当前位置:文档之家› 数字电视信号的误码测量

数字电视信号的误码测量

数字电视信号的误码测量
数字电视信号的误码测量

数字电视信号的误码测量

————————————————————————————————作者:————————————————————————————————日期:

数字电视信号的误码测量

时间:2005-6-3 15:50:00 来源:依马狮网作者:程实中国国际广播电台电视中心阅读2573次

数字视音频的大潮已扑天盖地将我们淹没,尤其是电视制作专业领域,采、录、编、播的全程数字化已逐渐成为标准配置。数字技术的运用,解决了长期以来电视图像质量因后期制作而下降的问题,但又带来了数字电视信号误码的新问题。在信号源和接收机之间存在任何一个数据字的数值改变称之为误码,这是数字信号独有的。让我们从数字视频信号的标准、格式、编码说起。

一. 数字视频信号的标准和格式

CCIR-601(也称ITU-R601)标准定义了数字视频的信号标准(见下表)。

参数名称PAL (625/50)NTSC (525/60)

编码信号(分量信号)Y,U,V Y,I,Q

全行亮度信号采样点数864858

全行色差信号采样点数432429

取样结构

正交结构,即行、场和帧重复Cr、Cb的样点同位,并和每行奇数

个Y样点同位

取样频率/MHz

亮度信

13.5

色差信

6.75

编码方式均采用每采样点8bit均匀量化脉码调制(PCM)

全数字行有效点数亮度信

720色差信

360

图像分辨率/像素亮度信

720×576720×480色差信

360×576360×480

数码传输速率(R)216Mbit/s或27MB/s

视频信号电平与量化级间的对应关系亮度信

共220个量化级(黑电平对应第16级,峰值白电平对应235级)色差信

共224个量化级

按照CCIR601标准,模拟电视信号以4:2:2取样,取样后进行8比特量化和线性PCM编码,即可得到符合数字演播室标准的基带数字信号,其比特流为:(13.5×8+6.75×8×2)Mbit/s=216Mbit/s。这种速率在一般计算机上很难处理。每分钟数字视频所占用的空间为:216Mbit/s×60s/8=1620MB,如果把这种视频流存放在650MB的光盘中,一张光盘只能存放20多秒,而一块10GB的硬盘也存储不了几分钟的视频图像。因此必须对数字视频图像进行压缩,用尽可能少的数据来表达信息,节省传输和存储的开销。

于是,数字视频码率压缩得以普及,JPEG、M-JPEG、MPEG-2、MPEG-4等压缩标准、小波编码和帧间压缩为各界广泛接受。数字设备也从天价的非压缩D1、D2、D3、D5发展到现在广为使用的索尼Digital-Betacam、Betacam SX、MPEG IMX、DVCAM;松下公司的DVCPRO25、DVCPRO50;JVC公司的Digital-S 等(见下表)。

格/格式Digital

Betacam

Betacam SX MPEG IMX DVCAM DVCPRO25DVCPRO50Digital-S

4:02:02分量4:02:02分量4:02:02分量4:02:00分量4:01:01分量4:02:02分量4:02:02分量

10 bit8 bit8 bit8 bit8 bit8 bit8 bit 图

压缩方式场内压缩

DCT方式

帧间压缩

DCT方式

帧内压缩

DCT方式

帧内压缩

DCT方式

帧内压缩

DCT方式

帧内压缩

DCT方式

帧内压缩DCT

方式

2:0110:01 3.3:15:015:01 3.3:1 3.3:1

88Mb/s18Mb/s50Mb/s25Mb/s25Mb/s50Mb/s50Mb/s 音

频标准20bit/48KHz

不压缩,4通

16bit/48KHz

不压缩,4通

24bit/48KHz

不压缩,4通

道;or

16bit/48KHz

不压缩,8通

16bit/48KHz

不压缩,4通

16bit/48KHz

不压缩,2通

16bit/48KHz

不压缩,4通

16bit/48KHz不

压缩,4通道

磁带

标准1/2金属带1/2金属带1/2金属带1/4金属带

1/4金属粒子

1/4金属粒子

1/2金属涂敷带

记录124分钟/40

分钟

194分钟/60

分钟

220分钟/71

分钟

184分钟/40

分钟

123分钟123分钟最长104分钟

81.4mm81.4mm81.4mm21.7mm21.7mm21.7mm62mm

75rps75rps50rps150rps150rps150rps75rps

12条12条(两帧)8条12条12条12条12条

数/

96.7mm/s59.575mm/s64.467mm/s28.246mm/s33.813mm/s33.813mm/s57.8mm/s 速

21.7um32um21.7?m15?m18?m18?m20?m

±15±15±15±20±20±15

磁 4.62644 4.621 4.6269.17849.1784 5.57

倾角重放

兼容性兼容重放

Betacam SP

兼容重放

Betacam SP

兼容重放SX、

DVW、

BATA-CAM

SP

兼容重放DV兼容重放DV

兼容重放DV

DVCPRO25

兼容重放

S-VHS

像质量标清产品中

图像质量最

相当与BVW

水平

与数字-S、

DVCPRO50

相当,较好

相当与PVW

水平

相当与PVW

水平

与数字-S、

IMX相当,较

DVCPRO50、

IMX相当、较

寿

约1000小时约4500小时约4500小时约1500小时≥1500小时≥1500小时≥800小时

如此众多的不同格式的机器设备该如何集成为制作系统呢?好在他们都采用标准的串行数字接口(Serial Digital Interface),即:统一传送我们常说的SDI信号。

二. SDI信号的编码

SDI信号的编码格式如下表所示:

SA V...活动视频...EA V数据头数据类型行序列号数据总数...用户数据...校验和SA V...下行数据

每行活动视频的起始标识是SAV,结束标识是EAV,活动视频序列一般为Cb,Y,Cr,Y,Cb,Y...Y,Cb,Y,Cr,Y共计1440个字。SAV和EAV都用四个字表示,即:3FFF/000/000/XYZ表示。在EAV和SAV 之间是行辅助数据区(HANC),包括数据头,类型,行序列号,数据总数和用户数据。共计280个字。

其中用户数据目前主要用来嵌入音频信号。这样的数据信号还要经过并/串转换,加扰和非归零码转换(NRZI)形成串行数据流,并加入电路驱动输出。

SDI信号有它的固有弱点,SDI信号无误码检测功能和纠错手段;误码在加扰解扰器中倍增;时基不准使单个误码引起一串误码;跳变少和不对称也会引起误码。我们常说的数字电视信号误码指的就是SDI信号的误码。

三. SDI信号的误码

与模拟设备不同,数字设备通常不会产生误码,如:切换钜阵、数字延迟器、数字帧同步器、嵌入音频设备等,但有些数字设备会改变有效图像区,如:数字VTR或磁盘记录系统、制作切换设备等。另外,一些模拟因数会导致误码的产生,如:传送的距离和传送电缆的反射损耗、信号的电平和噪声、信号的抖动和时钟的重建等。

SDI信号的误码情况该如何描述呢?我们引入了以下几个概念:

1.误码率和误码秒

误码率(BER)是出错的数据字(即误码)数目与全部数据字数目的比值,主要用于噪声引起的随机误码统计。我们一般认为每帧画面上有一个误码会使图像崩溃,所以在PAL制中,称误码率

0.97×10-7为崩溃点(或死亡点)。

误码率的测量需测所有比特,往往要花费很长一段时间周期,而且必须停播测试,必须使用已定义的伪随机比特序列信号进行测试。这就带来很大的不便,尤其在无噪声的条件下典型的视频误码为脉冲误码,具有间隔出现的特点,一个数据字的出错会引起数百个相同数据字的出错。这时误码率的测试不可能提供有价值的数据。

误码秒(Err Secs,而不是Errors Per Second)在误码出现后开始记时,到不再检测到误码时停止,可以与Elapsed记录的时间长度作对比。它比误码率更适合评价短脉冲干扰引起同步信号遭到破坏,造成图像混乱的误码统计,从而给出更多节目中存在问题的信息。

2.系统增强测试

模拟系统在工作中信号不断衰减,信号质量不断降低,基本呈线性。而数字系统在崩溃点之前,倾向于无故障工作;在崩溃点之后,图像根本无法识别。所以,数字系统很重要的一点就是必须知道系统离崩溃点有多远。增强测试就是改变数字信号的某个参数,直至到达崩溃点产生故障。SMPTE 259M提出,系统增强测试最直观的方法是加接电缆,直至误码率达到崩溃点使图像崩溃。下图给出某品牌电缆做的系统增强测试的曲线图。

实验结果表明,电缆长度一般不能超过300米,最好在250米以内。

3.EDH码

EDH码是泰克公司研制的一种用于数字系统的误码检测方法,1993年2月被SMPTE采纳为标准,称为PR165实用建议文件。“EDH”即误码检测和处理,是对串行处理器中每一场视频信号进行循环冗余码(CRC)计算。通过监测全场、有效图像、辅助数据区并记录数值,来确定误码的生产个数。也常称为符号分析。

EDH码(即CRC数据)由数字信号发生器(如Tek TG2000)产生,插入到SDI信号中(PAL制625行的第5行),可用数字信号测量仪(如Tek VM700T)在线测试。测量仪能自动实时监测,提前给出故障警告,并自动精准地作出误码报告。

虽然EDH方式测误码直观准确,但它需要信号发生器和测量仪同时在线,占用了设备。而且误码达到多少个会对系统形成威胁,现在还没有标准。所以,如果完全依赖自动测试,就不能及时、有效地反映数字信号传送的质量,这时就需要通过相关测试来对系统性能作出全面评价。

4.相关测试

SDI的相关测试中有三项常规数字信号测试方法能反映误码的状况,即:SDI-Eye Diagram(眼图)、SDI-Wander(漂移)和SDI-Jittler(抖动),其中,眼图测试最为直观和全面。这三种常规测试根据测量仪器的不同而各有千秋,也为大家所了解,就不再一一赘述了。

总之,上文介绍的对产生误码有影响的各因数,EDH可确定误码的个数;增强测试反映了传送的距离和传送电缆的反射损耗;误码率反映了噪声对误码的影响;误码秒反映了短脉冲干扰对误码的影响;

相关的眼图漂移抖动测试则反映了信号的抖动对误码的影响。

5.音频测试

SDI信号不需要传送同步和色同步信息,可以在视频的行、场消隐区中传送大量的数据信息,如:EAV和SAV的同步字,EDH和TRS等等。现在运用广泛的嵌入音频,即是根据时分复用原理,将数字音频信号按多工复用方式插入串行数字视频信号的行消隐区中。这样不仅可以节约音频通道,简化系统连线和通路结构,更能够保证视频和音频的完全同步,消除延时差的影响。

对嵌入音频信号的测试一般通过测量仪的SDI-Audio Meas,显示经过解码后的音频波形,进而显示模拟方式下的三大指标信噪比,频率特性和谐波特性,并比较两个声道的电平差和相位差;同时也可通过测量仪的SDI-Audio Format,监看音频数据信息。需要注意的是,它不是对音频指标的测试,只是对音频数据内容和格式的检查。例如,显示数据位是否加重,抽样频率值的多少,用户比特位信息等。

纵上所述,我们抛开数字电视信号本身,跳过各种压缩编码,直接对SDI信号进行分析。通过运用以上测试项目,我们就能掌握数字电视信号的视音频性能,根据误码状况及时进行调整和校准工作,保证了良好的节目质量,把数字化的好处带给千家万户。

浏览数(75) 评论数(0)

论数字电视信号的指标与监测

论数字电视信号的指标与监测 (唐山有线电视网络公司,河北唐山063000) 主要介绍了有线数字电视系统中的信号技术指标和具体的监测方法。 标签:TS码流;QAM;监测;码流分析仪 1传输网络技术参数 经过MPEG-2信源编码和MPEG-2TS传输流复用后生成的MPEG-2传输复用包经过扰码、RS编码及卷积交织后,进行64QAM调制形成中频调制信号,中频调制信号经过上变频转为射频信号然后送入HFC网传送到用户。 数字电视和模拟电视的频谱结构及能量分布完全不同。由于QAM中的调幅是平衡调幅,抑制了载波,因而从频谱分析仪上看,一个数字频道的已调信号,像一个抬高了的噪声平台,均匀地平铺于整个限定带宽内。伴音信号在MPEG-2编码时,已经与图像信号以包的形式复用到了一起,因而,一个数字电视频道,不但没有所谓图像载波,也没有伴音载波。 1.1数字电视的信号电平 数字电视信号没有图像载波电平可取,整个限定的带宽内是平顶的,无峰值可言。所以,QAM数字频道的电平是用被测频道信号的平均功率来表达的,称为数字频道平均功率。在用户端电缆信号系统出口处要求:信号电平为47dBμV-67dBμV(比模拟电视信号的要求低10dB),数字相邻频道间最大电平差为≤3dB,数字频道与相邻模拟频道间最大电平差为≤13dB。 1.2数字电视的噪声电平 测量模拟频道噪声时,在模拟频道取噪声测试点,只要偏离图像载频即可。但是数字电视的频谱分布决定了测量数字频道噪声不能使用模拟频道的测量方法。数字频道内有用能量也像噪声,没有什么特点把它们分开,所以测量噪声,要到被测频道的邻频道去取样,并且这个邻频道应当是空闲的。 1.3误码率 数字电视信号是离散的信号,接收到的数字电视信号要么是稳定、清晰的图像,要么就是中断(包括马赛克、静帧),具有“断崖效应”的特点。信号的这种变化,只与传输的误码率有关,所以把误码率作为衡量系统信号质量劣变程度的最重要

中国地面数字电视标准单频网系统

中国数字地面电视标准单频网系统 北京数码视线科技有限公司 张珉 一个简单数字地面单频网由MIP插入器,和若干个分布在不同区域内的发射机构成,MIP 插入器通过数字电视分配网向不同的发射机发送传输参数信令。例如:调制方式,保护间隔,纠错码格式等信令,使所有的发射机都工作在同一模式下。为了保持整个单频网的同步,必须将MIP插入器及发射机中所有的调制器和激励器同步到GPS上面,保证同一频率同一时间,同一比特的黄金定律。 此外,MIP插入器还可以远程调节每个发射机的时间延迟和发射功率,方便单频网集成。 图1:中国数字地面电视标准单频网演示系统图 1. 奇妙的单频网 2006年8月颁布的国标地面电视标准GB20600-2006包含了VSB单载波技术与TDS-OFDM的多载波技术,多载波信号由一系列不同级别的帧结构构成。 与传统的DVB-T(H)中的保护间隔不同,TDS-OFDM中的帧头中传送PN序列,这一创新不仅会方便接收端的信道预估及同步,同时提供了实现单频网的功能,在图1中的一个8 MHz 带宽内我们定义了三种传输模式以及与其对应的三种帧头长度,保护间隔越长发射机间的距离越大,传输的有效比特率越低。 带宽8 MHz 8 MHz 8 MHz 帧头模式FH-Mode 1 FH-Mode 2 FH-Mode 3 保护间隔1/9 1/6 1/4 数据帧持续时间500 s 500   s s 500 帧头间隔持续时间55.56 s    125 s  78.7 s 发射机最大传输距离17 km 24 km 38 km 图2:国标三种传输模式 在过去10年间,单频网(SFN)技术被有效的使用在DVB-T(H)数字地面电视网络覆盖

数字电视参数测量

有线数字电视信号传输中参数的测量方法 关键词:数字电视,传输,参数,测量,方本文描述了在有线数字电视传输中测量参数的客观方法。重点是有线数字电视信号从信号源到用户接收端的端到端性能。这个传输链包括电缆分配系统,也可包括为有线电视前端提供信号源的链路,如卫星链路、地面传输链路、或宽带网络链路等。 因为卫星系统、地面系统、微波系统有截然不同的测量规范,这里不对它们一一进行定义。 同时建议在测量有线电视系统性能时,通过系统的信号不应是解调后的信号,即有线电视的源信号取自卫星传输(经QPSK、BPSK等调制)、地面开路传输(经8-VSB或COFDM调制)或多点分配微波系统。 本文所述内容适用于任何工作频率从30MHz到2150MHz的有同轴电缆输出的电视和声音信号的有线数字电视分配系统(包括独立接收系统)。 在未来的应用中,频率范围将可能扩展为从5MHz到3000MHz。 本文介绍了对有同轴电缆输出的有线数字电视分配系统工作特性的基本测量方法,以便评估此类系统的性能及其性能限制。 这些测量方法应用于经PSK、QAM和OFDM等方式调制后的数字信号(对于在有线系统中的VSB信号的测量,还需要另外的测量方法),测量的参数如下: 系统输出口的相互隔离度 通道内的幅频响应 射频载波功率 射频噪声功率 载噪比(C/N) 比特误码率(BER) 比特误码率与Eb/No 噪声余裕 调制误差率(MER) 信噪比(S/N) 射频相位抖动 回波(用于测量均衡器的屏蔽能力) 数字调制信号的测量方法不同于模拟调制信号,主要有以下几个原因: a) 除VSB调制方式外,数字调制的信号不存在载波,因此无法测量(例如ITU-T J83中的 PSK或QAM 调制系统等),或是有几千条载波(例如OFDM调制系统,包括导频及BPSK、QPSK和QAM调制); b) 被调制信号频谱像噪声般平铺于频带中; c) 影响接收信号质量的参数与通过信道传输在解调和纠错前引入的比特或字符误码因素有关(如:噪声、幅度和相位的失真等); 数字调制信号的测量方法基于以下几个条件: a) 对于各种基带系统,其输入输出信号为MPEG-2的传输流(TS),例如卫星,有线,SMATV,MMDS/MVDS和地面分配系统; b) 通过卫星接收的PSK调制数字信号,例如QPSK等方式,能够以同样的调制方式在有线网络(SMATV) 中分配; c) 通过卫星接收的数字调制信号以QAM方式在有线电视网(CATV)中分配; d) 通过地面广播系统接收的OFDM调制信号能以同样的OFDM调制方式在SMATV/CATV系统中分配; e) 提供PSK,QAM或OFDM调制的I/Q基带信号源,具备适用的接口和相关的SI文件信息; f) 在注明的有关地方需用PSK,QAM或OFDM调制的一个基准接收机,并指明其接口; g) 解码设备不会影响结果的一致性. (1)系统输出口的相互隔离度

数字电视信号的误码测量

数字电视信号的误码测量 时间:2005-6-3 15:50:00 来源:依马狮网作者:程实中国国际广播电台电视中心阅读2573次 数字视音频的大潮已扑天盖地将我们淹没,尤其是电视制作专业领域,采、录、编、播的全程数字化已逐渐成为标准配置。数字技术的运用,解决了长期以来电视图像质量因后期制作而下降的问题,但又带来了数字电视信号误码的新问题。在信号源和接收机之间存在任何一个数据字的数值改变称之为误码,这是数字信号独有的。让我们从数字视频信号的标准、格式、编码说起。 一. 数字视频信号的标准和格式 CCIR-601(也称ITU-R601)标准定义了数字视频的信号标准(见下表)。

按照CCIR601标准,模拟电视信号以4:2:2取样,取样后进行8比特量化和线性PCM编码,即可得到符合数字演播室标准的基带数字信号,其比特流为:(13.5×8+6.75×8×2)Mbit/s=216Mbit/s。这种速率在一般计算机上很难处理。每分钟数字视频所占用的空间为:216Mbit/s×60s/8=1620MB,如果把这种视频流存放在650MB的光盘中,一张光盘只能存放20多秒,而一块10GB的硬盘也存储不了几分钟的视频图像。因此必须对数字视频图像进行压缩,用尽可能少的数据来表达信息,节省传输和存储的开销。 于是,数字视频码率压缩得以普及,JPEG、M-JPEG、MPEG-2、MPEG-4等压缩标准、小波编码和帧间压缩为各界广泛接受。数字设备也从天价的非压缩D1、D2、D3、D5发展到现在广为使用的索尼 Digital-Betacam、Betacam SX、MPEG IMX、DVCAM;松下公司的DVCPRO25、DVCPRO50;JVC公司的Digital-S 等(见下表)。

数字电视的主要测量技术指标03716

数字电视的主要测量技术指标(一) 2008-08-12 11:55 来源: 作者:网友评论 0 条浏览次数 821 我们要准确把握数字电视传输网络质量的好坏,应该分三步。 第一步:对平均功率,MER,BER这三个指标进行测量。

第二步:当这些指标恶化的时候,应该对其它指标进行详细的测量,判断造成网络质量恶化的原因。因为MER的恶化是最主要的因素,它将直接导致BER的下降并最终影响用户接收机的接收效果。所以因主要测试调制质量参数,找出问题原因。 调制质量参数主要有:调制误差率、载波抑制、幅度不平衡、正交误差、相位抖动,RS解码前误码率等。其中调制误差率反映了调制的总体质量;载波抑制、幅度不平衡等反映调制中可能引起误差的主要原因;RS解码前误码率则反映了整个信道的可靠性的性能。对数字调制的直接测量是找到信号失真源头的有用工具。调制质量的估价是放在数字解调之后,自适应均衡器附近. 第三步:利用星座图进行逐级排查。 当然我们一般的测试工作只需要做第一步就可以,当网络有问题的时候做第二,三步;而且绝大多数时候我们第二,三步是同时进行的。建议即使网络正常也因该定时在网络前端执行第二,三步操作便于防范问题于未然。 1.1.1.平均功率 1.1.1.1.数字信号电平和模拟信号电平的区别 因为模拟电视图像内容是通过幅度调制来传送的,图像的内容是随时变化的,所以模拟电视的信道的功率取决于图像内容,根据图像的内容的不同,信道功率不断的变化。由于模拟电视行/场同步脉冲电平相对稳定,故我们把测量峰值电平作为判别模拟电视信号强弱的测量标准。 所有的数字调制信号都有类似噪声的特性,信号在调制到射频载波之前被进行了随机化处理,所以当发送一个数字信号时,无论它是否传送数据,在频域中观察一般都是相同的。而且在频域中观察这样的信号通常也说明不了有关的调制方式,例如是QPSK,16QAM,还是64QAM,它只能说明信号的幅度、频率、平坦度、频谱再生等等。 噪声信号的最大响应与噪声信号的功率没有关系。因为数字信号也是以噪声的形式出现,但它更像是随机加入到分析仪检测仪中的一组组脉冲,所以采用平均值作为功率系数更有价值。

数字电视信号测试要点

数字电视信号测试要点 数字电视信号采用QAM调制方式,没有图像载波电平可取,无峰值,整个限定的带宽内是平顶的。所以,QAM数字频道的电平是用被测频道信号的平均功率来表达的,称为数字频道平均功率。在用户端电缆信号系统出口处要求:信号电平为47~67 dBμV(比模拟电视信号的要求低10 dB),数字相邻频道间最大电平差为≤3 dB,数字频道与相邻模拟频道间最大电平差为≤13 dB。 测量的方法是对整个频道进行扫描、抽样,每一个随机抽样点的功率也是随机分布的,所以把每一个抽样点的功率值取平均。这种测量功能是模拟电平场强仪不具备的,数字电视对线路的要求是阻抗匹配(标称特性阻抗75Ω)。信号电平用户输出口在45~75DBμV左右(用数字场强仪测量)。数字电视对信号电平的要求有一个门限效应,当信号低于门限值则无任何画面,当满足门限范围,就会有相当清晰的画面,当在门限值上下摆动时,就会出现停顿的马赛克现象。数字电视的几项重要指标及其使用方法: 一、测量误码率(BER)及其方法 数字电视信号是离散的信号,接收到的数字电视信号要么是稳定、清晰的图像,要么就是中断(包括马赛克)。信号的这种变化,只与传输的误码率有关,所以把误码率作为衡量系统信号质量劣变程度的最重要的指标。在RS解码前的TS流的误码率规定为不劣于1×10E -4,其他参数(如载噪比、调制误差率、噪声容量)的限额值都是为了保证该误码率的。比特误码率值高于1×10E -3(临界点)就无法正常收看数字电视,标准值为1×10E -9,BER值越低代表更好的传输质量。

1×10E -3的意思:相当于1000个里面有1个误码无法收看 2×10E -4的意思:相当于10000个里面有2个误码无法连续正常收看3×10E -7的意思:相当于1000万个里面有3个误码正常收看 1×10E -9的意思:相当于10亿个里面有1个误码优 二、载噪比及其测量方法 载噪比C/N是指已调制信号的平均功率与噪声的平均功率之比,载噪比中的已调制信号的功率包括了传输信号的功率和调制载波的功率。在调制传输系统中,一般采用载噪比指标,要求用户端C/N>28 dBμV(64QAM),数字调制信号对网络参数的要求主要反映在载噪比上,载噪比越大,信号质量越好,相反信号质量就差,信号质量差反映为模拟电视会出现“雪花干扰”,数字电视会出现马赛克,严重时会造成图像不连续甚至不能对图像解码。 三、调制误差率(MER)及其测量方法 MER的测试结果反映了数字接收机还原二进制数码的能力,它近似于基带信号的信噪比S/N。在用户端电缆信号出口处调制误差比MER要求达到30dB以上,可以采用QAM星座图分析仪和基准接收机来测量系统的调制误差比MER。要求:机房>38DB;分前端>36DB;光节点>34DB;放大器>32DB;用户>26DB。 四、无数字电视测试仪器如何测试和判断信号质量 1.了解网络情况,检查从光节点到用户端的主支干线以及进户-5电缆是否有接头,接头是否扭接,如果有,必须按照规范重做接头。 2.从模拟信号质量判断数字电视信号质量。模拟信号电平在60-80 dBμV 时如图像质量较好,各频段信号平坦符合标准,相邻电平差小于3DB,清晰无雪花干扰。

地面数字电视机顶盒 (DMB-TH) 简介

地面数字电视机顶盒(DMB-TH)简介 成都康特(电子)集团公司最近推出了一款基于DMB-TH标准的高性能、低价格的地面数字电视机顶盒。这款机顶盒完全符合中国数字电视地面广播传输系统标准GB20600-2006。该机使用了凌讯科技公司与清华大学联合开发的时域同步正交频分复用(TDS-OFDM)解调芯片LGS8813和NEC公司开发的MPEG-2解码芯片EMMA2LL,具有接收灵敏度高、用户界面友好、操作简便实用、工作稳定可靠等优点。该机还预留了很多接口,可根据市场发展和用户需要进一步扩展功能。 一、DVB-TH地面数字电视传输系统的原理 DMB-TH采用了PN序列填充的时域同步正交频分复用(TDS-OFDM)多载波调制技术,这种独特的先进技术有机地将信号在时域和频域的传输结合起来。在频域传送有效载荷,在时域通过扩频技术传送控制信号以便进行同步、信道估计,实现快速码字捕获和稳健的同步跟踪性能。 正交频分复用(OFDM)是一种多载波调制方式,其基本思想是把高速率的信源信息流变换成低速率的N路并行数据流,然后用N个相互正交的载波进行调制,将N路调制后的信号相加即得发射信号。在所传输的频带内,当许多载频并行传输一路数据信号时,要比串行传输更大地扩展了信号的脉冲宽度,提高了抗多径衰落方面的性能。OFDM采用的基带调制为离散傅立叶变换,数据的编码映射是在频域进行,经过逆快速傅立叶变换(IFFT)转化为时域信号发送出去,接收端可通过FFT恢复出频域信号。OFDM系统用离散傅立叶变换来实现,即避免了直接生成N个载波时由于频率偏移而产生的交调,而且便于利用超大规模集成电路(VLSI)技术。 传统的OFDM调制方式存在某些缺陷,插入强功率同步导频会使传输系统的有效性、可靠性蒙受损失。基于PN序列扩频技术的高保护同步传输技术和巧妙利用OFDM保护间隔的填充技术克服了这种缺陷,同时提高了传输系统的频谱利用效率和抗噪声干扰性能。新的TDS-OFDM信道估计技术还克服了信道估计迭代过程较长的不足,提高了移动接收性能。

数字电视基础技术要点

数字电视基础技术 一、数字电视系统概述 电视技术的迅速发展,使它的使用范围早已超越了广播娱乐界,被广泛地应用到文化教育、科研管理、医疗卫生、公安交通、军事宇航和人们日常生活的各个领域。随着信息和知识时代的到来,信息和数字技术取得了巨大的发展,电视技术在经历了从无到有、从黑白电视到彩色电视的革命性转变后,自然而然的进入了从模拟电视到数字电视的第二次革命。 1.1数字电视的概念 所谓数字电视,就是将传统的模拟信号经过抽样、量化和编码转换成由二进制数组成的数字式信号,然后对数字式信号进行各种功能的传输、存储、记录和接收等各种处理的电视技术。 信号的数字化,将非常有利于用计算机对其进行处理、控制、监测。这个良好的技术平台将为新业务的开发提供非常大的发挥空间。数字电视系统简图如下图。 1.2 数字电视的优点: 频率利用率高:采用了先进的图像压缩编码技术,使每套节目占用的频带变窄,一个模拟电视频道可传送6~8套标准清晰度数字电视节目;对于用户来说,意味着可供选择的节目将更加丰富,同时,大容量的节目、低廉的传输成本和广泛的收视将使网络运营费用大幅度降低。 抗干扰力强:数字电视信号的信号噪声比与连续处理的次数无关,在传输过程中,无噪声积累,不会降低信噪比,它不受地理因素的限制,几乎可以无限扩大覆盖面。 清晰度高:接收端画质接近演播室水平;

音频效果良好:可提供5.1的环绕立体声; 服务类型多样:包括传统广播类基本业务、广播电视增值业务和数据通信类新业务; 可控可管理:利用CA系统对节目进行加密控制,SMS系统进行用户管理; 扩展性强:开放的业务平台,适合大规模业务经营,符合未来技术发展趋势。 1.3 数字电视的意义 数字电视的技术优势,无论是对于消费者,还是对于相关企业,甚至是对于整个电子产业、广播行业,都意味着一场巨大的变革。对于消费者而言,数字电视不只是图像更清晰、声音更逼真、屏幕更大及频道更多,而且集电视、电脑、电信的功能为一体,使电视的用途由单一性向多元化发展,成为千家万户进入信息高速公路的便捷通道。对于电视机厂家、电视台、电视制作和传播媒体而言,数字电视的出现既是一种挑战又是一种机遇,它所带来的电视市场的扩容潜力将无可估量,利用数字电视的交互式特点,开展各项增值业务,将推动多种行业的发展。 二、数字电视DVB系统 DVB-C系统原理图 DVB-C系统主要由信源系统、EPG管理系统、复用和加扰系统、编码和调制系统、条件接收系统、运营支撑系统、存储播出系统、回传处理系统、其它辅助系统等几个部分组成。 2.1信源系统 数字电视信源系统:包括数字卫星信号的接收,模拟信号的编码,SDH网络信号的分

地面数字电视应用

地面数字电视应用 作者:储海燕 来源:《现代电子技术》2011年第19期 摘要:为了提高数字电视信号质量,系统采用数字MUDS(U段多路分配系统)传输方式,打破了地域界线,解决了边远山区老百姓看电视难的问题,具有建网成本低,易于加密,确保了系统的安全性等特点。采用DVB-T取代传统DVB-C信号,达到了实现图文、数据、点播等双向交互式服务,带来新的增值业务,并使得多次中继后,仍能保持高质量的图像效果的目的。 关键词:MUDS; DVB-T; 数字电视; 机顶盒 作者简介: 储海燕女,1981年出生,陕西西安人,助教。主要研究方向为数据通信。 Application of DVB CHU Hai-yan (Electrical Engineering Department,Xi’an Aero technical College,Xi’an 710077, China) Abstract: To improve the signal quality of digital TV, a new system was designed using digital MUDS transmission style, which has features such as low cost in building network, simplicity in encryption. Instead of traditional DVB-C, the DVB-T signal can realize dual-way mutual service such as graphs, data and video-on-demand, which is a new increment service. After several relay, it still remains high-quality image effect. Keywords: MUDS; DVB-T; digital TV; STB 收稿日期:2011-05-16 0 引言 我国是一个农业大国,农村人口占全国70%以上,有50%以上的人口居住在边远的农村山区,一般情况下,先进的技术往往都是在城市得到推广应用,然后再向郊区农村扩散[1]。特别是有线电视用户的发展,在城市由最初的共用天线系统传送几套模拟电视节目发展到30余套,从电缆传送发展到光纤传送电视信号,传送节目的数量越来越多,节目质量也越来越高,而在广大边远的农村用户至今只能靠本地差转台接收不大清楚电视信号,如何使边远的农村山区也能和城市一样,收看到清楚的多套电视节目,无线数字电视多路传输系统可使他们梦想成真。

数字电视主要测试指标

1.1.数字电视的主要测量技术指标 1.1.1引言 我们要准确把握数字电视传输网络质量的好坏,应该分三步。第一步:对平均功率,MER,BER这三个指标进行测量。 MER、BER测量门限(实际经验总结)

第二步:当这些指标恶化的时候,应该对其它指标进行详细的测量,判断造成网络质量恶化的原因。因为MER的恶化是最主要的因素,它将直接导致BER的下降并最终影响用户接收机的接收效果。所以因主要测试调制质量参数,找出问题原因。 调制质量参数主要有:调制误差率、载波抑制、幅度不平衡、正交误差、相位抖动,RS解码前误码率等。其中调制误差率反映了调制的总体质量;载波抑制、幅度不平衡等反映调制中可能引起误差的主要原因;RS解码前误码率则反映了整个信道的可靠性的性能。对数字调制的直接测量是找到信号失真源头的有用工具。调制质量的估价是放在数字解调之后,自适应均衡器附近. 第三步:利用星座图进行逐级排查。 当然我们一般的测试工作只需要做第一步就可以,当网络有问题的时候做第二,三步;而且绝大多数时候我们第二,三步是同时进行的。建议即使网络正常也因该定时在网络前端执行第二,三步操作便于防范问题于未然。 1.1.1.平均功率 1.1.1.1.数字信号电平和模拟信号电平的区别

因为模拟电视图像内容是通过幅度调制来传送的,图像的内容是随时变化的,所以模拟电视的信道的功率取决于图像内容,根据图像的内容的不同,信道功率不断的变化。由于模拟电视行/场同步脉冲电平相对稳定,故我们把测量峰值电平作为判别模拟电视信号强弱的测量标准。 所有的数字调制信号都有类似噪声的特性,信号在调制到射频载波之前被进行了随机化处理,所以当发送一个数字信号时,无论它是否传送数据,在频域中观察一般都是相同的。而且在频域中观察这样的信号通常也说明不了有关的调制方式,例如是QPSK,16QAM,还是64QAM,它只能说明信号的幅度、频率、平坦度、频谱再生等等。 噪声信号的最大响应与噪声信号的功率没有关系。因为数字信号也是以噪声的形式出现,但它更像是随机加入到分析仪检测仪中的一组组脉冲,所以采用平均值作为功率系数更有价值。 因为数字电视信号的信道功率相对稳定,不随内容而随机变化,所以数字电视用信道平均功率来表示本频道的功率。数字电视信号的平均功率电平也称作信道功率,这与模拟电视电平是完全不同的概念。数字信号的功率不能用峰值功率测量来完成,因为信道功率是和带宽有关的,带宽越宽,信道的平均功率越高。数字信号载波功率是正确接收的关键性因素之一,适当提高数字信号载波电平就可较大地提高抗干扰的能力。 1.1.1. 2.数字信号电平的测量方法 当用DVB-C描述QAM信号和用DVB-S描述QPSK信号时,都称调制的RF/IF信号为“载波”(C),主要是把它与来自用作有关基带解调“信号”(S)相区别。严格的说把数字信号描述为“载波”是不正确的,因为QPSK,QAM 调制是抑制载波的调制机制。然而,工程师们继续使用“载波”作为该参数的称呼,特别是谈论“载”噪比时。其实载波说成像要信息功率更为恰当,确切的说应为RF/IF功率,是调制RF/IF信号的总功率。 1.1.1.3.数字调制信号的测量方法不同于模拟信号的原因 (1)在数字调制信号中不出现载波(使用QPSK调制的DVB-S和使用QAM 调制的DVB-C系统),或是有上千个载波(使用OFDM调制的DVB-T系统),所以不能测量载波。 (2)带内的调制信号有平坦的频谱,非常类似于噪声。如果从频谱以上观察,则数字调制信号的频谱像噪声一样充满整个频道。

国家地面数字电视传输标准单频网覆盖测试

国家地面数字电视传输标准 C 单频网覆盖测试 ◎冯景锋周兴伟刘骏国家广电总局广播电视规划院 地面数字电视单频网是地面数字电视广播的重要组网形式。地面数字电视的实施.推广和普及涉及单频网网络的构建。为了充分发挥地面数字电视单频网的优势,最大限度提高地面数字电视单频网的性能.在单频网的构建过程中不仅需要对网络的参数进行不断的调整和优化,而且还需要对网络覆盖性能进行不断评估测试。 1单频网重叠覆盖区确定 单频网信号分析是开展地面数字电视单频网覆盖性能测试以及网络调整、优化的第一步。相对于多频网而言,地面数字电视单频网覆盖性能的差别主要体现在单频网的重叠覆盖区。所谓地面数字电视单频网重叠覆盖区是指两个或两个以上发射点信号同时覆盖,并且接收到的.来自不同站点起主要作用的信号之差小于射频保护率值的区域。因此,工程技术人员应在地面数字电视单频网重叠覆盖区选择相应的测试点对单频网信号进行测试及分析.并以此为依据对单频网网络进行调整和优化。 如何确定地面数字电视单频网的重叠覆盖区是开展单频网覆盖性能测试的首要任务。本文将以2007年北京地区地面数字电视技术试验为例来说明地面数字电视单频网重叠覆盖区的确定过程。 一般来说,包括单频网在内的任何地面数字电视覆盖网的建设首先要进行科学.合理的设计和规划。在地面数字电视单频网建设过程中,首先应该根据地面数字电视业务开展的需求以及网络实际建设的条件,利用地面数字电视规划软件开展相应的覆盖网规划计算和分析,从而初步确定地面数字电视单频网的工作参数,主要包括:各个发射点的发射功率、天线方向图以及天线高度等。根据确定的网络参数,利用地面数字电视覆盖网规划软件可以得到单频网的覆盖效果,其中包括单频网重叠覆盖区。图1给出了经过计算得到的北京地区地面数字电视技术试验单频网重叠覆盖区示意.其中蓝色标记分别为单频网中的发射点1和发射点2。图中阴影部分为上述两个发射点组成的地面数字电视单频网的重叠覆盖区,位于东三环和东四环区域。 当然,由于覆盖规划软件本身的限制,地面数字电视单频网重叠覆盖区的实际位置可能与理论计算结果之间存在一定的差异.因此.需要工程技术人员根据实际的传输环境,并结合规划试算的结果.通过实地测试来进一步确认地面数字电视单频网重叠覆盖区的区域所在。 在北京地区地面数字电视技术试验单频网测试过程 图1地面数字电视单频网重叠覆盖区示意图

有线数字电视技术参数测量及维护

有线数字电视技术参数测量及维护 摘要:随着时代的不断进步,我国经济快速发展,,人们的生活水平得到了极大的提升,同时, 相关的科学技术也得到了极大发展。新时代,不同的领域只有充分利用新技术,才能对自身的市场竞争 力进行有效地提升。其中有线数字电视作为人们日常生活中的必需品,其满足了人们高品质生活的需求,为人们提供了更加多样化的服务。要想使有线数字电视技术参数测量的准确性得到进一步的提高,以 达到提升参数维护的质量和效率的目的,就需要相关工作人员做好技术参数测量工作和维护工作,确保 数字电视的良好运作,为人们提供更加优质的服务。基于此,本文主要针对有线数字电视技术参数测量 与维护进行探讨分析。关键词:有线数字;电视技术;参数测量;测量要求;参数维护目前阶段,随着我国科学技术的不断发展进步,在电视媒体领域,出现了一个全新技术――有 线数字电视技术,相比于传统的电视技术,其更加便捷,也能够为人们提供更加优质的服务。有线数字 电视技术作为有线数字技术和电视的结合,不仅可以满足人们的要求,更是社会发展的必然趋势,要想 为人们提供更加优质的观感服务,那么相关的管理人员就必须加大对有线数字电视技术的开发力度,同 时还要对其在运行时参数变化情况进行全面的分析与研究,利用参数检测和测量获得参数信息和数据, 及时修正错误,进而实现对有线数字电视的运行效率的有效提升。 1有线数字电视技术概述所谓的有线数字电视技术,其是时代发展与科技进步的一种产物,简单点来说就是有线数字技 术是近些年才出现的,其可以应用到电视系统中,为人们提供更加优质的观感服务。其主要包括信源体系、用户管理体系、加扰子体系、网管子体系和终端子体系等。其中信源体系在前端系统中,由卫星通信设备、页码器件、网络调配器组成。加扰子系统由复用加扰子、数字矩阵、加扰设备等组成。相比于传统的电视技术,有线数字电视技术更加便捷,而且信号更好,能为人们提供更加优质的观感服务,但 是其也存在一定的缺点,即其在实际的运行过程中极易受到外界因素的影响,容易出现各种问题。因此 相关的管理部门必须要加强对其调试维护力度,进而对其运行的稳定性及可靠性进行有效提升,确保有 线数字电视系统可以良好运行[1]。2有线数字电视技术参数测量的相关要求 2.1电平测量工作的相关要求 要提升有线数字电视系统运行的稳定性,那么相关的工作人员就必须对其中重要的技术参数进 行定期的测量调试,确保这些参数的准确性、可靠性。所谓的电平测量方式其实就是先使用QAM进行 调制,然后再利用有线数字传统子系同对量HFC网络中的参数进行准确的测量。在其实际的测量过程中,主要需要对以下几个方面的参数进行测量,即QAM调制时的误码率、信源传输中的数字频道信号噪 比、有线数字电视系统正常工作时的频道功率,只有对这些参数进行测量,然后消除其中存在的问题, 才能实现有线数字电视系统的运行效果的有效增强,进而为人们提供更加优质的观感服务[2]。 2.2TS码三级测量的相关要求 相比较而言,不同的有线数字电视系统对于Ts码的要求存在一定的差异性,部分的有线数字电 视对于Ts码的要求不高,而还有一些有线数字电视对于Ts码的要求比较高。因此相关的技术人员在对 有线数字电视系统进行实际的设计时,必须要对其未来系统运行过程中Ts码相关参数进行详细的测量。一般情况下,IS码的三个等级主要包括:周期监测、基本监测及其他方面的监测。所谓的基本检测主要是对其连接技术进行检测,确保其准确性以及相关的同步字节不会出现问题;相比较而言,周期检测的 工作内容则比较复杂,其主要对码元的传输、某些时间间隔划分以及PCR精度进行检测;而其他监测则主要是对缓冲器工作、数据的延时、PID及TDT等进行测量[3]。 3有线数字电视技术维护的相关要求 3.1相关指标分析维护 机顶盒作为有线电视系统中重要的组成部分,很多的有线数字电视技术都需要借助其才能进行 ,可以将其当作一个永华终端子系统。要想对有线数字电视系统网络的运行质量进行提高,那么相关的 管理部门就必须先对有线数字电视系统网络运行的安全性和稳定性进行提升,其相关的出口技术参数必须要符合相关要求,才能满足机顶盒的运行要求,也只有这样才能为有线数字电视技术的维护提供有利 的保障。除此之外相关的管理部门还应选用那些运行比较稳定,且具有较高指数的机顶盒,确保其相关 的指标指数处于所需的规定范围之内,这样才能对有线数字电子系统运行的安全性和可靠性进行全面提升,从而为人们提供更加优质的观感服务。 3.2调试分析 在有线数字电视系统的实际运行过程中,相关的管理部门必须要不断地对其进行调试,将其运 行中存在的隐患消除,进而确保其能够安全可靠的运行。在有线数字电视系统实际的调试过程中,主要 包括三个部分的调试工作,即是QAM调制器调试、用户分配网调试和光链路调试。其中所谓的QAM调

数字电视复用器技术要求和测量方法

数字电视复用器技术要求和测量方法 1 范围 本标准规定了数字电视复用器的主要技术要求和测量方法。对于能够确保同样测量不确定度的任何等效测量方法也可采用。有争议时,应以本标准为准。 本标准适用于数字电视复用器的开发、生产、应用、测量和运行维护。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注明日期的引用文件,其最新版本适用于本标准。 GB/T 17975.1-2000 信息技术 运动图像及其伴音信息的通用编码 第1部分: 系统 GY/T 170-2001 有线数字电视广播信道编码与调制规范 GY/Z 174-2001 数字电视广播业务信息规范 3 术语和定义 下列术语和定义适用于本标准。 3.1 ASI数据包传输格式 transmission format with data packets 在TS包之间填充专用字符K28.5,而在TS包内有效数据之间不填充专用字符K28.5的传输格式。 3.2 ASI突发传输格式 transmission format with data bursts 在TS包内有效数据之间填充专用字符K28.5的传输格式。 3.3 PCR重标记 PCR restamp 为了减少复用过程中引入的PCR抖动而对输入节目的PCR进行分析,并且重新生成PCR。 3.4 PCR校正 PCR adjust 对输入节目的PCR抖动和复用过程中可能引入的PCR抖动综合分析后对PCR进行纠正,重新生成新的PCR。 3.5 统计复用 statistical multiplexing 对带宽受限的多节目复用系统,根据各路节目的统计特性动态分配各路节目的码率的方法。 4 缩略语 下列缩略语适用于本标准。 ASI Asynchronous Serial Interface 异步串行接口 BNC Bayonet Neill-Concelman 同轴电缆接插件

有线数字电视测量

有线数字电视测量 一、概述 有线数字电视测量参数包括四大类:信号电平与频谱参数,调制质量参数,码流分析参数,图象质量参数。 信号电平及频谱参数主要有:信号电平、噪声电平、载噪比、噪声裕量、等价噪声劣化、带外杂散,均衡器响应,BER与E b/N0的关系等。功率测量是调整电平并使在整个电缆分配系统中信道交调失真最小的关键。载噪比反应频带中信号与噪声的主要关系,噪声裕量反映了信道抵抗干扰及噪声的能力,等价噪声劣化表明系统性能损伤情况,带外杂散反映不同频道相互干扰的情况,均衡器响应则表明信道的线性失真情况,BER与E b/N0的关系表明系统与理想系统之间的区别情况。频谱测试给出了RF信道质量的直观显示。 调制质量参数主要有:调制误差率、载波抑制、幅度不平衡、正交误差、相位抖动,RS 解码前误码率等。其中调制误差率反映了调制的总体质量;载波抑制、幅度不平衡等反映调制中可能引起误差的主要原因;RS解码前误码率则反映了整个信道的可靠性的性能。对数字调制的直接测量是找到信号失真源头的有用工具。调制质量的估价是放在数字解调之后,自适应均衡器附近. 码流分析参数:码流分析的目的保证系统中数字数据的正确性,它是系统提供服务的基础。参数可以参考ETR290中的有关参数,码流分析仪可以方便地完成全部参数的统计、运算与测量,直接给出结果。 图象质量参数:图象质量是最终衡量系统质量的标准,因为提供给最终用户的就是图象。模拟图象参数可以参考已有的图象测量标准,数字图象质量测量一般采用主观评价,也有仪器根据人的某些主观特性进行图象的评价。 二、工程维护中主要技术指标 (一)信号电平 信号和功率电平测量曾经是模拟电视系统的一个主题,对数字视频系统仍然是很重要的。在HFC系统中,电平测量尤其重要,因为在一根电缆上同时有许多信道在传,相邻信道间干扰会使信号质量劣化。和模拟电视相比,测量数字视频信号的平均功率更难些,因为它的RF谱是宽带的,和噪声类似的性质类似。如图:

地面数字电视国标17个配套标准

第一个标准是地面数字电视广播标准实施指南。这个标准主要规定建立符合GB20600-2006地面数字电视传输标准的工作模式、组网模式选择以及工程实施等考虑的问题; 第二个标准是地面数字电视广播系统测量方法,这个标准也是针对国标所制定的,主要用于地面数字电视广播系统功能、性能以及其他相关参数的定义,这个标准还给出相应的测量方法; 第三个标准是VHF/UHF频段地面数字电视广播的标准,这个标准主要在开展地面数字电视广播过程中,我们规划所需要运用各种参数,这个标准主要适用于我国地面数字电视频率规划,并且可以作为频率规划一个技术依据,来指导全国地面数字电视规划工作; 第四个标准是中间件的标准,这里第一部分系统标准,这个标准化主要定义地面有线、卫星等数字广播电视系统等中间件系统的应用环境、传输协议等等,在这个标准中我们给出文件系统、字符集和内容交换格式等; 第五个标准是地面数字电视广播但频网技术要求和实施指南。逐个标准可以作为地面数字电视单频网规划、网络设计、技能优化、系统实施、验收、运营维护的基础依据; 第六个标准是广播信号覆盖评估标准和测量方法,这个标准主要适用于地面数字电视广播系统固定接收信号覆盖质量评估,可以作为地面数字电视广播网络设计和网络覆盖效果验收的技术依据; 第七个配套标准是发射机技术要求和测量方法,这个标准主要用来规定地面数字电视发射机技术指标和测量方式,它用于不同登记地面数字电视广播发射机,并可以作为发射机生产、调试、测量、入网验收等技术依据; 第八个是地面数字电视标准接收机技术要求和测量方法,这个接收机和老百姓用的机顶盒还有区别,它并不是作为市场中买到家用机顶盒的标准,这个和机顶盒的标准还是有很大的区别; 第九个标准是地面数字电视广播检测技术规程不,这个主要是用来定义地面数字电视广播测量项目,测量指标和检测方法,这个适用于发射台服务区内米波和分米波地面数字电视广播的检测。检测的内容包括频段的监测、射频特性、广播测量技术、广播监测的方法等等; 第十个标准是地面数字电视传输流复用和接口技术规范。在国标GB20600-2006中已经明确规定数据输入接口支持GB/T17975.1信息技术,我们在这个标准的基础上编制地面数字电视传输流复用和接口规范,通过这个规范可以对地面数字电视输入的数据进行详细严格的定义; 第十一个标准是地面数字电视广播单频网规划准则。这个标准和前面刚才说的有一点类似,但是第十一个标准主要适用于单频网频率规范准则; 第十二个标准是VHF/VHF五频率地面数字电视业务与固定、移动业务共用技术准则。这个标准定义在这两个频段中对固定业务和陆地移动业务之间频率共用技术准则,这个标准适用于30兆到1G 频段内的数字的检测; 第十三个标准是地面数字电视激励器技术要求和检测方法,这个标准和刚才说了发射机的标准在很多方面有类似的内容,这个标准主要定义是功能方面的要求,符合单频网运输舰的支持模式,单频网的功能和多频网的功能,最后在标准中还给出一个接口的要求; 第十四个标准是单频网适配器技术要求和测量方法,这个标准也是涉及到地面数字电视系统当中设备的一个标准,在这里主要是作为单频网识别器入网检测、地面数字电视单频网建设、运营维护的技术依据。这个主要内容包括单频网适配器的输入输出接口定义,还有秒帧和秒帧初始包定义,在单频网的标准中,我们最后还给出秒初始化包测量方法; 第十五个标准是数字电视广播业务信息规范,这个在2001年已经颁布关于数字电视广播业务规范的标准,这个标准公布数字电视业务信息,这个标准适用于广播电视行业数字电视广播业务。针对颁布174号标准,我们在标准基础上修改了一些内容,适应地面数字电视的传输,主要内容包括174号标准中6.2.12节中传送活动描述符; 第十六个标准也是修订标准,这在总局2004年颁布行业标准进行一个修订,这个标准是GY/Z标

有线数字电视系统用户终端接收机入网技术条件及测量方法

国家广播电影电视总局 有线数字电视系统用户终端接收机入网技术条件和测量方法 第一部分:透明传输电性能参数 (暂行)

1.范围 本技术条件和测量方法(暂行)规定了有线数字电视系统用户终端接收机透明传输的主要性能参数要求和测量方法,对于确保同样测量准确度的任何等效测量方法也可以采用。 本技术条件和测量方法(暂行)是有线数字电视系统用户终端接收机入网检测的依据。 2.参考标准和文件: (1)G B/T 《信息技术运动图像及和有关声音信号的通用编码》 (2)G B/T 《有线数字电视广播规范》 (3)G B13836-1992《声音和电视信号的电缆分配系统设备与部件辐射干扰特性允许值和测量方法》(4)G B 8898-88 《电网电源供电的家用和类似一般用途的电子及有关设备的安全要求》 (5)E TSI 300468 DVB-C 系统SI 技术规范 (6)广发技字[2000]58号文 《关于我国现阶段有线电视综合业务用户终端体制的意见》 3.性能参数要求:见表1。 表1

表1(续)

4. 功能检查项目:见表2 5. 测量方法 5.1 最大、最小接收信号电平 5.1.1测试框图如图1所示。 5.1.2测试方法 a) MPEG2数字电视测试信号发生器发送活动图像和声音信号。接收信号电平采用频谱分析仪的带内功率(BAND POWER )测量功能。 b) 将可变衰减器预留一定的衰减量。调整可变衰减器,使被测接收机输入电平为其标称输入电平。 c) 调整可变衰减器,增大衰减量,减小输入信号,直到接收机将要出现马赛克,此时的接收机输入电平即为接收机最小接收信号电平。 d) 调整可变衰减器,减小衰减量,增大输入信号,直到接收机将要不能正常接收信号,此时的接收机输入电平即为接收机最大接收信号电平。 5.2 C/N 门限 5.2.1测试框图如图2所示。 图2 C/N 门限测试框图 5.2.2测试方法 a) MPEG2数字电视测试信号发生器发送活动图像和声音信号。测量C/N 时,以接收中心频率的电平与带内噪声的电平之比作为测量结果。 b) 调整测试发射机的输出电平,使接收机输入信号电平为其标称输入电平; c) 调整噪声发生器的输出,逐渐加大噪声电平,直到接收机将要出现马赛克。

数字电视信号电平的测试心得

数字电视信号电平的测试心得 根据GY/T170—2001《有线数字电视广播信道编码与调制规范》规定数字电视信号RMS(均方根)的电平值应低于模拟信号峰值电平0~10dB。但在绝大多数经营有线电视网络的营运单位,并不具有测量RMS电平值的测试手段。一般的情况下绝大多数中小有线网络营运单位只有简单的模拟信号测试手段,这就提出了一个问题:在数字电视信号(DVB—C)快速发展的今天,如何以现有的测试手段去完成数字信号的测量?为了说明问题,我们可以用一般的场强仪和频谱分析仪去进行模拟信号和数字电视信号电平的测试,并进行对比分析。先假设在网络中传输的模拟信号的电平值与数字电视信号的RMS电平值之差为零。这时用一般的场强仪去分别测量模拟信号和数字电视信号的电平值,就会发现数字电视信号的电平值会比模拟电视的电平值低十几个dB;更奇怪的是如果用频谱分析仪进行此类测试时,会发现对应于不同的中频扫描带宽(RBW),模拟信号电平与数字电视信号电平之间呈现出不同的电平差。为什么这样?要回答这个问题,首先要回答模拟信号与数字电视信号在频谱上的差异。模拟信号的峰值出现在载频点,而数字电视信号在频谱上是看不出载频点的。在一个合适的频段内,数字电视信号的电平谱更类似于噪声的频谱。这是由于数字电视信号的频谱是由无数不断变动的载波组成,所以在一个合适的频段内更象是一段噪声频谱。所以对数字电视信号的测量更适合的方式应为类似于噪声的测量。我们可以回忆一下模拟信

号载噪比的定义:C/N=20lg 由此我们可以初步的理解到,均方根值的测量是与测量带宽有关的。其实我们大可以这样理解数字电视信号RMS 值的含义为“带内功率电平值”。其所指“带内”是指-3dB 带宽内,“带内功率”是指-3dB 带宽内信号功率之和。有了这样的认识,我们就可以理解模拟信号和数字电视信号在测量中所呈现的差异。一般的场强仪均具有一个固定的中频扫描带宽,大约为300KHz 左右,在测模拟信号时,出现在300KHz 扫描带宽内的只有一个载波的峰值功率电平,不存在多个峰值电平之和;而测量数字电视信号电平时,所显示的是在300KHz 扫描带宽内的功率电平之和,而非完整的数字电视信号功率电平。这也就能解释在用频谱分析仪进行测量时,对应不同的中频扫描带宽,测同一个数字电视信号的电平会出现差异的原因。理论上,数字电视信号的带宽与QAM 调制的阶数、符号率及滚降系数有关,具体公式为: 信号带宽=符号率×(1+α) 在QAM64的调制方式中,设定符合率为6.875,α=0.15时,信号带宽为7.90625MHz 又假定某测量仪器的中频扫描带宽为300KHz 。而测试某数字电视信号电平为S 。,则总的数字电视信号电平S 则为: S=S 。+10lg K 为修正系数,有资料介绍为1.7dB. 代入上述各值:S=S 。+10lg + 1.7 +K 数字电视信号带宽 0.3

相关主题
文本预览
相关文档 最新文档