当前位置:文档之家› 施耐德无功补偿资料

施耐德无功补偿资料

施耐德无功补偿资料
施耐德无功补偿资料

供配电系统无功补偿方案的选择

0引言 韶钢新一钢供电系统负荷存在多样性,无功功率消耗大,自然功率因数低,谐波大。因此解决好电网的无功功率补偿和谐波治理问题,对于提高炼钢供配电系统电能质量、保证设备安全运行、节能降耗、充分利用电气设备的出力等具有重要的意义。 1无功补偿 1.1无功补偿作用 在炼钢供配电系统中,电动机、变压器等设备是无功功率消耗大户,电力线路、变频器、气体放电电灯、电焊机、空调及其它大多数设备也都是无功功率消耗户。如果所需要的无功功率由外部供电网络经过长距离传送,通常不合理也不可能。如果这些所需要的无功功率不能及时得到补偿,对炼钢供电系统电能质量就会造成严重影响。无功功率补偿作用有:(1)稳定受电端及电网的电压,提高供电质量。 (2)提高供用电系统及负载的功率因数,降低设备容量,减小功率损耗。 (3)减少线路损失,提高电网的有功传输能力。 (4)降低电网的功率损耗,提高变压器的输出功率及运行经济效益。 (5)降低设备发热,延长设备寿命,改善设备的利用率。 (6)高水平平衡三相的有功功率和无功功率。1.2无功补偿方法及原则 配电网中常用的无功补偿方式包括:在高低压配电线路中分散安装并联电容器组;在配电变压器低压侧和车间配电屏间安装并联电容器以及在单台用电设备附近安装并联电容器(就地补偿)等。目前,常采用的无功补偿方式有就地无功补偿、分散无功补偿和集中无功补偿。就地无功补偿采用电容器直接装于用电设备附近,与其供电回路相并联,常用于低压网络;分散无功补偿常采用高压电容器分组安装于电网的10kV和6kV配电线路的杆架上、公用配电变压器的低压侧、用户各车间的配电母线上,达到提高电网的功率因数、降低供电线路的电流、减少线损的目的;集中无功补偿采用变电站或高压供电电力用户降压变电站母线上的高压电容器组,也包括集中装设于电力用户总配电高低压母线上的电容器组,其优点是有利于控制电压水平,且易于实现自动投切,利用率高,维护方便,能减少配电网、用户变压器及专供线路的无功负荷和电能损耗,但是不能减少电力用户内部各条配电线路的无功负荷和电能损耗。 根据P=S cosφ,当功率因数cosφ=1时,有功功率P等于变压器的视在功率S,而当功率因数为0.6~0.7时,如不进行补偿,供电变压器的效率就很难提高,如1000kVA的变压器仅能带600~700kW的有功功率。 供配电系统无功补偿方案的选择 刘火红,陆吉利,李权辉,左文瑞 (宝钢集团广东韶关钢铁有限公司炼钢厂,广东韶关512123) 摘要:介绍无功补偿的作用、方法及原则,分析炼钢供配电系统负荷性质及无功补偿的必要性,并提出各供配电系统的无功补偿方案。 关键词:负荷;无功补偿;功率因数 Selection of Reactive Power Compensation Scheme for Distribution System LIU Huo-hong,LU Ji-li,LI Quan-hui,ZUO Wen-rui (Steel Plant of Guangdong Shaoguan Iron&Steel Co.,LTD of Baosteel Group,Shaoguan512123,China) Abstract:The function,method and principle of reactive power compensation are introduced.The nature of the supply load and distribution system of steel making and the necessity of reactive power compensation are analyzed.The reactive pow-er compensation programs of the power supply and distribution system are proposed. Keywords:load;reactive power compensation;power factor 作者简介:刘火红(1972-),三电主管,电气工程师,从事电 气自动化管理工作。 收稿日期:2013-10-15 电力专栏 89 2014 自动化应用3期

无功补偿控制器说明书

目录 1产品功能简介 (1) 2产品型号及含义 (3) 3使用条件 (3) 4技术参数 (4) 5面板图示 (6) 6投切判定 (8) 7基本操作 (9) 7.1初始运行 (10) 7.2自动运行 (11) 7.3参数设置 (15) 7.4手动投切 (24) 7.5其它 (25) 8超限及警报信息 (26) 9设备通讯 (27) 10注意事项 (28) 11接线图示 (29)

12外形及开孔尺寸 (30) 1产品功能简介 JKW-18J无功补偿与配电监测控制器,是依据JB/T9663—1999标准及城乡电网改造的技术条件而设计开发的一种新型控制器,具有无功补偿、数据采集、通讯、电网参数分析等功能,适用于交流50Hz、0.4kV低压配电系统的监测及无功补偿控制。 本产品具有以下功能: (1)数据采集 ●电压;电流;功率因数 ●有功功率;无功功率 ●有功电度;无功电度 ●频率;电压谐波;电流谐波 ●日电压、电流最大值、最小值; ●有关数据存储多达60天 (2)数据通讯 具有RS232通讯接口,通讯方式可采用现场采集或远程采集,配备无线转接模块可近距离(50米以内)无线抄收数据。

(3) 数据管理 基于WINDOWS2000/XP 操作平台,通讯数据自动生成各种报表、曲线及棒图。 (4) 无功补偿 ● 取样物理量为无功功率,无投切振荡、无补偿呆区; ● 输出多达18路; ● 电容器投切执行元件采用固态继电器。 (5) 运行保护 ● 两相失电时,不影响数据的采集、存储、通讯。 ● 对过压、欠压、缺相及谐波、零序进行报警并做出相应动作。 (6) 显 示 ● 采用128×64背光液晶显示器 ● 全中文人机对话界面 ● 实时显示电网有关参数 ● 直观显示预置参数 2产品型号及含义 3使用条件 板前接线型 JK W —18 J Q

JKWNA-9低压无功补偿控制器使用说明书(2015总线版、.

JKWNA-9 低压无功补偿控制器 使用说明书江苏南自通华电力自动化有限公司 1产品简介 1.1概述 JKWNA-9低压无功补偿控制器和NA系列智能集成式电力电容补偿装置配套使用,具备采集并显示电测量数据,监测和显示智能电容器运行工况、投切状态,以及根据无功功率与目标功率因数自动控制投切电容器等功能。 1.2产品特点 JKWNA-9低压无功补偿控制器通过通信总线连接NA系列智能集成式电力电容补偿装置;控制器采集电网电测数据,在显示智能电容器组运行情况的同时,可以直接根据当前的电测数据,对电容器组进行智能投切控制,以达到无功补偿的效果。 1.3外观尺寸 2技术参数

显示分辨率128×64,显示12点阵汉字输入测量RJ45方式接入智能电容器网络 电源 工作范围AC380V±30% 功耗≤2W 工作条件 -10~55℃,相对湿度≤93% 无腐蚀气体场所,海拔≤2000m 隔离耐压电源>2500V 绝缘电阻≥2MΩ 尺寸 面框尺寸:120mm×120mm 开孔尺寸: 3使用说明 JKWNA-9低压无功补偿控制器面板由产品名称及公司信息、液晶显示屏、操作按键组成。下面对液晶显示屏显示内容和主要功能作简单说明: 3.1主菜单 液晶屏第1行从左到右依次显示:联网电容器数量、当前投切控制方式(自控/手控和软件版本号;

当前所有联网电容器的投切状态以图形的方式直观显示在液晶屏上,同时显示投入到电网中总的补偿容量,显示界面如下: 注:表示分补表示共补表示投入表示切除 当前电容柜补偿电流界面如下: 3.2运行工况 显示开关故障、过压保护、过流保护、过温保护、过谐波保护的电容器信息。 使用和切换界面查看各种保护与故障,按 键返回主菜单。 3.3设置参数 设置参数 CT变比(比值:0000 目标功率因数:0.99 无功算法时间:040 设置现场的电流互感器变比,无功控制的目标功率因数和无功算法时间。

无功补偿装置几种常见类型比较

无功补偿装置几种常见类型比较 常见的动态无功补偿装置有四种:调压式动态无功补偿装置、磁控式动态无功补偿装置、相控式(TCR型)动态无功补偿装置、SVG 动态无功发生器。 ① 调压式动态无功补偿装置 调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。根据 Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。该装置为分级补偿方式,容易产生过补、欠补。由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。由于有载调压变压器的阻抗,使得滤波效果差。虽然价格便宜, 占地面积小,维护方便,一般年损耗在0.2%以下。 ② 磁控式(MCR型)动态无功补偿装置 磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。 能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。

磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的1%~2%,无需串、并联,不容易被击穿,安全可靠。设备自身谐波含量少,不会对系统产生二次污染。占地面积小,安装布置方便。装置投运后功率因数可达0.95以上,可消除电压波动及闪变,三相平衡符合国际标准。免维护,损耗较小,年损耗一般在0.8%左右。 ③相控式动态无功补偿装置(TCR) 相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。相控式原理的可控电抗器的调节原理见下图 所示。 通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0°~90°范围内变化。控制角α的变化,会导致流过相控电抗器的电流发生变化,从而改变电抗器输出的感性无功的容量。 普通的电容器组提供固定的容性无功,感性无功和容性无功相抵消,从而实现总的输出无功的连续可调。 i 相控式原理图 优点: 响应速度快,≤40ms。适合于冶金行业。 一般年损耗在0.5%以下。缺点:晶闸管要长期运行在高电压和大电流工况下,容易被

无功补偿电柜操作规程1

1.目的 1.1规范无功补偿电柜操作。 2.范围 2.1适用于计划管理部设备能动科 3.主要技术参数 4.操作方法 4.1装置上电后直接进入主画面 4.1.1 按“数据显示”,将分别显示系统电压、系统电流、负荷电流和输出电流。 1. 2. 3. 4.

4.3;状态查询 状态查询显示分三个部分:状态查询、事件记录和程序版本,分别用于当前装置状态查询和历史事件查询以及软件版本查询!状态查询的内容及意义见下表: 4.4 事件记录如图:最上一行数字表示时间序号,中间表示事件事件内容,下

一行为事件发生日期事件 5.参数设置:参数设置分厂家参数和用户参数。点击主界面的“参数设置”可进入用户参数设置,具体内容和意义见下图:

6.1装置操作:装置操作用于装置的启动和待机,如下图,点击按钮既进行相应操作. 6.2装置投入运行过程: 1.确认装置已经按照要求正确的接入系统中 1).一次回路的A,B,C,N已经正确接入系统中,相别和相序接入正确; 2).二次回路的ct测量线已经正确接入装置的相应端子,方向、相别接入都正常; 2.通过人机界面,进入参数设置,检查参数设置正确 3.合闸并网 6.3装置退出运行过程 按前面板的分闸按钮,使装置的断路器断开,装置停止运行! 7.注意事项

7.1必须由专业人士进行配线操作,否则有触电的危险; 7.2 确认输入电源处于完全断开的情况下,才可进行配线操作,否则有触电的危险; 7.3必须将装置的接地端子可靠接地,否则有触电的危险。接地线一般为直径 mm以上的铜线,接地电阻小于0.1Ω; 2.52 7.4 上电前必须将盖板盖好,否则有触电的危险; 7.5不要用手触摸端子,否则有触电的危险; 7.6 应在断开电源至少15分钟后进行操作,否则有触电的危险; 7.7严禁将线头或金属物遗留在机器内,否则有发生火灾的危险; 7.8主回路接线用电缆鼻子部分,必须用绝缘胶带包扎好,否则有触电的危险; 7.9如果装置有损坏或者零部件不全时,请不要运行,否则有发生火灾、受伤的危险 7.10主回路端子与导线鼻子必须牢固连接,否则有损坏财物的危险; 本文件归口部门:计划管理部设备能动科 本文件于2016年3月18日发布

工厂供配电系统无功补偿的作用与收益

工厂供配电系统无功补偿的作用与收益 1.无功补偿的基本原理 在交流电路中,如果是纯电阻电路,电能都转化成了热能,而在通过纯容性或纯感性负载的时候,并不做功,也就是不消耗电能,即为无功功率。当然实际负载一般都是混合性负载,这样电能在通过负载时,就有一部分电能不做功,就是无功功率,此时的功率因数小于1,为了提高电能的利用率,就要进行无功补偿。 无论是工业负荷还是民用负荷,大多数均为感性。所有电感负载均需要补偿大量的无功功率,提供这些无功功率有两条途径:一是输电系统提供;二是补偿电容器提供。如果由输电系统提供,则设计输电系统时,既要考虑有功功率,也要考虑无功功率。由输电系统传输无功功率,将造成输电线路及变压器损耗的增加,降低系统的经济效益。而由并联补偿电容器就地提供无功功率,就可以避免由输电系统传输无功功率,从而降低无功损耗,提高系统的传输功率。 S1为功率因数改善前的视在功率;S2为功率因数改善后的视在功率 2.无功补偿的效益 2.1 提高功率因数 2.1.1 基本原理 在交流纯电阻电路中,负载中的电流IR与电压U同相位,纯电感负载中的电流IL滞后于电压90°,而纯电容的电流IC则超前于电压

90°,如图所示。可见,电容中的电流与电感中的电流相差180°,它们能够互相抵消。 电力系统中的负载大部分是感性的,因此总电流I将滞后于电压一个角度φ,如果将并联电容器与负载并联,则电容器的电流IC将抵消一部分电感电流,从而使电感电流IL减小到IL',总电流从I减小到I',功率因数将由cosφ提高到cosφ',这就是并联电容器补偿无功功率提高功率因数的原理(如图2)。 由于电容器与电感性负载并联安装,所以,当电感性负载吸收能量时,正好并联电容器释放能量。而电感性负荷放出能量时,并联电容器却在吸收能量,能量在两者之间转换。即:电感性负载所吸收的无功功率,可由并联电容器所输出的 2.1.2 节省企业电费开支 提高功率因数对企业的直接经济效益是明显的,因为国家电价制度中,从合理利用有限电能出发,对用电企业的功率因数规定了最低数值(一般规定基数为cosφ=0.9),低于规定的数值,需要罚款多收电费,高于规定的数值,可奖励相应的减少电费。 供电部门在收取电费时,按照行业标准规定:根据每月的实际功率因数,在高于或低于基数0.9时,按照规定的电价计算出当月的电费后,再按照上表所规定的百分数进行奖惩,增减电费。 无功功率的节能对用户来说,就是最大可能的提高功率因数,减少无功计量,把实际功率因数保持在0.95以上,以降低电费。以我公司

正泰nwkG无功补偿控制器说明书

NWK-G系列 智能型无功补偿控制器 使用说明书 一、简介 NWK-G系列智能型无功功率自动补偿控制器是低压配电系统补偿无功功率专用仪器,可与各型号低压静电电容屏配套使用。NWK1-G型(开孔尺寸为本113×113mm),NWK2-G型(开孔尺寸为162×102),输出路数各有4、6、8、10路四种规格。本机博采国内外先进技术,采用进口单片机控制,具有体积小、重量轻、功能完善、操作简单、抗干扰能力强、运行稳定可靠、补偿精确等突出优点。依据JB/T9663-1999国家最新专业标准设计,一次性通过机械工业部天津电气传动研究所发配电及电控设备检测所的型式试验,主要性能指标达到国内先进水平,是低压电容屏厂家首选产品。 二、功能特点 1、采用国外先进芯片,增加了断电记忆功能。即在系统断电及控制器复位时,参数及程序自动记忆,不丢失;供电恢复后控制器仍按断电前所设定的参数进入自动运行状态,实现无人操作化。 2、LED数字显示电网功率因素,显示范围:滞后(0.00~0.99),超前(0.00~0.99)。 3、通过面板三个功能键能完成数字显示COSφ设定值,延时设定值,过压设定值的设定。简明的人机对话,使操作极为方便。 4、当电网电压超过本机过压设定值时,COSφ表自动转换显示为电网当前的电压值,同时自动快速逐级切除已投入的电容组。 5、判别取样电流极性(自动识别极性),并自动转换。给安装调试使用带来极大方便。 6、当取样讯号线开路或无输入取样电流信号时,本机数字COSφ自动显示https://www.doczj.com/doc/a216524999.html,。 7、输出动作程序为先接通先分断,先分断先接通的循环工作方式及适应于就地补偿装置动作程序要求的1、2、2、2、2、1编码工作方式。 8、具有手动/自动转换,置自动时,本机自动跟踪电网功率因素及无功电流,控制电容器自动投入或切除,置手动时在本机上能实现手投或手切。 9、有超前、滞后、过压、欠流LED指示灯指示。LED提示编程输入。 10、抗干扰能力强,能抵御从电网直接输入的幅值2000V的干扰脉冲,高于国家专业标准。 三、使用条件 1、海拔高度不超过1000米。 2、环境温度不高于+40℃,24小时内平均温度不超过+35℃,最低环境温度不低于-10℃。 3、空气相对湿度不大于85%(在25℃时)。 4、周围环境,无易燃易爆的介质存在,无导电尘埃及腐蚀性气体存在。 5、电网电压波动范围不大于本机额定电压±10%。 五、安装方式 NWK1-G外型采用42L6系列仪表结构,外形尺寸120×120×80mm,安装开孔113×113mm,嵌入深度为80mm,侧面设安装孔,紧固附件的挂钩插入孔内,旋附件上的螺丝即把控制器固定在屏上。 六、接线方法 1、控制器电压U1、U3接B相、C1、图2) 2、取样电流端I1、I2必须取自总负荷(总柜)A相电流互感器次级,不得取自电容屏。 开孔 3、COM为控制器输出端1~10组内部继电器的公共源,交流接触器J线圈电压220V。 NWK1-G型接线图(图1)略 (如果接触器线圈电压为380V,公共端接火线) 控制固态继电器接线图(图2)略

无功补偿标准

CECS 32-1991 并联电容器用串联电抗器设计选择标准.chm CECS S33-1991 并联电容器装置的电压、容量系列选择标准[附条文说明] .chm DL 442-1991 高压并联电容器单台保护用熔断器订货技术条件.pdf DL 484-1992 静态零序补偿型电抗继电器技术条件.doc DL 5014-1992 330~500kV变电所无功补偿装置设计技术规定.pdf DL/T 597?1996 低压无功补偿控制器订货技术条件.pdf DL/T 604-1996 高压并联电容器装置订货技术条件.pdf GB 11024-1989 高电压并联电容器耐久性试验.pdf GB 15166.5-1994 交流高压熔断器并联电容器外保护用熔断器.pdf GB 3667-1997 交流电动机电容器.pdf GB 3983.1-1989 低电压并联电容器.pdf GB 3983.2-1989 高电压并联电容器.pdf GB 50227-1995 并联电容器装置设计规范.pdf GB 50227-1995 并联电容器装置设计规范条文说明.doc GB 6565-1987 交流高压断路器的开合电容器组试验.doc GB 6915-1986 高原电力电容器.pdf GB 6916-1986 湿热带电力电容器.doc GB 7675-1987 交流高压断路器的开合电容器组试验.pdf GB/T 15576-1995 低压无功功率静态补偿装置总技术条件.pdf GB/T 2900.16-1996 电工术语电力电容器.pdf GB/T 4705-1992 耦合电容器及电容分压器.doc GB/T 4787-1996 断路器电容器.pdf JB 7113-1993 低压并联电容器装置.pdf JB 7115-1993 低压无功就地补偿装置.pdf JB/T 7111-1993 高压并联电容器装置.doc JB/T 7112-2000 集合式高电压并联电容器.doc JB/T 7113-1993 低压并联电容器装置.doc JB/T 7115-1993 低压就地无功补偿装置.doc JB/T 7613-1994 电力电容器产品包装通用技术条件.doc JB/T 8168-1999 脉冲电容器及直流电容器.doc JB/T 8169-1999 耦合电容器及电容分压器.doc JB/T 8596-1997 交流电动机起动用电解电容器.doc JB/T 8958-1999 自愈式高电压并联电容器.pdf JB/T 9663-1999 低压无功功率自动补偿控制器.doc SD 205-1987 高压并联电容器技术条件.pdf SD 325-1989 电力系统电压和无功电力技术导则(试行).pdf SDJ 25-1985 并联电容器装置设计技术规程(试行).doc ZBK 48003-1987 并联电容器电气试验规范.doc 电力系统电压和无功电力管理条例.doc

无功补偿控制器

无功补偿控制器 产品概述 JKWZ-200无功补偿与配电监测控制器(以下简称控制器) ,具有无功补偿、数据采集、通讯等功能,适用于交流50Hz、0.4kV低压配电系统的监测及无功补偿控制,以达到最大限度的节能降耗、提高电网质量的目的,该产品经过十多年的持续改进应用,有近万只的连续运行,产品稳定可靠。 1. 数以电压、功率因数、无功功率等综合判定条件投切电容,无投切振荡,无投切呆区,具有控制精度高,装置补偿效果好。 JKWZ无功补偿控制器 2. 多种投切模式,共补、分补、混合补偿多达12路6种组合。 3. 支持短信模式,短信息和手机兼容,可以使用手机直接查看或设置参数。

4. 中文液晶显示,界面友好。可分相分级对三相不平衡的配电系统无功进行精确补偿。 5. 具有过压、欠压,并能故障闭锁,保护补偿装置;控制器数据可通过485通讯上传至主控室,便于管理。 6. 控制器对外联系的部分均采用多种信号隔离措施---如电磁隔离、光电隔离等,以提高控制器的抗干扰能力。 7. 自适应频率算法,输入信号在45-55Hz之间变化,均可实现正常数据采集功能。相位自动识别,接线简单。 8. 器具有功耗低、安装方便、匹配方式灵活多样、适应多种运行环境等特点。 9. 路板采用多层表面贴装技术,减少了电路体积,减少发热,提高了控制器的可靠性。 10. 控制器采用整体面板、封闭机箱,强弱电严格分开,同时在软件设计上也采取相应的抗干扰措施,控制器的抗干扰能力大大提高,对外的电磁辐射也满足相关标准。 11. 在采样回路中,选用高精度、高稳定的16位AD模数转换器件,保证正常运行的高精度,避免因环境改变或长期运行而造成采样误差增大。

无功补偿装置安全操作规程

严禁在不熟悉此设备安全操作规程的情况下执行下列所有行为 1.操作步骤 1.1.现场手动合闸操作 1.1.1送电前的各项检查 a)装置柜中的高压真空断路器的接地刀闸应在断开位置。 b)关好柜门,装置上各信号显示正常。 c)送到上一级断路器柜的各告警或报警信号都应正常。 1.1.2通知上一级断路器柜合闸。高压一旦送上,此时母线高压带电也应有显 示。 1.1.3合上各部分操作电源开关。 1.1.4将钥匙转换开关转换为“手动”,按其面板上的合闸按键,即可实现按 需要手动投切。 1.2.现场手动分闸 1.1.1首先把钥匙转换开关转换为“手动”,按其面板上的分闸按键,然后即 可退出电容器。 1.1.2通知上一级断路器柜分闸。 1.1.3将柜中的高压接地开关合上,此时接地刀闸应在合上位置。 2.停电检修步骤 设备正常运行时,禁止打开各柜柜门,同时高压带电显示器在闭锁状态,安装在各柜的电磁锁处于闭锁打不开柜门。 打开柜门操作步骤:先退出运行的电容器-通知上一级断路器柜分闸-过10分钟→合柜内的高压接地开关→停操作电源→拧开柜门锁→即可打开柜门;首先验

电,然后放掉电容器的残压,方可检修。 3.运行和保养注意事项 3.1.本装置的电容器额定电压为10kV,频率为50Hz,实际运行时电网电压不 应超过装置额定电压的1.1倍。如电网电压过高,应将电压调整至正常再运行。 3.2.投入运行的装置,应每天进行一次详细的检查并作好记录,尤其是各个 电气数据、温度和噪声等参数变化情况。 3.3.在进行拆卸、维护、检修作业时,必须按电气检修规程中规定,最后合上高 压接地开关,并作好安全防护方可进行作业。 3.4.保养时应着重检查电气接触可靠性,紧固件的紧固状况,搞好除尘清洁 工作,发现有渗漏现象时应退出运行,更换器件或送修。 3.5.经常检查整套装置的防护状况,严防各种动物进入箱内。 3.6.在运行中发现高压熔断器熔断时,应首先查清原因,并将问题处理好方 可送电。停送电操作需考虑电炉的运行状态。 3.7.经常对电容器的外观检查,如发现电容器外壳变形,应立即停止使用, 并查明原因。 4.检修注意事项 4.1.检修时必须停电10min,当带电显示器不显示带电后,方可合上高压接 地开关,打开柜门。 4.2.在人接触电容器前,即使有放电器件,仍须用试电笔检测。然后用绝缘 接地棒将电容器短路接地放电。任何时候均不应将两手直接接触两个套管的接线 头。对已损坏退出运行的电容器尤其如此。 4.3.检修完毕应及时接地线拆除。 4.4.长期停放过的电容器重新使用前须经过验收试验及外观检查,合格后方可使用。 7 故障分析与排除

《国家电网公司电力系统无功补偿配置技术原则》

《国家电网公司电力系统无功补偿配置技术原则》 第一章总则 第一条为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、《电力系统安全稳定导则》、信息来源:《电力系统电压和无功电力技术导则》、《国家电网公司电力系统电压质量和无功电力管理规定》等相关技术标准和管理规定,特制定本技术原则。 第二条国家电网公司各级电网企业、并网运行的发电企业、电力用户均应遵守本技术原则。 第二章无功补偿配置的基本原则 第三条电力系统配置的无功补偿装置应能保证在系统有功负荷高峰和负荷低谷运行方式下,分(电压)层和分(供电)区的无功平衡。分(电压)层无功平衡的重点是220kV 及以上电压等级层面的无功平衡,分(供电)区就地平衡的重点是110kV及以下配电系统的无功平衡。无功补偿配置应根据电网情况,实施分散就地补偿与变电站集中补偿相结合,电网补偿与用户补偿相结合,高压补偿与低压补偿相结合,满足降损和调压的需要。 第四条各级电网应避免通过输电线路远距离输送无功电力。500(330)kV电压等级系统与下一级系统之间不应有大量的无功电力交换。500(330)kV电压等级超高压输电线路的充电功率应按照就地补偿的原则采用高、低压并联电抗器基本予以补偿。 第五条受端系统应有足够的无功备用容量。当受端系统存在电压稳定问题时,应通过技术经济比较,考虑在受端系统的枢纽变电站配置动态无功补偿装置。 第六条各电压等级的变电站应结合电网规划和电源建设,合理配置适当规模、类型的无功补偿装置。所装设的无功补偿装置应不引起系统谐波明显放大,并应避免大量的无功电力穿越变压器。35kV~220kV变电站,在主变最大负荷时,其高压侧功率因数应不低于0.95,在低谷负荷时功率因数应不高于0.95。 第七条对于大量采用10kV~220kV电缆线路的城市电网,在新建110kV及以上电压等级的变电站时,应根据电缆进、出线情况在相关变电站分散配置适当容量的感性无功补偿装置。 第八条35kV及以上电压等级的变电站,主变压器高压侧应具备双向有功功率和无功功

正泰nwkl1无功补偿控制器说明书详解

1.概述 NWKL1智能型无功补偿控制器(以下简称控制器)是低压配电系统补偿无功功率的专用控制器,依据机械工业标准JB/T9663-1999及电力行业标准DL/T597-1996设计,其取样物理量为无功电流,有二种规格(最大6回路和最大10回路)。可与各型号的低压电容柜、屏配套使用,具有功能完善,抗干扰能力强,运行稳定可靠,补偿精确,无投切振荡及补偿呆区,是低压配电系统平衡无功功率的理想产品。 型号及其含义: 输出回路规格 产品设计序号 控制物理量L—无功电流 智能型低压无功补偿控制器 正泰集团企业代号 2.功能特点 2.1实时显示配电系统状况,包括测量和显示(感性或容性)功率 因数,无功电流。实时显示电容屏工作状态,如过电压保护状 态,电容屏各回路投入或切除状态。

2.2自动识别取样信号极性,无极性接错之虑。 2.3用户的设定参数在系统停电及控制器复位时不会丢失,复电后 控制器采用停电前所设定的参数延时进入自动运行状态。2.4具备过压反时限功能,即自动运行中当电压超过第一门限值 (参数显示代号E)时,将闭锁回路不再投入电容器组,当电压超过第二门限值(E+10V)时,将以5秒/组的速度切除已投入的电容器组,当电压超过第三门限值(E+20V)时,将以2秒/组的速度切除已投入的电容器组。 2.5确保电容器完全放电功能。即切除后再投入同一组电容器需要 延时180秒后再执行,先投先切,后投后切,循环控制,保证了电容器的充分放电和电容器组运行的均匀性。 2.6具备配电系统负荷超低判别和封锁功能,防止投切振荡。2.7延时调节功能,20-60秒的延时时间调节范围(另有供调试或 手动时用的2秒延时)。 2.8取样电流互感器变比设定功能:设定范围100/5~4000/5 2.9投入门限:无功电流,设定范围为3~90A,当配电系统感性无 功电流大于设定值时控制器自动投入一组电容器。 切除门限:功率因数,设定范围为0.98~1.00,当配电系统功率因数超前于设定值则控制器自动切除一组电容器。 2.10过电压门限设定功能:设定范围400V~450V,以10V整 数连续可调。 2.11有自动循环投切,手动运行二种工作模式。

高压自动补偿控制器说明书

目录 1.概述 2 2.产品特色 2 3.使用条件 2 3.1 环境条件 2 3.2 工作条件 3 3.3 安全性能 3 3.4 电磁兼容性能 3 3.5 测量精度 4 3.6 时间精度 4 4.产品命名 4 5.结构 4 5.1 外型尺寸 4 5.2 安装尺寸 5 5.3 端子定义 5 6.装置功能 5 6.1 智能人机界面 5 6.2 智能控制器11 6.3 微机保护17 6.4 数据处理17 6.5 射频无线通讯18 6.6 GPRS无线通讯18 7.装置定值清单18 7.1 DRGWKA智能无功补偿控制装置定值表18 7.2 DRGWKB智能无功补偿控制装置定值表20 8.使用注意事项22 9.定货须知22 附件一HY-10无线数传模块使用说明23 附件二GPRS无线数据通讯组网说明24 附件三一次原理图25 1概述

DRGWK智能无功补偿控制装置是为满足高压线路无功补偿的需要而精心开发设计的,是由微机技术实现的自动控制装置。通过控制装置有效、合理地控制并联电容器组的投切,以达到提高功率因数、降低线损、改善电压质量。 DRGWK系列智能无功补偿控制装置可根据线路电压、线路电流控制一组/两组并联电容器补偿装置的投切,同时可根据电容器电流和线路电压对电容器实现保护。本装置内置多套控制策略,可远方/就地选择控制策略,修改控制定值。具有GPRS、射频等多种通讯方式可供选择。 2产品特色 ★技术先进:通信采用GPRS无线通信技术,无距离限制,系统组网方便,国内先进。 ★可靠性高:采用SOC(SystemOnChip-系统在片方式)处理器,总线不出芯片;独特的软件看门狗与硬件看门狗监视技术,最大限度的保证系统安全可靠。 ★性能稳定:二次电压/电流采样回路经互感器隔离输入,与一次回路无电联系;遥信输入回路采用光电隔离技术,输入回路有防浪涌高压电路;遥控输出回路采用光电隔离与继电器两级隔离;通讯接口均加有光电隔离。 ★性价比高:系统集测量、控制、保护、通讯等功能于一体,装置通过GSM网可以远程操作、维护,GPRS无线通信费用低,信道免维护;通过RF射频通讯可以就近操作、维护。 ★人机界面新颖:采用汉字液晶显示器及键盘,采用多级密码保护,操作简单,维护方便。 ★优良的无功补偿算法:采用预判断功能的扩展九区图算法,避免在补偿过程中并联电容器出现反复投切现象。 3 使用条件 3.1 环境条件 3.1.1 环境温度 -40℃~70℃。 3.1.2 环境湿度 40℃时,20%~90%。 3.1.3 大气压力 79.5Kpa ~ 106.0Kpa(海拔高度不高于2000m)。

无功补偿柜安装和使用规范 (2)

无功补偿安装与使用规范 一、安装无功补偿的必要性 1、政策要求全国供电规则规定:无功电力应就地平衡,用户应在提高用电 自然功率因数的基础上,设计与安装无功补偿设备,并做到随其负荷与电压的变动及时投入或切除,防止无功电力倒送。改善企业用电的功率因数(即进行无功功率补偿),消除企业力率电费就是企业节约电能的重要环节,应给予足够重视。 2、企业需求许多企业对无功补偿的节能意义认识不足,不知道为什么要装,仅仅就是因为供电部门力调罚款,才不得不装。客观地讲,无功补偿确实对供电部门有诸多好处,但对企业自身也有许多益处: (1)、减少线路及变压器的电能损耗,减少相应电费。 (2)、改善电压质量与电动机运行状况,降低动力设备的使用电流。 (3)、减轻电器、开关与供电线路负荷,减少维修量延长使用寿命,提高电力系统的可靠性。 (4)、降低变压器负荷,释放变压器容量。 (5)、使变频调速系统的节能效果提高。

安装方法 (2)开关的安装 a)检查开关型号、规格、操作方式等就是否符合图纸要求,确认开关就是否完好。 b)打开开关前盖,将开关安装孔对准骨架固定孔,用螺栓固定,固定时需保证开关位置垂直端正,固定面应平整,紧固螺栓用力适当,以免损坏塑料底板。 c)为防止分断时喷弧造成短路,应将与自动开关连接的母线在200毫米以内包以绝缘布,同时在喷弧方向一定距离内不得有其它零件(按开关生产厂说明书)。 d)分合开关,按开关生产厂使用说明书检查主触头分合状态就是否正常。 e)将前盖按原样固定在开关上,进线端相间有隔弧板的必须按规定装上。 f)板后接线的自动开关必须安装在绝缘面板上。 g)开关上各类调整螺钉,调节栓,如脱扣器调节螺钉等,因出厂时已全部调整好, 不得任意自行调整。 h)安装时不得损坏开关触头及其它零件,不得损伤绝缘外壳,有“接地处”应可靠接地。 (2)控制器的选用与安装。 a)按布置图将控制器安装孔眼对准柜体柜架上的固定孔眼,然后用螺栓与弹簧垫片固定。安装须端正不歪斜,并可靠接地。 b)控制器必须垂直安装,标识面可以清晰观察。 c)控制器的控制线按图纸要求对号安装。 (3)补偿控制器的安装 a)按布置图将控制器安装孔眼对准柜体柜架上的固定孔眼,然后用螺栓与弹簧垫片固定,安装须端正不歪斜,并可靠接地。 b)控制器必须垂直安装,进线接口向上,标识面可以清晰观察。

配电系统无功补偿技术分析

配电系统无功补偿技术分析 发表时间:2018-07-06T10:51:15.743Z 来源:《电力设备》2018年第8期作者:何业波 [导读] 摘要:随着人们对配网建设的重视和无功补偿技术的发展,配电网的无功补偿技术问题得到了较好的解决。 (国网安徽省电力有限公司和县供电公司安徽马鞍山 238200) 摘要:随着人们对配网建设的重视和无功补偿技术的发展,配电网的无功补偿技术问题得到了较好的解决。本文从降低网损和提高供电质量的角度出发,探讨了无功补偿的作用及几种补偿方式,重点分析了配电无功补偿方法、配置技术和经济效益,对配电网无功补偿工作有积极的促进作用。 关键词:配电系统;无功补偿;补偿技术 1.无功补偿的合理配置原则 从电网无功功率消耗的基本状况可以看出,各级网络和输配电设备都要消耗一部分的无功功率,尤以配电网所占比重最大。为了最大限度地减少无功功率的传输损耗,提高输 配电设备的效率,无功补偿设备的配置应按照“分级补偿,就地平衡”的原则合理布局。 (1)总体平衡与局部平衡相结合,以局部平衡为主。首先要满足整个县局电网的无功电力平衡,其次要满足变电所、10kV配电线路的无功电力平衡。如果无功电源的布局、补偿容量和补偿位置选择不合理,局部地区的无功电力不能就地平衡,就会造成不同分区之间无功电力的长途输送和交换,使电网的功率损耗和电能损耗增加。因此,在规划过程中,要在总平衡的基础上,研究各个局部的补偿方案,求得最优化的组合,才能达到最佳的补偿效果。 (2)电力部门补偿与用户补偿相结合。在配电网络中,用户消耗的无功功率约占50%~60%,其余的无功功率消耗在配电网中。因此,为了减少无功功率在网络中的输送,要尽可能地实现就地补偿,由电力部门和用户共同进行补偿。 (3)分散补偿与集中补偿相结合,以分散为主。集中补偿是在变电所集中装设较大容量的补偿电容器。分散补偿,指在配电网络中分散的负荷区,如配电线路、配电变压器和用户的用电设备等进行的无功补偿。集中补偿主要是补偿主变压器本身的无功损耗,以及减少变电所以上输电线路的无功电力,从而降低供电网络的无功损耗,但不能降低配电网络的无功损耗。因为用户需要的无功通过变电所以下的配电线路向负荷端输送。为了有效地降低线损,必须做到无功功率在哪里发生,就应在哪里补偿,中、低压配电网应以分散补偿为主。 (4)降损与调压相结合,以降损为主。利用并联电容器进行无功补偿,其主要目的是为了达到无功电力就地平衡,减小网络中的无功损耗,以降低线损。同时也可以利用电容器的分组投切,对电压进行适当的调整,这是补偿的辅助目的。在一般情况下,以降损为主,调压为辅。 2.电力无功补偿技术 2.1电力负荷的功率因数 功率因数是指电力网中通过线路、变压器的视在功率供给有功功率所占百分数。在电力网的运行中,希望功率因数越大越好,如能做到这一点,则通过电力设备的视在功率将大部分用来供给有功功率,以减少无功功率的传输,减少有功功率损耗。适当提高用户的功率因数,可以充分发挥供电设备的生产能力、减少线路损失、改善电压质量。 影响功率因数的主要因素:首先我们知道功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。当有功功率P一定时,如减少无功功率Q,则功率因数便能够提高。在极端情况下,当Q为零时,则其功率因数为1。因此,提高功率因数问题的实质就是减少用电设备的无功功率需要量。 2.2并联电容器补偿无功功率的作用及方法 电力电容器作为补偿装置有两种方法:串联补偿和并联补偿。串联补偿是把电容器直接串联到高压输电线路上,以改善输电线路参数,降低电压损失,提高其输送能力,降低线路损耗。这种补偿方法的电容器称作串联电容器,应用于高压远距离输电线路上,用电单位很少采用。并联补偿是把电容器直接与被补偿设备并接到同一电路上,以提高功率因数。这种补偿方法所用的电容器称作并联电容器,用电企业都是采用这种补偿方法。按电容器安装的位置不同,通常有三种方式。 (1)集中补偿电容器组集中装设在企业或地方总降压变电所的6~10kV母线上,用来提高整个变电所的功率因数,使该变电所的供电范围内无功功率基本平衡。可减少高压线路的无功损耗,而且能够提高本变电所的供电电压质量。 (2)分组补偿将电容器组分别装设在功率因数较低的车间或村镇终端变配电所高压或低压母线上,也称为分散补偿。这种方式具有与集中补偿相同的优点,仅无功补偿容量和范围相对小些。但是分组补偿的效果比较明显,采用得也较普遍。 (3)就地补偿将电容器或电容器组装设在异步电动机或电感性用电设备附近,就地进行无功补偿,也称为单独补偿或个别补偿方式。这种方式既能提高为用电设备供电回路的功率因数,又能改善用电设备的电压质量,对中、小型设备十分适用。 3.无功补偿技术在供电系统中的应用 3.1变电站无功补偿技术 变电站是一个供电区域的供电中心,用不同电压等级的配电线路向用户供电。按照“分级补偿,就地平衡”的原则,配电线路和电力用户应该基本达到无功功率平衡,不向变电站索取无功电力。容性无功补偿装置以补偿主变压器无功损耗为主,并适当兼顾负荷侧的无功补偿。容性无功补偿装置的容量可根据主变压器容量来确定,可按主变压器容量的10%~30%配置,并满足220~500kV主变压器最大负荷时,其高压侧功率因数不低于0.95的要求。当主变压器单台容量为40MVA及以上时,每台主变压器应配置不少于两组的容性无功补偿装置。变压器为建立并维持交变磁场所需消耗的无功功率约占30%,一般约为其额定容量10%~15%,他的空载无功功率约为满载时的1/3。变压器的无功功率损耗由两部分组成,励磁支路的无功功率损耗和绕组漏抗中的无功功率损耗。励磁支路的无功功率损耗与变压器所施加的电压有关,绕组漏抗中的无功功率损耗与变压器的通过功率成比例。无功功率不宜长距离输送,所以一般在超高压枢纽变电站主变压器低压侧安装无功补偿装置来满足无功功率的就地平衡,使其平衡在系统额定电压运行水平。 3.2配电线路的无功补偿 (1)以分支线路所带配电变压器的空载无功损耗来确定分组补偿容量;(2)选择负荷较大的分支线确定补偿点;(3)小分支和个别配电变压器,可视为主干线上的近似均匀分佰负荷,可按需要确定补偿点和补偿容量;(4)所有配电变压器的负载无功损耗均以用户自

无功补偿常用计算方法

按照不同的补偿对象,无功补偿容量有不同的计算方法。 (1)按照功率因数的提高计算 对需要补偿的负载,补偿前后的电压、负载从电网取用的电流矢量关系图如图3.7所示: I 2r I 1 补偿前功率因数1cos ?,补偿后功率因数2cos ?,补偿前后的平均有功功率为 P ,则需要补偿的无功功率容量 )t a n (t a n 21? ?-=P Q 补偿 (3.1) 由于负载功率因数的增加,会使电网给负载供电的线路上的损耗下降, 线损的下降率 %100)cos (3)cos (3)cos ( 3%21 122 2211?-= ?R I R I R I P a a a ???线损 %100)c o s c o s (1221??? ? ???-=?? (3.2) 式中R 为负载侧等值系统阻抗的电阻值。 (2)按母线运行电压的提高计算 ①高压侧无功补偿 无功补偿装置直接在高压侧母线补偿,系统等值示意图如图3.8所示: 图3.7 电流矢量图

P+jQ 补偿 图中, S U、U分别是系统电压和负载侧电压;jX R+是系统等值阻抗(不 含主变压器高低压绕组阻抗);jQ P+是负载功率, 补偿 jQ是高压侧无功补偿容 量; 1 U、 2 U分别是补偿装置投入前后的母线电压。 无功补偿装置投入前后,系统电压、母线电压的量值存在如下关系: 无功补偿装置投入前 1 1U QX PR U U S + + ≈ 无功补偿装置投入后 2 2 ) ( U X Q Q PR U U S 补偿 - + + ≈ 所以 2 1 2U X Q U U补偿 ≈ -(3.3) 所以母线高压侧无功补偿容量 ) ( 1 2 2U U X U Q- = 补偿 (3.4) ②主变压器低压侧无功补偿 无功补偿装置在主变压器的低压侧进行无功补偿,系统等值示意图如图3.9所示: P+jQ 补偿 图3.8 系统等值示意图

相关主题
文本预览
相关文档 最新文档