当前位置:文档之家› (完整版)曲柄连杆机构运动学仿真

(完整版)曲柄连杆机构运动学仿真

(完整版)曲柄连杆机构运动学仿真
(完整版)曲柄连杆机构运动学仿真

课程设计任务书

目录

1 绪论 (1)

1.1CATIA V5软件介绍 (1)

1.2ADAMS软件介绍 (1)

1.3S IM D ESIGNER软件介绍 (2)

1.4本次课程设计的主要内容及目的 (2)

2 曲柄连杆机构的建模 (3)

2.1活塞的建模 (3)

2.2活塞销的建模 (5)

2.3连杆的建模 (5)

2.4曲轴的建模 (6)

2.5汽缸体的建模 (8)

3 曲柄连杆机构的装配 (10)

3.1将各部件导入CATIA装配模块并利用约束命令确定位置关系 (10)

4 曲柄连杆机构导入ADAMS (14)

4.1曲柄连杆机构各个零部件之间运动副分析 (14)

4.2曲柄连杆机构各个零部件之间运动副建立 (14)

4.3曲柄连杆机构导入ADAMS (16)

5 曲柄连杆机构的运动学分析 (17)

结束语 (22)

参考文献 (23)

1 绪论

1.1 CATIA V5软件介绍

CATIA V5(Computer-graphics Aided Three-dimensional Interactive Application)是法国Dassault公司于1975年开发的一套完整的3D CAD/CAM/CAE一体化软件。它的内容涵盖了产品概念设计、工业设计、三维建模、分析计算、动态模拟与仿真、工程图的生成、生产加工成产品的全过程,其中还包括了大量的电缆和管道布线、各种模具设计与分析、人机交换等实用模块。CATIA V5不但能保证企业内部设计部门之间的协同设计功能而且还可以提供企业整个集成的设计流程和端对端的解决方案。CATIA V5大量应用于航空航天、汽车及摩托车行业、机械、电子、家电与3C产业、NC加工等领域。

由于其功能的强大而完美,CATIA V5已经成为三维CAD/CAM领域的一面旗帜和争相遵从的标准,特别是在航空航天、汽车及摩托车领域。法国的幻影2000系列战斗机就是使用CATIA V5进行设计的一个典范;波音777客机则使用CATIA V5实现了无图纸设计。另外,CATIA V5还用于制造米其林轮胎、伊莱克斯电冰箱和洗衣机、3M公司的粘合剂等。CATIA V5不仅给用户提供了详细的解决方案,而且具有先进的开发性、集成性及灵活性。

CATIA V5的主要功能有:三维几何图形设计、二维工程蓝图绘制、复杂空间曲面设计与验证、三维计算机辅助加工制造、加工轨迹模拟、机构设计及运动分析、标准零件管理。

1.2 ADAMS软件介绍

ADAMS即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件。目前,ADAMS己经被全世界各行各业的数百家主要制造商采用。根据1999年机械系统动态仿真分析软件国际市场份额的统计资料,ADAMS软件销售总额近八千万美元、占据了51%的份额。

ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、

碰撞检测、峰值载荷以及计算有限元的输入载荷等。

ADAMS一方面是虚拟样机分析的应用软件,用户可以运用该软件非常方便地对虚拟机械系统进行静力学、运动学和动力学分析。另一方面,又是虚拟样机分析开发工具,其开放性的程序结构和多种接口,可以成为特殊行业用户进行特殊类型虚拟样机分析的二次开发工具平台。ADAMS软件有两种操作系统的版本:UNIX版和Windows NT/2000版。

1.3 SimDesigner软件介绍

SimDesigner for CATIA V5 系列产品是构建于CAA V5的体系结构上,并与Dassault Systemes公司达成密切合作伙伴关系而开发。

Simdesigner使CATIA用户能够以集成和可扩展的方式获取MSC.Software公司仿真工具和技术,从而在整个产品生命周期中减少设计和物理试验的成本。

SimDesigner for CATIA V5产品家族由创成式(Generative)产品系列、接口类产品系列、垂直应用产品系列和针对特定学科的配置组成。

SimDesigner 创成式产品系列将MSC.Software仿真解决方案无缝集成到CAD环境中,侧重于对产品。

进行多学科综合的特性评估,例如结构线性、动力学、热、结构非线性等。 SimDesigner 接口类产品系列在CATIA环境与客户所拥有的独立的VPD产品之间提供了无缝的双向链接。SimDesigner垂直应用类产品可以在CATIA V5环境下进行产品评估及流程知识的捕获、存储和重新利用,这些知识涉及产品制造、测试和验证等各个方面。

SimDesigner当前提供了三个产品配置,为解决特定类型的相关问题提供了一组分析产品。

1.4 本次课程设计的主要内容及目的

本次课程设计主要内容:利用CATIA软件中的零件设计模块对曲柄连杆机构的所有零件进行建模,然后利用软件的装配模块把曲柄连杆机构的所有组成零件按照一定的位置关系进行装配,最后利用ADAMS软件对曲柄连杆机构进行运动学仿真和分析。

本次课程设计的主要目的:通过完成以上的内容,对CATIA软件零件设计模块、装配模块和ADAMS软件运动仿真及分析的应用有了更加深入的了解,对软件的操作更加熟练,最终达到熟练掌握这门软件的目的。

2 曲柄连杆机构的建模

2.1 活塞的建模

活塞直径76mm,高61mm,裙部厚度3mm,活塞顶部厚20mm,活塞销孔直径18mm,活塞销孔中心到活塞顶部距离28.5mm,绘制活塞三维图步骤如下:

(1) 打开CATIA---开始---机械设计---零件设计,进入绘制活塞的工作模块(如图2.1),点击平面图标并选XOY平面,将XOY平面平移400mm。

图2.1 零件设计模块

(2) 点击草图图标并选平移后的平面,进入草图绘制模块,点击画圆图标建圆,圆心坐标为(0,0),半径为38mm。

(3) 点击退出工作台图标退出草图,点击凸台图标进行拉伸,拉伸61mm。

(4) 选择下底面并点击草图图标进入草图,点击画圆图标建圆,圆心(0,0),半径35mm,点击直线图标做一条过圆心的直线,再点击平移图标,将直线向两侧各平移15mm。

(5) 点击断开图标,将圆与两条评议后的平行直线断开,点击快速修剪图标

将多余部分修剪掉(如图2.2)。

图2.2 绘制凹槽轮廓

(6) 点击退出工作台图标退出草图,点击凹槽图标打凹槽,深度51mm。

(7) 点击草图图标并选XOZ平面进入草图,点击画圆图标以(0,371.5)为圆心,半径9mm建圆。

(8) 点击退出工作台图标退出草图,点击凹槽图标,选中镜像范围,向两边各拉伸38mm(如图2.3)。

图2.3 打活塞销孔

2.2 活塞销的建模

活塞销直径18mm,长度73mm,绘制活塞销三维图步骤如下:

(1) 打开CATIA---开始---机械设计---零件设计,进入绘制活塞销的工作模块,点击平面图标并选XOZ平面,将XOZ平面平移-200mm。

(2) 点击草图图标并选平移后的平面进入草图绘制模块,点击画圆图标,以(0,0)为圆心,半径9mm建圆。

(3)点击退出工作台图标退出草图,点击凸台图标拉伸73mm成圆柱体(如图2.4)。

图2.4 拉伸活塞销

2.3 连杆的建模

连杆小头的内径18mm,外径27mm,厚28mm,连杆大头内径43mm,外径56mm,厚32mm,大头中心与小头中心距离150mm,杆身厚10mm,绘制连杆三维图步骤如下:

(1) 打开CATIA---开始---机械设计---零件设计,进入绘制连杆的工作模块。

(2) 点击草图图标并选XOZ平面进入草图绘制模块,点击画圆图标,以(0,0)为圆心,做两个同心圆,半径分别为9mm,13.5mm,点击退出工作台图标退出草图,点击凸台图标,选中镜像范围,向两边各拉伸14mm。

(3) 点击草图图标并选平移后的平面进入草图绘制模块,点击画圆图标,以(0,-150)为圆心,做两个同心圆,半径分别为21.5mm,28mm点击退出工作台图标退出草图,点击凸台图标,选中镜像范围,向两边各拉伸16mm。

(4) 点击草图图标并选XOY平面进入草图绘制模块,点击投影3D元素图标

将两同心圆柱体的轮廓线投影在XOY平面,点击双切线图标做直径为18mm和43mm圆的切线,然后点击断开图标将直径为27mm与56mm两圆和两条切线在交点处断开,点击快速修剪图标将多余部分修剪掉。

(5) 点击退出工作台图标退出草图,点击凸台图标,选中镜像范围,向两边各拉伸5mm(如图2.5)。

图2.5 镜像拉伸连杆体

2.4 曲轴的建模

曲轴直径41mm,长28mm,曲拐长128mm,宽66mm,厚20mm,两曲拐间的距离为34mm,飞轮直径80mm,厚4mm,绘制曲轴三维图如下:

(1) 打开CATIA---开始---机械设计---零件设计,进入绘制曲轴的工作模块,点击

平面图标并选XOZ平面,将XOZ平面平移200mm。

(2) 点击草图图标并选平移后的平面进入草图绘制模块,点击画圆图标,以(0,0)为圆心,半径为20.5mm建圆。

(3) 点击退出工作台图标退出草图,点击凸台图标拉伸28mm。

(4) 选择圆柱体的一个底面并点击草图图标进入草图,点击画圆图标,分别以(0,0)和(0,62)为圆心,33mm为半径建圆,点击双切线图标做两圆的外切线,点击断开图标将相切圆和相切直线在切点处断开,点击快速修剪图标将多余的线修剪掉(如图2.6)。

图 2.6 曲拐草图

(5) 点击退出工作台图标退出草图,点击凸台图标拉伸20mm,选曲拐的另一平面并点击草图图标进入草图,点击画圆图标,以(0,62)为圆心,半径为28mm 建圆。

(6) 点击退出工作台图标退出草图,点击凸台图标拉伸17mm,点击镜像图

标选中半径为28mm圆柱体的另一个面做全部实体的镜像(如图2.7)。

图2.7 镜像曲轴

2.5 汽缸体的建模

汽缸体长100mm,宽100mm,高362mm,曲轴中心到汽缸体上表面距离262mm,气缸深度125.5mm,绘制汽缸体的三维图如下:

(1) 打开CATIA---开始---机械设计---零件设计,进入绘制汽缸体的工作模块,点击平面图标并选XOY平面,将XOY平面平移1000mm。

(2) 点击草图图标并选平移后的平面进入草图绘制模块,点击居中矩形图标

,绘制以(0,0)为中心,边长为100mm的正方形。

(3) 点击退出工作台图标退出草图,点击凸台图标拉伸362mm,选择下底面并点击草图图标进入草图,点击画圆图标以(0,0)为圆心,半径38mm建圆,点击退出工作台图标退出草图,点击凹槽图标,凹槽深度342mm,点击草图图标并选XOZ平面进入草图绘制模块,点击画圆图标以(0,738)为圆心,半径20.5mm 建圆,点击退出工作台图标退出草图,点击凹槽图标选择镜像范围,凹槽深度向两侧各50mm,点击草图图标并选YOZ平面进入草图绘制模块,点击投影3D元

素图标将长方体的四个边投影在YOZ平面上,点击平移图标点击平移图标将上表面投影的直线向下平移145.5mm,将两侧面投影的直线分别向中间平移12mm,点击断开图标将平移后所得的直线在交点处断开,点击快速修剪图标将多余的线修剪掉,点击退出工作台图标退出草图,点击凹槽图标选择镜像范围,凹槽深度向两侧各50mm(如图2.8)。

图2.8 绘制汽缸体

3 曲柄连杆机构的装配

3.1 将各部件导入CATIA装配模块并利用约束命令确定位置关系

(1) 打开CATIA---开始---机械设计---装配设计,进入装配设计模块(如图3.1)。

图3.1 装配设计模块

(2) 点击现有部件图标再点击装配零件设计页面左边的,出现选择文件对话框(如图3.2)。

图3.2 文件选择对话框

(3) 依次点击活塞,连杆,活塞销,曲轴,汽缸体调出在CATIA零件设计中所有曲柄连杆机构的零部件(如图3.3)。

图3.3 CATIA零件设计中所有曲柄连杆机构的零部件

(4) 点击相合约束,再点击连杆小头轴线和活塞销轴线,将活塞销和连杆小头轴向定位(如图3.4)。

图3.4 活塞销和连杆小头轴向定位

(5) 点击操作图标,将活塞销插入到连杆小头衬套内(如图3.5)。

图3.5 活塞销插入到连杆小头衬套内

(6) 点击操作图标,将活塞移动到和活塞销,连杆小头差不多的轴线位置,点击相合约束,再点击活塞销孔轴线和活塞销轴线,将活塞销和活塞销孔轴向定位,点击操作图标,将活塞销和连杆小头插入活塞销孔内(如图3.6)。

图3.6 活塞移动到适当位置

(7) 点击接触约束图标,选择连杆大头和曲轴,选择曲面接触,点击操作图标

,将活塞,活塞销,连杆,曲轴装配起来(如图3.7)。

图3.7 活塞、活塞销、连杆、曲轴接触约束

(8) 点击相合约束,再点击活塞和汽缸体轴线,将活塞和汽缸体轴向定位,点击接触约束图标,选择曲轴和汽缸体上曲轴孔,选择曲面接触,点击操作图标,选沿Y轴拖动,将汽缸体,活塞,活塞销,连杆,曲轴飞轮组装配成整体(如图3.8)。

图3.8 汽缸体、活塞、活塞销、连杆、曲轴装配成整体

4 曲柄连杆机构导入ADAMS

4.1 曲柄连杆机构各个零部件之间运动副分析

点击桌面上SD图标,进入到仿真运动平台分析,开始---数字模型---SD Motion W0rkbench,点击文件---打开,导入装配零件(如图4.1)。

图4.1 仿真运动平台

任何一个机械要实现当初预设的运动,都需要在各个零部件之间建立各种运动副,分析部分汽缸体模型,机架应该选择在汽缸体上,因为它是各个零部件装配的基体组,各个零件都通过汽缸体的承载来实现相互之间的运动。曲轴和汽缸体之间应该采用旋转副,因为它们之间是轴承和孔之间的配合,所以曲轴和连杆大头之间也应该采用旋转副。活塞销采用全浮式支撑,这样活塞销不仅可以在连杆小头内运动,还可以在活塞销孔内运动,使活塞销磨损均匀。活塞和汽缸壁之间应该采用移动副,这样才可以使活塞在汽缸壁内运动。

4.2 曲柄连杆机构各个零部件之间运动副建立

(1) 点击Insert a revolute joint图标,在Definition中,First Component选择曲轴,Second Component选择汽缸体,然后点击曲轴的一端作为Location。再点击曲轴的

轴线,作为Axis Direction。在Motion中,Motion Type选择速度(Velocity),Constant Value 中输入转速3000转每分,点击确定(如图4.2)。

图4.2 建立曲轴和汽缸体之间的旋转副

(2) 依次点击曲轴和连杆大头,在曲轴和连杆大头结合处选择约束添加的位置,再选择旋转中心线。

(3) 依次点击连杆小头和活塞销,在连杆小头和活塞销结合处选择约束添加的位置,再选择旋转中心线。

(4) 依次点击活塞销和活塞,在活塞销和活塞结合处选择约束添加的位置,再选择旋转中心线。

(5) 点击Define a ground part图标,将汽缸体定义为机架,固定在大地上。

(6) 点击Insert a translational joint图标,在Definition中,First Component选择汽缸体,Second Component选择活塞,然后点击活塞的一端作为Location。再点击活塞的轴线,作为Axis Direction,点击确定。

(7) 点击Simulate the current motion model图标,运动仿真时间0.1s,仿真的步数100,点击Start,等计算结束后,关闭对话框(如图4.3)。

(8) 点击Play SOM results图标,点击开始按钮,开始运动仿真,仿真运动结束,检查无误后,保存文件。

图4.3 Simulate中设置仿真参数

(9) 点击Export the current motion model图标,菜单Motion Model Export中选择With Geometry,Results Export中选择All,点击确定。保存文件为*.cmd格式,并且保存在全英文目录文件夹下。

4.3 曲柄连杆机构导入ADAMS

(1) 点击桌面上ADAMS快捷方式图标,在开始出现菜单中的Start in目录选择到保存*.cmd文件目录文件夹下,点击OK。

(2) 选择File---import,在File To Read的右边框里右键,选择Browse,选择保存的*.cmd文件,点打开,再点OK(如图4.4),文件被成功导入。

图4.4 文件导入对话框

5 曲柄连杆机构的运动学分析

(1) 将*.cmd文件导入ADAMS(如图5.1)。

图5.1 ADAMS仿真界面

(2) 点击运行图标,运行运动仿真,设定运动结束时间0.1,步数50,模拟曲柄连杆机构运动过程(如图5.2)。

图5.2 仿真参数的设置

(3) 右键选择活塞,点击Measure命令,Characteristic中选择CM position,即活塞的中心点的位移,Component中选择Z轴,点击OK,出现活塞关于Z轴方向上的位移

曲线(如图5.3)。

图5.3 活塞关于Z轴上的位移曲线

(4) 同上步,Characteristic中选择CM velocity,即活塞的中心点的速度,点击OK,出现活塞关于Z轴上的速度曲线(如图5.4)。

图5.4 活塞关于Z轴上的速度曲线

(5) 同上步,Characteristic中选择CM acceleration,即活塞的中心点的加速度,点

曲柄连杆机构运动学仿真

课程设计任务书

目录 1 绪论 (1) 1.1CATIA V5软件介绍 (1) 1.2ADAMS软件介绍 (1) 1.3S IM D ESIGNER软件介绍 (2) 1.4本次课程设计的主要内容及目的 (2) 2 曲柄连杆机构的建模 (3) 2.1活塞的建模 (3) 2.2活塞销的建模 (5) 2.3连杆的建模 (5) 2.4曲轴的建模 (6) 2.5汽缸体的建模 (8) 3 曲柄连杆机构的装配 (10) 3.1将各部件导入CATIA装配模块并利用约束命令确定位置关系 (10) 4 曲柄连杆机构导入ADAMS (14) 4.1曲柄连杆机构各个零部件之间运动副分析 (14) 4.2曲柄连杆机构各个零部件之间运动副建立 (14) 4.3曲柄连杆机构导入ADAMS (16) 5 曲柄连杆机构的运动学分析 (17) 结束语 (21) 参考文献 (22)

1 绪论 1.1 CATIA V5软件介绍 CATIA V5(Computer-graphics Aided Three-dimensional Interactive Application)是法国Dassault公司于1975年开发的一套完整的3D CAD/CAM/CAE一体化软件。它的内容涵盖了产品概念设计、工业设计、三维建模、分析计算、动态模拟与仿真、工程图的生成、生产加工成产品的全过程,其中还包括了大量的电缆和管道布线、各种模具设计与分析、人机交换等实用模块。CATIA V5不但能保证企业内部设计部门之间的协同设计功能而且还可以提供企业整个集成的设计流程和端对端的解决方案。CATIA V5大量应用于航空航天、汽车及摩托车行业、机械、电子、家电与3C产业、NC加工等领域。 由于其功能的强大而完美,CATIA V5已经成为三维CAD/CAM领域的一面旗帜和争相遵从的标准,特别是在航空航天、汽车及摩托车领域。法国的幻影2000系列战斗机就是使用CATIA V5进行设计的一个典范;波音777客机则使用CATIA V5实现了无图纸设计。另外,CATIA V5还用于制造米其林轮胎、伊莱克斯电冰箱和洗衣机、3M公司的粘合剂等。CATIA V5不仅给用户提供了详细的解决方案,而且具有先进的开发性、集成性及灵活性。 CATIA V5的主要功能有:三维几何图形设计、二维工程蓝图绘制、复杂空间曲面设计与验证、三维计算机辅助加工制造、加工轨迹模拟、机构设计及运动分析、标准零件管理。 1.2 ADAMS软件介绍 ADAMS即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件。目前,ADAMS己经被全世界各行各业的数百家主要制造商采用。根据1999年机械系统动态仿真分析软件国际市场份额的统计资料,ADAMS软件销售总额近八千万美元、占据了51%的份额。 ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、

基于Workbench仿真的内燃机曲柄连杆机构动力学分析

基于Workbench的仿真内燃机曲柄连 杆机构动力学分析 (机械与动力工程学院南京 211816) 摘要:本文以S195 内燃机为例,对单缸内燃机的曲柄连杆机构简化模型 进行了有限元分析。根据力学分析结果和强度要求设计内燃机曲柄连杆机构结构,并应用UG软件建立该机构三维数字化虚拟装配模型,结合有限元理论及其分析软件ANSYS Workbench,模拟分析了曲柄连杆机构装配体动力学分析,结果表明,数字化模型结合装配体有限元分析,可解决曲柄连杆机构结构强度评价问题,有助于缩短汽油机开发周期和减少成本。 关键词:曲柄连杆,有限元分析,Workbench,动力学仿真。 Dynamic analysis of the crank connecting rod mechanism based on Workbench simulation (Nanjing Technology of University, mechanical and power engineering, Yin Zhenhua, Nanjing, 211816) Abstract Based on the S195 diesel engine as an example, the crank connecting rod mechanism of single cylinder diesel engine was analyzed in finite element analysis. According to the mechanical analysis results and strength requirements, the structure of the engine crank connecting rod mechanism is designed, and the 3D digital virtual assembly model of the mechanism is established. Combined with the finite element theory and the analysis software ANSYS Workbench. The results show that the numerical model combined with the finite element analysis can solve the problem of structural strength evaluation of the crank link mechanism, which helps to shorten the development cycle and reduce the cost. Key words: crank connecting rod, finite element analysis, Workbench, dynamic simulation.

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析 1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 2.1问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

2.2平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。 如E点轨迹不符合设计要求,则可适当调整各杆件的尺寸,再通过尺寸动画功能检验。

基于MatlabSimulink的槽轮机构间歇运动特性的分析与仿真

基于Matlab/Simulink的槽轮机构间歇运动特性的分析与仿真 摘要:将槽轮机构转换为倒置曲柄滑块机构,建立了槽轮机构的运动数学模型,利用Matlab计算了槽轮机构的运动参数并绘制了相应的动态曲线,该方法直观精确,提高了设计效率。 关键词:槽轮机构间歇运动Matlab/Simulink 运动特性 Geneva mechanism based on Matlab/Simulink intermittent motion characteristics analysis and simulation Abstract :Converse geneva mechanism for inverted slider-crank mechanism,the geneva machanism motion mathematical model is established,using Matlab to calculate the dynamic movement parameters of the geneva mechanism and draw the corresponding curve,the method is accurate,intuitive improves the design efficiency Key words:the geneva mechanism intermittent motion Matlab / Simulink movement characteristics 0引言: 槽轮机构能将主动件连续旋转运动转换成从动件有规律的运动和停歇,是实现周期性运动和停歇的典型机构。槽轮机构的结构简单,外形尺寸小,效率高,并能较平稳地、间歇地进行传位,在现代机械设备中得到了广泛的应用,但因传动时尚存在柔性冲击,故常用于速度不高的场合。本文将针对槽轮机构的间歇运动,使用Matlab软件中的仿真工具箱Simulink进行运动学仿真,通过仿真得到从槽轮的运动变化曲线,并对槽轮机构的运动特性进行分析。 1槽轮机构的物理模型转换 图1 外槽轮机构简图图2 曲柄滑块机构 1-槽轮;2-拨盘1-滑块;2-曲柄;3-摇杆 在如图1所示为外槽轮机构简图,图2所示为倒置的曲柄滑块机构。当销子和轮槽结合时图2中倒置曲柄滑块构造形式与图1中槽轮机构类似。其中图1中带销子的拨盘2可视为连杆2,而槽轮可视为连杆3,滑块1代表销子。 2槽轮机构的数学建模 整个系统的运动过程可分为两个状态,即销子和轮槽结合与分离的两个状态

平面连杆机构练习题

平面连杆机构1 一、单项选择题 1、具有急回特性的四杆机构,其行程速度变化系数K的值(C )。 A. 1 = > D. 1 ≤ B. 1 < C. 1 2、在曲柄摇杆机构中,当摇杆为从动件时,最小传动角出现在(B)共线的位置。 A. 曲柄与连杆 B. 曲柄与机架 C. 摇杆与机架 D. 摇杆与连杆 3、铰链四杆机构有整转副的条件是:最短杆与最长杆长度之和(C)其余两杆长度之和。 A. < B. = C. ≤ D. ≥ 4、四杆机构的急回特性是针对主动件作(A)而言的。 A. 等速转动 B. 等速移动 C. 变速转动 D. 变速移动 5、对心曲柄滑块机构以滑块为从动件时,其最小传动角γ min出现在曲柄(A)的位置。 A. 垂直于滑块导路 B. 垂直于连杆 C. 与连杆共线 D. 与机架共线 6、如果铰链四杆机构中的最短杆与最长杆长度之和(A)其余两杆长度之和,则该 机构中不存在整转副。 A. > B. ≥ C. < D. ≤ 7、四杆机构的急回特性是针对从动件作(D)而言的。 A. 等速转动 B. 等速移动 C. 变速转动 D.往复运动 8、对心曲柄滑块机构以滑块为从动件时,其最大传动角γ max为(C)。 A. ? 90 D. ? <90 45 C. ? 30 B. ? 9、对于双摇杆机构,最短构件与最长构件长度之和(B)大于其它两构件长度之和。 A. 一定 B. 不一定 C. 一定不 D. 在最短构件为机架 10、对于曲柄滑块机构,当曲柄作等速转动时,从动件滑块(B)具有急回特性。 A. 一定 B. 不一定 C. 一定不 D. 在极限位置 11、当连杆机构位置一定时,取不同构件为原动件,机构压力角的数值(B)。 A. 相同 B. 不同 C. 与原动件转向有关 D. 与原动件转速大小有关 12、铰链四杆机构中若最短杆与最长杆长度之和大于其他两杆长度之和,则机构中(C)。 A. 一定有曲柄存在 B. 是否有曲柄存在取决于机架是否为最短构件 C. 一定无曲柄存在 D. 是否有曲柄存在取决于机架是否为最长构件 二、填空题 1、平面连杆机构是若干构件用低副连接组成的平面机构。 α时,该机构处于死点位置。 2、当四杆机构的压力角? =90

槽轮机构运动学仿真

湖南农业大学工学院 课程设计说明书 课程名称:机械CAD/CAM课程设计 题目名称:槽轮机构运动学仿真 班级:20 11 级机制专业四班 姓名: 学号: 指导教师: 评定成绩: 教师评语: 指导老师签名: 20 年月日

目录 摘要 (1) 关键词 (1) 1 槽轮机构的结构组成和工作原理 (1) 2 零件三维实体模型建立的方法 (1) 2.1 主动转盘三维实体模型建立的方法 (1) 2.2 从动槽轮三维实体模型建立的方法 (3) 2.3 其他零件三维实体模型建立的方法 (4) 3 装配模型建立的方法和步骤 (6) 4 建立装配模型的运动仿真 (9) 5 装配模型的运动仿真分析 (13) 6 装配模型的运动仿真分析结论 (15) 7 装配模型图集 (16) 7.1 总成图 (16) 7.2 爆炸图 (16) 7.3 零件图 (17) 7.4 主动转盘工程图 (18) 8 总结 (19) 参考文献.......................................... (19)

槽轮机构运动学仿真 学生: (工学院,11-机制4班,学号) 摘要:槽轮机构是将主动拨盘的连续转动转化为从动槽轮的间歇转动,以达到间歇进给、转位和分度等工作要求。运用Pro/E软件对槽轮机构进行三维实体建模及装配,并运用模块进行运动仿真分析,得出机构的角速度、角加速度随时间变化的曲线。 关键词:槽轮机构;间歇运动;运动仿真 1、槽轮机构的结构组成和工作原理 槽轮机构由槽轮和圆柱销组成的单向间歇运动机构,又称马尔他机构。它常被用来将主动件的连续转动转换成从动件的带有停歇的单向周期性转动。槽轮机构有外啮合和内啮合以及球面槽轮等。外啮合槽轮机构的槽轮和转臂转向相反,而内啮合则相同,球面槽轮可在两相交轴之间进行间歇传动。槽轮机构典型结构由主动转盘、从动槽轮和机架组成。 2、零件三维实体模型建立的方法 2.1、主动转盘三维实体模型建立的方法 ②选择模板

SolidWorks的曲柄连杆机构动力学仿真研究

基于SolidWorks的曲柄连杆机构动力学仿真研究 发表时间:2012-2-28 作者: 陈敏*刘晓叙来源: 万方数据 关键字: 发动机运动学动力学仿真 本文用SolidWorks软件建立了一个简化的单缸发动机模型,用COSMOS Motion对该模型进行了发动机运动学和动力学仿真,对运动学仿真的结果进行了验证。 设计往复活塞式发动机时,要进行发动机的运动学和动力学计算,发动机的运动学是计算发动机活塞的位移、速度和加速度。动力学计算主要包括主要运动件的载荷,为零件的强度计算提供依据。在过去的设计中,发动机的运动学和动力学引算一般是采用计算机编程的方式进行。 SolidWorks是目前应用较为广泛的三维设计软件,COSMOS Motion是以ADAMS软件的技术为内核的机构运动学和动力学仿真软件,是SolidWorks的一个插件,与SolidWorks可以进行无缝对接。我们运用该软件,对一个简化的单缸发动机模型进行了运动学与动力学仿真,其结果对往复活塞式发动机的运动学和动力学设计计算有参考意义,现将研究情况介绍如下: 1 发动机模型的基本情况 为了研究的需要,建立了一个简化的单缸发动机模型,主要的结构参数为:缸径125mm,行程160mm,连杆大、小头孔中心距210mm,λ=0.381。发动机的活塞、活塞销、连杆和曲轴用SolidWorks进行三维实体造型设计,然后进行装配,发动机装配后效果及坐标系见图1。 图1 发动机模型 2 发动机的运动学仿真 由于是对一个特定的模型作定量的运动学和动力学仿真,所以,从简单起见,在仿真参数中,将曲轴的转速设为60r/min,即1r/s。在COSMOS Motion中运行仿真后,可以得到活塞运行的位移、速度和加速度,见图2、图3、图4。

槽轮机构的组成及其特点

槽轮机构的组成及其特点 newmaker (1) 槽轮的组成(Composition of Geneva Mechanism) 如右图所示,主动拨盘上的圆柱销进进槽轮上的径向槽以前,凸锁止弧将凹锁止弧锁住,则槽轮静止不动。圆柱销进进径向槽时,凸、凹锁止弧恰好分离,圆柱销可以驱动槽轮转动。当圆柱销脱离径向槽时,凸锁止弧又将凹锁止弧锁住,从而使槽轮静止不动。因此,当主动拨盘作连续转动时,槽轮被驱动作单向的间歇转动。 (2)槽轮的特点 构造简单,外形尺寸小; 机械效率高,并能较平稳地,间歇地进行转位; 但因传动时存在柔性冲击,故常用于速度不太高的场合。 槽轮机构的类型及应用 (1)槽轮机构的类型(Type of Geneva Mechanism) 外槽轮机构:运动时,拨盘与槽轮为异向回转。 内槽轮机构:运动时,拨盘与槽轮为同向回转。 两种机构均用于平行轴之间的间歇传动。 (2)槽轮机构的应用举例(Application Sample of Geneva Mechanism) 外槽轮机构被广泛应用于电影放映机中。

(3)球面槽轮机构(Sphere Geneva Mechanism) 当需要在两相交轴之间进行间歇传动时,可采用球面槽轮机构。右图为球面槽轮机构。 槽轮机构的运动系数及运动特性 (1)槽轮机构的运动系数k (Motion Factor of Geneva Mechanism) k=td/t 又因拨盘1一般为等速回转,因此时间的比值可以用拨盘转角的比值来表示。可得外槽轮机构运动系数的另一表达式: 由于运动系数k应大于零,所以由上式可知外槽轮径向槽的数目z应大于3。又由上式可知,

汽车曲柄连杆机构设计

摘要 本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。 首先,以运动学和动力学的理论知识为依据,对曲柄连杆机构的运动规律以及在运动中的受力等问题进行详尽的分析,并得到了精确的分析结果。其次分别对活塞组、连杆组以及曲轴进行详细的结构设计,并进行了结构强度和刚度的校核。再次,应用三维CAD软件:Pro/Engineer建立了曲柄连杆机构各零部件的几何模型,在此工作的基础上,利用Pro/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件、连杆组件和曲轴组件,然后利用Pro/E软件的机构分析模块(Pro/Mechanism),建立曲柄连杆机构的多刚体动力学模型,进行运动学分析和动力学分析模拟,研究了在不考虑外力作用并使曲轴保持匀速转动的情况下,活塞和连杆的运动规律以及曲柄连杆机构的运动包络。仿真结果的分析表明,仿真结果与发动机的实际工作状况基本一致,文章介绍的仿真方法为曲柄连杆机构的选型、优化设计提供了一种新思路。 关键词:发动机;曲柄连杆机构;受力分析;仿真建模;运动分析;Pro/E

ABSTRACT This article refers to by the Jeeta EA113 gasoline engine’s related parameter achievement, it has carried on the structural design compution for main parts of the crank link mechanism in the gasoline engine with four cylinders, and has carried on theoretical analysis and simulation analysis in computer in kinematics and dynamics for the crank link mechanism. First, motion laws and stress in movement about the crank link mechanism are analyzed in detail and the precise analysis results are obtained. Next separately to the piston group, the linkage as well as the crank carries on the detailed structural design, and has carried on the structural strength and the rigidity examination. Once more, applys three-dimensional CAD software Pro/Engineer establishing the geometry models of all kinds of parts in the crank link mechanism, then useing the Pro/E software assembling function assembles the components of crank link into the piston module, the connecting rod module and the crank module, then using Pro/E software mechanism analysis module (Pro/Mechanism), establishes the multi-rigid dynamics model of the crank link, and carries on the kinematics analysis and the dynamics analysis simulation, and it studies the piston and the connecting rod movement rule as well as crank link motion gear movement envelopment. The analysis of simulation results shows that those simulation results are meet to true working state of engine. It also shows that the simulation method introduced here can offer a new efficient and convenient way for the mechanism choosing and optimized design of crank-connecting rod mechanism in engine. Key words: Engine;Crankshaft-Connecting Rod Mechanism;Analysis of Force;Modeling of Simulation;Movement Analysis;Pro/E

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E 点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD 的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。

发动机曲柄连杆机构动力学运动规律仿真研究

发动机曲柄连杆机构动力学运动规律仿真研究 Dynamics simulation analysis of engine crank connecting rod mechanism 黄硕 东风商用车有限公司发动机厂 湖北省十堰市 442001 摘 要:本文从动力学角度研究了曲柄连杆机构的工作原理,,建立简易曲柄连杆机构的三维实体模型,利用机械系统动力学仿真分析软件HyperWorks,对dCi11发动机曲柄连杆机构进行仿真;并基于模态综合分析法研究柔性体的力学性能,对连杆进行了动态特性分析,得出连杆在自由模态情况下的模态振型;然后对该曲柄连杆机构进行运动学和动力学分析,得到连杆在一个工作循环过程中应力变化规律,从而确定了连杆的受力边界条件以及危险工况分析,为连杆优化设计和强度校核提供了依据,并为进一步分析和研究曲柄连杆机构特性提供了参考。 关键词:曲柄连杆机构 多体系统动力学 模态分析 结构优化 HyperWorks Abstract: This paper has studied the crank works from dynamics perspective. the mechanical system dynamics simulation software HyperWorks has simulated the crank of engine of car;And based on a comprehensive analysis of modal,Studied flexible body the mechanical properties and conducted a dynamic characteristics analysis to the connecting rod.Rod in the case of free modal shape has been came out.Then the crank has done kinematic and dynamic analysis, the connecting rod determined the linkage of the force boundary condition sin a work cycle variation of stress, and dangerous working conditions analysis, link optimization and strength check provides the basis for further analysis and study crank feature provides a reference. Keywords:Crank and Connecting Rod Mechanism, Multi-Body Dynamics, Model Analysis, Structural optimization, HyperWorks 1 课题研究意义 目前,随着工程技术的发展在研究曲柄连杆机构的运动学和动力学分析方法很多,而且已经较完善和成熟。其中机构运动学分析是研究两个或两个以上物体间的相对运动即位移、速度和加速度随时间变化的关系,动力学则是研究产生运动的力。通过对机构运动学和动力学分析,我们可以清楚了解曲柄连杆机构工作的运动性能、运动规律等,从而可以更好地对机构进行性能分析和产品设计。但是过去由于手段的原因,大部分复杂的机构运动尽管能够给出解析式,却难以计算出供工程使用的计算结果,不得不用粗糙的图解法求得数据。随着计算机的发展,通过计算机辅助设计、校核和计算的系统,可以更直观清晰地了解曲柄连杆机构在运行过程中的受力状态,便于进行精确计算,并绘制受力分析曲线图,对进一步研究内燃机的平衡与振动等均有较为实用的应用价值。

(完整版)平面连杆机构

机械基础一轮复习资料 (平面连杆机构) 【复习要求】 1.了解铰链四杆机构的三种基本类型、特点及应用; 2.掌握三种基本形式的判别条件; 3.了解四杆机构的演化形式及应用; 4.了解“死点”位置产生的原因、克服方法及应用; 5.了解急回运动特性及其应用。 【知识网络】 【知识精讲】 一、平面连杆机构 由一些刚性构件用转动副和移动副相互联接而组成的在同一平面或相互平行的平面内运动的机构。注当平面四杆机构中的运动副都是转动副时称为铰链器杆机构。 二、铰链四杆机构的类型、特点及应用(见表)

三、铰链四杆机构三种基本形式的组成条件(见表) 四、铰链四杆机构的演化和应用(见表) 注:四杆机构的演化形式都可以看作是改变四杆机构某些构件的形状、相对长度或选择不同构件作 为机架而获得的。 五、铰链四杆机构的特性 1.“死点”位置(以曲柄摇杆机构为例) (1)“死点”位置的产生:摇杆为主动件曲柄为从动件时,当摇杆处于两极限位置时,连杆与曲柄出现

两次共线,此时曲柄上所受的力通过曲柄转动的中心,转动力矩为零,从动件不动,机构停顿。 (2)机构在“死点”位置时,将出现从动件转向不确定或卡死不动。 (3)克服“死点”位置的措施:利用自重、加飞轮、增设辅助机构或机构错列。 (4)“死点”位置出现的利与弊:对传动机构来说,“死点”位置的出现是不利的,应设法予以避免,而工程中某些工作要求(如连杆式夹具的夹紧)就是利用“死点”位置来实现的。 2.急回运动特性 (1)定义:机构空回行程的平均速度大于工作行程平均速度的性质。 (2)意义:利用急回运动特性可缩短空回行程时间,提高生产效率。 (3)行程速比系数(K)和极位夹角(θ)行程速比系数是从动件空回行程平均速度与从动件工作行程平均速度的比值,其大小反应急回特性;极位夹角是主动曲柄与连杆两次共线位置时的夹角。 K=(180°+θ)/(180°-θ) 或θ=180°(K-1)/(K+1) 注 K>1或θ>0°时机构具有急回特性;摆角(ψ)是指摇杆两极限位置的夹角。 (4)具有急回运动特性的常见机构曲柄摇杆机构(曲柄主动件)、摆动导杆(曲柄主动件)、双曲柄机构( 平行双曲柄机构除外)、曲柄滑块机构(曲柄为主动件)等。 【边缘知识】 压力角、传动角及其对机构传力性能的影响: 1.压力角:从动件C点所受力F的方向与C点的绝对速度υc方向间所夹的锐角(α)(见图)。 传动角:压力角的余角(γ)(见图)。 2.压力角(或传动角)是判别机构传力性能的重要参数。 F可分解为两个力; F t=F cosα,推动从动件作有效功,称为“有效分力”; F n=Fsinα,引起摩擦阻力,产生有害的摩擦功,称为“有害分力”。

汽车曲柄连杆机构毕业设计说明书

本科毕业设计(论文)通过答辩 优秀论文设计,答辩无忧,值得下载!摘要 本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。 首先,以运动学和动力学的理论知识为依据,对曲柄连杆机构的运动规律以及在运动中的受力等问题进行详尽的分析,并得到了精确的分析结果。其次分别对活塞组、连杆组以及曲轴进行详细的结构设计,并进行了结构强度和刚度的校核。再次,应用三维CAD软件:Pro/Engineer建立了曲柄连杆机构各零部件的几何模型,在此工作的基础上,利用Pro/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件、连杆组件和曲轴组件,然后利用Pro/E软件的机构分析模块(Pro/Mechanism),建立曲柄连杆机构的多刚体动力学模型,进行运动学分析和动力学分析模拟,研究了在不考虑外力作用并使曲轴保持匀速转动的情况下,活塞和连杆的运动规律以及曲柄连杆机构的运动包络。仿真结果的分析表明,仿真结果与发动机的实际工作状况基本一致,文章介绍的仿真方法为曲柄连杆机构的选型、优化设计提供了一种新思路。 关键词:发动机;曲柄连杆机构;受力分析;仿真建模;运动分析;Pro/E

本科毕业设计(论文)通过答辩 优秀论文设计,答辩无忧,值得下载!ABSTRACT This article refers to by the Jeeta EA113 gasoline engine’s related parameter achievement, it has carried on the structural design compution for main parts of the crank link mechanism in the gasoline engine with four cylinders, and has carried on theoretical analysis and simulation analysis in computer in kinematics and dynamics for the crank link mechanism. First, motion laws and stress in movement about the crank link mechanism are analyzed in detail and the precise analysis results are obtained. Next separately to the piston group, the linkage as well as the crank carries on the detailed structural design, and has carried on the structural strength and the rigidity examination. Once more, applys three-dimensional CAD software Pro/Engineer establishing the geometry models of all kinds of parts in the crank link mechanism, then useing the Pro/E software assembling function assembles the components of crank link into the piston module, the connecting rod module and the crank module, then using Pro/E software mechanism analysis module (Pro/Mechanism), establishes the multi-rigid dynamics model of the crank link, and carries on the kinematics analysis and the dynamics analysis simulation, and it studies the piston and the connecting rod movement rule as well as crank link motion gear movement envelopment. The analysis of simulation results shows that those simulation results are meet to true working state of engine. It also shows that the simulation method introduced here can offer a new efficient and convenient way for the mechanism choosing and optimized design of crank-connecting rod mechanism in engine. Key words: Engine;Crankshaft-Connecting Rod Mechanism;Analysis of Force;Modeling of Simulation;Movement Analysis;Pro/E

平面连杆机构运动及动力分析

毕业设计报告(论文) 报告(论文)题目:平面连杆机构运动及动力分析作者所在系部:机械工程系 作者所在专业:机械设计制造及其自动化 作者所在班级: B07115 作者姓名: 作者学号: 指导教师姓名: 完成时间: 2011年6月 北华航天工业学院教务处

摘要 平面连杆机构是一种应用十分广泛的机构。平面连杆机构全部采用低副连接,因而结构简单易于制造,结实耐用,不易磨损,适于高速重载;运动低副具有良好的匣形结构,无需保养,适于极度污染或腐蚀而易出现问题的机器中;平面连杆机构能够实现多种多样复杂的运动规律,而且结构的复杂性不一定随所需完成的运动规律性的复杂程度而增加;平面连杆机构还具有一个独特的优点,就是可调性,即通过改变机构中各杆件长度,从而方便地改变了原机构的运动规律和性能。连杆机构由于结构上的特点在各种机械行业中被广泛的采用。通过对连杆机构的设计,可以实现不同的运动规律,满足预定的位置要求和满足预定的轨迹要求。 机构运动及动力分析的目的是分析各个构件的位移、、角加速度以及受力,分析构件上某点的位置、轨迹、速度和加速度等。这种方法能给出各运动参数与机构尺寸间的解析关系及写出机构某些点的轨迹方程式,能帮助我们合理地选择机构的尺寸,从而对某一机构作深入的系统研究。 平面连杆机构运动及动力分析,就是以连杆机构作为研究对象,对其各个运动件之间的关系公式进行推导,应用现代设计理论方法和有关专业知识进行系统深入地分析和研究,探索掌握其运动规律,讨论重要参数间的关系。 关键词:平面连杆机构运动性能仿真运动规律 Abstract Planar linkage mechanisms are used widely. Planar linkage mechanisms take the use of lower pair connection, so its structure is easy to manufacture, durable and resistant, especially suitable for high-speed and heavy-duty; lower pair sports has a good box-shaped structure, without maintenance, which is fit for machines working in extreme contamination or often coming with problems because of corrosion; planar linkage mechanism not only can achieve a variety of complex movement, but also the more complex movem ent doesn’t go with more complex structure; what gives linkage a unique advantage is that the motive rules and performance of the original mechanism will change with the length of the bar. As a result, linkage mechanisms are widely used in mechanical industries. By changing the design of linkage mechanisms, it can achieve different motive rules in order to move as the intended location and trajectory.

最新平面连杆机构基础习题及答案

平面连杆机构 一、复习思考题 1、什么是连杆机构?连杆机构有什么优缺点? 2、什么是曲柄?什么是摇杆?铰链四杆机构曲柄存在条件是什么? 3、铰链四杆机构有哪几种基本形式? 4、什么叫铰链四杆机构的传动角和压力角?压力角的大小对连杆机构的工作有何影响? 5、什么叫行程速比系数?如何判断机构有否急回运动? 6、平面连杆机构和铰链四杆机构有什么不同? 7、双曲柄机构是怎样形成的? 8、双摇杆机构是怎样形成的? 9、述说曲柄滑块机构的演化与由来。 10、导杆机构是怎样演化来的? 11、曲柄滑块机构中,滑块的移动距离根据什么计算? 12、写出曲柄摇杆机构中,摇杆急回特性系数的计算式? 13、曲柄摇杆机构中,摇杆为什么会产生急回运动? 14、已知急回特性系数,如何求得曲柄的极位夹角? 15、平面连杆机构中,哪些机构在什么情况下才能出现急回运动? 16、平面连杆机构中,哪些机构在什么情况下出现“死点”位置? 17、曲柄摇杆机构有什么运动特点? 18、试述克服平面连杆机构“死点”位置的方法。 19、在什么情况下曲柄滑块机构才会有急回运动? 20、曲柄滑块机构都有什么特点? 21、试述摆动导杆机构的运动特点? 22、试述转动导杆机构的运动特点。 23、曲柄滑块机构与导杆机构,在构成上有何异同? 二、填空题 1、平面连杆机构是由一些刚性构件用副和副相互联接而组成的机构。 2、平面连杆机构能实现一些较复杂的运动。

3、当平面四杆机构中的运动副都是副时,就称之为铰链四杆机构;它是其他多杆机构的。 4、在铰链四杆机构中,能绕机架上的铰链作整周的叫曲柄。 5、在铰链四杆机构中,能绕机架上的铰链作的叫摇杆。 6、平面四杆机构的两个连架杆,可以有一个是,另一个是,也可以两个都是或都是。 7、平面四杆机构有三种基本形式,即机构,机构和机构。 8、组成曲柄摇杆机构的条件是:最短杆与最长杆的长度之和或其他两杆的长度之和;最短杆的相邻构件为,则最短杆为。 9、在曲柄摇杆机构中,如果将杆作为机架,则与机架相连的两杆都可以作____ 运动,即得到双曲柄机构。 10、在机构中,如果将杆对面的杆作为机架时,则与此相连的两杆均为摇杆,即是双摇杆机构。 11、在机构中,最短杆与最长杆的长度之和其余两杆的长度之和时,则不论取哪个杆作为,都可以组成双摇杆机构。 12、曲柄滑块机构是由曲柄摇杆机构的长度趋向而演变来的。 13、导杆机构可看做是由改变曲柄滑块机构中的而演变来的。 14、将曲柄滑块机构的改作固定机架时,可以得到导杆机构。 15、曲柄摇杆机构产生“死点”位置的条件是:摇杆为件,曲柄为件或者是把运动转换成运动。 16、曲柄摇杆机构出现急回运动特性的条件是:摇杆为件,曲柄为件或者是把` 运动转换成。 17、曲柄摇杆机构的不等于00,则急回特性系数就,机构就具有急回特性。 18、实际中的各种形式的四杆机构,都可看成是由改变某些构件的,或选择不同构件作为等方法所得到的铰链四杆机构的演化形式。 19、若以曲柄滑块机构的曲柄为主动件时,可以把曲柄的运动转换成滑块的运动。 20、若以曲柄滑块机构的滑块为主动件时,在运动过程中有“死点”位置。 21、通常利用机构中构件运动时的惯性,或依靠增设在曲柄上的惯性来渡过“死点”位置。 22、连杆机构的“死点”位置,将使机构在传动中出现或发生运动方向等现象。 23、飞轮的作用是可以,使运转。 24、在实际生产中,常常利用急回运动这个特性,来缩短时间,从而提

相关主题
文本预览
相关文档 最新文档