当前位置:文档之家› 欧姆龙旋转编码器HEDS说明

欧姆龙旋转编码器HEDS说明

欧姆龙旋转编码器HEDS说明
欧姆龙旋转编码器HEDS说明

Quick Assembly

Two and Three Channel Optical Encoders Technical Data

ESD WARNING: NORMAL HANDLING PRECAUTIONS SHOULD BE TAKEN TO AVOID STATIC DISCHARGE.

Features

? Two Channel Quadrature Output with Optional Index Pulse

? Quick and Easy Assembly ? No Signal Adjustment Required

? External Mounting Ears Available ? Low Cost

? Resolutions Up to 1024Counts Per Revolution ? Small Size

? -40°C to 100°C Operating Temperature ? TTL Compatible ? Single 5 V Supply

Description

The HEDS-5500/5540, HEDS-5600/5640, and HEDM-5500/5600 are high performance, low cost, two and three channel optical incremental encoders.These encoders emphasize high reliability, high resolution, and easy assembly.

Each encoder contains a lensed LED source, an integrated circuit with detectors and output

circuitry, and a codewheel which rotates between the emitter and detector IC. The outputs of the

HEDS-5500/5600 and HEDM-5500/ 5600 are two square waves in quadrature. The HEDS-5540and 5640 also have a third chan-nel index output in addition to the two channel quadrature. This index output is a 90 electrical degree, high true index pulse which is generated once for each full rotation of the codewheel.The HEDS series utilizes metal codewheels, while the HEDM series utilizes a film codewheel allowing for resolutions to 1024CPR. The HEDM series is nont available with a third channel index.

These encoders may be quickly and easily mounted to a motor.For larger diameter motors, the HEDM-5600, and HEDS-5600/5640 feature external mounting ears.

The quadrature signals and the index pulse are accessed through five 0.025 inch square pins located on 0.1 inch centers.Standard resolutions between 96and 1024 counts per revolution are presently available. Consult local Agilent sales representatives for other resolutions.

Applications

The HEDS-5500, 5540, 5600,5640, and the HEDM-5500, 5600provide motion detection at a low cost, making them ideal for high volume applications. Typical applications include printers,plotters, tape drives, positioning tables, and automatic handlers.HEDM-550x/560x HEDS-550x/554x

HEDS-560x/564x

Note: Agilent Technologies encoders are not recommended for use in safety critical

applications. Eg. ABS braking systems, power steering, life

support systems and critical care medical equipment. Please contact sales representative if more clarification is needed.

Package Dimensions

HEDS-5500/5540, HEDM-5500

*Note: For the HEDS-5600 and HEDM-5600, Pin #2 is a No Connect. For the HEDS-5640, Pin #2 is CH. I, the index output.

HEDS-5600/5640, HEDM-5600

*Note:

For the HEDS-5500 and HEDM-5500, Pin #2 is a No Connect. For the HEDS-5540, Pin #2 is CH. I, the index output.

Theory of Operation

The HEDS-5500, 5540, 5600, 5640, and HEDM-5500, 5600 translate the rotary motion of a shaft into either a two- or a three-channel digital output.

As seen in the block diagram, these encoders contain a single Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single polycarbonate lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms. The codewheel rotates between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codewheel. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the radius and design of the codewheel. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are then fed through the signal processing circuitry resulting in A, A, B and B (also I and I in the HEDS-5540 and 5640). Comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with that of channel B (90 degrees out of phase).

In the HEDS-5540 and 5640, the output of the comparator for I and I is sent to the index processing circuitry along with the outputs of channels A and B.Block Diagram

revolution.

Pulse Width (P): The number of

electrical degrees that an output

is high during 1 cycle. This value

is nominally 180°e or 1/2 cycle.

Pulse Width Error (?P): The

deviation, in electrical degrees, of

the pulse width from its ideal

value of 180°e.

State Width (S): The number of

electrical degrees between a

transition in the output of channel

A and the neighboring transition

in the output of channel B. There

are 4 states per cycle, each

nominally 90°e.

State Width Error (?S): The

deviation, in electrical degrees, of

each state width from its ideal

value of 90°e.

Phase (φ): The number of

electrical degrees between the

center of the high state of channel

A and the center of the high state

of channel B. This value is

nominally 90°e for quadrature

output.

Phase Error (?φ): The deviation

of the phase from its ideal value

of 90°e.

The final output of channel I is an

index pulse P O which is generated

once for each full rotation of the

codewheel. This output P O is a

one state width (nominally 90

electrical degrees), high true

index pulse which is coincident

with the low states of channels A

and B.

Definitions

Count (N): The number of bar

and window pairs or counts per

revolution (CPR) of the

codewheel.

One Cycle (C): 360 electrical

degrees (°e), 1 bar and window

pair.

One Shaft Rotation: 360

mechanical degrees, N cycles.

Position Error (?Θ): The

normalized angular difference

between the actual shaft position

and the position indicated by the

encoder cycle count.

Cycle Error (?C): An indication

of cycle uniformity. The differ-

ence between an observed shaft

angle which gives rise to one

electrical cycle, and the nominal

angular increment of 1/N of a

Absolute Maximum Ratings

Parameter

HEDS-55XX/56XX HEDM-550X/560X Storage Temperature, T S -40°C to 100°C -40°C to +70°C Operating Temperature, T A -40°C to 100°C -40°C to +70°C Supply Voltage, V CC -0.5 V to 7 V -0.5 V to 7 V Output Voltage, V O

-0.5 V to V CC -0.5 V to V CC Output Current per Channel, I OUT -1.0 mA to 5 mA -1.0 mA to 5 mA Vibration

20 g, 5 to 1000 Hz 20 g, 5 to 1000 Hz Shaft Axial Play

±0.25 mm (±0.010 in.)±0.175 mm (±0.007 in.)Shaft Eccentricity Plus Radial Play 0.1 mm (0.004 in.) TIR 0.04 mm (0.0015 in.) TIR Velocity 30,000 RPM 30,000 RPM Acceleration

250,000 rad/sec 2

250,000 rad/sec 2

Output Waveforms

Direction of Rotation: When the codewheel rotates in the counter-clockwise direction (as viewed from the encoder end of the motor), channel A will lead channel B. If the codewheel

rotates in the clockwise direction,channel B will lead channel A.Index Pulse Width (P O ): The number of electrical degrees that an index output is high during one full shaft rotation. This value is nominally 90°e or 1/4 cycle.

Parameter

Symbol Min.Typ.

Max.Units Notes

Temperature HEDS Series T A -40100°C Temperature HEDM Series T A -4070°C non-condensing atmosphere Supply Voltage V CC 4.5

5.0 5.5Volts Ripple < 100 mV p-p Load Capacitance C L 100pF 2.7 k ? pull-up Count Frequency

f

100kHz Velocity (rpm) x N/60Shaft Perpendicularity

±0.25mm 6.9 mm (0.27 in.) from Plus Axial Play (HEDS Series)(±0.010)

(in.)

mounting surface Shaft Eccentricity Plus 0.04mm (in.) 6.9 mm (0.27 in.) from Radial Play (HEDS Series)(0.0015)TIR mounting surface Shaft Perpendicularity

±0.175mm 6.9 mm (0.27 in.) from Plus Axial Play (HEDM Series)(±0.007)

(in.)

mounting surface Shaft Eccentricity Plus 0.04mm (in.) 6.9 mm (0.27 in.) from Radial Play(HEDM Series)

(0.0015)TIR

mounting surface

Note: The module performance is guaranteed to 100 kHz but can operate at higher frequencies. 2.7 k ? pull-up resistors

required for HEDS-5540 and 5640.

Recommended Operating Conditions

Part No.

Description

Sym.Min.

Typ.*Max.Units HEDS-5500Pulse Width Error

?P 745°e HEDS-5600Logic State Width Error ?S 545°e (Two Channel)

Phase Error ?φ220°e Position Error ?Θ1040min. of arc

Cycle Error

?C 3 5.5°e HEDM-5500Pulse Width Error

?P 1045°e HEDM-5600Logic State Width Error ?S 1045°e (Two Channel)

Phase Error ?φ215°e Position Error ?Θ1040min. of arc

Cycle Error

?C 37.5°e HEDS-5540Pulse Width Error

?P 535°e HEDS-5640Logic State Width Error ?S 535°e (Three Phase Error ?φ215°e Channel)

Position Error ?Θ1040min. of arc

Cycle Error

?C 3 5.5°e Index Pulse Width P O 5590125°e

CH. I rise after -40°C to +100°C

t 2-300100250ns CH. A or CH. B fall

CH. I fall after -40°C to +100°C t 2

70

150

1000

ns

CH. B or CH. A rise

Note: See Mechanical Characteristics for mounting tolerances.*Typical values specified at V CC = 5.0 V and 25°C.

Encoding Characteristics

Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances unless otherwise specified. Values are for the worst error over the full rotation.

Electrical Characteristics

Electrical Characteristics over Recommended Operating Range.

Part No. Parameter Sym.Min.Typ.*Max.Units Notes HEDS-5500Supply Current I CC1740mA

HEDS-5600High Level Output Voltage V OH 2.4V I OH = -40 μA max.

Low Level Output Voltage V OL0.4V I OL = 3.2 mA

Rise Time t r200ns C L = 25 pF

Fall Time t f50ns R L = 11 k? pull-up HEDS-5540Supply Current I CC305785mA

HEDS-5640High Level Output Voltage V OH 2.4V I OH = -200 μA max. HEDM-5500Low Level Output Voltage V OL0.4V I OL = 3.86 mA HEDM-5600

Rise Time t r180ns C L = 25 pF

Fall Time t f40ns R L = 2.7 k? pull-up HEDM-5500Supply Current I CC305785mA

HEDM-5600High Level Output Voltage V OH 2.4V I OH = -40 μA max.

Low Level Output Voltage V OL0.4V I OL = 3.86 mA

Rise Time t r180ns C L = 25 pF

Fall Time t f40ns R L = 3.2 k? pull-up *Typical values specified at V CC = 5.0 V and 25°C.

Electrical Interface

To insure reliable encoding performance, the HEDS-5540 and 5640 three channel encoders require 2.7 k? (±10%) pull-up resistors on output pins 2, 3, and 5 (Channels I, A, and B) as shown in Figure 1. These pull-up resistors should be located as close to the encoder as possible

(within 4 feet). Each of the three

encoder outputs can drive a single

TTL load in this configuration.

The HEDS-5500, 5600, and

HEDM-5500, 5600 two channel

encoders do not normally require

pull-up resistors. However, 3.2k?

pull-up resistors on output pins 3

and 5 (Channels A and B) are

recommended to improve rise

times, especially when operating

above 100 kHz frequencies.

Mechanical Characteristics

Notes:

1. These are tolerances required of the user.

2. The HEDS-55X5 and 56X5, HEDM-5505, 5605 provide an 8.9 mm (0.35 inch) diameter hole through the housing for longer motor shafts. See Ordering Information.

3. The HEDS-5540 and 5640 must be aligned using the aligning pins as specified in Figure 3, or using the alignment tool as shown in “Encoder Mounting and Assembly”. See also “Mounting Considerations.”

4. The recommended mounting screw torque for 2 screw and external ear mounting is 1.0 kg-cm (0.88 in-lbs). The recommended mounting screw torque for 3 screw mounting is 0.50 kg-cm (0.43 in-lbs).

Mounting Considerations

The HEDS-5540 and 5640 three channel encoders and the HEDM Series high resolution encoders must be aligned using the aligning pins as specified in Figure 3, or using the HEDS-8910 Alignment Tool as shown in Encoder Mounting and Assembly.The use of aligning pins or

alignment tool is recommended but not required to mount the HEDS-5500 and 5600. If these

two channel encoders are

attached to a motor with the screw sizes and mounting tolerances specified in the mechanical characteristics section without any additional mounting bosses,the encoder output errors will be within the maximums specified in the encoding characteristics section.

The HEDS-5500 and 5540 can be mounted to a motor using either the two screw or three screw

mounting option as shown in Figure 2. The optional aligning pins shown in Figure 3 can be used with either mounting option.The HEDS-5600, 5640, and HEDM-5600 have external

mounting ears which may be used for mounting to larger motor base plates. Figure 4 shows the

necessary mounting holes with optional aligning pins and motor boss.

Figure 1. Pull-up Resistors on HEDS-5X40 Encoder Outputs.

Figure 3. Optional Mounting Aids.

Figure 2. Mounting Holes.11.10 / 10.94 (0.438 / 0.431)

2.39 / 2.34 (0.096 / 0.092)

2.39 / 2.34

(0.096 / 0.092)

0.25 (0.010) X

2 PLACES

A ? 0.15 (0.006)

0.8 (0.03) X 45° CHAMFER

O A 0.05 (0.002)

11.10 / 10.94

(0.438 / 0.431) Figure 4. Mounting with External Ears.

3a. Push the hex wrench into the body of the encoder to

ensure that it is properly seated into the code wheel hub set screws. Then apply a downward force on the end of the hex wrench. This sets the code wheel gap by levering the code wheel hub to its upper position.

3b. While continuing to apply a downward force, rotate the hex wrench in the clockwise direction until the hub set screw is tight against the motor shaft. The hub set screw attaches the code wheel to the motor's shaft.

3c. Remove the hex wrench by pulling it straight out of the encoder body.

4. Use the center screwdriver slot, or either of the two side slots, to rotate the encoder cap dot clockwise from the one dot position to the two dot position. Do not rotate the

encoder cap counterclockwise beyond the one dot position.The encoder is ready for use!

Encoder Mounting and Assembly

1. For HEDS-5500 and 5600: Mount encoder base plate onto motor. Tighten screws. Go on to step

2.

1a. For HEDS-5540, 5640 and HEDM-5500, 5600: Slip alignment tool onto motor shaft. With alignment tool in

place, mount encoder baseplate onto motor as shown above.Tighten screws. Remove alignment tool.

2. Snap encoder body onto base plate locking all 4 snaps.

Connectors

Manufacturer

Part Number

AMP 103686-4640442-5

Dupont/Berg

65039-032 with 4825X-000 term.Agilent

HEDS-8902 (2 ch.) with 4-wire leads (designed to mechanically lock into the HEDS-5XXX, HEDM-5X0X Series)HEDS-8903 (3 ch.) with 5-wire leads Molex

2695 series with 2759 series term.

Figure 5. HEDS-8902 and 8903 Connectors.

Typical Interfaces

HOST PROCESSOR

HEDS–55XX

OR

HEDS-56XX OR

HEDM-5X0X

HCTL-2016/

2020

QUADRATURE DECODER/COUNTER

CH. A CH. B

HOST PROCESSOR

CH. B

CH. A HEDS–55XX

OR

HEDS-56XX

OR

HEDM-5X0X

HCTL-1100MOTION CONTROL IC

*

*

N/A *

Ordering Information

HEDS-5

Option

Shaft Diameter 01 - 2 mm 06 - 1/4 in.02 - 3 mm 11 - 4 mm 03 - 1/8 in.14 - 5 mm 04 - 5/32 in.12 - 6 mm 05 - 3/16 in.13 - 8 mm

Mounting Type 5 - Standard 6 - External

Mounting Ears

Through Hole 0 - None

5 - 8.9 mm (0.35 in.)

Outputs 0 - 2 Channel 4 - 3 Channel

Encoders with Metal Codewheels

HEDS-89100Alignment Tool

(Included with each order of HEDS-554X/564X three channel encoders)

Shaft Diameter 01 - 2 mm 06 - 1/4 in.02 - 3 mm 11 - 4 mm 03 - 1/8 in.14 - 5 mm 04 - 5/32 in.12 - 6 mm 05 - 3/16 in.13 - 8 mm

Mounting Type 5 - Standard 6 - External

Mounting Ears

Resolution (Cycles/Rev)B - 1000 CPR J - 1024 CPR

Through Hole

0 - None

5 - 8.9 mm (0.35 in.)

Outputs 0 - 2 Channel

Encoders with Film Codewheels

HEDS-89100Alignment Tool

(Included with each order of HEDM-550X/560X two channel encoders)

HEDM-5

0 Option

Resolution (Cycles/Rev)(HEDS-550X, 560X 2 Channel)S - 50 CPR F - 256 CPR K - 96 CPR G - 360 CPR C - 100 CPR H - 400 CPR D - 192 CPR A - 500 CPR E - 200 CPR I - 512 CPR (HEDS-554X, 564X 3 Channel)

S - 50 CPR

K - 96 CPR

C - 100 CPR

E - 200 CPR

F - 256 CPR

G - 360 CPR H - 400 CPR A - 500 CPR I - 512 CPR

01020304050611121314 HEDM-5500B*******

J***** HEDM-5505B*

J*** HEDM-5600B**

J*

HEDM-5605B*

J*

HEDS-5500A**********

C**********

E*******

F********

G*****

H****

I**********

K****

S* HEDS-5505A****

C****

E***

F***

G**

H**

I***

K*

HEDS-5540A**********

C*******

E**

F***

G*

H**

I******* HEDS-5545A**

C*

H**

I*

HEDS-5600A****

C***

E*

G**

H**

I**

01020340050611121314 HEDS-5605A**

C*

E*

F*

G*

H**

I*

HEDS-5640A***

E*

F*

H*

HEDS-5645A***

C*

E*

G*

H***

I*

https://www.doczj.com/doc/a718317931.html,/semiconductors For product information and a complete list of distributors, please go to our web site.

For technical assistance call:

Americas/Canada: +1 (800) 235-0312 or (408) 654-8675

Europe: +49 (0) 6441 92460

China: 10800 650 0017

Hong Kong: (+65) 271 2451

India, Australia, New Zealand: (+65) 271 2394 Japan: (+81 3) 3335-8152(Domestic/Interna-tional), or 0120-61-1280(Domestic Only) Korea: (+65) 271 2194

Malaysia, Singapore: (+65) 271 2054

Taiwan: (+65) 271 2654

Data subject to change.

Copyright ? 2002 Agilent Technologies, Inc. Obsoletes 5988-2579EN

January 17, 2002

5988-3996EN

编码器详细介绍与编程指导

增量型编码器与绝对型编码器的区分 编码器如以信号原理来分,有增量型编码器,绝对型编码器。 增量型编码器 (旋转型) 工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL 也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。 如单相联接,用于单方向计数,单方向测速。 A.B两相联接,用于正反向计数、判断正反向和测速。 A、B、Z三相联接,用于带参考位修正的位置测量。 A、A-, B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。 对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。 对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。

磁旋转编码器常见问题

磁旋转编码器常见问题 常见问题:磁旋转编码器I C 一般性问题 Q1:芯片如果不能按预期工作,我需要进行哪些测试才能找出原因? Q2:可以在不编程的情况下使用旋转编码器芯片吗? Q3:如何知道上电之后角度数据何时有效? Q4:启动时间是否会随温度而改变? Q5:不同类型的输出可用于哪些应用? Q6:我可以利用数字输出驱动大于4m A的电流,例如驱动一个10m A的L E D吗?Q7:为什么已存在下拉电阻还必须将P R O G连接到V S S? Q8:对准模式下限制数值32是什么意思? Q9:可以得到的最佳精度是多少? Q10:可以得到优于0.1度的精度吗? Q11地利微电子可以校准芯片以实现最佳的精度吗? Q12:数据资料中显示的误差曲线对于所有产品都是一样的吗? Q13:编码器的重复性是指什么? Q14:重复性怎样随着温度改变? Q15:C S n引脚可以永久地连接到V S S吗? Q16:角度数据采样与C S n是同步的吗? Q17:奥地利微电子可以提供预先编程的定制化编码器吗? Q18:编码器可承受的振动水平怎样? Q19:怎样降低A S5040/43/45的功耗? 磁铁相关问题 Q20:推荐的磁铁水平偏离容差是多少? Q21:如果不能将磁铁对准在推荐的容差内,会发生什么呢? Q22:我可以将编码器I C安装在环形磁铁的周围吗? Q23:怎样才能扩展磁铁的垂直间距? Q24:如果在―绿色‖(适当)范围之外使用传感器会有什么后果? Q25:哪些类型的磁铁可以和A S5035/40/43/45配合使用? Q26:在旋转轴内安装磁铁的时候需要注意什么? Q27:为什么在移除磁铁的时候不能触发C O F和L I N报警? Q28:为什么即使移除磁铁时我仍可以得到随机的角度数据? Q29:在什么磁场范围可以得到M a g I n c/-D e c、L I N和C O F报警信号? Q30:如何分辨磁铁场强过弱(或丢失)与磁铁场强过强的情况? Q31:要获得零位读数时,磁铁要处于哪一个缺省位置? Q32:磁编码器是如何做到对于外部磁场不敏感的? A S5035,A S5040,A S5045 磁旋转编码器产品系列常见问题 A S50000磁旋转编码器产品系列 常见问题 Q33:是否需要屏蔽传感器以避免外部磁场的影响? Q34:B L D C电动机的强磁场转子磁铁会对编码器造成什么影响? Q35:我可以将其它材料放置到磁铁和I C之间吗?

旋转编码器详解

增量式编码器的A.B.Z 编码器A、B、Z相及其关系

TTL编码器A相,B相信号,Z相信号,U相信号,V相信号,W相信号,分别有什么关系? 对于这个问题的回答我们从以下几个方面说明: 编码器只有A相、B相、Z相信号的概念。 所谓U相、V相、W相是指的电机的主电源的三相交流供电,与编码器没有任何关系。“A相、B相、Z相”与“U相、V相、W相”是完全没有什么关系的两种概念,前者是编码器的通道输出信号;后者是交流电机的三 相主回路供电。 而编码器的A相、B相、Z相信号中,A、B两个通道的信号一般是正交(即互差90°)脉冲信号;而Z相是零脉冲信号。详细来说,就是——一般编码器输出信号除A、B两相(A、B两通道的信号序列相位差为90度)外,每转一圈还输出一个零位脉冲Z。 当主轴以顺时针方向旋转时,输出脉冲A通道信号位于B通道之前;当主轴逆时针旋转时,A通道信号则位于B通道之后。从而由此判断主轴是正转还是反转。 另外,编码器每旋转一周发一个脉冲,称之为零位脉冲或标识脉冲(即Z相信号),零位脉冲用于决定零位置或标识位置。要准确测量零位脉冲,不论旋转方向,零位脉冲均被作为两个通道的高位组合输出。由于通道之间的相位差的存在,零位脉冲仅为脉冲长度的一半。 带U、V、W相的编码器,应该是伺服电机编码器 A、B相是两列脉冲,或正弦波、或方波,两者的相位相差90度,因此既可以测量转速,还可以测量电机的旋转方向Z相是参考脉冲,每转一圈输出一个脉冲,脉冲宽度往往只占1/4周期,其作用是编码器自我校正用的,使得编码器在断电或丢失脉冲的 时候也能正常使用。 ABZ是编码器的位置信号,UVW是电机的磁极信号,一般用于同步电机; AB对于TTL/HTL编码器来说,AB相根据编码器的细分度不同,每圈有很多个,但Z相每圈只有一个; UVW磁极信号之间相位差是120度,随着编码器的角度转动而转动,与ABZ 之间可以说没有直接关系。 /#############################################################

OMRON温控仪参数设定方法

OMRON E5CN 温控表参数设定方法 温控仪面板(E5CN )如图: 一.参数设置等级操作: 1. 按“ ”键3秒以上,进入参数设置等级。显示: 2. 按“ ”键,切换参数代码,可循环显示。显示: 3. 按“ ”或“”键,修改参数设定值。 4. 按“”键3秒以上,返回正常控制模式。显示: 二.报警值设置操作: 1. 按“ ”键,进报警值设定,可循环显示。显示:

2.按“”键,设定报警1( 3.按“”或“”键,修改报警输出设定值。 4.按“”键,设定报警2( 5.按“”或“”键,修改报警输出设定值。 6.按“”键,返回正常控制模式。显示: 三.自整定操作: 按“”键,进入自整定设置操作。显示: 按“”键,将“”改为“”。显示: 按“”键,开始自整定,设定温度值闪烁显示。显示: 注意:此操作应在参数全部设定完成后,加热到实际温度与设定温度值基本相同后开始,否则,自整定结果不准确,在此过程中,禁止对温控表进行其他操作,实际温度值会有较大波动,属正常现象,待设定值停止闪烁后,自整定即完成,自动恢复正常控制模式。

四.参数功能及设定值: 按“”键3秒以上参数功能设定值 温度传感器输入型号 0:代表传感器型号pt100 按“”键 温度显示单位 C:代表摄式度;F:代表华式度 按“”键 最高上限温度报警值高于正常设定值20%-25% 此值到达温控器停止输出并报警 按“”键 最低下限温度报警值 按“”键 PID控制*关键参数,禁止随意修改* PID:自动控制方式;ONOFF:开关控制方式 按“”键 温度控制方式 Stnd:标准控制;H-C:热或冷控制 按“”键 自整定功能开关 ON:开;OFF:关 按“”键 控制周期 2:加热周期为2秒钟*关键参数,禁止随意修改*

Arduino关于旋转编码器程序的介绍资料

Arduino关于旋转编码器程序的介绍介绍 旋转或编码器是一个角度测量装置. 他用作精确测量电机的旋转角度或者用来控制控制轮子(可以无限旋转,而电位器只能旋转到特定位置)。其中有一些还安装了一个可以在轴上按的按钮,就像音乐播放器的控制按钮。Some of them are also equipped with a pushbutton when you press on the axis (like the ones used for navigation on many music controllers). 它们的精度多种多样,有每圈16步到1024步的各种,价格也从2到200欧元不等。 我写了一个小例子去读旋转编码器,并且使将读数通过RS232显示。我们很容易实现当编码器每走一步更新一下计数,并且将它通过串口显示在电脑上(通过串口监视器)。这个程序在ALPS STEC12E08编码器(每圈有24步)上运行良好。但是我认为当它使用在一个有更高精度的编码器上时有可能就会失效或者当电机旋转很快,或者你拓展这个程序以适应多个编码器。请先试试他吧。 我在Arduino distribution(A VRLib的一部分)的encoder.h中学会了怎样操作编码器。谢谢作者:Pascal Stang,感谢他对每一个函数友好而详细的解释。如下: Example 1 /* Read Quadrature Encoder * Connect Encoder to Pins encoder0PinA, encoder0PinB, and +5V. * * Sketch by max wolf / https://www.doczj.com/doc/a718317931.html, * v. 0.1 - very basic functions - mw 20061220 * */ int val; int encoder0PinA = 3; int encoder0PinB = 4; int encoder0Pos = 0; int encoder0PinALast = LOW; int n = LOW; void setup() { pinMode (encoder0PinA,INPUT); pinMode (encoder0PinB,INPUT); Serial.begin (9600); } void loop() { n = digitalRead(encoder0PinA); if ((encoder0PinALast == LOW) && (n == HIGH)) {//上升沿

倍加福编码器基础讲解

P+F Absolute Rotary Encoder通讯参数设置 型号

1、地址选择和终端电阻1.1站地址 1.2 终端电阻 2、信号和电源线的连接

3、安装GSD文件 GSD文件为电子设备数据库文件,是可读的ASCII码文件。不同厂家的PROFIBUS产品集成在一起,生产厂家必须以GSD文件方式提供这些产品的功能参数,例如I/O点数、诊断信息、传输速率、时间监视等。在Step 7 的SIMATIC 管理器中打开硬件组态工具HW Config ,安装GSD后,在右边的硬件目录PROFIBUS DP→Additional Field Devices→Encoders→ENCODER将会出现刚刚安装的P+F Rotary Encoder。其数据传输原理如图所示。 4、组态通讯参数

在Step 7硬件配置窗口中,双击P+F Rotary Encoder 图标,打开编码器(DP Slave)的参数设置窗口,如图所示。结合工程实际,在此窗口中进行参数设置: a、代码顺序(Code Sequence):计数方向, CW(顺时针旋转,代码增加),CCW (逆时针旋转,代码增加); b、标定功能控制(Scaling function control):只有设置成Enable ,下面 c、d和e的设置才会生效; c、单圈分辨率(Measuring units per revolution):8192; d、测量范围高位(Total measuring range(units)hi): 512; e、测量范围低位(Total measuring range(units)lo): 0; f、其它参数采用默认值。 注:1、由c可以计算出编码器每圈产生(=8192)个二进制码,即单圈精度为13位。2、由d和e可以计算出编码器最大可以转(=512×65536+0)圈,即多圈精度为12位。 5、预置值 6、LED状态灯指示信息

绝对值旋转编码器程序

绝对值旋转编码器程序 #include // 寄存器头文件包含 #include // 寄存器头文件包含 #include // 空操作函数,移位函数头文件包含 #define uchar unsigned char #define uint unsigned int /* sbit SH_CP = P1^1; //移位时钟脉冲端口 sbit DS = P1^2; // 串行数据输入端口 sbit ST_CP = P3^7; //锁存端口 */ int inc_data=0; //每刷新一次的增量值 int jms=0; //累计增量 int m_iPrvSSI = 0; int m_bIsSPI = 0; uchar uPrvState = 0; sbit AA = P3^3;// sbit BB = P3^4;//这个是时钟 sbit ZZ = P3^5;//这个是数据 sbit BEEP=P1^5; //正反判断 bit t_bFang = 1; int a; int iSSI = 0;

int temp,num,j; uchar led_buf[12]; /*定义LED显示缓冲区*/ uchar code table[]="0123456789"; void delay (int t) { int i,j; for(i=1;i for (j=1;j } void GetSSI(void) { uchar ix = 0; // uchar uState = 0; //状态位数据 int iSSI = 0;//当前的角度数据(0-1023) bit bCrc = 0; // 奇数或偶数标志位 int ire = 0; //增量数据,表示上次正确读的数据,和这次正确读的位置差 AA = 0; //CSN _nop_();_nop_(); BB = 0;//CLK _nop_();_nop_(); BB = 1;//CLK _nop_();_nop_(); for(ix = 0; ix { BB = 0;//CLK

数控铣床的工作原理【详解】

数控铣床的工作原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 数控机床是一种装有程序控制系统的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,从而使机床动作数控折弯机并加工零件。 数控机床的机床本体与传统机床相似,由主轴传动装置、进给传动装置、床身、工作台以及辅助运动装置、液压气动系统、润滑系统、冷却装置等组成。但数控机床在整体布局、外观造型、传动系统、刀具系统的结构以及操作机构等方面都已发生了很大的变化,这种变化的目的是为了满足数控机床的要求和充分发挥数控机床的特点。 ⑵、CNC单元 CNC单元是数控机床的核心,CNC单元由信息的输入、处理和输出三个部分组成。CNC单元接受数字化信息,经过数控装置的控制软件和逻辑电路进行译码、插补、逻辑处理后,将各种指令信息输出给伺服系统,伺服系统驱动执行部件作进给运动。 ⑶输入/输出设备 输入装置将各种加工信息传递于计算机的外部设备。在数控机床产生初期,输入装置为穿孔纸带,现已淘汰,后发展成盒式磁带,再发展成键盘、磁盘等便携式硬件,极大方便了信息输入工作,现通用DNC网络通讯串行通信的方式输入。 输出指输出内部工作参数(含机床正常、理想工作状态下的原始参数,故障诊断参数等),一般在机床刚工作状态需输出这些参数作记录保存,待工作一段时间后,再将输出与原始资料作比较、对照,可帮助判断机床工作是否维持正常。

编码器编程

我用的是三菱PLC的FX2N,这里有A、B、Z相的HK38系列的增量式旋转编码器,将PLC 的X0,X1,X2分别接编码器的A相和B相及Z相,用PLC的双相计数器C252计数,虽然我知道A相超过B相90°为顺时针转,滞后就逆时针转,但不知道如何具体编程,我的目的是达到测旋转轴的角度,从-135°~-30°~-10°~10°~+30°~-135°,正反转旋转 多谢各位,我改了一下,但仍旧没找到问题原因,但测试中发现,接X2和X5都能使C252复位,尽管手册上说只有X2复位,但由于以上提到的Z相接入任何一个输入端都使之ON,所以我就避开了接X2和X5端子,改接其他的端子,比如X3,这并不是因为它是高速输入端的一种才选,其他端也一样,因此我采用了软件复位,也没办法了,效果倒是达到了想要的,

DHSZ D200 K8 C235 M8130 HSZ是高速区间比较指令,前面加D是32位的。运作如下: D200 > C235 M8130 ON D200<=C235>=k8 M8131 ON D200 < C235 M8132 ON

将旋转编码器的A相或B相的输出信号连接至X0~X5,(使用不同的计数器,接不同的输入点)然后用高速计数器对编码器的脉冲信号进行计数。以C235为例,只进行加计数,脉冲编码器的A相或B相需要接入PLC的X0,当设备带动编码器旋转,则X0就有信号输入,C235就会进行计数。使用很简单。 需求一段三菱PLC+旋转编码器+变频器实行多段距离控制,例如:上升总距离为50cm,0-15cm 实行20hz运行、16-25 cm 实行35HZ运行、26-35cm实行40HZ 运行、36-46cm实行20HZ 运行、47-50cm实行10HZ运行;下降反之! 程序中的数字,是按每厘米100个脉冲设计的,在实际中还要经过计算。

旋转编码器定位使用说明

充注小车、运载小车定位使用说明 定位原理: 旋转编码器定位与老式的旋转变压器一样,实际上是一个计数器。我们目前使用的OMRON旋转编码器每旋转一周,能精确地发出1024脉冲,PLC依据旋转编码器发出的脉冲进行计数,再乖以固定机械变比与旋转半径的系数,就可以得出脉冲与实际行走距离的线性对应关系。 PLC利用高速计数模块QD62D读取旋转编码器的值并进行数字化处理,可以将脉冲数值转换成实际的距离值如mm。 目前我们设备都是利用旋转编码器的原始值进行处理的,所有触模屏上的距离值均为脉冲值而非实际距离值,这样在处理数据时比较方便直观。 根据这一对应关系利用普通变频器控制一般的三相鼠笼电机就能实现精度在1毫米左右定位系统,可以在许多定位要求不高的控制领域使用。 使用方法: 依据上述原理,定位系统定位首先必须选择一个参考点,以这点作为基准点,其它所有设置点均为到这一点的相对距离。当基点信号取的不稳定或不好,就会影响整个定位过程。 旋转编码器由一个联轴器与一套齿轮机构组合成一套测量机构。由于齿轮与齿轮之间存在间隙,运行一段时间后就会有误差积累,造成定位不准,这时不要改变屏上设定数据,而是在运行机构运行一段时间后,让运行机构回到基点,进行一次清零,就可以消除积累误差。 旋转编码器定位机构的故障主要有定位不准、或运行数据无变化等等。 定位不准主要是由测量机构之间的间隙,联轴器、齿轮相对打滑。 一种定位不准就是干扰,现场已采用了一端接地的屏蔽等措施。出错时请严格检查测量线路(包抱QD62D联接器)有无断线、短路、屏蔽不严、模块供电电压不足等问题。 还有一种定位不准表现在:由于测量机构所能测量的最大频率不超过500KHz,因此对于变化速度太快脉冲系统不能及时测量,造成定位不准。因此系统要运行平稳,不能有速度突变。

旋转编码器工作原理

增量式旋转编码器工作原理 增量式旋转编码器通过内部两个光敏接受管转化其角度码盘的时序和相位关系,得到其角度码盘角度位移量增加(正方向)或减少(负方向)。在接合数字电路特别是plc后,增量式旋转编码器在角度测量和角速度测量较绝对式旋转编码器更具有廉价和简易的优势。增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90o,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。 增量式旋转编码器的内部工作原理(附图) 增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90o,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。 A,B两点对应两个光敏接受管,A,B两点间距为 S2 ,角度码盘的光栅间距分别为S0和S1。 当角度码盘以某个速度匀速转动时,那么可知输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值相同,同理角度码盘以其他的速度匀速转动时,输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。如果角度码盘做变速运动,把它看成为多个运动周期(在下面定义)的组合,那么每个运动周期中输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。 通过输出波形图可知每个运动周期的时序为

旋转编码器在线速度检测控制中的应用

在电缆生产线上,通常需要检测电缆的走线速度,用来控制收线电机的转速和计算线缆的长度。成缆工艺参数的稳定,直接关系到电线电缆的质量。 该项目是为某电缆厂的技术改造项目,要改造的设备是利用束线原理制造的盘绞式成缆机,改造的内容是更换全部电气控制系统。这种成缆机的放线盘固定,而收线盘固定在盘绞架上同时完成绞合和收线的双重运动。工作时,在线缆盘直流电机的带动下,完成电缆的收线运动,在排线电机的带动下实现电缆在收线盘的整齐排列。在大盘电机的带动下,通过齿轮箱带动盘绞架实现轴向旋转,完成电缆绞合运动,是保证节距的关键。线速度是由收线盘的旋转速度决定的,如果收线电机的转速恒定,收线盘随着收线轴的变粗,线速度会增大,因此,为保证收线速度恒定,要逐渐降低收线电机的转速。 1 系统设计原理 根据电缆的生产工艺要求,不同型号的电缆,其走线速度是恒定的。通常,电缆的运行速度是由电缆带动旋转编码器来检测的。电缆线速度测速示意图如图1所示。 该项目中,采用的旋转编码器的型号是TRDJ1000系列,旋转一周输出1 000个脉冲。因此,根据在一定时间内检测到的脉冲数,就可以计算出电缆的走线速度。实际应用中,将其与一加工精度极高、周长为500 mm的旋转编码器测量主动轮与旋转编码器同轴安装,主动轮与电缆接触。在电缆生产运动过程中,依靠摩擦力拉动测量轮旋转,这样就把电缆的直线位移(长度)转化为旋转编码器的脉冲数字信号输出。

设旋转编码器每旋转一周,其计数脉冲个数为NP(脉冲个数/转),则旋转编码器角分辨率(单位:(°)/个)为: P=360/NP 假定固定在旋转编码器转轴上的主动导向轮半径为r m,则旋转编码器位移分辨率(单位:m/个)为: Ps=27πr/NP 这时,若计数脉冲个数为N(个),则由旋转编码器测量的位移量S(单位:m)为: S=Ps·N 线缆走线速度V(单位:m/s)为: V=S/T 式中:T为接收N个脉冲所用的时间(单位:s)。 2 硬件电路设计原理 该检测电路以AT89C51单片机为控制核心,如图2所示,旋转编码器输出的脉冲,经过电平转换,变成O~5 V的TTL电平脉冲,送到AT89 C51单片机的外部中断INT0端。每收到

POSITAL编码器说明书

P O S I T A L编码器说明书 Prepared on 24 November 2020

POSITAL编码器资料 FRABA 编码器 德国博思特POSITAL编码器、POSITAL工业编码器、POSITAL倾角仪,POSITAL传感器、POSITAL线性传感器,POSITAL绝对值编码器、POSITAL旋转编码器等。 编码器行业领导者上海精芬德国博思特POSITAL编码器、POSITAL工业编码器、POSITAL倾角仪,POSITAL 传感器、POSITAL线性传感器,POSITAL绝对值编码器、POSITAL旋转编码器等,如需询价或详细信息,方案选型与精芬联系。德国POSITAL公司成立于1918年,致力于高端机电产品的研发及生产,是欧洲绝对值编码器产品的领跑者。该公司产品广泛应用于冶金、汽车制造、水利、物流、机械制造、木材加工、造船等行业。 以下021列举部分型号:OCD-S200G-1412-B15S-PRL、OCD-S200G-1212-B150-PRL、OCD-S200G-1212-B15S-CRW、OCD-S200G-1213-B150-CAW、OCD-S200B-1213-SA1C-CRS-150、OCD-S200G-1416-S060-PRL、OCD-S200G-1213-B15C-CAS-182、OCD-S200G-1416- S100-CAW、OCD-S200G-1212-C100-PRL、OCD-S200G-1412-B150-PRL、OCD-S100G-1212-B150-PAL、OCD-

S100G-0012-C100-PRL、OCD-S100G-1212-C10S-CRW-5m、OCD-S100G-1212-S100-PRL、OCD-S100G-1212- B15V-CAW-5m、OCD-S100G-0013-S100-PRL、OCD- S100G-1212-S10S-PRL、OCD-S100G-0016-S10S-PAL、OCD-S100B-1212-C10S-PRL、OCD-S100G-1416-C100-PRL、OCD-S100G-1213-C100-PA9、OCD-S100G-1213-C100-PAL、OCD-S100G-1212-S060-PRL-050、OCD- S100G-1212-B150-PRL、OCD-S100G-1213-C100-PRL、OCD-S100B-0016-B15S-CRW-136、OCD-S100G-1212-C100-PRL、OCD-S100G-1212-C100-CRW、OCD-S100G-1212-S060-PAL、OCD-S100B-0016-S060-PAL-135、OCD-S100G-0013-C100-PAL OCD-S100G-1213-T120-PRL、OCD-S100B-1212-S060-CRW、OCD-S100G-0016-T12C-CRW-163、OCD-S100G-1416-C10V-CAW-5m、OCD-S100G-1216-S10S-PRL、OCD-S100G-0016-T120-CRW、OCD-S100B-1212-C100-PRL、OCD-S100B-1212-B15V-CAW-5m、OCD-S100G-1212-B15S-PAL、OCD-S100B-0016-C100-CAW-5m、OCD-S100G-1212-C10S-PRL、OCD-S100B-0016-T120-CRW、OCD-S100G-1213-S10S-PRL、OCD-S100B-1213-C10S-PRL、OCD-S100G-0013-S060-PRL、OCD-S100B-0016-T120-PRL、OCD-SL00G-1213-SA1C-CRS-159、OCD-S100B-0016-B150-CRW、

欧姆龙PLC与旋转编码器的应用

旋转编码器的应用 例:E6C-N绝对型多旋转高精度型旋转编码器与CPM1A PLC连接进行定位控制 一、连接示意图 型号E6C-NN5C 型号CPM1A-40CD□-□ 二、配线表 【型号E6C-NN5C和型号CPM1A的配线】 型号E6C-NN5C输出信号型号CPM1A 输入信号 单旋转导线外皮褐(20) 00000 数据颜色橙(21) 00001 (灰)黄(22) 00002 绿(23) 00003 蓝(24) 00004 紫(25) 00005 灰(26) 00006 白(27) 00007 粉红(28) 00008 多旋转导线外皮茶(20) 00100 数据颜色橙(21) 00101 (黑)黄(22) 00102 绿(23) 00103 蓝(24) 00104 紫(25) 00105 符号+=0 灰(26) 00106 -=1 白(27) 00107 三、输出时间 【输出时间】 型号E6C-NN5C的绝对值数据 1旋转 2旋转 127旋转 63999

四、梯形图程序 000通道的0 接点,输送到 (单旋转数 BIN) BIN BCD 001通道的 0~7接点,输送 到DM0003(多旋转 数据BIN) BIN 转换到BCD BCD)× 500(单旋转分辨率) 的结果存入 DM0005~6 比较带在DM0010/11的值与DM0012/13 的值间在线性绝对值数据时,输出01000 接点。(限正旋转时进行带域比较)

五、DM设定 【DM设定】 DM0000 0001 0002 0000 数据程序用工作区域 0003 0004 0005 0006 0007 线性绝对值数据 0008 0009 比较数据 0010 9000 0011 0000 上限值设定 0012 0500 0013 0001 下限值设定 注:上述梯形程序为参考例,有时会因程序控制器的数据读入时间而产生数据读取错误。这时,比较上次读入的数据与当前读入的数据。若超过100以上,则该数据作废。(多旋转数据变化时,同时读入单旋转数据与多旋转数据,则错误的数据也被读入。

12位可编程磁旋转编码器

AS5145/AS5145A/AS5145B 12-Bit Programmable Magnetic Rotary Encoder D a t a S h e e t 1 General Description The AS5145 is a contact less magnetic rotary encoder for accurate angular measurement over a full turn of 360 degrees. It is a system-on-chip, combining integrated Hall elements, analog front end and digital signal processing in a single device. To measure the angle, only a simple two-pole magnet, rotating over the center of the chip, is required. The magnet may be placed above or below the IC. The absolute angle measurement provides instant indication of the magnet’s angular position with a resolution of 0.0879o = 4096 positions per revolution. This digital data is available as a serial bit stream and as a PWM signal. An internal voltage regulator allows the AS5145 to operate at either 3.3V or 5V supplies. 2 Key Features Contact less high resolution rotational position encoding over a full turn of 360 degrees Two digital 12 bit absolute outputs: -Serial interface -Pulse width modulated (PWM) output Figure 1. AS5145 Automotive Rotary Encoder IC Three incremental outputs Quadrature A/B (10 or 12 bit) and Index output signal (pre-programmed versions available AS5145A for 10 bit and AS5145B for 12 bit) User programmable zero position Failure detection mode for magnet placement, monitoring, and loss of power supply Red-Yellow-Green indicators display placement of magnet in Z-axis Serial read-out of multiple interconnected AS5145 devices using Daisy Chain mode Tolerant to magnet misalignment and gap variations Wide temperature range: - 40oC to +150oC Fully automotive qualified to AEC-Q100, grade 0 Small Pb-free package: SSOP 16 (5.3mm x 6.2mm) 3 Applications The device is ideal for industrial applications like contactless rotary position sensing and robotics; automotive applications like steering wheel position sensing, transmission gearbox encoder, head light position control, torque sensing, valve position sensing and replacement of high end potentiometers. Hall Array & Front end Amplifier PWM Interface DSP OTP Register MagINCn DO CSn CLK PDIO Sin Cos Mag Ang MagDECn PWM Absolute Interface (SSI) V DD5V Incremental Interface DTEST1_A DTEST2_B LDO 3.3V V DD3V3 Mux Mode_Index AS5145

OMRON E5EZ温控器通用手册(试用版)r01

OMRON E5EZ温控器通用手册 声明 此手册为深圳宇宙P.C.B设备有限公司内部资料,我们保留对此手册的解释权,如有变更,恕不另行通知。 此手册的适用范围为我公司机组使用的OMRON温控制器。 此手册作为本公司生产技术人员、本公司安装维护人员及客户技术人员的指导手册。 一、规格说明 技术参数: UCE选用型号说明: E5EZ-R3(48*96):水平线

E5EZ-Q3(48*96):焗炉、隧道炉二、显示字符说明 下表为温控器显示字符和字母的对应关系表: 三、面板说明 1、名称 2、名称说明

3、尺寸

四、接线

五、菜单及参数调整操作 E5EZ型温控器共有6个菜单,其中通讯菜单跟选择的硬件有关系,如硬件选择了则有,否则无。菜单的进入方式如下图:

具体操作如下: (1)首先在运行菜单下同时按和3秒以上进入保护菜单,然后将“OAPT(运行/调整保护)” 和“ICPT(初始/通信保护)”的值改为“0”,再将“WTPT(设置更改保护)”改为“OFF”,这样就 解除参数锁定,即所有的参数都可以修改。要恢复参数锁定请将“OAPT”和“ICPT”改为“2”。(2)在运行菜单内每次按下键可以显示不同的参数,通过按或键可以修改菜单内的参数。 按键多次后回到PV/SV显示状态 (3)在运行菜单按下键进入调整菜单,每次按下可以显示调整菜单内不同的参数,通过或 (4)在运行菜单按下键3秒以上进入初始菜单,每次按下可以显示初始菜单内不同的参数,通过或键可以修改初始菜单内参数。在初始菜单按键1秒以上将返回运行菜单(5)在初始菜单内将参数“AMOV”改为“-169”后将进入高级功能菜单,在高级功能菜单内每次按下将显示不同的参数,通过或键可以修改高级功能菜单内参数。在高级功能菜单内按键 1秒以上将返回初始菜单,然后再按键1秒以上将返回运行菜单

旋转编码器工作方式图解

旋转编码器 旋转编码器是由光栅盘(又叫分度码盘)和光电检测装置(又叫接收器)组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光栅盘与电机同轴,电机旋转时,光栅盘与电机同速旋转,发光二极管垂直照射光栅盘,把光栅盘图像投射到由光敏元件构成的光电检测装置(接收器)上,光栅盘转动所产生的光变化经转换后以相应的脉冲信号的变化输出。 编码器码盘的材料有玻璃、金属、塑料等。玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高。金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性也比玻璃的差一个数量级。塑料码盘成本低廉,但精度、热稳定性、寿命均要差一些。 编码器以信号原理来分,有增量式编码器(SPC)和绝对式编码器(APC),顾名思义,绝对式编码器可以记录编码器在一个绝对坐标系上的位置,而增量式编码器可以输出编码器从预定义的起始位置发生的增量变化。增量式编码器需要使用额外的电子设备(通常是PLC、计数器或变频器)以进行脉冲计数,并将脉冲数据转换为速度或运动数据,而绝对式编码器可产生能够识别绝对位置的数字信号。综上所述,增量式编码器通常更适用于低性能的简单应用,而绝对式编码器则是更为复杂的关键应用的最佳选择--这些应用具有更高的速度和位置控制要求。输出类型取决于具体应用。 一:增量式旋转编码器工作原理 增量式旋转编码器通过两个光敏接收管来转化角度码盘的时序和相位关系,得到角度码盘角度位移量的增加(正方向)或减少(负方向)。

增量式旋转编码器的工作原理如下图所示。 图中A、B两点的间距为S2,分别对应两个光敏接收管,角度码盘的光栅间距分别为S0和S1。 当角度码盘匀速转动时,可知输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值相同,同理,当角度码盘变速转动时,输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。 通过输出波形图可知每个运动周期的时序为: 我们把当前的A、B输出值保存起来,与下一个到来的A、B输出值做比较,就可以得出角度码盘转动的方向, 如果光栅格S0等于S1时,也就是S0和S1弧度夹角相同,且S2等于S0的1/2,那么可得到此次角度码盘运动位移角度为S0弧度夹角的1/2,再除以所用的时间,就得到此次角度码盘运动的角速度。 S0等于S1时,且S2等于S0的1/2时,1/4个运动周期就可以得到运动方向位和位移角度,如果S0不等于S1,S2不等于S0的1/2,那么要1个运动周期才可以得到运动方向位和位移角度了。

旋转编码器(光电编码)c程序

/*----------------------------------------------- 名称:外部中断0边沿触发 内容:通过中断接口P3.2连接的旋转编码器脉冲输出端,用数码管显示旋转圈数,INT0设置为下降沿触发。 ------------------------------------------------*/ #include //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义/*------------------------------------------------ 主程序 ------------------------------------------------*/ #define uint unsigned int #define uchar unsigned char uint a=0,b=0; uchar Duma[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//段码 uchar Wema[]={0,1,2,3,4,5,6,7};//位码 uchar Qushu[4]={0,0,0,0}; main() { uint x; uchar i; EA=1; //全局中断开 EX0=1; //外部中断0开 IT0=1; //边沿触发 P3=0xff; while(1) { for(i=0;i<4;i++) { P2=Wema[i]; P0=Duma[Qushu[i]]; //在此添加其他程序 for(x=0;x<1000;x++); } } } /*------------------------------------------------ 外部中断程序 ------------------------------------------------*/ void in0(void) interrupt 0 using 1 { a++; if(a>=500) {a=0; b++; if(b>9999) b=0; Qushu[0]=b/1000;

磁性编码器构成及原理

磁性编码器构成及原理 磁性编码器主要部分由磁阻传感器、磁鼓、信号处理电路组成。将磁鼓刻录成等间距的小磁极,磁极被磁化后,旋转时产生周期分布的空间漏磁场。磁传感器探头通过磁电阻效应将变化着的磁场信号转化为电阻阻值的变化,在外加电势的作用下,变化的电阻值转化成电压的变化,经过后续信号处理电路的处理,模拟的电压信号转化成计算机可以识别的数字信号,实现磁旋转编码器的编码功能。 磁鼓充磁的目的是使磁鼓上的一个个小磁极被磁化,这样在磁鼓随着电动机旋转时,磁鼓能产生周期变化的空间漏磁,作用于磁电阻之上,实现编码功能。磁鼓磁极的个数决定着编码器的分辨率,磁鼓磁极的均匀性和剩磁强弱是决定编码器结构和输出信号质量的重要参数。下图:磁鼓表面的磁极分布

磁阻传感器是磁阻敏感元件做成,磁阻器件可以分为半导体磁阻器件和强磁性磁阻器件。为了提高信号采样的灵敏度,同时考虑到差动结构对敏感元件温度特性的补偿效应,一般在充磁间距λ内,刻蚀2个位相差为丌/2的条纹,构成半桥串联网络。如下图: 同时,为了提高编码器的分辨率,可以在磁头上并列多个磁阻敏感元件,在加电压的情况下,磁阻元件通过磁鼓旋转输出相应正弦波。其原理可简单解释:磁鼓产生NS的磁场作圆周运动,磁阻元件做成的传感器随磁场变化电阻也随之变化,并感测出SinA,SinB 两个电压波形。磁阻传感器的构造如图,由8个磁阻分为两组相距1/4 NS间距。在Mr1,Mr2与Mr3,Mr4的接点处可检出Sin电压波形,同样原理在Mr1‘,Mr2‘与Mr3‘,Mr4‘的接点处可检出SinB电压波

形。 磁阻元件构成的磁阻传感器等效图 从磁阻传感器输出的两路波形 信号处理电路:SinA,SinB 信号到达信号处理电路后,为了能在cpu 取样的范围内,需对波形进行调整。首先AB相信号需先做DC电压准位调整,使AB相信号直流准位位于DSP A/D取样电压范围的中点,且振幅不超过取样电压范围,AB相信号再经过模拟滤波器及数字滤波器,将高频及谐波滤除后,通过DSP高速运算能力实时地将计算出位置和速度;另外还有一种处理方法是将SinA、SinB 信号直接通过信号处理电路转换成方波后再进DSP。后者可能软件处理起来更方便一些。

相关主题
文本预览
相关文档 最新文档