当前位置:文档之家› 浅谈高层建筑抗震设计

浅谈高层建筑抗震设计

浅谈高层建筑抗震设计
浅谈高层建筑抗震设计

浅谈高层建筑抗震设计

摘要:本文作者分析了我国钢筋混凝土高层建筑抗震设计存在的主要问题,并提出了相应的设计对

关键词:高层建筑;抗震设计

Abstract: The author analyzes the main problems of reinforced concrete high-rise buildings for seismic design, and design countermeasures.Keywords: high-rise buildings; seismic design

我国是一个地震灾害比较频繁的国家,对于高层建筑来说,一旦遭遇地震,往往会遭受巨大的损失。因此在进行高层建筑结构抗震设计的过程当中应该充分考虑当地的地质情况,有针对性的进行相应的设计,尽可能的降低地震造成的损坏。随着我国经济的快速发展,高层建筑也越来越多,在这种情况下必须做好抗震设计。设计人员在高层建筑抗震设计中,都是按照抗震结构设计规范进行的,他们希望设计的结构能够达到强度、刚度、延性及耗能能力等方面达到最佳,为此从结构总体方案设计一开始,就运用人们对建筑结构抗震己有的正确知识去处理好结构设计中遇到的诸如房屋体型、结构体系、刚度分布,构件延性等问题,从宏观原则上进行评价、鉴别、选择等处理,再辅以必要的计算和构造措施,从而消除建筑物抗震的薄弱环节,以达到合理抗震设计的目的。

1 高层建筑抗震设计存在的问题

1.1 工程地质勘查资料不全

在设计初期,设计人员应该及时掌握施工场地的地质情况,但是往往在设计过程中,却没有建筑场地岩土工程的勘察资料,就不能很好的进行地基设计,给建筑物的结构带来安全隐患。

1.2 建筑材料不满足要求

对于材料而言,我们要明确这样一个道理:地震对结构作用的大小几乎与结构的质量成正比。一般说在相同条件下,质量大,地震作用就大,震害程度就大,质量小,地震作用就小,震害就小。所以,在建筑物的楼板、墙体、框架、隔断、围护墙以及屋面构件中,广泛采用多孔砖、硅酸盐砌块、陶粒混凝土、加气混凝土板、空心塑料板材等轻质材料,将能显著改善建筑物的抗震性能。

1.3 建筑物本身的建筑结构设计

建筑物如果平面布置复杂,致使质心与刚心不重合,在地震作用下产生扭转效应,加剧了地震的破坏作用,海城地震和唐山地震中有不少类似震害实例。台湾9.21 地震中,一栋钢筋混凝土结构由于结构平面不规则,在水平地震作用下,结构产生严重扭转效应而破坏倒塌,同时撞坏相邻建筑上部的阳台。

浅谈高层建筑抗震

浅谈高层建筑抗震 2008年的汶川地震和2010年的玉树地震对中国来说无不是沉重的打击,不但造成巨大的经济损失,更心痛的是有那么的生命离开了我们,这不得不让人们反思我们建筑的抗震设防能力。在地震中,几乎所有的建筑都倒塌了,相对于低层建筑而言,高层建筑破坏和倒塌的后果就更加严重。近年来国内国外高层、超高层建筑的高度不断攀升,就在2010年正式开放的哈利法塔的高度达到了惊人的828米,而且建筑的体型越来越复杂,不规则结构越来越多,这对于结构的抗震都是十分不利的。为保证高层结构的抗震安全,达到安全和经济的统一,有必要对高层结构的抗震设计、抗震结构和抗震技术进行探讨。 1.地震导致建筑破坏的原因 根据地震经验,地震期间导致高层建筑破坏的直接原因可分为以下三种情况: (1)地震引起的山崩、滑坡、地陷、地面裂缝或错位等地面变形,对其上部建筑的直接危害; (2)地震引起的砂土液化、软土震陷等地基失效,对上面建筑物所造成的破坏; (3)建筑物在地面运动激发下产生剧烈震动过程中,因结构强度不足、过大变形、连接破坏、构件失稳或整体倾覆而破坏; 2.建筑的抗震概念设计 所谓“建筑抗震概念设计”是指根据地震灾害和工程经验等所形成的基本设计原则和设计思想,依此进行建筑和结构总体布置并确定细部构造的过程。科技论文。 3.建筑抗震设计方法的发展过程 3.1、静力理论阶段 水平静力抗震理论始创于意大利,发展于日本,1900年日本学者大森房吉提出“震度法”的概念。该理论认为:结构物所收到的地震作用,可以简化为作用于结构的等效水平静力,其大小等于结构重力荷载乘以一个系数。 3.2、反应谱理论阶段 我国及国际上多数国家抗震设计规范本质上都采用了反应谱理论及结构能力设计原则。其主要特点如下: (1) 用规范规定的设计反应谱进行结构线弹性分析。 (2) 结构构件的承载力是根据设计反应谱所作的结构线弹性计算通过荷载和地震作用效应组合后内力进行设计。 (3) 在早期方案设计阶段,结构体系、结构体型的规则性及结构的整体性满足规范的规定,以使结构能可靠地发挥非弹性延性变形能力。 3.3、动力理论阶段

超限高层建筑结构基于性能抗震设计

超限高层建筑结构基于性能抗震设计的研究超限高层建筑的结构抗震设计中,采用基于性能要求的抗震设计方法,有助于提高高层建筑工程抗震设计的可靠性、避免抗震安全隐患,同时又促进高层建筑技术发展。 阐述基于性能抗震设计方法与常规抗震设计方法的比较;针对超限高层建筑结构的特点,提出结构的抗震性能目标、性能水准以及实施性能设计的主要方法,包括性能水准判别准则、性能目标的选用及结构计算和试验要求。文中还列举了应用性能设计理念和要求的部分工程实例。 基于性能的抗震设计理念和方法,自世纪年代在美国兴起,并日益得到工程界的关注。美国的ATC40(1996年)、FEMA237(1997年)提出了既有建筑评定、加固中使用多重性能目标的建议,并提供了设计方法。美国加州结构工程师协会SEAO于1995年提出了新建房屋基于性能的抗震设计。1998年和2000年,美国FEMA又发布了几个有关基于性能的抗震设计文件。2003年美国ICC(Internation-alCode Council)发布了《建筑物及设施的性能规范》,其内容广泛,涉及房屋的建筑、结构、非结构及设施的正常使用性能、遭遇各种灾害时(火、风、地震等)的性能施工过程及长期使用性能,该规范对基于性能设计方法的重要准则作了明确的规定。日本开始将抗震性能设计的思想正式列入设计和加固标准中,并已由建筑研究所(BRI)提出个性能标准。欧洲混凝土协会(CRB)于2003 年出版了“钢筋混凝土建筑结构基于位移的抗震设计”报告。澳大利亚则在基于性能设计的整体框架以及建筑防火性能设计等方面做了许多研究,提出了相应的建筑规范(BCA1996)。我国在基于性能的抗震设计方面也发表了不少论文加以研究和探讨。基于性能的抗震设计是建筑结构抗震设计的一个新的重要发展,它的特点是:使抗震设计从宏观定性的目标向具体量化的多重目标过渡,业主(设计者)可选择所需的性能目标;抗震设计中更强调实施性能目标的深入分析和论证,有利于建筑结构的创新,经过论证(包括试验)可以采用现行标准规范中还未规定的新的结构体系、新技术、新材料;有利于针对不同设防烈度、场地条件及建筑的重要性采用不同的性能目标和抗震措施。这一方法是一种发展方向。目前,这一方法在工程中还未得到广泛的应用,还有一些问题有待研究改进,诸如:地震作用的不确定性、结构分析模型和参数的选用存在不少经验因素、模型试验和震害

高层建筑抗震设计常见的问题

高层建筑抗震设计常见的问题 在高层建筑的建设中,其中最主要的问题是对它的抗震问题的研究,其中又以中短柱问题为最主要的问题。现在首先介绍一下抗震设计中常见的一些问题。 缺乏岩土工程勘察资料或资料不全。有的在扩初设计阶段还缺建筑场地岩土工程的勘察资料,有的在扩初设计会审之后就直接进入了施工图设计,有的在规划设计或方案设计会审后就直接进入了施工图设计。无岩土工程勘察资料,设计缺少了必要的依据。 结构的平面布置。外形不规则、不对称、凹凸变化尺度大、形心质心偏心大,同一结构单元内,结构平面形状和刚度不均匀不对称,平面长度过长等。 一个结构单元内采用两种不同的结构受力体系。如一半采用砌体承重,而另一半或局部采用全框架承重或排架承重;底框砖房中一半为底框,而另一半为砖墙落地承重,这种情况常发现在平面纵轴与街道轴线相交的住宅,其底层为商店,设计成一半为底框砖房(有的为二层底框),而另一半为砖墙落地自承,造成平面刚度和竖向刚度二者都产生突变,对抗震十分不利。 底框砖房超高超层。如1996年,对在杭设计单位作的一次专题普查,发现有69幢底框砖房超高超层。新项目亦普遍存在此现象,1999年某地块住宅竣工交付使用验收中发现有三幢底框砖房超高超层,甚至有超三层的。

抗震设防标准掌握不当。有一些项目擅自提高了设防标准,按照《建筑抗震设防分类标准(gb50223-95)》划分应属六度设防的,但设计中提高了一度按七度设防,提高了建筑抗震设防标准,将会增加工程投资;有的项目严格应按七度采取抗震措施的,但设计中又按六度设防,减低了抗震设防标准,不利抗震。 结构的竖向布置。在高层建筑中,竖向体型有过大的外挑和内收,立面收进部分的尺寸比值b1/b不满足≥0.75的要求。 抗震构造柱布置不当。如外墙转角处,大厅四角未设构造柱或构造柱不成对设置;以构造柱代替砖墙承重;山墙与纵墙交接处不设抗震构造柱;过多设置抗震构造柱等。 框架结构砌体填充墙抗震构造措施不到位。砌体外围护墙砌筑在框架柱外又没有设置抗震构造柱,框架间砌体填充墙高度长度超过规范规定要求又没有采取相应构造措施。 结构其他问题。有的底层无横向落地抗震墙,全部为框支或落地墙间距超长;有的仅北侧纵墙落地,南侧全为柱子,造成南北刚度不均;有的底层作汽车库,设计时横墙都落地,但纵墙不落地,变成了纵向框支;还有的底框和内框砌体住宅采用大空间灵活隔断设计,其中几乎很少有纵墙。不少地方都采用钢筋混凝土内柱来承重以代替砖墙承重,实际上将砖混结构演变为内框架结构,这比底框砖房还不利,因内框砖房的层数、总高度控制比底框砖房更严,因此存在着严重抗震隐患。更为严重的是这种情况并未引起目前大多数结构工程师的重视。

上海中心抗震设计研究

上海中心结构抗震设计研究 1. 工程介绍 坐落于浦东陆家嘴商业中心区的上海中心大厦是一幢综合性超高层建筑,其功能区域包括办公、商业、酒店、观光娱乐、会议中心和交易六大功能区域,具体分为大众商业娱乐区域,低、中高档办公区域,企业会馆区域,精品酒店区域,顶部功能体验空间等。地上可容许建筑面积(FAR )大约为380,000平米。其中包括地上120层办公楼层(塔尖高度为632米,结构高度574.6米),还包括一个5层的商业裙楼用作奢侈品零售,办公和酒店大堂,饭店,会议和宴会等。此外,5层地下部分设计用作零售、泊车、保养和机电功能。 上海中心采用中心混凝土剪力墙筒体结构,通过8个加强层,与巨型型钢混凝土超级柱相连接,并同时将整个建筑沿高度方向分为了9个区段。(Zone1 to Zone 9)通过筒体结构与巨型柱的共同作用,承受竖向荷载、水平侧向力以及地震荷载。加强层由空间的外伸臂桁 架、带状桁架、以及空间杆件体系和楼板组成,带状桁架将外围的八根(上部区域四根)巨 巨型柱 加强层 巨型柱 核心筒 巨型角柱 外伸臂桁架 带状桁架

型柱圈成一体,外伸臂桁架则将巨型柱与核心筒联系在一起,传递水平以及竖向荷载。 上海中心结构体系复杂: (1)结构高度及高宽比都超过《高层建筑混凝土结构技术规程》(JGJ3-2002)的规定限值; (2)结构类型为混合结构。中心为核心筒体,与外部四个巨型柱以及四个巨型角柱构成结构主体;通过外伸臂将核心筒与巨型柱联系在一起;通过带状桁架将巨型柱围成整体;带状桁架采用钢桁架;巨型柱采用型钢混凝土。 (3)沿结构高度方向按每一个加强层设置一道外伸臂桁架。伸臂桁架采用两层高的钢桁架。 (4)沿结构高度方向按每一个加强层设置一套带状桁架,把外围柱子的荷载传递给巨型柱。 (5)建筑物采用了多重抗侧力体系。 鉴于此为了确保该建筑结构的抗震安全性和可靠性,除进行常规的计算分析、有效的设计手段和构造措施外,应当对该结构进行基于性态的抗震设计研究,通过非线性有限元手段,更深入、直观、全面地研究该结构的抗震性能。 2.抗震设防标准 中国国家标准《建筑抗震设计规范》(GB50011-2001)采用“小震不坏、中震可修、大震不倒”的设防目标,其对应于“小震、中震、大震”三个地震水准的发生概率,50年超越概率分别为63%、10%和2~3%。 本工程所处地区中国上海市的抗震设防烈度为7度。根据中国国家标准《建筑抗震设防分类标准》(GB50223),该建筑物的重要性等级为乙类,即在地震时其使用功能不能中断或需尽快恢复的建筑。因此该建筑物的地震作用按7度考虑,抗震构造措施按8度考虑。7度小震、中震、大震和8度大震所对应的地震地面加速度分别为35gal、100gal、220gal、400gal。 上海属于软土地基,场地类别为Ⅳ类,对应的场地特征周期为0.9S。 鉴于该工程的重要性和复杂性,除满足现行设计标准外,特制定其抗震性能水准如下:(1)7度小震和中震作用下,结构基本处于弹性状态,结构完好无损伤; (2)7度大震作用下,结构构件允许开裂,但开裂程度控制在可修复的范围内,开裂部位在可控制的范围内,主要抗侧力体系(巨型框架,巨型斜撑)在按标准强度计算时不屈服。 (3)在8度大震作用下,结构可能出现严重的破坏,但不能倒塌。 借助非线性有限元分析软件Perform-3D对建筑的主体结构进行推覆分析、地震作用下的时程分析,从而实现对结构抗震性能的分析。 3.结构性能目标 (1)7度小震和中震下的结构弹性状态 层间位移角不大于1/500,理论分析和模型试验中结构不出现裂缝,钢筋应力不超过屈服强度,混凝土压应力不超过抗压强度的1/3,在地震作用后结构变形基本恢复,节点处在

高层建筑抗震论文.

浅谈砖混结构房屋抗震加固工艺 摘要:砖混结构由于选材方便、施工简单、工期短、造价低等特点,多年来砖混房屋是我国当前建筑中使用最广范的一种建筑结构形式;其中民用住宅建筑中约占90% 以上。砖混结构多采用粘土砖和混合砂浆砌筑,通过内外砖墙的咬砌达到具有一定整体连接性的目的。在地震设防地区,多层砖混砌体房屋由于组成的基本材料和连接方式决定了其脆性性质,变形能力小,导致房屋的抗震性能较差;因此改善砌体结构延性,提高房屋的抗震性能具有极其重要意义。 关键词:抗震;加固;砖混结构 近几年来的大地震导致了民用多层砖混结构破坏十分严重。事实再一次证明:做好现有的未经抗震设计砖混结构房屋的抗震加固是十分必要的,保证现有的砖混结构民用住宅、重要建筑在地震中不倒是工程界急需解决的热点问题之一。 1 砖混结构抗震加固方法简介 从结构抗震机理出发,抗震加固可以分为减小地震作用加固法、增大结构抗震能力加固法和多道防线抗震加固法。减小地震作用主要是通过增大结构周期或加大结构阻尼来实现,一般应用于大型公共建筑的抗震加固;增大结构抗震能力的加固方法,如增大墙体抗震性能的外包钢筋混凝土面层、钢筋网水泥砂浆面层加固法;增大结构整体性的压力灌浆加固法、增设圈梁(构造柱加固法、拉结钢筋加固法;通过增设抗震墙来降低抗震能力薄弱构件所承受地震作用的增设墙体法等,这些方法施工相对简单,大量应用于多层的砖混结构当中,尤其是民用建筑中。多道抗震防线加固是建筑物采用多重抗侧力体系,第一道防线的的抗侧力构件在强烈的地震作用下遭到破坏后,后备的第二道乃至第三道防线的抗侧力构件立即接替,抵挡后续的地震冲击,可保证建筑物安最低限度的全,免于倒塌。从结构抗震加固方法上来讲,抗震加固施工方法主要有外加固法,内加固法,夹板墙加固法。外加固法一般结合砖混结构的层数及抗震鉴定的结果,需要在建筑外侧增加不同数量的构造柱,圈梁,以及保证构造柱、圈梁和抗震墙体协同工作的拉杆。这种方法一般不占用室内建筑面积,用于住宅楼,对住户影响较小,但对建筑立面造型影响较大;内加固法基本原理同外加固法,

浅析高层建筑结构设计的中震设计概念

浅析高层建筑结构设计的中震设计概念 发表时间:2016-06-27T14:51:54.553Z 来源:《基层建设》2016年5期作者:隆凡梅 [导读] 本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 摘要:对于普通建筑物的结构抗震设计,目前我国是以小震为设计基础,中震和大震则是通过地震力的调整系数和各种抗震构造措施来保证的。但是对于较重要的、超高的、超限的建筑物则需要进行中震和大震的抗震计算。本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 关键词:中震设计概念;地震影响系数;荷载 《建筑抗震设计规范》(GB50011-2001 2008年版)(下简称《抗规》)中对中震设计仅在总则中提到“小震不坏、中震可修、大震不倒”的抗震设防目标,但没有给出中震设计的设计要求和判断标准。 首先我们了解一下现行《抗规》存在几个问题: 1规范未对结构存在的薄弱构件进行分析并作出专门的设计规定,仅对框架类剪切型结构适用的薄弱层作了一些规定; 2在中震作用下,规范仅提出“中震可修”的概念设计要求,没有具体的抗震设计方法; 3“中震可修”的技术经济问题:可修的标准决定工程????造价、破坏损失、震后修复费用。 随着时代的进步,现在的建筑物体型复杂,结构新颖,超高超限越来越多,因此要求对结构进行中震的设计也越来越多。 2 中震设计 2.1 为何要进行中震设计呢? 《抗规》条文说明1.0.1条指出,对大多数结构,可只进行第一阶段设计(即小震下的弹性计算),而通过概念设计和抗震构造措施来实现“中震可修和大震不倒”的设计要求,但前提是建筑物的体型常规、合理,经验上一般能满足大中震的抗震要求。反之对于一些体型很不好的甚至超限的建筑物,在大震下的结构反应和小震完全不同,不进行相应的中震和大震计算是没法保证结构安全的。 为达到各阶段抗震要求,须对于上述体型异常、刚度变化大、超高超限等类型建筑物进行中震抗震设计,其余类型建筑物建议可按中震抗震进行验算。 2.2 中震设计的基本概念 抗震设计要达到的目标是在不同频数和强度的地震时,要求建筑物具有不同的抵抗能力。中震设计就是为了使建筑物满足该地区的基本设防烈度,即能够抵抗50年限期内可能遭遇超越概率为10%的地震烈度。 中震设计和大震设计都可称为性能设计。基于性能的抗震设计是建筑结构抗震设计的一个新的重要发展,它的特点是使抗震设计从宏观性、规范指定的目标向具体量化的多重目标过渡,业主(设计者)可选择所需的性能目标,而不仅仅是按现行规范通过分项系数、内力调整系数、抗震构造措施等粗略、定性的手段来满足中震和大震的设防要求。针对本工程的结构特点,设定本结构的抗震性能目标。对超限结构而言,利用这些指标能更合理地判断整体结构在中震、大震作用下的性能表现,给超限设计提供可靠的判断依据。 2.3 中震设计的分类 中震设计就是结构在地震影响系数按小震的2.875倍(αmax=0.23)取值下进行验算。目前工程界对于结构的中震设计有两种方法,第一种按照中震弹性设计,第二种是按照中震不屈服设计。 首先明确一点,中震弹性和中震不屈服是两个完全不同的概念,两者所采用的设计方法与设防目的均不相同。中震弹性设计,设计中取消《抗规》要求的各项地震组合内力调整系数,保留材料、荷载等分项系数,对应地保留了结构的安全度和可靠度,结构仍属于弹性阶段,属正常设计。中震不屈服设计,设计中除了地震内力不作调整,同时也取消了材料、荷载等分项系数,对应地不考虑结构的安全度和可靠度,结构已经处于弹塑性阶段,属承载力极限状态设计,是一种基于性能的设计方法。由此可见,中震弹性设计接近于平常的小震弹性设计,而中震不屈服设计则与大震设计同属于基于性能的设计。 3 基本方法及应用 根据中震设计的分类,以下分别阐述中震弹性及中震不屈服的具体设计方法,介绍如何在satwe、etabs、midas等软件中实现中震设计。 3.1 中震不屈服设计 3.3.1 不同抗震烈度下的各级屈服控制 若场地安评报告提供实际的地震影响系数,则应取用所提供的多遇地震、设防烈度地震下相应的地震影响系数,屈服判别地震作用1、2 的地震影响系数可相应插值求得。 3.3.2 SAWTE计算:地震信息中抗震等级均为四级;αmax按表3取值;总信息中风荷载不参加计算;勾选地震信息中的按中震(或大震)不屈服做结构设计选项;其它设计参数的定义均同小震设计。 3.3.3 MIDAS/Gen计算:主菜单→设计→钢筋混凝土构件设计参数→定义抗震等级:四级;主菜单→荷载→反应谱分析数据→反应谱函数:定义中震反应谱,在相应的小震反应谱基础上输入放大系数β即可,β值按表3计算所得;总信息中风荷载不参加计算;主菜单→结果→荷载组合:将各项荷载组合中的地震作用分项系数取为1.0;主菜单→设计→钢筋混凝土构件设计参数→材料分项系数:将材料分项系数取为1.0;其它同小震。 3.3.4 ETABS计算:选项→首选项→混凝土框架设计→定义抗震设计等级:四级;定义→反应谱函数→Add Chinese 2002 Spectrum→定义中震反应谱,地震影响系数最大值αmax取值,其余参数按《抗规》;静荷载工况中不定义风荷载作用;定义→荷载组合→各项荷载比例系数均取为荷载分项系数1.0x荷载组合系数φ;定义→材料属性→填写各材料的强度标准值其它同小震。 4 工程算例 4.1 示范算例 4.1.1 基本参数:二十二层框支剪力墙结构,三层楼面转换,无地下室,首、二层4.5米,标准层3.5米,总高79m。结构平面布置如图一所示。结构高宽比3.76,长宽比1.22;抗震参数,7 度,第一组,0.10g;场地II类;风荷载100年一遇为0.9kN/㎡。

高层建筑抗震设计分析.

高层建筑抗震设计分析 关键词高层建筑;结构设计;抗震0 引言 随着我国社会主义现代化建设和城市化进程的不断向前推进,建设用地日趋紧张,促使建筑功能越来越多样化,高层建筑得的发展是大势所趋。高层建筑的特点是高度比较高,所以地震荷载和风荷载在设计过程中占主导和控制地位,而我国又是地震多发国家,因此高层建筑的抗震设计分析显得尤为重要。 1 高层建筑抗震设计特点 第一,控制建筑物的侧移是重要的指标。在地震荷载作用下,建筑结构所产生的水平剪切力占主导地位,所以建筑物会产生明显的侧移,随建筑结构的高度不断曾加,结构的侧向位移迅速增大,但该变形要在一定限度之内,这样才能保证结构安全以及使用功能。 第二,地震荷载中的水平荷载是决定因素。水平荷载会使建筑物产生倾覆力矩,并且在结构的竖向构件中引起很大的轴力,这些都与建筑物高度的两次方成正比,故随建筑结构高度的曾加,水平载荷大相径庭。对高度一定的建筑物而言,竖向荷载基本上是不变的,但是随着建筑物的质量、刚度等动力特性的不同,水平地震荷载和风荷载的变化是比较大的。 第三,要重视建筑结构的延性设计。高层建筑结构随着高度增加,刚度减小,显得更柔,在地震荷载作用下变形较大。这就要求建筑结构要有足够的变形能力,使结构进入塑性变形阶段仍然安全,需要在结构构造上采取有利的措施,使得建筑结构具有足够的延性。 2 结构体系的合理选择 地震对建筑物的伤害主要是水平地震力所造成的剪切破坏,所以根据结构体系对抗侧力能力的不同,钢筋砼结构主要可分为框架结构、框架-剪力墙结构、剪力墙结构、筒体结构等,这也是我国高层建筑长采用的结构形式。由于这些体系的结构形式、抵抗水平力的能力有所区别,尤其是对地震反映大不相同,因此它们适用于不同的场合。 2.1 框架结构 框架结构由框架梁、柱构件组成。其特点是柱网布置灵活,便于获得较大的使用空间。框架结构的框架梁和柱既承受竖向荷载,又承受水平荷载。当建筑物高度较低、层数相对较少时,其水平荷载对结构的影响不大,这时采用框架结构还是比较合适的,既满足受力要求,也提供了很大的使用空间。但框架结构侧向刚度很小,随着建筑物高度的曾加,框架结构水平荷载分布呈现出不均匀的现象,有的楼层相对薄弱,很容易屈服。地震荷载对柱子的破坏作用要相对强烈,而对梁的

浅谈高层建筑结构抗震设计

浅谈高层建筑结构抗震设计 在建筑结构中,抗震设计占据了极为重要的位置,而高层建筑结构又在抗震方面尤为重视。高层结构的结构体系是随着社会生产的发展和科学技术的进步而不断发展的,随着经济水平的增长和高层结构的增多,结构抗震分析和设计已经变得越来越重要。特别是我国处于地震多发国,高层结构抗震设防是工程设计面临的迫切任务,高层结构的抗震仍然是结构物安全考虑的重要问题。因此做好高层建筑结构的抗震设计,对提升高层建筑抵御地震的能力有着重要的意义。 标签高层;建筑结构;抗震设计 随着我国经济的快速发展,城市规模不断扩大,高层建筑越来越多,同时高层建筑对建筑结构抗震设计的要求也越来越高。高层建筑结构的抗震设计方法和技术是不断变化和进步的,我们需要在具体的实践中对高层建筑所处的地质和环境进行详细的分析和研究,选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。 1 建筑结构抗震设计的概念 一般来说,所谓的建筑结构的抗震设计就是指通过地震时对建筑结构的破坏,结合建筑结构工程长期实践所积累的经验,总结形成的一种基本的设计方法与设计思想,也是进行建筑与结构整体布置并且确定细部构造措施的一个过程。地震动理论上来说就是一种随机的振动,它具有人们难以把握的随机性、复杂性与不确定性,要想很精确地预测某建筑物可能遭遇的地震的特性与参数,就目前来说我们还很难有更好的方法。在建筑结构的抗震设计分析这个方面,由于我们不能够很充分地考虑建筑结构的空间作用、建筑结构的性质、建筑的材料以及外界引起變化等等很多种不同的因素,因此有着一种不确定性的存在。所以建筑结构的抗震设计不能够全部的取决于计算结果,更应该以建筑结构工程抗震设计的基础理论以及经过长时间建筑工程抗震经验所能够总结出来的建筑工程抗震设计方法为基本出发点,进而更好的提高建筑结构的抗震性能。 2 抗震设计目标 随着科学的发展和时代的进步,高层建筑如雨后春笋般出现。国家为了规范建筑的抗震设计,出台了一系列的标准,其中的抗震设防烈度就是一个十分重要的标准,对于规范我国的建筑抗震设计具有十分重要的意义。在实际的抗震设计当中主要包括以下几个方面的工作:第一,根据建筑所在地区的小震效应对建筑的各个构建的承载能力进行科学的计算,从而了解高层建筑在小震情况下的结构弹性形变的情况。第二,计算大震情况下的建筑弹性形变,从而确保设计能够达到第三水准的抗震要求。抗震设计目标是整个高层建筑抗震设计的大方向,所有的抗震设计工作都围绕着抗震设计目标而进行,因此对于建筑的抗震设计具有重大的意义。

高层建筑结构抗震分析和设计的探讨 王小蒙

高层建筑结构抗震分析和设计的探讨王小蒙 发表时间:2017-10-10T14:02:00.920Z 来源:《建筑学研究前沿》2017年第11期作者:王小蒙 [导读] 钢筋混凝土高层建筑结构中,往往为了控制柱的轴压比而使柱的断面很大,而柱的纵向钢筋却为构造配筋。 大连港口设计研究院有限公司辽宁大连 116000 摘要:主要对高层建筑的抗震方面问题进行全面探讨及分析,根据工程实例中的一些经验和结论从宏观上确定结构设计中的基本问题。关键词:高层建筑;抗震设计;弹塑性动力分析;弹塑性静力分析 1 高层建筑抗震设计的必要性 20世纪70年代以来,结构工程师在总结历次地震灾害的经验中逐渐认识到宏观的“概念设计”比以往的“数值设计”对工程结构抗震来说,更为重要,因此,人们对于概念设计愈来愈重视。抗震概念设计就是从结构总体方案设计一开始,就运用人们对建筑结构抗震已有的正确知识去处理好结构设计中遇到的诸如房屋体型、结构体系、刚度分布、构件延性等问题,从宏观原则上进行评价、鉴别、选择等处理,再辅以必要的计算和构造措施,从而消除建筑物抗震的薄弱环节,以达到合理抗震设计的目的。 2 我国高层建筑抗震设计中的一些问题 2.1 材料的选用和结构体系问题 我国150m以上的建筑,主要采用三种结构体系(框——筒、筒中筒和框架——支撑体系),都是其他国家高层建筑采用的主要体系。在高层建筑中采用框架——核心筒体系,因其比钢结构的用钢量少,又可减少柱子断面,故常被业主所看中。混合结构的钢筋混凝土内筒往往要承受80%以上的震层剪力,有的高达90%以上。由于结构以钢筋混凝土核心筒为主,变形控制要以钢筋混凝土结构的位移限值为基准。但因其弯曲变形的侧移较大,靠刚度很小的钢框架协同工作减小侧移,不仅增大了钢结构的负担,而且效果不大,有时不得不加大混凝土筒的刚度或设置伸臂结构,形成加强层才能满足规范侧移限值;此外,在结构体系或柱距变化时,需要设置结构转换层。加强层和转换层都在本层形成大刚度而导致结构刚度突变,常常会使与加强层或转换层相邻的柱构件剪力突然加大,加强层伸臂构件或转换层构件与外框架柱连接处很难实现强柱弱梁。因此在需要设置加强层及转换层时,要慎重选择其结构模式,尽量减小其本身刚度,减小其不利影响。在高层建筑中,应注意结构体系及材料的优选。 2.2 轴压比与短柱问题 在钢筋混凝土高层建筑结构中,往往为了控制柱的轴压比而使柱的断面很大,而柱的纵向钢筋却为构造配筋。即使采用高强混凝土,柱断面尺寸也不能明显减小。限制柱的轴压比是为了使柱子处于大偏压状态,防止受拉钢筋未达屈服而混凝土被压碎,柱的塑性变形能力小,则结构的延性就差。当遭遇地震时,耗散和吸收地震能量少,结构容易被破坏。但是在框架中若能保证强柱弱梁没计,柱子进入屈服的可能性就大大减少,此时可放松轴压比限值。另外,许多高层建筑底部几层柱虽然长细比小于4,但并不一定是短柱。因为只有剪跨比w /V ≤2的柱才是短柱。有专家学者提出现行抗震规范应采用较高轴压比。但是即使能调整轴压比限值,柱断面并不能由于略微增大轴压比限值而显著减小。因此在抗震的超高层建筑中采用钢筋混凝土是否合理值得商榷。 3 高层建筑抗震分析和设计的趋势 我国现行的结构抗震设计,是以承载力为基础的设计。即:用线弹性方法计算结构在小震作用下的内力、位移;用组合的内力验算构件截面,使结构具有一定的承载力;位移限值主要是使用阶段的要求,也是为了保护非结构构件;结构的延性和耗能能力是通过构造措施获得的。上世纪九十年代中期,美国学者提出了基于位移的抗震设计 (Displacement—Based Design,简称DBD)是一种全新概念的结构抗震设计方法。DBD 是实现基于功能的抗震设计(Performance—Based Design,简称PBD)的重要步骤。它要求进行定量分析,使结构的变形能力满足在预期的地震作用下的变形要求。预期的地震作用一般是指大震。因此除了验算构件的承载力外,要控制结构在大震作用下的层间位移角限值或位移延性比;根据构件变形与结构位移关系,确定构件的变形值;并根据截面达到的应变大小及应变分布,确定构件的构造要求。为了实现基于位移的抗震设计,第一步需要研究简单结构(例如框架及悬臂墙)的构件变形与配筋关系,实现按变形要求进行构件设计;进而研究整个结构进入弹塑性后的变形与构件变形的关系。这就要求除了小震阶段的计算外,还要按大震作用下的变形进行设计,也就是真正实现二阶段抗震设计,这是结构抗震设计的发展趋势。 4 实行建筑抗震设计规范,总结工程经验妥善处理工程问题 4.1 选择有利的抗震场地 地震造成建筑物的破坏, 除地震动直接引起的结构破坏外, 场地条件也是一个重要的原因。地震引起的地表错动与地裂,地基土的小均匀沉陷, 滑坡和粉、砂土液化等。因此,应选择对建筑抗震有利的地段, 应避开对抗震不利地段, 如软弱场地土, 易液化土, 条件突出的山嘴,高耸孤立的山丘,非岩质陡坡、采空区、河岸和边坡边缘, 场地土在 平面分布上的成因、岩性、状态明显不均匀等地段;当无法避开时, 应采取适当的抗震加强措施,应根据抗震设防类别、地基液化等级,分别采取加强地基和上部结构整体性和刚度、部分消除或全部消除地基液化沉陷的措施; 当地基主要受力层范围内存在软弱粘性土层、新近填土和严重不均匀土层时,应估计地震时地基不均匀沉降或其他不利影响, 采用桩基、地基加固和加强基础和上部结构的处理措施; 对于地震时可能导致滑移或地裂的场地,应采取相应的地基稳定措施。基础设计时, 同一结构单元不宜设计在性质截然不同的地基土上, 也不宜部分采用天然地基部分采用桩基,不宜部分采用端承桩部分采用摩擦桩;高层建筑宜设置地下室, 应避免采用局部地下室。 4.2 设置多道设防的抗震结构体系 抗震建筑结构体系应根据建筑物的重要性、设防烈度、房屋高度、场地、地基、基础、材料和施工等因素,经过技术、经济条件比较综合确定。首先宜有多道抗震防线, 应避免因部分结构或构件破坏而导致整个结构体系丧失抗震能力或对重力荷载的承裁能力。所谓多道抗震防线,是指在一个抗震结构体系中, 一部分延性好的构件在地震作用下, 首先达到屈服, 充分发挥其吸收和耗散地震能量的作用, 即担负起第一道抗震防线的作用, 其他构件则在第一道抗震防线屈服后才依次屈服, 从而形成第二、第三或更多道抗震防线, 这样的结构体系对保证结构的抗震安全性是非常有效的。同时底框建筑底层高度不宜太高, 应控制在4.5m以下。高度加大, 底层刚度减小, 重心提高, 使框架柱的长细比增

浅析高层建筑结构抗震设计要点

浅析高层建筑结构抗震设计要点 发表时间:2018-11-14T09:06:52.043Z 来源:《建筑学研究前沿》2018年第16期作者:关晓[导读] 随着我国建筑事业的不断提升,建筑物的高度不断增大,国内已经出现了很多的高层建筑和超高层建筑。 上海联创建筑设计有限公司西安分公司陕西省西安市 710000 摘要:随着我国建筑事业的不断提升,建筑物的高度不断增大,国内已经出现了很多的高层建筑和超高层建筑。本文从我国高层建筑抗震设计的若干问题出发,对高层建筑的抗震要求、抗震性能的调整、抗震设计方法等内容作了论述,希望能够起到抛砖引玉的作用。 关键词:高层结构;抗震设计;要点中图分类号:TU1069 文献标识码:A 引言:随着我国社会经济的迅速发展,我国的建筑行业也得到了极速的发展,其中最典型的就是高层建筑的广泛出现。超限高层建筑工程与其他的普通工程相比,不仅房屋的高度以及工程施工的复杂度已经超出了我国对于建筑工程的相关规定,同时对于建筑结构中抗震要求也有很大的不同。目前,我国对于超限高层建筑工程的抗震结构的具体要求依旧是按照《高层建筑工程抗震设防管理规定》具体执行的。基于性能的抗震设计,其理念最早是由美国的科学家以及工程师提出来的,其最早在桥梁的抗震设计中进行应用。之后逐渐被广泛应用在高层建筑中,其主要的思想理念就是,能够满足被设计的建筑物在进行使用的期间内的预定功能或者是性能达到目标要求。 1、高层建筑结构抗震设计需要注意的问题 1.1、结构高度问题 我国对于不同结构形式的高层建筑的最大适用高度有不同的规定,根据国内已有的《建筑抗震设计规定》的相关规定,常见钢结构民用房屋都有其最大适用高度。比如,框架结构的民用高层建筑最大适用高度为110m;框架-中心支撑结构的民用高层建筑最大适用高度为220m;巨型框架结构的民用高层建筑最大适用高度是300m。这些数值不只是由力学结构决定的,我国的经济发展状况、建筑发展水平以及设计技术等许多方面也影响着民用高层建筑的最大适用高度。最大适用高度的规范给高层建筑的设计提供了相应的最大适用限值,让设计师们更加简便、有效地掌握限值。虽然国家出台了很多建筑结构有关规定,但是还是有很多建筑高度过大的现象。比如,上海环球金融中心虽然是组合型建筑结构,但是实际高度有492m之高,再比如广州电视塔,高度达到了450m。这些超高层建筑已经很大程度上超过了其结构的最大适用高度,引起了很多结构工程师们的注意,对于这样的建筑要保持严谨的态度,防止建筑变形造成不可估计的损失。此外,据调查,在上海有1000多幢100米以上的超高层建筑,一般情况下,建筑高度超过28米的住宅建筑和建筑高度大于24米的非单层厂房、仓库和其他民用建筑就可以称之为高层建筑,超过100米就属于超高层建筑。对于这些超高的建筑,我国的相关规定还没有完整的参数要求,而且现代建筑越来越朝着更高、更大的方向发展。 1.2、结构振型与自振周期 设结构不同振型下的位移形式和它的振型形状相类似,求取不同振型在特定性能下的实际位移目标值,其中应以振型形状的正确选定为前提。就目前来看,高层建筑对应的结构设计,可采用计算机完成,极大地简化了设计和计算的过程,并很好地保证了精度。基于此,本次也采用相应的设计软件实施建模与分析,以获取抗震要求的振型与自振周期。 1.3、强剪弱弯、强柱弱梁 对于超限高层建筑工程在进行设计的过程中,应该遵循强剪弱弯、强柱弱梁的原则,在对建筑工程进行具体设计的过程中,通过对建筑抗震性能的考虑,从而使建筑结构能够更加趋向于合理化,与此同时,对建筑结构的强度和刚度不断地进行增强,也可以使超限高层建筑工程的抗震性能得到有效提升。 2、高层建筑基于性能抗震设计的要点 2.1、高层建筑中的适用的最大高度和高宽比 通过上文的论述可以知道,高层建筑的最大适用高度是对高层建筑的上限所做的一个规定,也是保证建筑物抗震性能和安全性能的最低标准。高宽比则是从建筑物的整体造型和形式提出的要求,在满足最大适用高度的情况下,调节设计建筑的高宽比就能保持建筑物的稳定性,使高层建筑更加牢固可靠。当高宽比较大时,就会发生水平位移和沉降量增大的现象,这是由于建筑物承受了很大的轴向力。因此,在高层建筑设计时,对最大适用高度和最大高宽比一定要根据国家的相关规定进行合理的调整和设计。 2.2、保障建筑结构的规则性 对于高层建筑进行设计的过程中,首先设计的相关的工作人员需要对建筑物的性能进行结合考虑,并根据高层建筑在实际使用中所要满足的需求,以及设计的相关功能进行科学、合理的考虑,以此对建筑工程的平面进行规划。与此同时,高层建筑的设计人员还需要对工程现场的地理因素进行考虑,并将业主的需求作为重点对相关工作进行完善。对于超限高层建筑而言,其在进行设计的时候最重要的就是满足以上要求,因此,在具体设计以及实际施工阶段,最重要的就是需要保证建筑的扭转刚度不能够超过规定的设计要求,同时还需要尽可能的防止结构发生扭转而影响到建筑物的抗震性以及安全性。除此之外,还需要注意的就是对于超限高层建筑物的结构,一定要保证其结构的对称性以及均匀性,这就要求对于剪力墙的布置要更加的合理,不仅能够及时的发现建筑物结构中存在的弱点,同时还能够防止出现特殊情况时建筑结构受到损坏,或者是坍塌。 2.3、对高层建筑结构布置 高层建筑结构布置也是建筑抗震、抗变形能力的一个影响因素,目前对于高层建筑结构布置设计的方法主要是最优化法。国内的结构设计优化方法主要用于降低建筑的设计成本和工程造价,提高建造的工作效率和建筑的经济效益。通常情况下,项目负责人会对建筑的设计、方案决议、施工等阶段进行宏观调控,结构工程师们也会熟练地运用自己的专业知识在结构设计上进行最优化处理。与传统的房屋结构设计比较,现代的建筑在采用优化设计方法的优势下会相对节省10%-35%的工程造价,工作效率会提升一倍以上,工期也相应地缩短,给投资商和社会带来了极大的经济效益。项目尽早地投入使用也加快了城市现代化的发展,促进住房问题的解决。因此,对结构布置的设计也是高层建筑抗震性能的要求之一。

高层建筑抗震结构设计探讨

高层建筑抗震结构设计探讨 发表时间:2013-01-05T15:41:19.170Z 来源:《建筑学研究前沿》2012年11月供稿作者:满勇冯艳娜 [导读] 对于一个高层结构的设计,遇到的问题可能错综复杂,只能具体问题具体分析。 满勇单位:黄河勘测规划设计有限公司 冯艳娜单位:黄河勘测规划设计有限公司工程设计院 【摘要】:对于一个高层结构的设计,遇到的问题可能错综复杂,只能具体问题具体分析。工程实践表明在高层结构的设计过程中,设计人员只有抗震概念清晰,构造措施得当,应用合适的结构分析软件三者有机结合才能取得比较理想的结果,在这个过程中抗震构造重于结构计算。本文对建筑抗震进行必要的理论分析,从而探索高层建筑的设计理念、方法,采取必要的抗震措施。 【关键词】:高层建筑;结构设计;抗震;探讨 引言 现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性,动力响应,计算理论,稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用。 1、高层建筑发展概况 80年代,是我国高层建筑在设计计算及施工技术各方面迅速发展的阶段。各大中城市普遍兴建高度在100m左右或100m以上的以钢筋为主的建筑,建筑层数和高度不断增加,功能和类型越来越复杂,结构体系日趋多样化。比较有代表性的高层建筑有上海锦江饭店,它是一座现代化的高级宾馆,总高153.52m,全部采用框架一芯墙全钢结构体系,深圳发展中心大厦43层高165.3m,加上天线的高度共185.3m,这是我国第一幢大型高层钢结构建筑。进入90年代我国高层建筑结构的设计与施工技术进入了新的阶段。不仅结构体系及建筑材料出现多样化而且在高度上长幅很大有一个飞跃。深圳于1995年6月封顶的地王大厦,81层高,385.95m为钢结构,它居目前世界建筑的第四位。 2、建筑抗震的理论分析 2.1 建筑结构抗震规范 建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。 2.2 抗震设计的理论 拟静力理论。拟静力理论是20世纪10~40年代发展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。反应谱理论。反应谱理论是在加世纪40~60年代发展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。 3、高层建筑结构抗震设计 3.1 抗震措施 在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。 3.2 高层建筑的抗震设计理念 我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。 三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。 对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒

抗震材料论文

浅谈高层抗震材料 摘要: 高层建筑抗震工作一直建筑设计和施工的重点,概述高层建筑的发展,对建筑抗震进行必要的理论分析,从而来探索高层建筑的设计理念、方法,从而选取必要的材料。 按抗震设计要求进行结构分析与设计,其目标是希望使所设计的结构在强度、刚度、延性及耗能能力等方面达到最佳,从而经济地实现“小震不坏,中震可修,大震不倒”的目的。但是,由于地震作用是一种随机性很强的循环、往复荷载,建筑物的地震破坏机理又十分复杂,存在着许多模糊和不确定因素,在结构内力分析方面,由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,计算方法还很不完善,单靠微观的数学力学计算还很难使建筑结构在遭遇地震时真正确保具有良好的抗震能力。 因此, 高层建筑物必须特别注意结构的设计原则,为了发挥结构构件承载力、刚度、稳定性、延性等方面的性能就必须重视材料的选择.在近些年材料方面的发展很快, 所以在选材的同时可是当应用新型材料. 关键词:高层建筑;结构设计;抗震材料 正文: 一,高层建筑是社会经济发展和科技进步的产物。随着大城市的发展,城市用地紧张, 市区地价日益高涨,促使近代高层建筑的出现,电梯的发明更使高层建筑越建越高。宏伟的高层建筑是经济实力的象征,具有重要的宣传效应,在日益激烈的商业竞争中,更扮演了重要的角色。

自从1886 年世界上第一栋近代高层建筑——美国芝加哥家庭保险公司大楼(HomeluranceBuilding , 10层,高55m)建成以来,至今已有100多年的历史了。高层建筑不仅在材料和结构体系上逐渐多样化,而且在高度上也有大幅度增长。而一次又一次地震灾难及教训,警 示人们:防震减灾任重道远,刻不容缓。 从上个世纪开始,各国的专家、学者对抗震设计进行了一系列研究。进入90年代,结构抗震分析和设计已提到各国建筑设计的历史日程。特别是我国处于地震多发区(地震基本烈度6 度及其以上的地震区面积约占全国面积的60%,高层抗震设计设防更是工程设计面临的迫切的任务。作为工程抗震设计的依据,高层建筑抗震分析更处于非常重要的地位。 二、材料的选用和结构体系问题在地震多发区,采用何种建筑材料或结构体系较为合理应该得到人们的重视。 我国高层建筑中常采用的结构体系有:框架、框架- 剪力墙、剪力墙和筒体等几种体系,这也是其他国家高层建筑采用的主要体系。但国外,特别地震区,是以刚结构为主,而在我国钢筋混凝土结构几混合结构却占了90%.如此高的钢筋混凝土结构及混合结构,国内外都还没有经受较大的考验。钢结构同混凝土结构相比,具有优越的强度、韧性和延性,强度重量比,总体上看抗震性能好,抗震能力强。 震害调查表明,钢结构较少出现倒塌破坏情况。在高层建筑中采用框架- 核心筒体系,因其比钢结构的用钢量少,又可减少柱子断面,故常被业主所看中。混合结构的钢筋混凝土内往往要承受80%以上的震层剪力,有的高达90%以上。由于结构以钢筋混凝土结构的位移值为基准。但因其弯曲变形的侧移较大,靠刚度很小的钢框架协同工作减小侧移,不仅增加了钢结构的负担,而且 效果不大,有时不得不加大混凝土筒的刚度或设置伸臂结构, 形成加强层才能满足规范侧移限值; 此外,在结构体系或柱距变化时,需要设置结构转换层。加强层和转换层都在本层形成刚

相关主题
文本预览
相关文档 最新文档