当前位置:文档之家› 04184线性代数公式_(自考)

04184线性代数公式_(自考)

04184线性代数公式_(自考)
04184线性代数公式_(自考)

第一章行列式

主要知识点

一、行列式的定义和性质

1.余子式和代数余子式的定义

2.行列式按一行或一列展开的公式

1)

2)

3.行列式的性质

1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0. 5)行列式可以按任一行(列)拆开. 6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.

二、行列式的计算

1.二阶行列式和三角形行列式的计算.

2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.

3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.

4.行列式中各行元素之和为一个常数的类型.

5.范德蒙行列式的计算公式

第二章矩阵

主要知识点

一、矩阵的概念

1.要分清矩阵与行列式的区别

2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)

二、矩阵的运算

1.矩阵A , B的加、减、乘有意义的充分必要条件

2.矩阵运算的性质

比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)

重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).

3.转置对称阵和反对称阵

1)转置的性质

2)若A T=A (A T= - A),则称A为对称(反对称)阵

4.逆矩阵

1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,

.

2)方阵A的伴随阵的定义。重要公式

;与A -1的关系(当方阵A可逆时,)

3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.

4)逆矩阵的性质:

; ; .

5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。(若不知A可逆,

仅知A≠0结论不一定成立。)

5.方阵的行列式

6.分快矩阵矩阵运算时分快的原则;分快矩阵的运算规则;分快矩阵的转置

三、矩阵的初等变换和初等矩阵

1.初等变换的定义和性质

方阵经初等变换后的行列式是否变化?(分别就三种初等变换说明行列式变化的情况)初等变换不改变方阵的可逆性;初等变换不改变矩阵的秩;行初等变换必能将矩阵化为

行最简形,初等变换必能将矩阵A化为标准形,其中r为矩阵A的秩.

2.初等矩阵的定义和性质

1)初等矩阵的定义2)初等变换和矩阵乘法之间的关系3)对任意m×n阶矩阵

A,总存在一系列m阶初等阵和一系列n阶初等阵使得

四、矩阵的k阶子式和矩阵秩的概念,求矩阵秩的方法

五、矩阵方程的标准形及解的公式

第三章向量空间

主要知识点

一、n维向量线性运算的定义和性质;

设是一组n维向量构成的向量组。如果存在一组不全为零的数

使得则称向量组线性相关。否则,称向量组线性无关。

二、n维向量组的线性相关性

1.向量组的线性相关性的定义和关于线性相关的几个定理;

(1)m个n维向量线性相关的充分必要条件是至少存在某个是其余向量的线性组合.

线性无关的充分必要条件是其中任意一个向量都不能表示为其余向量的线性组合.

(2)如果向量组线性无关,而线性相关,则β可由

线性表示,且表示法唯一.

(3)线性相关的向量组再增加向量所得的新向量组必线性相关.(部分相关,则整体相关;或整体无关,则部分无关)

(4)若向量组线性无关,则接长向量组

必线性无关.

2.判断向量组的线性相关性的方法

(1)一个向量α线性相关;

(2)含有零向量的向量组必线性相关;

(3)向量个数=向量维数时,n维向量组线性相关

(4)向量个数 >向量维数时, 向量组必线性相关;

(5)若向量组的一个部分组线性相关,则向量组必线性相关;

(6)若向量组线性无关,则其接长向量组必线性无关;

(7)向量组线性无关向量组的秩=所含向量的个数,

向量组线性相关向量组的秩<所含向量的个数;

(8)向量组线性相关(无关)的充分必要条件是齐次方程组

有(没有)非零解.

三、向量组的极大无关组及秩

1.极大无关组的定义

2.向量组的秩求向量组的秩和极大无关组,并将其余向量由该极大无关组线性表示的的方法

四、子空间的定义,,基、维数、向量在一组基下的坐标

第四章线性方程组

一、线性方程组的三种表示方法

二、齐次线性方程组

1.齐次方程组解的性质

设α,β都是Ax=0的解,则C1α+C2β也是Ax=0的解(C1,C2为任意常数)

2.齐次方程组有非零解的条件

1)齐次方程组AX=0有非零解的充分必要条件是r(A)<未知数的个数(即矩阵A的列数).

2)n个未知数n个方程的齐次方程组AX=0有非零解的充分必要条件是|A|=0.

3)设A是m×n阶矩阵.若m<n,则齐次方程组AX=0必有非零解.(这是齐次方程组有非零解的充分条件但不必要)

3.齐次方程组解的结构

1)齐次方程组AX=0的基础解系的概念

重要结论:齐次方程组AX=0的任意n-r(A)个线性无关的解都构成该齐次方程组的基础解系;

2)齐次方程组AX=0的基础解系的求法

3)齐次方程组AX=0的通解公式

三、非齐次方程组

1.非齐次方程组解的性质

(1)设η

1,η

2

都是Ax=b的解,则η1-η2是它的导出组Ax=0的解.

(2)设η

1,η

2

都是Ax=b的解,则当k1+k2=1时,k1η1+k2η2也是Ax=b的解.

(3)设η是Ax=b的一个解,是它的导出组Ax=0的解,则是Ax=b的解.

2.关于非齐次方程组解的讨论

定理:n个未知数,m个方程的线性方程组AX=β中,(系数矩阵A是m×n阶矩阵)

是增广矩阵.则

1)当且仅当(未知数的个数)时,方程组AX=β有惟一解;

2)当且仅当(未知数的个数)时,方程组AX=β有无穷多解;

3)当且仅当时,方程组AX=β无解.

从以上定理可见

1)线性方程组AX=β有解的充分必要条件是.

2)当线性方程组AX=β方程的个数=未知数的个数时,该方程组有惟一解的充分必要条件是系数行列式|A|≠0.

3.非齐次方程组AX=β的通解的结构

其中是方程AX=β的一个特解,r=r(A)为系数矩阵的秩,为它的导出组(与它对应的)齐次方程组AX=0的基础解系;

第五章特征值与特征向量

主要知识点

一、特征值与特征向量

1.特征值与特征向量的定义

要点:λ是n阶方阵A的特征值,是指存在非零向量α,使得Aα=λα这时,称α为矩阵A属于特征值λ的特征向量.由此知,λ是n阶方阵A的特征值,

这时,齐次方程组(λE-A)x=0的非零解都是矩阵A属于特征值λ的特征向量.

2.关于特征值、特征向量的性质

1)A T与A有相同的特征值,但不一定有相同的特征向量;

2)设α

1,α

2

都是矩阵A属于特征值λ的特征向量,k

1

,k

2

是数,只要,

则k

1

+ k

2

α

2

也是矩阵A属于特征值λ的特征向量;

3)设n阶方阵A的n个特征值为λ

1,λ

2

,…,λ

n

,则

4)矩阵A属于不同特征值的特征向量线性无关;

5)设α是矩阵A属于特征值λ的特征向量,则α是矩阵f(A)属于特征值f(λ)的特征向量,其中.

6)设λ是可逆矩阵A的特征值.则λ≠0,且是矩阵A-1的特征值.

3.特征值、特征向量的求法

二、相似矩阵

1.相似矩阵的定义

2. 相似矩阵的性质

1)反身性,对称性,传递性;

2)若方阵A与B相似,则,且,trA表示矩阵A的

迹,即,λ

1,λ

2

,…,λ

n

为方阵A的n个特征值;

3)若方阵A与B相似,则A与B有相同的特征多项式,从而有相同的特征值,但不一定有相同的特征向量;

注意:反之,若A与B有相同的特征值,A与B不一定相似;例如

有相同的特征值,但A与B不相似.

3.方阵A的对角化问题

1)n阶方阵A能与对角阵相似的充分必要条件是A有n个线性无关的特征向量;设λ

1

,λ2,…,λn是方阵A的n个特征值,p1,p2,…,p n依次是方阵A的属于特征值λ1,λ2,…,λn的n个线性无关的特征向量.若令,则

.

2)若方阵A有n个不同的特征值(即特征方程无重根),则A必能与对角阵相似.(这是A能与对角阵相似的充分条件,不是必要条件)

三、向量的内积和正交矩阵

1.向量内积的定义:设

2.向量的长度

3.单位化向量

4.正交向量组的定义及其性质

5.施密特正交化手续

6.正交矩阵

1)正交矩阵的定义;如果n阶方阵A满足AA T=E,则称它为正交阵

2)正交矩阵的性质:设方阵A为正交阵,则|A|=±1;A必可逆,且A-1=A T;

如果A,B都是n阶正交阵,则AB也是正交阵;A是正交阵的充分必要条件是A的列(行)向量组构成R n的标准正交基.

四.实对称矩阵

1.实对称矩阵的特征值都是实数;

2.实对称矩阵属于不同特征值的特征向量相互正交;

3.实对称矩阵必能与对角阵相似,且存在正交阵P,使得P-1AP为对角形.

4.任给实对称阵A,如何求出正交阵P,使得P-1AP为对角形.

第六章实二次型

一、二次型及其矩阵表示

二、矩阵的合同

三、用正交变换化二次型为标准形

1)定理对任意实二次型,总存在正交变换x=Py,使得该二次型化为标准型

其中λ

1,λ

2,

,

λ

n

为实对称矩阵A的n个特征值.

此定理说明:对任意实对称矩阵A,总存在正交阵P,使得

其中λ

1,λ

2,

,

λ

n

为实对称矩阵A的n个特征值.(即实对称矩阵A必能与对角阵

合同.

2)要掌握用正交变换化二次型为标准形的方法.

4.配方法化二次型为标准形.

5.惯性定律

6.正定二次型与正定矩阵

1)定义

2)二次型正定(方阵正定)的充分必要条件

正定的充分必要条件是它的正惯性指数=n.

正定的充分必要条件是A与单位阵合同.

正定的充分必要条件是A的所有特征值都大于零.

正定的充分必要条件是A的各阶顺序主子都大于零.

3)二次型正定性的定义及其判别方法

定义

关于二次型正定性的判断:

n元二次型正(负)定它的正(负)惯性指数=n;

n元二次型半正(负)定它的负(正)惯性指数=0;

n元二次型不定它的正,负惯性指数都不等于0.

通过上述串讲,可以看出,线性代数(经管类)试题的特点确实是主要考核大家对基本概念,基本公式,基本方法掌握的情况,同时,试题涉及的非常全面,考核的非常细,这就更要求我们复习得更加全面,更加深入。总而言之,还是我们开始说的要狠抓基本,全面复习,把复习作细就一定能取得满意的成绩。另外也希望大家在考前休息好,调整好心态。预祝大家考试成功!谢谢大家。

历年自考04184线性代数试题真题及答案分析解答

全国2010年度4月高等教育自学考试线性代数(经管类)试题答案 一、单项选择题(本大题共10小题,每小题2分,共20分) 1.已知2阶行列式m b b a a =2121,n c c b b =2121,则=++2 21 12 1 c a c a b b ( B ) A .n m - B .m n - C .n m + D .)(n m +- m n n m c c b b a a b b c a c a b b -=+-=+=++2 12 12121 221121. 2.设A , B , C 均为n 阶方阵,BA AB =,CA AC =,则=ABC ( D ) A .ACB B .CAB C .CBA D .BCA BCA CA B AC B C BA C AB ABC =====)()()()(. 3.设A 为3阶方阵,B 为4阶方阵,且1||=A ,2||-=B ,则行列式||||A B 之值为( A ) A .8- B .2- C .2 D .8 8||)2(|2|||||3-=-=-=A A A B . 4.????? ??=3332 312322 211312 11a a a a a a a a a A ,????? ??=3332 312322 211312 11333a a a a a a a a a B ,????? ??=100030001P ,??? ? ? ??=100013001Q ,则=B ( B ) A .PA B .AP C .QA D .AQ ????? ??=3332 31 232221 131211 a a a a a a a a a AP ????? ??100030001B a a a a a a a a a =??? ? ? ??=3332312322 211312 11333. 5.已知A 是一个43?矩阵,下列命题中正确的是( C ) A .若矩阵A 中所有3阶子式都为0,则秩(A )=2 B .若A 中存在2阶子式不为0,则秩(A )=2 C .若秩(A )=2,则A 中所有3阶子式都为0 D .若秩(A )=2,则A 中所有2阶子式都不为0 6.下列命题中错误..的是( C ) A .只含有1个零向量的向量组线性相关 B .由3个2维向量组成的向量组线性相关

考研线性代数公式速记大全

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确 (),n T A r A n A A Ax x Ax A Ax A A A E οοοββ==??≠≠≠??∈=?可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 , 0总有唯一解 是正定矩阵 R 12,s i A p p p p n B AB E AB E ?? ??? ????? ?? ??=????==?? 是初等阵 存在阶矩阵使得 或 ○ 注:全体n 维实向量构成的集合n R 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的?? ?? ?????特征向量 ○ 注 ()()a b r aE bA n aE bA aE bA x οολ+

12121211 12121222()121 2()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ 1 √ 行列式的计算: ①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ②若A B 与都是方阵(不必同阶),则 == ()mn A O A A O A B O B O B B O A A A B B O B O *= =* * =-1(拉普拉斯展开式) ③上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④关于副对角线: (1)2 1121 21 1211 1 ()n n n n n n n n n n n a O a a a a a a a O a O ---* ==- 1 (即:所有取自不同行不 同列的n 个元素的乘积的代数和) ⑤范德蒙德行列式:()1 2 2 22 1211 1112n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏ 111 由m n ?个数排成的m 行n 列的表11 12121 2221 2 n n m m mn a a a a a a A a a a ?? ? ? = ? ? ?? 称为m n ?矩阵.记作:()ij m n A a ?=或m n A ? () 1121112222* 12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ? ?? ,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法: ① 1 A A A *-= ○注: 1 a b d b c d c a ad bc --????= ? ? --???? 1 主换位副变号

线性代数公式大全最全最完美

线性代数公式大全——最新修订 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积;

线性代数性质公式

线性代数 第一章行列式 一、相关概念 1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积 的代数和,这里是1,2,···n的一个排列。当是偶排列时,该项的前面带正号;当是奇排列时,该项的前面带负号,即 (1.1) 这里表示对所有n阶排列求和。式(1.1)称为n阶行列式的完全展开式。 2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。一个排列的逆序总是称为这个排列的逆序数。用表示排列的逆序数。 3.偶排列与奇排列——如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列。 4.2阶与3阶行列式的展开——, 5.余子式与代数余子式——在n阶行列式中划去所在的第i行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式 称为的余子式,记为;称为的代数余子式,记为,即。

6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如,称为A的伴随矩阵,记作。 二、行列式的性质 1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。 2.两行互换位置,行列式的值变号。特别地,两行相同(或两行成比例),行列式的值为0. 3.某行如有公因子k,则可把k提出行列式记号外。 4.如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和: 5.把某行的k倍加到另一行,行列式的值不变: 6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0 三、行列式展开公式 n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即 |A|按i行展开的展开式 |A|按j列展开的展开式 四、行列式的公式 1.上(下)三角形行列式的值等于主对角线元素的乘积; 2.关于副对角线的n阶行列式的值 3.两个特殊的拉普拉斯展开式:如果A和B分别是m阶和n阶矩阵,则 4.范德蒙行列式 5.抽象n阶方阵行列式公式(矩阵) 若A、B都是n阶矩阵,是A的伴随矩阵,若A可逆,是A的特征值:

最全线性代数公式笔记

线性代数公式必记 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

线性代数公式大全——最新修订(突击必备)

线性代数公式大全 1、行列式 1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1) n n -? -; ⑤、拉普拉斯展开式:A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 5. 对于n 阶行列式A ,恒有:1(1) n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 6. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为0; ?T A A 是正定矩阵; ?A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵; 2. 对于n 阶矩阵A :* * AA A A A E == 无条件恒成立; 3. 1* *1 11**()()()()()()T T T T A A A A A A ----=== * * * 1 1 1 ()()()T T T AB B A AB B A AB B A ---=== 4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 5. 关于分块矩阵的重要结论,其中均A 、B 可逆: 若12 s A A A A ?? ? ?= ? ?? ? ,则: Ⅰ、12s A A A A = ; Ⅱ、1 1112 1s A A A A ----?? ? ?= ? ? ?? ? ; ②、1 11A O A O O B O B ---?? ?? = ? ????? ;(主对角分块) ③、1 11O A O B B O A O ---?? ??= ? ? ???? ;(副对角分块) ④、1 1111A C A A CB O B O B -----?? -?? = ? ????? ;(拉普拉斯) ⑤、1 111 1A O A O C B B CA B -----?? ?? = ? ?-???? ;(拉普拉斯) 3、矩阵的初等变换与线性方程组 1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:r m n E O F O O ???= ???; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ? ; 2. 行最简形矩阵:

线性代数重要公式、定理大全

1、行列式 1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1) (1) i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1) 2 1 (1) n n D D -=-;(1) 2 2 (1) n n D D -=- 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4 D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1)n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1) n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1) m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1) n n k n k k k E A S λλλ -=-=+ -∑,其中k S 为k 阶主子式; 7. 证明 A =的方法: ①、 A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ? 齐次方程组0 Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积;

自学考试-线性代数试卷及答案集合

2014年10月高等教育自学考试全国统一命题考试 04184线性代数(经管类)试卷 本试卷共8页,满分100分,考试时间150分钟。 说明:本试卷中,T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,E 是单位矩阵, A 表示方阵A 的行列式,()A r 表示矩阵A 的秩。 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号。错选、多选或未选均无分。 1.设3阶行列式1 1 1 232221 13 1211 a a a a a a =2,若元素ij a 的代数余子公式为ij A (i,j=1,2,3),则=++333231A A A 【 】 A.1- B.0 C.1 D.2 2.设A 为3阶矩阵,将A 的第3行乘以2 1 -得到单位矩阵E , 则A =【 】 A.2- B.2 1 - C.21 D.2 3.设向量组321,,ααα的秩为2,则321,,ααα中 【 】 A.必有一个零向量 B. B.任意两个向量都线性无关 C.存在一个向量可由其余向量线性表出 D.每个向量均可由其余向量线性表出 4.设3阶矩阵??? ? ? ??---=466353331A ,则下列向量中是A 的属于特征值2-的特征向量为 【 】 A.????? ??-011 B.????? ??-101 C.????? ??201 D.???? ? ??211 5.二次型212 322213214),,(x x x x x x x x f +++=的正惯性指数为 【 】 A.0 B.1 C.2 D.3 二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错误、不填均无分、

2020考研 线性代数_常用公式

考研数学线性代数常用公式 数学考研考前必背常考公式集锦。希望对考生在暑期的复习中有所帮助。本文内容为线性代数的常考公式汇总。 1、行列式的展开定理 行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之 和,即 C 的 3、设A 为n 阶方阵,*A 为它的伴随矩阵则有**==AA A A A E . 设A 为n 阶方阵,那么当AB =E 或BA =E 时,有1-B =A 4、 对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种: 第一种:交换单位矩阵的第i 行和第j 行得到的初等矩阵记作ij E ,该矩阵也

可以看做交换单位矩阵的第i 列和第j 列得到的.如1,3001010100?? ?= ? ?? ?E . 第二种:将一个非零数k 乘到单位矩阵的第i 行得到的初等矩阵记作()i k E ;该矩阵也可以看做将单位矩阵第i 列乘以非零数k 得到的.如 2100(5)050001?? ?-=- ? ?? ?E . 第三种:将单位矩阵的第i 行的k 倍加到第j 行上得到的初等矩阵记作()ij k E ;该矩阵也可以看做将单位矩阵的第j 列的k 倍加到第i 列上得到的.如 3,2100(2)012001?? ?-=- ? ??? E . 注: 1)初等矩阵都只能是单位矩阵一次初等变换之后得到的. 2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵()ij k E 看做列变换是将单位矩阵第j 列的k 倍加到第i 列,这一点考生比较容易犯错. 5、矩阵A 最高阶非零子式的阶数称之为矩阵A 的秩,记为()r A . 1)()()(),0r r r k k ==≠T A A A ; 2)()1r ≠?≥A O A ; 3)()1r =?≠A A O 且A 各行元素成比例; 4)设A 为n 阶矩阵,则()0r n =?≠A A . 6、线性表出 设12,,...,m ααα是m 个n 维向量,12,,...m k k k 是m 个常数,则称1122...m m k k k ααα+++为向量组12,,...,m ααα的一个线性组合. 设12,,...,m ααα是m 个n 维向量,β是一个n 维向量,如果β为向量组

自考04184线性代数经管类讲义

自考高数线性代数课堂笔记 第一章行列式 线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。 1.1行列式的定义 (一)一阶、二阶、三阶行列式的定义 (1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。 注意:在线性代数中,符号不是绝对值。 例如,且; (2)定义:符号叫二阶行列式,它也是一个数,其大小规定为: 所以二阶行列式的值等于两个对角线上的数的积之差。(主对角线减次对角线的乘积)例如 (3)符号叫三阶行列式,它也是一个数,其大小规定为 例如=0 三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆 方法是:在已给行列式右边添加已给行列式的第一列、第二列。我们把行列式左上角到右下角的对角

线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。 例如: (1) =1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0 (2) (3) (2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如 例1a为何值时,

[答疑编号10010101:针对该题提问] 解因为 所以8-3a=0,时 例2当x取何值时, [答疑编号10010102:针对该题提问] 解: 解得0

线性代数公式定理大全2016

线性代数公式大全 第一章 行列式 1.逆序数 1.1 定义 n 个互不相等的正整数任意一种排列为:12n i i i ???,规定由小到大为标准次序,当某两个元素的先后次序与标准次序不 同时,就说有一个逆序数,该排列全部逆序数的总合用()12n i i i τ???表示,()12n i i i τ???等于它所有数字中后面小于前面 数字的个数之和。 1.2 性质 一个排列中任意两个元素对换,排列改变奇偶性,即 ()211ττ=-。 证明如下: 设排列为111l m n a a ab b bc c L L L ,作m 次相邻对换后,变成111l m n a a abb b c c L L L ,再作1m +次相邻对换 后,变成111l m n a a bb b ac c L L L ,共经过21m +次相邻对换,而对不同大小的两元素每次相邻对换逆序数要么增加1 , 要么减少1 ,相当于()211ττ=-,也就是排列必改变改变奇偶性,21m +次相邻对换后() ()21 21111m τττ+=-=-, 故原命题成立。 2.n 阶行列式的5大性质 性质1:转置(行与列顺次互换)其值不变。 性质2:互换任意两行(列)其值变号。 性质3:任意某行(列)可提出公因子到行列式符号外。 性质4:任意行列式可按某行(列)分解为两个行列式之和。 性质5:把行列式某行(列)λ倍后再加到另一行(列),其值不变。 行列式的五大性质全部可通过其定义证明;而以后对行列式的运算主要是利用这五个性质。 对性质4的重要拓展: 设n 阶同型矩阵, ()()(); ij ij ij ij A a B b A B a b ==?+=+,而行列式只是就某一列分解,所以,A B +应当 是2n 个行列式之和,即A B A B +≠+。 韦达定理的一般形式为:

2018年10月全国自考线性代数(经管类)真题及答案

2014年10月全国高等教育自学考试 线性代数(经管类)试卷及答案 课程代码:04184 本试卷共8页,满分100分,考试时间150分钟。 说明:本试卷中,T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,E 是单位矩阵,A 表示方阵A 的行列式,()A r 表示矩阵A 的秩。 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设3阶行列式111 2322 21131211 a a a a a a =2,若元素ij a 的代数余子公式为ij A (i,j=1,2,3),则=++333231A A A 【 】 A.1- B.0 C.1 D.2 2.设A 为3阶矩阵,将A 的第3行乘以21- 得到单位矩阵E , 则A =【 】 A.2- B.2 1- C.21 D.2 3.设向量组321,,ααα的秩为2,则321,,ααα中 【 】 A.必有一个零向量 B. B.任意两个向量都线性无关 C.存在一个向量可由其余向量线性表出 D.每个向量均可由其余向量线性表出 4.设3阶矩阵???? ? ??---=466353331A ,则下列向量中是A 的属于特征值2-的特

征向量为 【 】 A.????? ??-011 B.????? ??-101 C.????? ??201 D.???? ? ??211 5.二次型212322213214),,(x x x x x x x x f +++=的正惯性指数为 【 】 A.0 B.1 C.2 D.3 二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错误、不填均无分、 6.设131 2)(--=x x f ,则方程0)(=x f 的根是 7.设矩阵??? ? ??=0210A ,则*A = 8.设A 为3阶矩阵,21- =A ,则行列式1)2(-A = 9.设矩阵???? ??=4321B ,??? ? ??=2001P ,若矩阵A 满足B PA =,则A = 10.设向量T )4,1(1-=α,T )2,1(2=α,T )2,4(3=α,则3α由21,αα线性表出 的表示式为 11.设向量组T T T k ),0,1(,)0,1,4(,)1,1,3(321===ααα线性相关, 则数=k 12.3元齐次线性方程组?? ?=-=+0 03221x x x x 的基础解系中所含解向量的个数 为 13.设3阶矩阵A 满足023=+A E ,则A 必有一个特征值为 14.设2阶实对称矩阵A 的特征值分别为1-和1,则=2A

线性代数重要公式定理大全

1、行列式 1. n行列式共有n2个元素,展开后有n!项,可分解为2n行列式; 2. 代数余子式的性质: ①、A j和a^的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为 A ; 3. 代数余子式和余子式的关系:M ij ( 1)i j A ij A ij ( 1)i j M ij 4. 设n行列式D : n(n 1)n(n 1)将D上、下翻转或左右翻转,所得行列式为D!,则U ( 1)F D;D2 ( 1L D 将D顺时针或逆时针旋转90o,所得行列式为D2,贝U; 将D主对角线翻转后(转置),所得行列式为D3,则D3 D ; 将D主副角线翻转后,所得行列式为D4,则D4 D ; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; n(n 1) ②、副对角行列式:副对角元素的乘积(1)h ; ③、上、下三角行列式(、i ):主对角元素的乘积; n (n 1) ④、匚和丄:副对角元素的乘积(1)F ; ⑤、拉普拉斯展开式: A||B、(1)mgn A B ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; n 6. 对于n阶行列式A,恒有:E A n(1)W nk,其中S k为k阶主子式; k 1 7. 证明A 0的方法: ①、A A ; ②、反证法; ③、构造齐次方程组Ax 0,证明其有非零解; ④、利用秩,证明r(A) n ; ⑤、证明0是其特征值; 2、矩阵 1. A是n阶可逆矩阵: A 0 (是非奇异矩阵); r(A) n (是满秩矩阵) A的行(列)向量组线性无关; 齐次方程组Ax 0有非零解; b R n,Ax b总有唯一解;

线性代数公式大全

概率论公式大全(2010版) 1.随机事件及其概率 吸收律:A AB A A A A =?=??Ω=Ω?)( A B A A A A A =???=??=Ω?)( )(AB A B A B A -==- 反演律:B A B A =? B A AB ?= n i i n i i A A 11=== n i i n i i A A 11=== 2.概率的定义及其计算 )(1)(A P A P -= 若B A ? )()()(A P B P A B P -=-? 对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有 )()()()(AB P B P A P B A P -+=? )()()(B P A P B A P +≤? )()1()()()()(2111111n n n n k j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++- =∑∑∑ 3.条件概率 ()=A B P ) ()(A P AB P 乘法公式 ())0)(()()(>=A P A B P A P AB P

()() ) 0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式 ∑==n i i AB P A P 1)()( )()(1i n i i B A P B P ?=∑= Bayes 公式 )(A B P k )()(A P AB P k = ∑==n i i i k k B A P B P B A P B P 1 ) ()()()( 4.随机变量及其分布 分布函数计算 ) ()()()()(a F b F a X P b X P b X a P -=≤-≤=≤< 5.离散型随机变量 (1) 0 – 1 分布 1,0,)1()(1=-==-k p p k X P k k (2) 二项分布 ),(p n B 若P ( A ) = p n k p p C k X P k n k k n ,,1,0,)1()( =-==- *Possion 定理 0lim >=∞ →λn n np 有 ,2,1,0!)1(l i m ==---∞→k k e p p C k k n n k n k n n λλ (3) Poisson 分布 )(λP ,2,1,0,!)(===-k k e k X P k λλ

线性代数全公式 线性代数公式定理总结

基本运算 ①A + B =B +A ② (A + B )+C =A +(B +C ) ③ c(A + B )=cA +cB (c + d A = cA +dA ④ c(dA )=(cd A ⑤cA = 0二 c=0或 A=0。 (A T T =A (A±B y =A T ±B T (cA T = C (A T L (AB T =B T A T T(n (n —1)"21)=C j = n (n ~1) 2 逆值变A 」 CA =c n Ct , P l + P 2, 丫 = P i ,Y y p 2,Y A =?1,^2,^3 ), 3 阶矩阵 B =(3l, 02,卩3 ) A + B | H |A +|B | 线性代数全公式 B + P l ?2 +P 233+P 3 D = a 21A 21 + a 22A 2^ ^a 2n A Zn 转置值不变 A T =A A + B =(% + P l,% +6,03 +P 3)

E(i,j(c)“1 I 有关乘法的基本运算 C ij =a ii b ij +a i2b2j + …+a in b nj 线性性质(A t + 民B=A1B +A2B , A(Bi + B2 )= AB i + AB2 (cAB =c(AB )= A(cB )结合律(AB C = A(BC ) (AB T =B T A T AB| =|A|B .k .l . k + A A =A (A k} A kl (AB (=A k B k不一定成立! A(kE )= kA , (kE A = kA AB = E u BA = E 与数的乘法的不同之处 (AB;= A k B k不一定成立! 无交换律因式分解障碍是交换性 一个矩阵A的每个多项式可以因式分解,例如 2 A —2A-3E =(A—3E )(A + E ) 无消去律(矩阵和矩阵相乘) 当AB = 0时口A = 0或B=0 由AH0和AB =0= B=0 由AH0时AB=ACx B=C (无左消去律)特别的设A可逆,则A 有消去律。 左消去律:AB = AC二B = C。右消去律:BA = CA=B=C。 如果A列满秩,则A有左消去律,即 ①AB =0= B =0 ②AB = AC = B = C

线性代数公式必记

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1) i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1) 2 1(1)n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1) 2 2(1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1) 2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1) 2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1) m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1) n n k n k k k E A S λλλ -=-=+ -∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0 Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ? 齐次方程组0 Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为0;

自考04184线性代数(经管类)讲义第二章 矩 阵

第二章矩阵 2.1矩阵的概念 定义2.1.1由m×n个数a ij(i=1,2,…,m;j=1,2,…,n)排成一个m行n列的数表 用 大小括号表示 称为一个m行n列矩阵。 矩阵的含义是:这m×n个数排成一个矩形阵列。 其中a ij称为矩阵的第i行第j列元素 (i=1,2,…,m;j=1,2,…,n),而i 称为行标,j称为列标。第i行与第j列的变叉位置记为(i,j)。 通常用大写字母A,B,C等表示矩阵。有时为了标明矩阵的行数m和列数n,也可记为 A=(a ij)m×n或(a ij)m×n或A m×n

当m=n时,称A=(a ij)n×n为n阶矩阵,或者称为n阶方阵。n阶方阵是由n2个数排成一个正方形表,它不是一个数(行列式是一个数),它与n阶行列式是两个完全不同的概念。只有一阶方阵才是一个数。一个n阶方阵A中从左上角到右下角的这条对角线称为A的主对角线。n阶方阵的主对角线上的元素a11,a22,…,a nn,称为此方阵的对角元。在本课程中,对于不是方阵的矩阵,我们不定义对角元。 元素全为零的矩阵称为零矩阵。用O m×n或者O(大写字)表示。 特别,当m=1时,称α=(a1,a2,…,a n)为n维行向量。它是1×n矩阵。 当n=1时,称为m维列向量。 它是m×1矩阵。 向量是特殊的矩阵,而且它们是非常重要的特殊矩阵。 例如,(a,b,c)是3维行向量,

是3维列向量。 几种常用的特殊矩阵: 1.n阶对角矩阵 形如或简写 为(那不是A,念“尖”)的矩阵,称为对角矩阵, 例如,是一个三阶对角矩阵, 也可简写为。 2.数量矩阵 当对角矩阵的主对角线上的元n阶数量矩阵

考研线性代数公式

考研线性代数公式

————————————————————————————————作者:————————————————————————————————日期: ?

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解;

精心整理线性代数公式大全

1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1 (1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2 D ,则(1)2 2 (1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3 D ,则3 D D =; 将D 主副角线翻转后,所得行列式为4 D ,则4 D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1)n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式 : A O A C A B C B O B = =、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1) n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子 式; 7. 证明0A =的方法: ①、A A =-; ②、反证法;

相关主题
文本预览
相关文档 最新文档