当前位置:文档之家› 第三章中值定理与导数的应用综合练习参考答案

第三章中值定理与导数的应用综合练习参考答案

第三章中值定理与导数的应用综合练习参考答案
第三章中值定理与导数的应用综合练习参考答案

第三章 中值定理与导数的应用

一、是非题

1.函数12+=x y .在区间[-1,1]上满足罗尔中值定理条件的是( √ )

2.方程0155

=+-x x 在()1,1-内有且仅有一个实根 ( √ ) 3.若对任意()b a x ,∈,有()()x g x f '=',则对任意()b a x ,∈,有()()x g x f =, (× ) 4.sin lim

x x x →∞是未定型。. ( × )

5.在罗比塔法则中,A x g x f x x =→)(')('lim 0是 A x g x f x x =→)

()(lim 0的充要条件. ( × )

6..因 x x x x x x x x cos 1cos 1lim sin sin lim +-=+-∞→∞→不存在,所以x

x x x x sin sin lim +-∞→不存在. ( × ) 7..3

2122lim )'1()'1(lim 11lim 1221221=+=-+-=-+-→→→x x x x x x x x x x x . ( × )

8. 若函数)(x f 在区间 ),(b a 内可导,则0)('>x f 是)(x f 在),(b a 内单调增加的充分必要条件. ( × )

9.. 若0x 是)(x f 的极值点,则一定有)('0x f =0. ( × )

10.. 若0x 是)(x f 的一个不可导点,则一定是)(x f 的一个极值点.( × )

二、选择题

1. 函数x x x f -=3)(在[0,3]上满足罗尔中值定理的=ξ( D )

(A )0; (B )3; (C)

23; (D)2. 2.函数x

x f 21)(=满足拉格朗日中值定理条件的区间是( A ) (A ) [1,2]; (B )[-2,2]; (C)[-2,0]; (D)[0,1].

3.函数()3553x x x f -=在R 上有 ( C )

A .四个极值点;

B .三个极值点

C .二个极值点

D . 一个极值点

4.设()x f 在闭区间[]1,1-上连续,在开区间()1,1-上可导,且()M x f ≤',()00=f ,则必有 ( C )

A .()M x f ≥

B .()M x f >

C .()M x f ≤

D .()M x f <

5.若函数()x f 在[]b a ,上连续,在()b a ,可导,则 ( B )

A .存在()1,0∈θ,有()()()()()a b a b f a f b f --'=-θ,

B .存在()1,0∈θ,有()()()()()a b a b a f b f a f --+'=-θ,

C .存在()b a ,∈θ,有()()()()b a f b f a f -'=-θ,

D .存在()b a ,∈θ,有()()()()b a f a f b f -'=-θ。

6.求极限x x x x sin 1sin

lim 20→时,下列各种解法正确的是 ( C )

A .用洛必塔法则后,求得极限为0,

B .因为x

x 1lim 0→不存在,所以上述极限不存在, C .原式01sin sin lim 0=?=→x

x x x x , D .因为不能用洛必塔法则,故极限不存在.

7.设函数2

12x x y +=,在 ( C ) A .()+∞∞-,单调增加, B .()+∞∞-,单调减少,

C .()1,1-单调增加,其余区间单调减少,

D .()1,1-单调减少,其余区间单调增加.

8.设()()x g x f x x 0lim →为未定型,则()()

x g x f x x ''→0lim 存在是()()x g x f x x 0lim →也存在的 ( B ) A .必要条件 B .充分条件

C .充分必要条件

D . 既非充分也非必要条件

9.若()x f 为可导函数,ξ为开区间()b a ,内一定点,而且有()0>ξf ,()()0≥'-x f x ξ,则在闭区间[]b a ,上必有 ( D )

A .()0

B . ()0≤x f

C .()0≥x f

D . ()0>x f

10.已知()x f 在[]b a ,上连续,在()b a ,内可导,且当()b a x ,∈时,有()0>'x f ,

又已知()0

A .()x f 在[]b a ,上单调增加,且()0>b f

B .()x f 在[]b a ,上单调减少,且()0

C .()x f 在[]b a ,上单调增加,且()0

D .()x f 在[]b a ,上单调增加,但()b f 正负号无法确定。

三、填空题 1. =+→x x x )1ln(lim 0 1 , 2.=--→a

x a x a x sin sin lim cos a , 3.=→x

x x 3tan tan lim 2π

3 , 4.=→x x x 2cot lim 012, 5.=-+→20)1ln(lim x x x x 12-, 6.当∞→x 时,有+∞→)(x f 和+∞→)(x g 且l x g x f x =∞→)

(')('lim (+∞<

(ln )(ln lim x g x f x 1 7.函数 x x x f -=arctan )(在其定义域内为单调 减小 .

8.函数x x x f cos )(+=在区间 ]2,0[π上单调 增加 .

9.当1±=x 时,函数q px x y ++=33有极值,那么=p -1 .

10.已知函数2332x x y -=,=x 0 时,极大值=y 0 ;=x 1 时,极小值=y -1.

四.计算题

1、求下列极限

(1).求()2

01ln lim x x x x +-→ 解:原式()2

1121lim 2111lim 0000=+=+-→→x x x x x 型

(2).求x x x 3cos sin 21lim

6-→

π 解:原式3

33sin 3cos 2lim 000=--→x x x 型 (3).求()x x x 1201lim +→

解:令()x x

y 121+=,则()x x y 2

1ln ln += ∵()012lim 1ln lim 2

0002

0=++→→x x x x x x 型 ∴原式10==e .

(4).求极限x x x +→0

lim 。 解:令x x y =,则x x y ln ln =

∵011lim 1

ln lim ln lim 2000=-=+++→∞∞→→x

x x x x x x x x 型 ∴原式10==e

2.求函数149323+--=x x x y 的单调区间。

解:()()3139632-+=--='x x x x y

当1-'y ,

当31<<-x 时,0<'y

当3>x 时,0>'y

故y 在(]1,-∞-及[)+∞,3单增,在[]3,1-单减。

3.求函数x

x y 2ln =的单调区间与极值。 解:()2

ln ln 2x x x y -=',

令0='y ,得1=x 或2e .

故可疑极值点1,2e .

4.求内接于椭圆122

22=+b

y a x ,而面积最大的矩形的边长。 解:设矩形在第一象限的顶点坐标为()y x ,,则

???==θθs i n

c o s b y a x ??? ??<<20πθ 故矩形面积为θθθ2sin 2cos sin 44ab ab xy S ===

当4π

θ=时,S 取最大值ab 2,

矩形边长分别为a x 22=和a y 22=。

5.求由y 轴上的一个给定点()b ,0到抛物线y x 42=上的点的最短距离。

解:设??

? ??241,x x M 是抛物线上任一点,则()b ,0到M 的距离为 2

22241??? ??-+=b x x d 从而??? ??-+??? ??-+='x b x x b x x d 281411

3222 令0='d ,得0=x 或842-=b x

10.当2

当0

当0>x 时,0>'d ,从而d 单增

故0=x 是d 的极小值点,极小值为||b

2.当2≥b 时,有三个驻点0=x ,22--b ,22-b

当22--

当022<<--x b 时,0>'d ,从而d 单增

当220-<

当22->b x 时,0>'d ,从而d 单增

故22-±=b x 是极小点,极小值为22-b

五、证明题

1.若0>x ,证明x e x +>1

证明:令()x e x F x --=1,则()1-='x e x F

当0>x 时,()0>'x F ,从而()x F 在()+∞,0单增

因为()00=F ,故()0>x F ,即

x e x +>1.

2.设()x f 在[]2,1上具有二阶导数()x f '',且()()012==f f ,如果()()()x f x x F 1-=,证明至少存在一点()2,1∈ξ,使()0=''ξF 。

证明:由题设知()x F 在[]2,1上满足洛尔定理条件,则至少存在一点()2,1∈a ,使得()0='a f 。

因为()()()()x f x x f x F '-+='1,则由题设知()x F '在[]a ,1上连续,在()a ,1内可导,且()()011=='f F ,故()x F '在[]a ,1上满足洛尔定理条件,则至少存在一点ξ,使()0=''ξF ,

最新微分中值定理与导数的应用

微分中值定理与导数 的应用

第三章微分中值定理与导数的应用 本章内容是上一章的延续,主要是利用导数与微分这一方法来分析和研究函数的性质及其图形和各种形态,这一切的理论基础即为在微分学中占有重要地位的几个微分中值定理。在分析、论证过程中,中值定理有着广泛的应用。 一、教学目标与基本要求 (一)知识 1.记住罗尔定理、拉格朗日中值定理、柯西中值定理的条件和结论; 2.记住泰勒公式及其拉格朗日余项的表达式; 3.记住e x,sin(x),cos(x),ln(1+x),1/1+x的N阶麦克劳林公式; 4.知道极限的末定式及其常见的几种类型的求法; 5.知道函数的极值点、驻点的定义以及它们之间的关系; 6.知道曲线的凹凸性与拐点的定义; 7.知道弧微分的定义与弧微分公式; 8.知道光滑曲线、曲率和曲率半径的定义; 9.知道求方程的近似解的基本方法。 (二)领会 1.领会罗尔定理、拉格朗日中值定理、柯西中值定理,领会罗尔定理、拉格朗日中值定理的几何意义; 2.领会罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理之间的联系; 3.领会洛必达法则; 4.领会函数的单调性与一阶导数之间的联系; 5.领会函数的极值与一、二阶导数之间的联系; 6.领会函数的极值和最值的定义以及它们之间的区别和联系; 7.领会曲线的凹凸性与二阶导数之间的联系。 (三)运用 1.会用中值定理证明等式和不等式; 2.会用洛必达法则求末定式的极限; 3.会求一些函数的泰勒公式和利用泰勒公式求函数的极限及一些函数的近似值; 4.会用导数求函数的单调区间和极值; 5.会用函数的单调性证明不等式; 6.会用导数判断函数图形的凹凸性和拐点; 7.会求曲线的水平渐近线和铅直渐近线,会描绘函数的图形; 8.会求一些最值应用问题; 9.会求曲率和曲率半径; 10.会用二分法和切线法求一些方程实根的近似值。 (四)分析综合 1.综合运用中值定理、介值定理和函数的单调性等证明方程实根的存在性和惟一性;

中值定理与导数习题

习题3 一、填空题 1.设,则有_________个根,它们分别位于_ _______ 区间; 2.函数在上满足拉格朗日定理条件的; 3.函数与在区间上满足柯西定理条件的 ; 4.函数在上满足拉格朗日中值定理条件的; 5.; 6.; 7.; 8.函数的单调减区间是; 9.设在可导,则是在点处取得极值的条件; 10.函数在及取得极值,则;

11. 函数的极小值是; 12.函数的单调增区间为; 13. 函数的极小值点是; 14. 函数在上的最大值为,最小值为; 14. 函数在的最小值为; 15. 设点是曲线的拐点,则; 16. 曲线的下凹区间为,曲线的拐点为; 17. 曲线的上凹区间为; 18. 曲线的拐点为; 19. 若是的四次多项式函数,它有两个拐点,并且在点 处的切线平行于轴,那么函数的表达式是; 20. 曲线的拐点为; 21. 曲线的水平渐近线的方程是,垂直渐近线的方程是;

22. 的垂直渐近线为; 水平渐近线为; 23. 曲线在的曲率; 24. 曲线的曲率计算公式为; 25. 抛物线在顶点处的曲率为; 二. 单项选择题 1. 罗尔定理中的三个条件;在上连续,在内可导,且 是在内至少存在一点,使得成立的( ). 必要条件充分条件充要条件既非充分也非必要 2. 函数,则(). 在任意闭区间上罗尔定理一定成立;在上罗尔定理不成立; 在上罗尔定理成立;在任意闭区间上,罗尔定理都不成立; 3. 设函数在区间上连续,在开区间上可导,且, ,则必有( ). ; ; 4. 下列函数在上满足拉格朗日中值定理条件的是( ).

; ; ; 5. 函数,它在内( ). 不满足拉格朗日中值定理的条件; 满足拉格朗日中值定理的条件,且; 满足中值定理的条件,但无法求出的表达式; 不满足中值定理条件,但有满足中值定理的结论. 6. 若在开区间内可导,且是内任意两点,则至少存在一点使得下式成立( ). ; 7. 设是内的可导函数,是内的任意两点,则( ) .

高中数学选修1-1第三章《导数及其应用》知识点归纳及单元测试[1]

第三章《导数及其应用》单元测试题 一、 选择题(本大题共10小题,共50分,只有一个答案正确) 1.函数()2 2)(x x f π=的导数是( ) (A)x x f π4)(=' (B)x x f 2 4)(π=' (C) x x f 28)(π=' (D)x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( ) (A)[]0,1- (B)[]8,2 (C)[]2,1 (D)[]2,0 3.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时, ()0()0f x g x ''>>,,则0x <时( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4.若函数b bx x x f 33)(3 +-=在()1,0内有极小值,则( ) (A ) 10<b (D )2 1< b 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.294 e B.22e C.2 e D.22e 7.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ) 8.已知二次函数2 ()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有 ()0f x ≥,则 (1)'(0)f f 的最小值为( )A .3 B .52 C .2 D .3 2 9.设2 :()e ln 21x p f x x x mx =++++在(0)+∞, 内单调递增,:5q m -≥,则p 是q 的

微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得 '()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,

高中数学第三章导数及其应用习题课导数的应用学案苏教版选修1_1

高中数学第三章导数及其应用习题课导数的应用学案苏教版 选修1_1 学习目标 1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与最值的综合应用. 知识点一函数的单调性与其导数的关系 定义在区间(a,b)内的函数y=f(x) 知识点二 解方程f′(x)=0,当f′(x0)=0时, (1)如果在x0附近的左侧________,右侧________,那么f(x0)是极大值. (2)如果在x0附近的左侧________,右侧________,那么f(x0)是极小值. 知识点三函数y=f(x)在[a,b]上最大值与最小值的求法 1.求函数y=f(x)在(a,b)内的极值. 2.将函数y=f(x)的________与端点处的函数值________比较,其中________的一个是最大值,________的一个是最小值. 类型一数形结合思想的应用 例1 已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是________. 反思与感悟解决函数极值与函数、导函数图象的关系时,应注意:(1)对于导函数的图象,重点考查导函数的值在哪个区间上为正,在哪

个区间上为负,在哪个点处与x轴相交,在交点附近导函数值是怎样变化的. (2)对于函数的图象,函数重点考查递增区间和递减区间,进而确定极值点. 跟踪训练1 设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是________.类型二构造函数求解 命题角度1 比较函数值的大小 例2 已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,f′(x)+<0,若a=f(),b=-f(-),c=(ln )f(ln ),则a,b,c的大小关系是________. 反思与感悟本例中根据条件构造函数g(x)=xf(x),通过g′(x)确定g(x)的单调性,进而确定函数值的大小,此类题目的关键是构造出恰当的函数. 跟踪训练2 设a=,b=,c=,则a,b,c的大小关系是________.命题角度2 求解不等式 例 3 定义域为R的可导函数y=f(x)的导函数f′(x),满足f(x)2ex的解集为________.反思与感悟根据所求结论与已知条件,构造函数g(x)=,通过导函数判断g(x)的单调性,利用单调性得到x的取值范围. 跟踪训练3 设函数f(x)是定义在R上的偶函数,f′(x)为其导函数.当x>0时,f(x)+x·f′(x)>0,且f(1)=0,则不等式x·f(x)>0的解集为________. 命题角度3 利用导数证明不等式 例4 已知x>1,证明不等式x-1>ln x.

第三章导数及其应用单元测试(带答案)

第三章导数及其应用单元测试 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后 的括号内(本大题共12个小题,每小题5分,共60分)。 1.函数y=x+2cosx在[0,]上取得最大值时,x的值为()A.0 B.C.D. 2.函数的单调递减区间是() A.B.C.D. 3.若函数的图象的顶点在第四象限,则函数的图象是 () 4.点P在曲线 上移动,设 点P处切线倾斜角为α, 则α的取值范围是 () | A.[0,] B.0,∪[,π C.[,πD.(, 5.已知(m为常数)在上有最大值3,那么此函数在 上的最小值为() A.B.C.D. 6.函数的单调递增区间是()A. B.(0,3) C.(1,4) D. 7.已知函数时,则()

A.B. , C.D. 8.设函数的导函数,则数列的前n项和是 () A.B.C.D. 9.设f(x)=x3+ax2+5x+6在区间[1,3]上为单调函数,则实数a的取值范围为()A.[-,+∞] B.(-∞,-3) C.(-∞,-3)∪[-,+∞] D.[-,] 10.函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)<0,设a=f(0),b= f(),c= f(3),则() A .a<b<c B.c<a<b C.c<b<a D.b<c<a 11.曲线在点处的切线与坐标轴围成的三角形面积为()! A.B.C.D. 12.如图所示的是函数的大致图象,则等于() A.B.

C.D. 第Ⅱ卷 二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。 , 13.设是偶函数,若曲线在点处的切线的斜率为1,则该曲线在处的切线的斜率为_________. 14.已知曲线交于点P,过P点的两条切线与x轴分别交于A,B两点,则△ABP的面积为; 15.函数在定义域内可导,其图象如图,记的导函数为, 则不等式的解集为_____________ 16.若函数f(x)=(a>0)在[1,+∞)上的最大值为,则a的值为 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。 17.(12分)已知函数f(x)=x3-2ax2+3x(x∈R). (1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程; (2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a. 。

选修1-1第三章导数及其应用A卷@停课不停学中学精品

旗开得胜 选修1-1第三章导数及其应用A 卷 考试时间:120分钟 满分:150分 第Ⅰ卷(选择题共60分) 一、选择题(共12小题;共60分) 1 若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为( ) A 0()f x ' B 02()f x ' C 02()f x '- D 0 2 一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 3 函数3 y x x 的递增区间是( ) A ),0(+∞ B )1,(-∞ C ),(+∞-∞ D ),1(+∞ 4 32()32f x ax x =++,若(1)4f '-=,则a 的值等于( ) A 319 B 316 C 313 D 3 10 5 函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )

A 充分条件 B 必要条件 C 充要条件 D 必要非充分条件 6 函数344+-=x x y 在区间[]2,3-上的最小值为( ) A 72 B 36 C 12 D 0 7. 已知 a 函数 ()312f x x x =-的极小值点,则 ()a = A. B. C. D. 8. 函数 3223125y x x x =--+在 []0,3上的最大值,最小值分别是 ( ) A. , B. , C. , D. , 9. 函数 ()()3e x f x x =-的单调递增区间是 A. B. C. D . 10. 与直线 240x y -+=平行的抛物线 2y x =的切线方程是 . A. 230x y -+= B. 230x y --= C. 210x y -+= D. 210x y --=

高等数学第三章微分中值定理与导数的应用题库(附带答案)

第三章 微分中值定理与导数的应用 一、选择题 1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( ) 是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A ( 2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( ) 0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''= 3、的凸区间是 x e y x -=( ) ) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞ 4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( ) (A)x x sin )x (f = (B)2)1x ()x (f += (C) 3 2 x )x (f = (D)1x )x (f 2+= 5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值 6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( ) (A) [-1,1] (B) [0,1] (C) [-2,2] (D) ] 5 4, 5 3[- 7、x 2 e x y -=的凹区间是( ) (A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-, 8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) . (A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3 x 3sin3x asinx f(x )π=+ =( ) (A) 1 (B) 2 (C) 3 π (D) 0 10、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( ) ] 5 4 , 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( ) 的极值 必定不是的极值点为必定为曲线的驻点 , 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000 二、填空题 1、__________________e y 82 x 的凸区间是曲线-=. 2、______________ 2 x y x 的极小值点是函数=.

数学第三章导数及其应用测试1新人教A版选修1 1

第三章导数及其应用单元测试 一、选择题 1. 函数()323922yxxxx=---<<有() A. 极大值5,极小值27? B. 极大值5,极小值11? C. 极大值5,无极小值 D. 极小值27?,无极大值 2. 若'0()3fx??,则000()(3)lim h fxhfxhh?????() A. 3? B. 6? C. 9? D. 12? 3. 曲线3()2fxxx=+-在0p处的切线平行于直线41yx=-,则0p点的坐标为() A. (1,0) B. (2,8) C. (1,0)和(1,4)?? D. (2,8)和(1,4)?? 4. ()fx与()gx是定义在R上的两个可导函数,若()fx,()gx满足''()()fxgx?, 则 ()fx与()gx满足() A. ()fx?()gx B. ()fx?()gx为常数函数 C. ()fx?()0gx? D. ()fx?()gx为常数函数 5. 函数xxy142??单调递增区间是() A. ),0(?? B. )1,(?? C. ),21(?? D. ),1(?? 6. 函数xxyln?的最大值为() A. 1?e B. e C. 2e D. 310 二、填空题 1. 函数2cosyxx??在区间[0,]2?上的最大值是. 2. 函数3()45fxxx???的图像在1x?处的切线在x轴上的截距为________________.

3. 函数32xxy??的单调增区间为,单调减区间为 ___________________. 4. 若32()(0)fxaxbxcxda?????在R增函数,则,,abc的关系式为是 . 5. 函数322(),fxxaxbxa????在1?x时有极值10,那么ba,的值分别为________. 三、解答题 1.已知曲线12??xy与31xy??在0xx?处的切线互相垂直,求0x的值. 2. 如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去 四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长 为多少时,盒子容积最大? 3. 已知cbxaxxf???24)(的图象经过点(0,1),且在1x?处的切线方程是2yx??(1)求)(xfy?的解析式;(2)求)(xfy?的单调递增区间. 4. 平面向量13(3,1),(,)22ab???,若存在不同时为0的实数k和t,使 2(3),,xat bykatb??????且xy?,试确定函数()kft?的单调区间.

微分中值定理与导数的应用习题

第四章 微分中值定理与导数的应用习题 § 微分中值定理 1. 填空题 (1)函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是 π π -4. (2)设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 3 个实根,分别位于区间)5,3(),3,2(),2,1(中. 2. 选择题 (1)罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且 )()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( B ). A . 必要条件 B .充分条件 C . 充要条件 D . 既非充分 也非必要条件 (2)下列函数在]1 ,1[-上满足罗尔定理条件的是( C ). A. x e x f =)( B. ||)(x x f = C. 21)(x x f -= D. ????? =≠=0 ,00 ,1sin )(x x x x x f (3)若)(x f 在),(b a 内可导,且21x x 、是),(b a 内任意两点,则至少存在一点ξ,使下式成立( B ). A . ),()()()()(2112b a f x x x f x f ∈'-=-ξξ B . ξξ)()()()(2121f x x x f x f '-=-在12,x x 之间

C . 211221)()()()(x x f x x x f x f <<'-=-ξξ D . 211212)()()()(x x f x x x f x f <<'-=-ξξ 3.证明恒等式:)(2 cot arctan ∞<<-∞= +x x arc x π . 证明: 令x arc x x f cot arctan )(+=,则011 11)(2 2=+-+='x x x f ,所以)(x f 为一常数. 设c x f =)(,又因为(1)2 f π =, 故 )(2 cot arctan ∞<<-∞= +x x arc x π . 4.若函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中 12a x x << 3x b <<,证明:在),(31x x 内至少有一点ξ,使得0)(=''ξf . 证明:由于)(x f 在],[21x x 上连续,在),(21x x 可导,且)()(21x f x f =,根据罗尔定理知,存在),(211x x ∈ξ, 使0)(1='ξf . 同理存在),(322x x ∈ξ,使0)(2='ξf . 又)(x f '在],[21ξξ上 符合罗尔定理的条件,故有),(31x x ∈ξ,使得0)(=''ξf . 5. 证明方程06 213 2=+++x x x 有且仅有一个实根. 证明:设621)(32x x x x f +++=, 则03 1 )2(,01)0(<-=->=f f ,根据零点 存在定理至少存在一个)0,2(-∈ξ, 使得0)(=ξf .另一方面,假设有),(,21+∞-∞∈x x ,且21x x <,使0)()(21==x f x f ,根据罗尔定理,存在) ,(21x x ∈η使0)(='ηf ,即02112=++ηη,这与02 112>++ηη矛盾.故方程0 62132=+++x x x 只有一个实根.

第三章 微分中值定理与导数应用教案教学设计

第三章 微分中值定理与导数应用 第一节 微分中值定理 教学目的:理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒 中值定理。 教学重点:罗尔定理、拉格朗日中值定理。 教学难点:罗尔定理、拉格朗日中值定理的应用。 教学内容: 一、罗尔定理 1. 罗尔定理 几何意义:对于在],[b a 上每一点都有不垂直于x 轴的切线,且两端点的连线与x 轴平行的不间断的曲线 )(x f 来说,至少存在一点C ,使得其切线平行于x 轴。 从图中可以看出:符合条件的点出现在最大值和最小值点,由此得到启发证明罗尔定理。为应用方便,先介绍费马(Fermat )引理 费马引理 设函数 )(x f 在点0x 的某邻域)(0x U 内有定义, 并且在0x 处可导, 如果对任 意)(0x U x ∈, 有)()(0x f x f ≤ (或)()(0x f x f ≥), 那么0)(0'=x f . 证明:不妨设)(0x U x ∈时,)()(0x f x f ≤(若)()(0x f x f ≥,可以类似地证明). 于是对于)(00x U x x ∈?+,有)()(00x f x x f ≤?+, 从而当0>?x 时, 0 ) ()(00≤?-?+x x f x x f ; 而当0

根据函数 )(x f 在0x 处可导及极限的保号性的得 ==+)()(0'0'x f x f 0)()(lim 000≤?-?++ →?x x f x x f x ==-)()(0'0'x f x f 0)()(lim 000≥?-?+- →?x x f x x f x 所以0)(0'=x f , 证毕. 定义 导数等于零的点称为函数的驻点(或稳定点,临界点). 罗尔定理 如果函数)(x f 满足:(1)在闭区间],[b a 上连续, (2)在开区间),(b a 内可导, (3)在区间端点处的函数值相等,即)()(b f a f =, 那么在),(b a 内至少在一点)(b a <<ξξ , 使得函数)(x f 在该点的导数等于零,即 0)('=ξf . 证明:由于)(x f 在],[b a 上连续,因此必有最大值M 和最小值m ,于是有两种可能的情形: (1)m M =,此时)(x f 在],[b a 上必然取相同的数值M ,即.)(M x f = 由此得.0)(='x f 因此,任取),(b a ∈ξ,有.0)(='ξf (2)m M >,由于)()(b f a f =,所以M 和m 至少与一个不等于)(x f 在区间],[b a 端点处 的函数值.不妨设)(a f M ≠(若)(a f m ≠,可类似证明),则必定在),(b a 有一点ξ使M f =)(ξ. 因此任取],[b a x ∈有)()(ξf x f ≤, 从而由费马引理有0)(='ξf . 证毕 例1 验证罗尔定理对32)(2--=x x x f 在区间]3,1[-上的正确性 解 显然 32)(2--=x x x f )1)(3(+-=x x 在]3,1[-上连续,在)3,1(-上可导,且 0)3()1(==-f f , 又)1(2)(-='x x f , 取))3,1(1(,1-∈=ξ,有0)(='ξf . 说明:1 若罗尔定理的三个条件中有一个不满足, 其结论可能不成立; 2 使得定理成立的ξ可能多于一个,也可能只有一个. 例如 ]2,2[,-∈=x x y 在]2,2[-上除)0(f '不存在外,满足罗尔定理的一切条件, 但在区间]2,2[-内找不到一点能使0)(='x f . 例如 ?? ?=∈-=0 ,0]1,0(,1x x x y 除了0=x 点不连续外,在]1,0[上满足罗尔定理的一切条

第四章----中值定理与导数的应用--习题及答案(1)

第四章 中值定理与导数的应用 一、填空 1、若()x x x f -=3在[0,3]上满足罗尔定理的ξ值为 。 2、若2 1 cos 1sin lim 20=-→kx x x ,则k = 。 3、=a ,=b 时,点(1,3)为2 3bx ax y +=的拐点。 4、3+=x e x 在),(+∞-∞内的实根的个数为 。 5、函数)1ln(2 x x y +-=的单调递增区间 ,在[-1,1]中最大值为 ,最小值为 。 6、函数23 )5()(-=x x x f 的驻点为 ,其极大值为 ,极小值为 。 7、若5)(cos sin lim 0=--→b x a e x x x ,则=a ,=b 。 8、x x x y )1 1(-+=的水平渐近线为 。 二、选择 1、设R x x x x f ∈+-='),12)(1()(,则在)4 1 ,21(- 内)(x f 是( ) A 、单调增加,图形上凹 B 、单调减少,图形上凹 C 、单调增加,图形下凹 D 、单调减少,图形下凹 2、设函数)(x f 在[0,1]上可导,0)(>'x f 并且0)1(,0)0(>

第三章导数及其应用

第三章 导数及其应用 考点1 导数的概念及计算 1.(2014·陕西,10)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( ) A .y =12x 3-1 2x 2-x B .y =12x 3+1 2x 2-3x C .y =1 4 x 3-x D .y =14x 3+1 2 x 2-2x 1.解析 法一 由题意可知,该三次函数满足以下条件:过点(0,0),(2,0),在(0,0)处的切线方程为y =-x ,在(2,0)处的切线方程为y =3x -6,以此对选项进行检验.A 选项, y =12x 3-12x 2-x ,显然过两个定点,又y ′=3 2x 2-x -1,则y ′|x =0=-1,y ′|x =2=3,故条件都满足,由选择题的特点知应选A. 法二 设该三次函数为f (x )=ax 3+bx 2+cx +d ,则f ′(x )=3ax 2+2bx +c , 由题设有?????f (0)=0?d =0, f (2)=0?8a +4b +2c +d =0,f ′(0)=-1?c =-1, f ′(2)=3?12a +4b +c =3,解得a =12,b =-1 2,c =-1,d =0. 故该函数的解析式为y =12x 3-1 2x 2-x ,选A. 答案 A 2.(2016·新课标全国Ⅲ,16)已知f (x )为偶函数,当x ≤0时,f (x )=-x-1 e -x ,则曲线y =f (x ) 在

点(1,2)处的切线方程是________. 2.解析设x>0,则-x<0,f(-x)=e x-1+x, 因为f(x)为偶函数,所以f(x)=e x-1+x,f′(x)=e x-1+1,f′(1)=2, y-2=2(x-1),即y=2x. 答案y=2x 3.(2015·新课标全国Ⅰ,14)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=________. 3.解析f′(x)=3ax2+1,f′(1)=1+3a,f(1)=a+2. 点(1,f(1))处的切线方程为y-(a+2)=(1+3a)(x-1). 将(2,7)代入切线方程,得7-(a+2)=(1+3a), 解得a=1. 答案1 4.(2015·新课标全国Ⅱ,16)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________. 4.解析由y=x+ln x,得y′=1+1 x,得曲线在点(1,1)的切线的斜率为k=y′|x=1=2,所以切 线方程为y-1=2(x-1),即y=2x-1,此切线与曲线y=ax2+(a+2)x+1相切,消去y得ax2+ax+2=0,得a≠0且Δ=a2-8a=0,解得a=8. 答案8 5.(2015·天津,11)已知函数f(x)=a ax ln,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数.若f′(1)=3,则a的值为________. 5.解析f′(x)=x a ln+ax·1x=a(ln x+1),由f′(1)=3得,a(ln 1+1)=3,解得a=3.

中值定理与导数的应用(包括题)

第三章 中值定理与导数的应用 一、 基本内容 (一) 中值定理 1.罗尔定理 如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,且)()(b f a f =,那么在),(b a 内存在一点ξ,使得0)(='ξf . For personal use only in study and research; not for commercial use 2.拉格朗日中值定理 如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,那么在),(b a 内至少有一点ξ,使得 a b a f b f f --= ') ()()(ξ 其微分形式为 x f x f x x f ??'=-?+)()()(ξ 这里10,<

(2)在点a 的某去心邻域内,)(x f '及)(x g '都存在且0)(≠'x g ; (3)) () (l i m x g x f a x ''→存在(或为无穷大),那么 ) () (lim )()(lim x g x f x g x f a x a x ''=→→ 2.法则2 如果函数)(x f 及)(x g 满足条件: (1)0)(lim =∞ →x f x , 0)(lim =∞ →x g x ; (2)当N x >时,)(x f '及)(x g '都存在且0)(≠'x g ; (3) ) () (lim x g x f x ''∞ →存在(或为无穷大); 那么 ) ()(lim )()(lim x g x f x g x f x x ''=∞→∞ → 以上两个法则是针对00型未定式. 对∞ ∞ 型未定式,也有相应的两个法则. 对∞?0、∞-∞、00、∞1、0∞型未定式,可以通过变形将其转化成00或∞ ∞ 型来求. (三) 泰勒公式 1.带拉格朗日余项的泰勒公式 设函数)(x f y =在0x 的某邻域),(0δx U 内有1+n 阶导数,那么在此邻域内有 +-''+ -'+=200000)(2) ())(()()(x x x f x x x f x f x f ! )()(!) (00)(x R x x n x f n n n +-+ 10)1()()! 1() ()(++-+=n n n x x n f x R ξ 其中ξ在0x 和x 之间,)(x R n 是拉格朗日余项. (四) 函数的单调性 函数单调性的判别法 设函数)(x f y =在],[b a 上连续,在),(b a 内可导. (1)如果在),(b a 内0)(>'x f ,那么函数)(x f y =在],[b a 上单调增加;

微分中值定理与导数应用

第三单元微分中值定理与导数应用 一、填空题 1、 lim xln x x 0 。 2、 函数f x 2x cos x 在区间 单调增 3 、 函数f x 4 8x 3 3x 4的极大值是 。 4 、 曲线y x 4 6x 2 3x 在区间 是凸的。 5 、 函数f x cosx 在x 0处的2m 1阶泰勒多项式是 6 、 曲线y xe 3x 的拐点坐标是 。 7、若fx 在含X 。的a,b (其中a b )内恒有二阶负的导数,且 则f X 。是f x 在a,b 上的最大值。 & y X 3 2x 1 在 内有 个零点。 1 1 9、 lim cot x( ) 。 sin x x 1 i 10、 lim (~2 ------------ ) __________ 。 x 0 x xta n x 11、 曲线y e"的上凸区间是 _____________ 。 12、 函数y e x x 1的单调增区间是 _______________ 。 二、单项选择 1、 函数f(x)有连续二阶导数且f(0) 0, f (0) 1,f (0) 2,则lim x 0 () (A) 不存在;(E) 0 ; (C) -1 ; (D) -2 2、 设 f(x) (x 1)(2x 1),x (,),则在(丄,1)内曲线 f(x)( f(x) x 2 x

2 (A)单调增凹的;(E)单调减凹的; (A)不可导; (B)可导,且f'(0) 0 ;

(C)单调增凸的; (D)单调减凸的 3、f(x)在(a,b)内连续,X 。 (a,b), f (X 。) f (x °) 0,则 f (x)在 x x 。处 ( ) (A)取得极大值; (E)取得极小值; (C) 一定有拐点(x o ,f(x 。)); (D)可能取得极值,也可能有 拐点。 4、设f(x)在a,b 上连续,在(a,b)内可导,则I:在(a,b)内f (x) 0与 在(a,b)上f (x) f (a)之间关系是( ) (A)无实根; (B)有唯一实根; (C) 有两个实根; (D)有三个 实根。 7、已知f(x)在x 0的某个邻域内连续,且f(0) 0 , lim f(x) 2 , x 01 cosx 则在点x 0处f(x)( ) (A) I 是H 的充分但非必要条件 分条件; (C) I 是H 的充分必要条件; 也不是必要条件。 5、 设f(x)、g(x)在a,b 连续可导, 则当a x b 时,则有( (A) f(x)g(x) f(a)g(a); (C)他他; g(x) g(a) 6、 方程x 3 3x 1 0在区间(, (B) I 是H 的必要但非充 (D) I 不是H 的充分条件, f (x)g(x) 0,且 f (x)g(x) f(x)g (x), ) (B) f(x)g(x) f (b)g(b); (D)喪起。 f(x) f(a) )内( )

第三章 导数及其应用

第三章 导数及其应用 第一节导数的概念及运算、定积分 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx ? 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′x =x 0,即f ′(x 0)=li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx . 函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. (2)导数的几何意义:函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)?处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). ?曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (3)函数f (x )的导函数:称函数f ′(x )=li m Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. (4)f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),[f ′(x 0)]′=0. 2.基本初等函数的导数公式

中值定理与导数习题

习题3 一、填空题 i 设孑心 好 m ,则yw=o 有 _________________________ 根,它们分别位于 区间; 2. 函数「'在〔?-上满足 拉格朗日定理条件的-■ ---------- 3 .函数了(兀2*与削+ *在区间卩总]上满足柯西定理条件的 4. 函数y = 在皿]上满足拉格朗日中值定理条件的 貝 In sin 3z hi ll ---- --- = ____________ 5. In sin 5x / W = -y 8.函数 的单调减区间是 ----------- 9.设」八在"可导,则「是在点心处取得极值的 ------------------------ 条 件; 2 10?函数■…亠:—二在工「及"=-取得极值,贝F ——? jf (尤)—工—2冒 6. hm (1 — x) tan ——= y ' 2 7. lim r-j-0 i (cos 1

11.函数」一二的极小值是 __________ ; /⑴二邑壬 12?函数'?1的单调增区间为_____________ 13. 函数的极小值点是" ----------------------- ; 14. 函数,二」——'?在一「一上的最大值为 ---------- ,最小值为------ 14. 函数他"-"+5在[-H]的最小值为------------------- ; 15. 设点」■是曲线2心:的拐点,则”-…八; 16. 曲线- J的下凹区间为------------- ,曲线的拐点为--------- ; 17. 曲线」一一‘-的上凹区间为 --------- ; 18. 曲线」一一?-的拐点为-------------- ; 19. 若/八是工的四次多项式函数,它有两个拐点' '':■ ■,并且在点 :二处的切线平行于艺轴,那么函数」八‘的表达式是----------------- ; 《2 20. 曲线“二玄+户任卩叔)的拐点为 -------------- ; y —----- 21. 曲线:「的水平渐近线的方程是 ------------------ ,垂直渐近线的方程是------------ ;

文本预览
相关文档 最新文档