维和三维单 元? 答:(1)当几何形状、材料性质及其它参数能用一个坐标 描述时,选用一维单元;(2)当几何形状、材料性质及 其它参数需要用两个相互独立的坐标描述,选用二维单元; (3)当几何形状、材料性质及其它参数需要用三个相互独 立的坐标描述,选用三维单元。 单元刚度矩阵所具有的共同特性是什么? 解释产生这些特性的力学上的原因。单元刚度矩阵和总体 刚度矩阵所具有的共同特性:对称性和奇异性 具有对称性是因为材料力学中的位移互等定理:对于一个 构件,作用在点j的力引起i点的挠度等于同样大小的力 作用在i点而引起j点的挠度。 具有奇异性是因为单元或结构在没有约束之前,除本身产 生弹性变形外,还可以做任意的刚体位移。 在有限元分析时,何谓对称结构?一般如何处理? 1)当结构的几何形状、尺寸、载荷和约束条件对称于某一 平面(对平面问题对称于某一直线),其结构内部的应力及 位移也对称于该平面(线),这类结构称为对称结构。2) 对于对称结构一般按如下方法处理: 当对称结构只有一个对称平面(线)时,只研究它的一半。 若对称结构有两个相互垂直的对称平面(线)时,则只研 究它的四分之一。 试述总体刚度矩阵的建立方法 求总体刚度矩阵的两种主要方法:直接根据总体刚度系数 的定义分别求出它们,从而写出总体刚度矩阵,概念清晰, 但是在分析复杂结构时运算极其复杂。分别先求出各单 元的刚度矩阵,然后根据叠加原理,利用集成的方法,求 出总体刚度矩阵,从单元刚度矩阵出发,单元刚度矩阵求 法统一,简单明了,但总体刚度矩阵需要集成。 有限元分析过程中,当划分单元时如何决定单元尺寸? 单元尺寸的概念包括两个方面:一方面是单元本身的大小, 另一方面指一单元内自身几个尺寸之间的比率。单元本身 尺寸小,所得到的精度高,但是所需的计算量大。为减少 计算量,有时对一个结构要用不同的尺寸的单元离散。一个 单元中最大与最小的尺寸要尽量接近。例如,对于三角形单 元,其三条边长应尽量接近;对于矩形单元,长度和宽度不 宜相差太大。 简述可靠性设计传统设计方法的区别。 答:传统设计是将设计变量视为确定性单值变量,并通过确 定性函数进行运算。 而可靠性设计则将设计变量视为随机变量,并运用随机方法 对设计变量进行描述和运算。 1.可靠性:产品在规定的条件下和规定的时间内,完成规定 功能的能力。 可靠度:产品在规定的条件下和规定的时间内,完成规定功 能的概率。是对产品可靠性的概率度量。 可靠度是对产品可靠性的概率度量。 2)可靠性工程领域主要包括以下三方面的内容: 1.可靠性设计。它包括了设计方案的分析、对比与评价,必 要时也包括可靠性试验、生产制造中的质量控制设计及使用 维修规程的设计等。 2.可靠性分析。它主要是指失效分析,也包括必要的可靠性 试验和故障分析。这方面的工作为可靠性设计提供依据,也 为重大事故提供科学的责任分析报告。 3.可靠性数学。这是数理统计方法在开展可靠性工作中发展 起来的一个数学分支。 。可靠性设计具有以下特点: 1.传统设计方法是将安全系数作为衡量安全与否的指标,但 安全系数的大小并没有同可靠度直接挂钩,这就有很大盲目 性。可靠性设计与之不同,它强调在设计阶段就把可靠度直 接引进到零件中去,即由设计直接决定固有的可靠度。 2.传统设计是把设计变量视为确定性的单值变量并通过确定 性的函数进行运算,而可靠性设计则把设计变量视为随机变 量并运用随机方法对设计变量进行描述和运算。 3.在可靠性设计中,由于应力S和强度R都是随机变量,所 以判断一个零件是否安全可靠,就以强度R大于应力S的概 率大小来表示,这就是可靠度指标。 4.传统设计与可靠性设计都是以零件的安全或失效作为研究 内容,因此,两者间又有着密切的联系。可靠性设计是传统 设计的延伸与发展。在某种意义上,也可以认为可靠性设计 只是在传统设计的方法上把设计变量视为随机变量,并通过 随机变量运算法则进行运算而已。 。平均寿命(无故障工作时间):指一批产品从投入运行到发 生失效(或故障)的平均工作时间。 对不可修复的产品而言,T是指从开始使用到发生失效的平 均时间,用MTTF表示; 对可修复的产品而言,是指产品相邻两次故障间工作时间的 平均值,用MTBF表示; 平均寿命的几何意义是:可靠度曲线与时间轴所夹的面积。 6.正态分布曲线的特点是什么?什么是标准正态分布? :正态分布曲线f(x)具有连续性,对称性,其曲线与横坐标 轴间围成的总面积恒等于1.在均值μ和离均值的距离为标准 差的某一指定倍数z。之间,分布有确定的百分数,均值或 数学期望μ表征随机变量分布的集中趋势,决定正态分布曲 线位置;标准差σ,他表征随机变量分布的离散程度,决定 正态分布曲线的形状。定义μ=0,σ=1,即N(0,1)为标准正 态分布。 7.系统可靠性的大小主要取决于:(1)组成系统的零部件的可 靠性 (2)零部件的组合方式。 1.什么是3σ法则?已知手册上给出的16Mn的抗拉强度为 1100~1400MPa,试利用3σ法则确定该材料抗拉强度的均值 和标准差。 在进行可靠性计算时,引用手册上的数据,可以认为它们服 从正态分布,手册上所给数据范围覆盖了该随机变量的 +-3σ,即6倍的标准差,称这一原则为3σ法则。均值= (1100+1400)/2=1250MPa 标准差=(1400-1100)/6=50Mpa。 从正态分布知,对应+-3σ范围的可靠度已为0.9973. 2. 简述强度—应力干涉理论中“强度”和“应力”的含义, 试举例说明之。 答:强度一应力干涉理论中“强度”和“应力”具有广义的 含义:“应力”表示导致失效的任何因素;而“强度”表示阻 止失效发生的任何因素。“强度”和“应力”是一对矛盾的 两个方面,它们具有相同的量纲;例如,在解决杆、梁或轴 的尺寸的可靠性设计中,“强度”就是指材料的强度,“应力” 就是指零件危险断面上的应力,但在解决压杆稳定性的可靠 性设计中,“强度”则指的是判断压杆是否失稳的“临界压力”, 而“应力”则指压杆所受的工作压力。 3.说明常规设计方法中采用平均安全数的局限性。 答:平均安全系数未同零件的失效率联系起来,有很大的盲 目性。 从强度一应力干涉图可以看出 1)即使安全系数大于1,仍 然会有一定的失效概率。2)当零件强度和工作应力的均值不 变(即对应的平均安全系数不变),但零件强度或工作应力的 离散程度变大或变小时,其干涉部分也必然随之变大或变小, 失效率亦会增大或减少。 1.所谓系统,是为完成某一功能而由若干零部件相互有机地 组合起来的综合体。系统的可靠度取决于两个因素:一是组 成系统的零部件的可靠度;二是零部件的组合方式。 3.串联系统:若系统中诸零件的失效相互独立,但当系统中 任一个零件发生故障都会导致整个系统失效时,则这种零件 的组合形式称为串联模型。 3.串联系统的可靠度:串联系统的可靠度Rs低于组成零件的 可靠度Ri。因此,要提高串联系统的可靠度,最有效的措施 是减少组成系统的零件数目。 4.并联系统:有冗余系统和表决系统。冗余系统又可分为工作冗 余系统和非工作冗余系统。 5.工作冗余系统:在该系统中,所有零件都同时参加工作,而且 任何一个零件都能单独支持整个系统正常工作。即在该系统中, 只要不是全部零件失效,系统就可以正常工作。 6.非工作冗余系统:在该系统中,只有某一个零件处于工作状态, 其它零件则处于非工作状态。只有当工作的零件出现故障后,非 工作的零件才立即转入工作状态。 。非工作冗余系统的可靠度高于工作冗余系统,这是因为工作冗 余系统的零件虽然都处于不满负荷状态下,但它们总是在工作, 必然会磨损或老化。非工作冗余系统虽不存在这个问题,却存在 一个转换开关的可靠度问题。 。r/n表决系统:在n个零件组成的并联系统中,n个零件都参加 工作,但其中要有r个以上的零件正常工作,系统才能正常工作。 它是属于一种广义的工作冗余系统。当r=1时,就是工作冗余系 统,当r=n时,就是串联系统。 。复杂系统的可靠性预测方法:等效功能图法、布尔真值表法; 。故障树分析的步骤:1,在充分熟悉系统的基础上,建立故障 树;2,进行定性分析,识别系统的薄弱环节;3,进行定量分析, 对系统的可靠性作出评价。 。故障树:是一种倒立的树状逻辑因果关系图,它是用事件符号、 逻辑门符号和转移符号描述系统中各种事件之间因果关系的图。 。故障树的定性分析是寻找故障树的全部最小割集或最小路集。 其目的是为了找出引了系统故障的全部可能的起因,并定性的识 别系统的薄弱环节。 。最小割集:如果将割集中任意去掉一个基本事件后就不再是割 集。 。最小路集:路集也是一些基本事件的集合,当该集合所有的基 本事件同时不发生时,则顶事件必然不发生。如果将路集中任意 去掉一个基本事件后就不再是路集的话,则称此路集为最小路 集。 。最小割集代表系统的一种失效模式;一个最小路集代表系统的 一个正常模式。 。故障树的全部最小割集即是顶事件发生的全部可能原因,构成 了系统的故障谱。因此,在产品设计中要努力降低最小割集发生 的可能性,这就是产品的薄弱环节。反过来说,为保证系统正常 工作,必须至少保证一个最小路集存在。 。故障树的定量分析就是根据基本事件的概率求出顶事件发生的 概率,从而对系统的可靠性作出评价。 。可靠度分配按分配原则的不同,有等同分配法、加权分配法和 动态规划最优分配法; 。等同分配法:它按照系统中各单元(子系统或零部件)的可靠 度均相等的原则进行分配。其计算简单,缺点是没有考虑各子系 统现有的可靠度水平、重要性等因素。 。加权分配法:它是把各子系统在整个系统中的重要度以及各子 系统的复杂度作为权重来分配可靠度的。 。最优分配法:采用动态规划最优分配法,可以把系统的成本、 重量、体积或研制周期等因素为最小作为目标函数,而把可靠度 不小于某一给定值作为约束条件进行可靠度分配;也可以把系统 可靠度尽可能大作为目标函数,而将成本等因素视为约束条件进 行可靠度分配。这要根据具体问题来确定。特点:机电产品的可 靠性指标不仅取决于零部件的可靠度,而且还将受制造成本、研 制周期、重量、体积等因素的制约。因此,要全面考虑这些因素 的影响,必须采用优化方法分配可靠度。 。一是可靠性设计的有效性取决于所采用的统计参数是否准确可 靠;二是应用明确规定产品失效的形式和判据。 。试简述强度和应力均为正态分布时,强度和应力干涉的三种典 型情况下手失效率情况。 1.强度的均值大于应力的均值,这时的干涉概率,即不可靠度F 小于50%。当强度的均值减去应力的均值为一定值时,概率F的 大小,随强度和应力的标准增大而增大。常规设计的安全系数大 于1时属于这种情况。这种情况下,还可能出现失效。 2.强度的均值等于应力的均值,此时,失效率F为50% 3.强度的均值小于应力的均值,此时安全系数小于1,失效概率 大于50%,零件仍具有一定的可靠度。

相关主题
文本预览
相关文档 最新文档