当前位置:文档之家› 高一物理最新教案-万有引力定律6 精品

高一物理最新教案-万有引力定律6 精品

高一物理最新教案-万有引力定律6 精品
高一物理最新教案-万有引力定律6 精品

万有引力定律

目的:1。掌握万有引力定律;了解卡文迪许扭秤实验的主要结构及原理。

2.初步了解牛顿发现万有引力定律过程,培养科学的思维方法。

重点:

难点:

方法:讲练结合

过程:一、新课引入:

1.问题:

(1)。已知地球绕太阳公转(看作匀速圆周运动)的周期是

71016.3?秒,轨道半径是111049.1?米,求向心加速度的大小.

(2).已知月亮绕地球公转(看作匀速圆周运动)的周期是6

1036.2?秒,轨道半径是8

108.3?米,求向心加速度的大

小.

2.提出课题: 地球和其它行星都在近似圆形的轨道上绕太阳旋转,有向心加速度,必然受到指向太阳的向心力的作用,这种看法在17世纪元中叶已经为科学家们所接受.英国物理学家胡克等人猜想到,

此力的大

小跟太阳到行星的距离的平方成反比,担是,未从理论上作出解释.牛顿发现了万有引力定律,才揭示出引力的本质和规律.牛顿如何发现万有引力定律?万有引力定律怎样反映物体间相互作用的规律?本节课就要研究这些问题.

二、新课教学:

1.牛顿发现万有引力定律的过程

假想——理论推导——实验检验

(1)牛顿对引力的思考

牛顿看到了苹果落地发现了万有引力,这只是一种传说。但是,他对天体和地球的引力确实作过深入的思考。牛顿经过长期观察研究,产生如下的假想:太阳、行星以及离我们很远的恒星,不管彼此相距多远,都是互相吸引着,其引力随距离的增大而减小,地球和其他行星绕太阳转,就是靠劂的引力维持。同样,地球不仅吸引地面上和表面附近的物体,而且也可以吸引很远的物体(如月亮),其引力也是随距离的增大而减弱。牛顿进一步猜想,宇宙间任何物体间都存在吸引力,这些力具有相同的本质,遵循同样的力学规律,其大小都与两者间距离的平方成反比。(2)。牛顿对定律的推导

首先,要证明太阳的引力与距离平方成反比,牛顿凭着他对于数学和物理学证明的惊人创造才能,大胆地将自己从地面上物体运动中总结出来的运动定律,应用到天体的运动上,结合开普勒行

星运动定律,从理论上推导出太阳对行星的引力F 与距离r 的平方成反比,还证明引力跟劂质量M 和行星质量m 的乘积成正比,即 F ∝2r

Mm 牛顿再研究了卫星的运动,结论是它们间的引力也是与行星和卫星质量的乘积成正比,与两者距离的平方成反比。

(3)。牛顿对定律的检验

以上结论是否正确,还需经过实验检验。牛顿根据观测结果,凭借理想实验巧妙地解决了这一难题。

牛顿设想,某物体在地球表面时,其重力加速度为g ,若将它放到月球轨道上,让它绕地球运动时,其向心加速度为a 。如果物体在地球上受到的重力F 1,和在月球轨道上运行时受到的作用力

F 2,都是来自地球的吸引力,其大小与距离的平方成反比,那么,

a 和g 之间应有如下关系:

2221月地地r r F F g a == 已知月心和地心的距离r

月地是地球半径r 地的60倍,得2322/1027/9836001秒米秒米月地地-?=?=???

? ??=g r r a 。 从动力学角度得出的这一结果,与前面用运动学公式算出的数据完全一致,牛顿证实了关于地球和物体间、各天体之间的引力都属于同一种性质力,都遵循同样的力学规律的假想是正确的。牛顿把这种引力规律做了合理的推广,在1687年发表了万有引力

高一物理万有引力定律测试题及答案

万有引力定律测试题 班级姓名学号 一、选择题(每小题中至少有一个选项是正确的,每小题5分,共40分) 1.绕地球作匀速圆周运动的人造地球卫星内,其内物体处于完全失重状态,则物体() A.不受地球引力作用 B.所受引力全部用来产生向心加速度 C.加速度为零 D.物体可在飞行器悬浮 2.人造地球卫星绕地球做匀速圆周运动,其轨道半径为R,线速度为v,周期为T,若要使卫星的周期变为2T,可能的办法是() 不变,使线速度变为 v/2 不变,使轨道半径变为2R D.无法实现 3.由于地球的自转,地球表面上各点均做匀速圆周运动,所以() A.地球表面各处具有相同大小的线速度 B.地球表面各处具有相同大小的角速度 C.地球表面各处具有相同大小的向心加速度 D.地球表面各处的向心加速度方向都指向地球球心 4.地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星,相对自己静止不动,则这两位观察者的位置及两人造卫星到地球中心的距离可能是()A.一人在南极,一人在北极,两卫星到地球中心的距离一定相等 B.一人在南极,一人在北极,两卫星到地球中心的距离可以不等,但应成整数倍 C.两人都在赤道上,两卫星到地球中心的距离一定相等 D.两人都在赤道上,两卫星到地球中心的距离可以不等,但应成整数倍 5.设地面附近重力加速度为g0,地球半径为R0,人造地球卫星圆形运行轨道半径为R,那么以下说法正确的是 ( ) 6.一宇宙飞船在一个星球表面附近做匀速圆周运动,宇航员要估测星球的密度,只需要测定飞船的() A:环绕半径 B:环绕速度 C:环绕周期 D:环绕角速度 7.假设火星和地球都是球体,火星的质量M火和地球的质量M地之比M火/M地=p,火星的半径R火和地球的半径R地之比R火/R地=q,那么火星表面处的重力加速度g火和地球表面处的重力的加速度g地之比等于[ ] q2 q

万有引力定律应用的12种典型案例

3232 万有引力定律应用的12种典型案例 万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。 特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。 下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例: 【案例1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律: r T 4m r Mm G 22 2π=……①得: 2 32G T r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力 由2R Mm G mg =得:G g R M 2=可见B 正确

3333 【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。 【案例2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少 解析:本题主要考察普通卫星的运动特点及其规律 由开普勒第三定律T 2 ∝r 3 知:“风云二号”卫星的轨道半径较大 又根据牛顿万有引力定律r v m ma r Mm G 22==得: 2r M G a =,可见“风云一号”卫星的向心加速度大, r GM v = ,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。 【探讨评价】由万有引力定律得:2M a G r = ,v = ω= 2T = ⑴所有运动学量量都是r 的函数。我们应该建立函数的思想。 ⑵运动学量v 、a 、ω、f 随着r 的增加而减小,只有T 随着r 的增加而增加。 ⑶任何卫星的环绕速度不大于7.9km/s ,运动周期不小于85min 。 ⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。 【案例3】同步卫星的运动 下列关于地球同步卫星的说法中正确的是: A 、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上 B 、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24h C 、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上

奋斗中学教学案例论文集萃

奋斗中学2006教学案例论文集萃 目录 ■序言■ 立足管理,强化内涵发展,创建品牌学校(代序)/彭银翔■教育与教学管理■ 谈谈公开课的误区/安兰伟教案应体现施教者的教学思想意识/张日 引领教师走上教研之路/魏欣丽听评课中的收获/付琰 迎接新课程改革改变教育教学观念/彭惠君让学生“自主学习”的几点体会/张宇航关注学生非智力因素的培养/魏峻 高中生小组合作学习的实践性研究/高峰 ■语文教学■ 对《论贵栗疏》几个问题的探讨/李武军精灵的飞动思想的追求 ――-鸟所体现的魏晋文人的内在精神/姜艳 创建和谐的语文课堂 ―――《面朝大海,春暖花开》课堂教学思考/李兰芳 培养兴趣学好语文/杜芷月浅谈语文和谐教学的创设/刘敏

屈原的悲剧,士人的悲剧/王宏收放自如 ―――谈教师对语文课堂“局部膨胀”问题的驾驭/刘彬 随风潜入夜,润物细无声 ―――浅谈语文教学中的情感德育渗透/聂忠艳一样梳妆别样情 ―――《杜十娘怒沉百宝箱》教学片断/夏智慧 语文学科研究性学习的尝试/付英海议论文也要巧用过渡/丁学明语文课堂中三维目标的融合/李静打开思维大门的一把钥匙 ―――谈加强背诵的重要性/路适宜 如何培养良好的读书习惯/张丽华 学生语言表达训练之我见/屈维清 ■文科综合教学■ 高考文综总复习呼唤研究型教师/魏欣丽 注重培养学生规范答题的能力/王惠清 架起通往理想课堂的桥梁/邓久春 中学思想政治课教学中要重视培养学生的问题意识/潘颖 谈政治思想课教学中“四步教学法”的践行/王振山 政治课教学中多媒体课件的运用/肖毅 第二次鸦片战争中清朝两广总督叶名琛的心态/杨有富 对北魏孝文帝元(拓跋)宏及其迁都和汉化的思考/李慧云 怎样“上台”――关于高中教材中无产阶级、 资产阶级“上台”的几种表述及含义/潘玉辉 历史教学中的思考/王圆 浅谈世界近现代史课堂教学的点滴体会何亚林段瑞英 浅析中学历史多媒体网络教学/王玉芳 中学历史教学中的求异思想新探/甄新华

高中物理 万有引力定律

万有引力定律 教学目标 知识目标 1、在开普勒第三定律的基础上,推导得到万有引力定律,使学生对此定律有初步理解; 2、使学生了解并掌握万有引力定律; 3、使学生能认识到万有引力定律的普遍性(它存在宇宙中任何有质量的物体之间,不管它们之间是否还有其它作用力). 能力目标 1、使学生能应用万有引力定律解决实际问题; 2、使学生能应用万有引力定律和圆周运动知识解决行星绕恒星和卫星绕行星运动的天体问题. 情感目标 1、使学生在学习万有引力定律的过程中感受到万有引力定律的发现是经历了几代科学家的不断努力,甚至付出了生命,最后牛顿总结了前人经验的基础上才发现的.让学生在应用万有引力定律的过程中应多观察、多思考. 教学建议 万有引力定律的内容固然重要,让学生了解发现万有引力定律的过程更重要.建议教师在授课时,应提倡学生自学和查阅资料.教师应准备的资料应更广更全面.通过让学生阅读“万有引力定律的发现过程”,让学生根据牛顿提出的几个结果自己去猜测万有引力与那些量有关.教师在授课时可以让学生自学,也可由教师提出问题让学生讨论,也可由教师展示出开普勒三定律和牛顿的一些故事引导学生讨论. 万有引力定律的教学设计方案 教学目的: 1、了解万有引力定律得出的思路和过程; 2、理解万有引力定律的含义并会推导万有引力定律;

3、掌握万有引力定律,能解决简单的万有引力问题; 教学难点:万有引力定律的应用 教学重点:万有引力定律 教具: 展示第谷、哥白尼,伽利略、开普勒和牛顿等人图片. 教学过程 (一)新课教学(20分钟) 1、引言 展示第谷、哥白尼,伽利略、开普勒和牛顿等人照片并讲述物理学史: 十七世纪中叶以前的漫长时间中,许多天文学家和物理学家(如第谷、哥白尼,伽利略和开普勒等人),通过了长期的观察、研究,已为人类揭示了行星的运动规律.但是,长期以来人们对于支配行星按照一定规律运动的原因是什么.却缺乏了解,更没有人敢于把天体运动与地面上物体的运动联系起来加以研究. 伟大的物理学家牛顿在哥白尼、伽利略和开普勒等人研究成果的基础上,进一步将地面上的动力学规律推广到天体运动中,研究、确立了《万有引力定律》.从而使人们认识了支配行星按一定规律运动的原因,为天体动力学的发展奠定了基础.那么: (1)牛顿是怎样研究、确立《万有引力定律》的呢? (2)《万有引力定律》是如何反映物体间相互作用规律的? 以上两个问题就是这节课要研究的重点. 2、通过举例分析,引导学生粗略领会牛顿研究、确立《万有引力定律》的科学推理的思维方法. 苹果在地面上加速下落:(由于受重力的原因): 月亮绕地球作圆周运动:(由于受地球引力的原因);

高一物理平均速度与加速度课后练习题

平均速度与加速度课后练习题 一、选择题 1: 下列关于平均速度和瞬时速度的说法中正确的是() A. 平均速度的大小就是平均速率 B. 某物体在某短时间内的瞬时速度都为零,则该物体在这段时间内静止 C. 平均速度就是初、末时刻瞬时速度的平均值 D. 瞬时速度就是运动的物体在一段较短的时间内的平均速度 2: 下列说法中指平均速度的是() A.汽车的速度计显示速度为90km/h B.子弹以800m/s的速度从枪口射出 C.小球在前3s内的速度是5m/s D.某城区道路汽车限速40km/h 3: 下列关于平均速度、瞬时速度、平均速率的说法中正确的是() A.平均速度=,当△t充分小时,该式可表示t时刻的瞬时速度B.匀速直线运动的平均速度等于瞬时速度 C.瞬时速度和平均速度都可以精确描述变速运动 D.平均速度的大小就是平均速率 4: 关于平均速度和瞬时速度的说法中正确的是() A.做变速运动的物体在相同时间间隔里的平均速度是相同的 B.瞬时速度就是运动的物体在一段较短的时间内的平均速度 C.平均速度就是初末时刻瞬时速度的平均值 D.某物体在某段时间里的瞬时速度都为零,则该物体在这段时间内静止5: 下列速度中,指平均速度的是() A.汽车通过长江大桥全程的速度 B.子弹射出枪口时的速度 C.雨滴落地时的速度 D.运动员冲过终点时的速度 6: 下面的几个速度中表示平均速度的是() A.子弹射出枪口时的速度是800m/s,以790m/s的速度击中目标 B.汽车从甲站行驶到乙站的速度是40km/h C.汽车通过站牌时的速度是72km/h D.小球第3 s末的速度是6m/s

7: 某中学正在举行班级对抗赛,张明明同学是短跑运动员,在百米竞赛中,测得他在6.25s末的速度为10.4m/s,12.5s末到达终点的速度为10.2m/s,则他在全程中的平均速度为() A.10.3 m/s B.10.2 m/s C.9 m/s D.8m/s 8: 短跑运动员在某次百米赛跑中测得5s末的速度9.00m/s,10s末到达终点时的速度为10.2m/s,则运动员在百米全程中的平均速度为() A.10.20m/s B.10.00m/s C.9.60m/s D.9.00m/s 9: 在北京奥运会上,我国选手孟关良、杨文军在男子双划艇500m决赛中以101s的成绩获得金牌.关于他们在决赛中的运动速度,下列说法中正确的是() A.最大速度一定为4.95m/s B.平均速度约为4.95m/s C.冲刺速度一定为4.95m/s D.起动速度约为4.95m/s 10: 一辆汽车以速度v1匀速行驶全程的的路程,接着以v2=20km/h走完剩下的路程,若它全路程的平均速度v=28km/h,则v1应为() A.24km/h B.34km/h C.35km/h D.28km/h 11: 一辆做直线运动的汽车,以速度v行驶了全程的一半,然后以平均速度行驶了后一半,到达终点时恰好停止,全程的平均速度为() A.B.C.D. 12: 一个物体做单向直线运动,它走完前半程的平均速度是12m/s,走完后半程的平均速度是6m/s,则它在全程的平均速度是() A.12 m/s B.9 m/s C.8 m/s D.6 m/s 13: 一汽车沿直线运动,先以10m/s的速度驶完全程的三分之二,余下的路程以20m/s的速度行驶, 则汽车从开始到驶完全程的平均速度大小为() A.16m/s B.13.3m/s C.15m/s D.12m/s 14: 甲乙两汽车沿平直公路同时同地同向驶往同一目的地,甲在前一半时间内以速度v1做匀速运动,后一半时间内以速度v2做匀速运动;乙车在前一半路程内以速度v1做匀速运动,在后一半路程内以速度v2做匀速运动,则()P A.甲先到目的地B.乙先到目的地Q C.甲、乙同时到达目的地D.条件不足,无法判断谁先到Q 15: 某人爬山,从山脚爬上山顶,然后又从原路返回到山脚,上山的平均速率为v1,下山的平均速率为v2,则往返的平均速度的大小和平均速率是() A.,B.,C.0,D.0,

万有引力定律典型例题解析

万有引力定律·典型例题解析 【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下: (1)g (2)(3)r 60R 地面上物体的重力加速度= ;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值; GM R GM r g 22αα (4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ; (5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果, 求 的值.α g 解析: (1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4 点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力 G Mm r mg G Mm r m 2 2α 的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目 的条件可以用、ω或来表示.v r r T 2224r 2 π 【例】月球质量是地球质量的 ,月球半径是地球半径的,在21811 38. 距月球表面14m 高处,有一质量m =60kg 的物体自由下落. (1)它落到月球表面需用多少时间? (2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力

加速度g 地=9.8m/s 2)? 解析:(1)4s (2)588N 点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设 mg G M m R mg G M m R 22月月月 地地地 =.同理,物体在地球上的“重力”等于地球对物体的 万有引力,设=. 以上两式相除得=,根据=可得物体落到月球表 面需用时间为==×=. 月月g 1.75m /s S gt t 4s 2 2 12 2214 175S g . (2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N . 跟踪反馈 1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量分布均匀,大小分别为m 1、m 2,则两球间的万有引力大小为: [ ] A .Gm 1m 2/r 2 B .Gm 1m 2/r 12 C .Gm 1m 2/(r 1+r 2)2 D .Gm 1m 2/(r 1+r 2+r)2

高中物理《万有引力定律》知识点

高中物理《万有引力定律》知识点 万有引力是由于物体具有质量而在物体之间产生的一种相互作用。它的大小和物体的质量以及两个物体之间的距离有关。物体的质量越大,它们之间的万有引力就越大;物体之间的距离越远,它们之间的万有引力就越小。 两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=Gmm/r^2,即万有引力等于引力常量乘以两物体质量的乘积除以它们距离的平方。其中G代表引力常量,其值约为6.67×10的负11次方单位N·m2/kg2。为英国科学家卡文迪许通过扭秤实验测得。 万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:ω=2π/T 如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小为mrω^2=mr(4π^2)/T^2 另外,由开普勒第三定律可得 r^3/T^2=常数k' 那么沿太阳方向的力为 mr(4π^2)/T^2=mk'(4π^2)/r^2 由作用力和反作用力的关系可知,太阳也受到以上相同大小的力。从太阳的角度看,

(太阳的质量m)(k'')(4π^2)/r^2 是太阳受到沿行星方向的力。因为是相同大小的力,由这两个式子比较可知,k'包含了太阳的质量m,k''包含了行星的质量m。由此可知,这两个力与两个天体质量的乘积成正比,它称为万有引力。 如果引入一个新的常数(称万有引力常数),再考虑太阳和行星的质量,以及先前得出的4·π2,那么可以表示为万有引力=Gmm/r^2 两个通常物体之间的万有引力极其微小,我们察觉不到它,可以不予考虑。比如,两个质量都是60千克的人,相距0.5米,他们之间的万有引力还不足百万分之一牛顿,而一只蚂蚁拖动细草梗的力竟是这个引力的1000倍!但是,天体系统中,由于天体的质量很大,万有引力就起着决定性的作用。在天体中质量还算很小的地球,对其他的物体的万有引力已经具有巨大的影响,它把人类、大气和所有地面物体束缚在地球上,它使月球和人造地球卫星绕地球旋转而不离去。 重力,就是由于地面附近的物体受到地球的万有引力而产生的。 任意两个物体或两个粒子间的与其质量乘积相关的吸引力。自然界中最普遍的力。简称引力,有时也称重力。在粒子物理学中则称引力相互作用和强力、弱力、电磁力合称

高一物理速度教学设计.doc

高一物理速度教学设计 高一物理速度这一课怎么做好教案呢?下面我为你整理了,希望对你有帮助。 物理速度教学设计【知识目标】 1.理解速度的概念,知道速度是表示物体运动快慢的物理量,知道速度的定义。 2.知道速度是矢量,知道速度的单位、符号和读法。了解生活实际中的某些直线运动的速度大小数据。 3.理解平均速度的概念,知道平均速度的定义式,会用平均速度的公式解答有关的问题。 4.知道瞬时速度的概念及意义,知道瞬时速度与平均速度的区别和联系。 5.知道速度和速率以及它们的区别。 物理速度教学设计【能力目标】 1.运用平均速度的定义,把变速直线运动等效成匀速直线运动处理,从而渗透物理学的重要研究方法等效的方法。 2.培养迁移类推能力 物理速度教学设计【情感目标】 1.通过解决一些问题,而向复杂问题过渡,使学生养成一种良好的学习方法。 2.通过师生平等的情感交流,培养学生的审美情感。

物理速度教学设计【教学方法】 1.通过例题和实例引导学生分析如何辨别快慢。 2.通过讨论来加深对概念的理解。 物理速度教学设计【教学重点】 速度,平均速度,瞬时速度的概念及区别。 物理速度教学设计【教学难点】 1.怎样由速度引出平均速度及怎样由平均速度引出瞬时速度。 2.瞬时速度与平均速度之间有什么区别和联系及在运动中瞬时速度是怎样确定的。 采用物理学中的重要研究方法──等效方法(即用已知运动来研究未知运动,用简单运动来研究复杂运动的一种研究方法)来理解平均速度和瞬时速度。 物理速度教学设计【师生互动活动设计】 1.教师通过举例,让学生自己归纳比较快慢的两种形式。 2.通过实例的计算,得出规律性的结论,即单位时间内的位移大小。 3.教师讲解平均速度和瞬时速度的意义。 物理速度教学设计【教学过程】 初始位置/m经过时间/s末了位置/m A.自行车沿平直道路行驶020100 B.公共汽车沿平直道路行驶010100 C.火车沿平直轨道行驶500301250 D.飞机在天空直线飞行500102500

高考物理万有引力定律的应用技巧和方法完整版及练习题含解析

高考物理万有引力定律的应用技巧和方法完整版及练习题含解析 一、高中物理精讲专题测试万有引力定律的应用 1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求: (1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F R m -(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】 (1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l 在最高点:2 22mv F mg l += ① 在最低点:2 11mv F mg l -= ② 由机械能守恒定律,得 221211222 mv mg l mv =?+ ③ 由①②③,解得1 2 6F F g m -= (2) 2 GMm mg R = 2GMm R =2 mv R 两式联立得:12()6F F R m -

(3)在星球表面:2 GMm mg R = ④ 星球密度:M V ρ= ⑤ 由④⑤,解得12 8F F GmR ρπ-= 点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度. 2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1 )2 ,16(2)速度之比为2 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2 Mm G mg R = a 卫星 2 224a GMm m R R T π= 解得2a T =b 卫星2 2 24·4(4)b GMm m R R T π= 解得16b T = (2)卫星做匀速圆周运动,F F =引向, a 卫星2 2a mv GMm R R =

高中物理万有引力定律(教学设计)

高中物理必修二第六章第三节 【教材分析】 万有引力定律是本章的核心,从内容性质与地位上看,本节内容是对上一节“太阳与行星间的引力”的进一步外推,即:从天体运动推广到地面上任何物体的运动;又是下一节掌握万有引力理论在天文学上应用的学习的基础。本节重点内容是理解万有引力定律的推导思路和过程,掌握万有引力定律的内容及表达公式,知道万有引力定律得出的意义,知道任何物体间都存在着万有引力,且遵循相同的规律。本节难点是物体间距离的理解。另外本节内容还注重是对学生“科学方法”教育和“情感态度与价值观”的教育:使学生认识科学研究过程中根据事实和分析推理进行猜想、假设和检验的重要性,培养学生的推理能力、概括能力和归纳总结能力;本节结合“月—地检验”,经历思维程序“提出问题→猜想与假设→理论分析→实验观测→验证结论”培养学生探究思维能力;使学生学习科学家们坚持不懈、勇往直前和一丝不苟的工作精神,培养学生良好的学习习惯和善于探索的思维品质。 【学情分析】 上节内容中,学生用所学的“圆周运动”、“开普勒行星运动定律”和“牛顿运动定律”知识,经历了一系列科学探究过程,得出了太阳与行星间的引力特点,学生对天体运动的研究产生了极大的兴趣和求知欲。本节课教师再引导学生从太阳与行星间引力的规律出发,根据类比事实将“平方反比关系”的作用力进行猜想,假设和推广,从太阳对行星的引力到地球对月球的引力,再到任意物体间的吸引力都满足“平方反比的关系”。学生会带着好奇和探究意识以及必要的检验论证,一路探究下去,最终得出万有引力定律。使学生在理解掌握万有引力定律的基础上,培养了探究思维能力和良好的思维品质,为学生终身发展打下基础。 【教学流程】 【教学目标】 一、知识与技能 1.理解万有引力定律的推导思路和过程。

最新万有引力定律 经典例题

1.天体运动的分析方法 2.中心天体质量和密度的估算 (1)已知天体表面的重力加速度g和天体半径R G Mm R2=mg? ? ? ?天体质量:M=gR2G 天体密度:ρ= 3g 4πGR (2)已知卫星绕天体做圆周运动的周期T和轨道半径r ?? ? ??①G Mm r2=m 4π2 T2r?M= 4π2r3 GT2 ②ρ= M 4 3 πR3 = 3πr3 GT2R3 ③卫星在天体表面附近飞行时,r=R,则ρ= 3π GT2 1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知() A.太阳位于木星运行轨道的中心 B.火星和木星绕太阳运行速度的大小始终相等 C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A 错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D错误. 答案:C 2.(2016·郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器.探测器升空

后,先在近地轨道上以线速度v 环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度v ′在火星表面附近环绕飞行.若认为地球和火星都是质量分布均匀的球体,已知火星与地球的半径之比为1∶2,密度之比为5∶7,设火星与地球表面重力加速度分别为g ′和g ,下列结论正确的是( ) A .g ′∶g =4∶1 B .g ′∶g =10∶7 C .v ′∶v = 528 D .v ′∶v = 514 解析:在天体表面附近,重力与万有引力近似相等,由G Mm R 2=mg ,M =ρ43 πR 3 ,解两式得g =4 3G πρR ,所以g ′∶g =5∶14,A 、B 项错;探测器在天体表面飞行时,万有引力 充当向心力,由G Mm R 2=m v 2R ,M =ρ4 3πR 3,解两式得v =2R G πρ 3 ,所以v ′∶v =528 ,C 项正确,D 项错. 答案:C 3.嫦娥三号”探月卫星于2013年12月2日1点30分在西昌卫星发射中心发射,将实现“落月”的新阶段.若已知引力常量G ,月球绕地球做圆周运动的半径r 1、周期T 1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径r 2、周期T 2,不计其他天体的影响,则根据题目条件可以( ) A .求出“嫦娥三号”探月卫星的质量 B .求出地球与月球之间的万有引力 C .求出地球的密度 D.r 13T 12=r 23T 2 2 解析:绕地球转动的月球受力为GMM ′r 12=M ′r 14π2 T 1 2得T 1= 4π2r 13 GM =4π2r 13 Gρ43πr 3.由于不知道地球半径r ,无法求出地球密度,C 错误;对“嫦娥三号”而言,GM ′m r 22 =mr 24π2 T 2 2,T 2=4π2r 23 GM ′ ,已知“嫦娥三号”的周期和半径,可求出月球质量M ′,但是所

高中物理教学与评价两个案例

高中物理教学与评价两个案例 案例1:追寻嫦娥一号的踪迹 【设计意图】 本案例是“曲线运动与万有引力定律”主题中利用现代信息技术手段设计的一次学习活动,体现了物理学习与现代信息技术的深度融合和学生学习方式的变化,可供有条件的学校教学参考。活动日的是引导学生在初步形成的“运动与相互作用观”和“能量观”的基础上,将所学的牛顿力学的运动规律与现代科技前沿联系起来,通过观看视频、模拟操作、讨论交流、推埋论证等过程,从运动与相互作用、能量的角度探索嫦娥一号的发射和运行规律,运用万有引力定律和圆周运动规律,建立航天器发射和运行的模型。学习全部内容需要2~3时,教师可根据教学实际,结合課堂与课外网络学习完成。课堂上注重引导学生经历建模过程,突破准点,侧重发展学牛的建模能力、推理能力、探究和交流能力,将评价和学习过程紧密结合起来。 【课前准备】 将学生分成三人小组,布置预习作业。 观看“嫦娥奅月”视频:几千年米,“嫦娥年月”的古老神话在百姓间广为流传,奔向遥远的月,成为人类孜孜以求的梦想。早在明朝就有一个名叫万户的人,自制火箭尝试“飞天”。尽管他失败了并为之付出了生命的代价,但是他却成为人类挑战太空的第一人。为了纪念万户,国际天文学联合会将月球上的一座环形山用他的名字命名为“万户山”。 思考:人类是如何实现天梦想的? 【引入】(可利用网络开展以下学生活动) 学生活动1——小组讨论:观看“婩娥弃月”后的惑受及思考,提出相关疑问。 学生活动2——观看视频:看嫦娥一号发射新闻报道视,同时在作业纸上记录数据,并在组内交流,提出需要深入研宄的问题。 学生通过上述活动,初步形成嫦娥一号发射升空过程的整体图景,并提出需要深入探究的核心问题:嫦娥一号是如何发射升空的?是如何运行的?又是如何变轨的? 【探究过程】 问题1 嫦娥一号是如何发射升空的 思考:将物体从高塔上水平抛出,物体最终落到地面上。当增大抛射速度时,物体运动的距离更远;速度越大,距离越远。如果这个速度非常大,会是什么情况呢? 活动1——模拟操作 用仿真实验室体验,选不同的抛出速度:v=20 m/s、v=20km/s、v=7.9km/s≤v≤11.2kms、v ≥11.2km/s,观察物体水平抛出后的运动轨迹,与思考结果进行比较。(以上活动可在课前利用网终完成,小组讨论也可通过网上交流实现。) 活动2——小组讨论 为什么物体能绕地球旋转起来呢?这个速度为什么必须是7.9kms?请从理论上推导,并跟

高一物理必修一速度练习题

高一物理必修一速度练 习题 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

1.物体沿一条直线运动,下列说法正确的是()A.物体在某时刻的速度为3m/s,则物体在1s内一定走3m B.物体在某1s内的平均速度是3m/s,则物体在这1s内的位移一定是 3m C.物体在某段时间内的平均速度是3m/s,则物体在1s内的位移一定是3m D.物体在发生某段位移过程中的平均速度是3m/s,则物体在这段位移的一半时的速度一定是3m/s 2.关于平均速度的下列说法中,物理含义正确的是() A.汽车在出发后10s内的平均速度是5m/s B.汽车在某段时间内的平均速度5m/s,表示汽车在这段时间的每1s内的位移都是5m C.汽车经过两路标之间的平均速度是5m/s D.汽车在某段时间内的平均速度都等于它的初速度与末速度之和的一半3.火车以76km/h的速度经过某一段路,子弹以600m/s的速度从枪口射出,则() A.76km/h是平均速度 B.76km/h是瞬时速度 C.600m/s是瞬时速度 D.600m/s是平均速度 4.下列说法中正确的是() A.在匀速直线运动中,v跟s成正比,跟t成反比 B.在匀速直线运动中,各段时间内的平均速度都相等 C.物体在1s内通过的位移与1s的比值叫做这1s的即时速度

D.在直线运动中,某段时间内的位移的大小不一定等于这段时间通过的路程 5.某人沿直线做单方向运动,由A到B的速度为1v,由B到C的速度为2v,若AB=BC,则这全过程的平均速度是() 6. 已知心电图记录仪的出纸速度(纸带移动的速度)是2.5?cm/s,如图3所示是仪器记录下来的某人的心电图,图中每个小方格的边长为 0.5?cm,由此可知(??) A.此人的心率约为75次/分 B.此人的心率约为125次/分? C.此人心脏每跳动一次所需时间约为0.75?s? D.此人心脏每跳动一次所需时间约为0.80?s 7.下列关于速度的说法正确的() A.速度是描述物体位置变化的物理量 B.匀速直线运动的速度方向是可以改变的 C.位移方向和速度方向一定相同 D.速度方向就是物体运动的方向 8.为了传递信息,周朝形成了邮驿制度.宋朝增设了“急递铺”,设金牌、银牌、铜牌三种。“金牌”一昼夜行500里,每到一个驿站换人换马接力传递。“金牌”的平均速度是() A.与成年人步行的速度相当 B.与人骑自行车的速度相当

高一物理 万有引力定律 典型例题解析

万有引力定律 典型例题解析 【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下: (1)g (2)(3)r 60R 地面上物体的重力加速度= ;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值;GM R GM r g 2 2αα (4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ; (5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果, 求的值.αg 解析: (1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4 点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力G Mm r mg G Mm r m 22α 的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目 的条件可以用、ω或来表示.v r r T 2224r 2π

【例】月球质量是地球质量的,月球半径是地球半径的,在2181138. 距月球表面14m 高处,有一质量m =60kg 的物体自由下落. (1)它落到月球表面需用多少时间? (2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力加速度g 地=9.8m/s 2)? 解析:(1)4s (2)588N 点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设 mg G M m R mg G M m R 22月月月地地地=.同理,物体在地球上的“重力”等于地球对物体的 万有引力,设=. 以上两式相除得=,根据=可得物体落到月球表面需用时间为==×=.月月g 1.75m /s S gt t 4s 2212 2214175S g . (2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N . 跟踪反馈 1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量

万有引力定律应用的12种典型案例

万有引力定律应用的12种典型案例 万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。 特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。 下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例: 【案例1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律: r T 4m r Mm G 22 2π=……①得: 2 32GT r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力 由2R Mm G mg =得:G g R M 2=可见B 正确 【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。 【案例2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是

(完整版)高中物理万有引力部分知识点总结

高中物理——万有引力与航天 知识点总结 一、开普勒行星运动定律 (1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 (2)对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积。 (3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。 二、万有引力定律 1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. 2.公式:F=Gm1m2/r^2,其中G=6.67×10-11 N·m2/kg2,称为万有引力常量。 3.适用条件: 严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但

此时r应为两物体重心间的距离。对于均匀的球体,r是两球心间的距离。 三、万有引力定律的应用 1.解决天体(卫星)运动问题的基本思路 (1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式: F=Gm1m2/r^2=mv^2/r=mω2r=m(2π/T)2r (2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=Gm1m2/r^2,gR2=GM. 2.天体质量和密度的估算 通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即G r2(Mm)=m T2(4π2)r,得出天体质量M=GT2(4π2r3). (1)若已知天体的半径R,则天体的密度 ρ=V(M)=πR3(4)=GT2R3(3πr3) (2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT2(3π) 可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度. 3.人造卫星 (1)研究人造卫星的基本方法

万有引力定律典型例题分析

“万有引力定律”的典型例题 例5 【例1】假如一个作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则 [ ] A.根据公式v=ωr,可知卫星运动的线速度将增大到原来的2倍 D.根据上述选答B和C中给出的公式,可知卫星运动的线速度将 【分析】人造地球卫星绕地球作匀速圆周运动时,由地球对它的引力作向心力,即 卫星运动的线速度

当卫星的轨道半径增大为原来的2倍时,由于角速度会发生变化, 错,D正确. 同理,当卫星的轨道半径增大为原来的2倍时,由于线速度的变化,卫星所需的向心力不是减为原来的1/2,而是减小到原来的1/4.B错,C正确. 【答】C、D. 【说明】物体作匀速圆周运动时,线速度、角速度、向心加速度、向心力和轨道半径间有一定的牵制关系.例如,只有当ω不变时,线速度才与半径成正比;同样,当线速度不变时,同一物体的向心力才与半径成反比.使用中不能脱离条件. 研究卫星的运动时,最根本的是抓住引力等于向心力这一关系. 【例2】估算天体的质量 【解】把卫星(或行星)绕中心天体的运动看成是匀速圆周运动,由中心天体对卫星(或行星)的引力作为它绕中心天体的向心力.根据 得 因此,只需测出卫星(或行星)的运动半径r和周期T,即可算出中心天体的质量M.

【例3】登月飞行器关闭发动机后在离月球表面112km的空中沿圆形轨道绕月球飞行,周期是120.5min.已知月球半径是1740km,根据这些数据计算月球的平均密度.(G=6.67×10-11Nm2/kg2) 【分析】要计算月球的平均密度,首先应求出质量M.飞行器绕月球做匀速圆周运动的向心力是由月球对它的万有引力提供的. 【解】根据牛顿第二定律有 从上式中消去飞行器质量m后可解得 根据密度公式有 【例4】如图1所示,在一个半径为R、质量为M的均匀球体中, 连线上、与球心相距d的质点m的引力是多大? 【分析】把整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力之和,即可得解.

高一物理必修一第一章速度练习题(完整资料)

此文档下载后即可编辑 1.物体沿一条直线运动,下列说法正确的是() A.物体在某时刻的速度为3m/s,则物体在1s内一定走3m B.物体在某1s内的平均速度是3m/s,则物体在这1s内的位移一定是3m C.物体在某段时间内的平均速度是3m/s,则物体在1s内的位移一定是3m D.物体在发生某段位移过程中的平均速度是3m/s,则物体在这段位移的一半时的速度一定是3m/s 2.关于平均速度的下列说法中,物理含义正确的是() A.汽车在出发后10s内的平均速度是5m/s B.汽车在某段时间内的平均速度5m/s,表示汽车在这段时间的每1s内的位移都是5m C.汽车经过两路标之间的平均速度是5m/s D.汽车在某段时间内的平均速度都等于它的初速度与末速度之和的一半 3.火车以76km/h的速度经过某一段路,子弹以600m/s的速度从枪口射出,则() A.76km/h是平均速度B.76km/h是瞬时速度 C.600m/s是瞬时速度D.600m/s是平均速度 4.下列说法中正确的是() A.在匀速直线运动中,v跟s成正比,跟t成反比 B.在匀速直线运动中,各段时间内的平均速度都相等 C.物体在1s内通过的位移与1s的比值叫做这1s的即时速度 D.在直线运动中,某段时间内的位移的大小不一定等于这段时间通过的路程5.某人沿直线做单方向运动,由A到B的速度为1v,由B到C的速度为2v,若AB=BC,则这全过程的平均速度是() 6.已知心电图记录仪的出纸速度(纸带移动的速度)是2.5cm/s,如图3所示是仪器记录下来的某人的心电图,图中每个小方格的边长为0.5cm,由此可知() A.此人的心率约为75次/分 B.此人的心率约为125次/分

相关主题
文本预览
相关文档 最新文档