当前位置:文档之家› 推导相机变换矩阵

推导相机变换矩阵

推导相机变换矩阵
推导相机变换矩阵

推导相机变换矩阵

-潘宏

-2009.12.31

-本人水平有限,疏忽错误在所难免,还请各位数学高手、编程高手不吝赐教

-email: popyy@https://www.doczj.com/doc/a87663479.html,

一些网友写信给我希望能够了解固定流水线中世界空间到相机空间变换矩阵的具体推导过程。其实之前我在《向量几何在游戏编程中的使用6》中已经简单的把相机变换作为一个使用基理论的例子进行了说明,但可能仍然不够具体。这篇文章中,我会尽力阐述相机变换的整个来龙去脉。希望能够对正在学习固定流水线的朋友们有所帮助。这里我们仍然会在推导相机变换之前介绍几个理论知识,目的是为了更好的理解推导过程。我们马上开始!

什么是相机变换?

在流水线中,当物体从模型坐标通过世界矩阵变换到世界空间之后,它将通过相机变换从世界空间变换到相机空间。下图的固定流水线中,蓝色框中的部分就是这个过程。

其实,所谓的相机空间,就是以相机作为坐标原点的一个参考系,所以,从世界空间变换到相机空间,就是把物体从世界坐标系,变换到相机为原点的相机坐标系,如下图所示。

左半部分是小人在世界空间中的位置,右半部分是小人变换到相机空间后的位置。这样的一个变换可以有很多种方式来实现:欧拉相机系统、UVN系统、Two Points & A Twist等等。这里我们讨论最为广泛的UVN系统构建相机矩阵,如果读者对其他方法感兴趣,可以查找相关的资料。我们仍然讨论OpenGL的相机矩阵的推导,其他API可以类似的推导。

坐标转换公式

我们在《向量几何在游戏编程中的使用6》中提到了正交矩阵,这是在基理论基础上的一个概念(如果对基理论不是很熟悉,请参考《向量几何在游戏编程中的使用6》)。正交矩阵所有列(行)向量构成了一个标准正交基(它的列向量都是互相正交,并且长度为1),因此,可以把正交矩阵看成是对一个坐标系的描述。同时,我们知道:同一个向量,在不同的基下面的坐标是不同的。因此,可以用正交矩阵来代表坐标系(也可以看作基)从而写出在统一的参考系(全局坐标系)下同一个向量在不同基中的坐标。

上面的式子表示,参考系中向量v在基Q中的坐标是v’,在基R中的坐标是v’’(注意这里的环境下基矩阵是用列向量表示的,这样相乘之后的结果表示的是基向量的线性组合)。如下图,黑色基表示的是参考系,红色是基Q,蓝色是基R,v是参考系中的一个向量。

为了让大家更清楚,我举一个例子:

上式的意思是:参考系中的向量v,在基Q( 1 0 0 ), ( 0 1 0 ), ( 0 0 1)下的坐标是( 1 2 6 ),在基R( 0 1 0 ), ( 0 0 1 ), ( 1 0 0 )下的坐标是( 2 6 1 )。注意,我们所讨论的所有基和向量的关系都只是线性表示的关系,没有位移关系,因此我们用3D向量表示,而不是4D的齐次表示(如果对齐次坐标不是很熟悉,请参考《深入探索透视投影变换》中的齐次坐标部分)。

这样,已知一个基Q和向量v在它之中的坐标v’,以及另外一个基R,我们可以通过v=Qv’=Rv’’公式来计算v’’。

上面就是求v’’的公式,注意到右边需要计算基R的逆矩阵R^-1,因为基R是正交矩阵,而正交矩阵的一个重要性质就是逆等于转置。因此,我们可以把它写成

这个公式就是坐标转换公式。特别地,如果Q是和参考系相同的坐标系(3D编程中大多数情况下如此),比如世界坐标系,则Q是一个单位矩阵I,则我们可以把它写成

这个坐标转换公式可以解释为:对于世界坐标系中的向量v’,它在坐标系R中的坐标是v’’。我们在后面会用到这个公式。

除了用正交矩阵来阐述坐标转换,我们还可以使用点积所代表的共线程度(colinear amount)来描述坐标转换(AndréLaMothe的《Tricks Of The 3D Game Programming Gurus》)。这个理论基于点积的几何意义:一个向量在另一个向量上的共线程度。比如两个向量v和s 点积

几何意义就是v在s方向上的投影长和s的长的乘积,或者是s在v方向上的投影长和v的长的乘积(积的符号为:若v和s的角度小于90度,积为正,如果是直角,积为零,否则为负)。

进一步地,如果v是一个单位向量,则这个点积可以解释为s在v方向上的投影长;如果s 是一个单位向量,则可以解释为v在s方向上的投影长。现在,我们把点积推广到基的层次上,把一个向量v’和一个基R的三个单位轴向量进行点积,点积得到的三个值则表示这个向量在这个基下的坐标v’’

数学表达为

请注意,为了让v’能够和基的每一个轴向量进行点积,我们必须把基写成转置形式,即行向量乘法,否则就变成了线性组合的形式。这个公式的意义就是世界空间中的向量v’和基R的轴向量进行点积从而得到v’在R下的共线程度——坐标v’’。这个公式和上面我们得到的坐标转换公式一模一样。实际上我们是从两个不同的方向解释同一个公式,希望你能够把两个方向都理解。

UVN系统

UVN系统本身是一个基。如下图所示,三个基向量U,V,N分别指向相机的右方、上方和后方从而构成右手坐标系,相机则处于坐标原点。

使用UVN系统可以非常方便的设置相机朝向。它的构建过程如下如所示

在参考系下(这里是世界坐标系),我们给定相机的位置——eye,被观察的小人的位置——lookat,以及一个辅助向量——参考系中表示“上方”的向量up,这个向量会影响U和V 的生成,因为以后求出的V向量会在up和N向量所决定的平面上(有兴趣可以自己证明一下),所以可以通过这个向量让相机产生不同的偏转。

首先我们求出向量N

很简单,用目标位置减去相机的位置,就是图中的步骤2。第3步,我们求出向量U。这一步需要使用辅助向量up,如果不希望相机产生偏转,一般取(0, 1, 0)

U使用向量的叉乘实现,就是图中的步骤3。最后,使用N和U计算出向量V

最后将计算出的U,V和N进行单位化,就得到了相机的UVN系统。结合上面我们谈到的坐标转换理论,我们可以把UVN系统看作是相机的基,从而可以方便的把一个向量在世界坐标和相机坐标进行转换。

OpenGL的gluLookAt(eyex, eyey, eyez, lookatx, lookaty, lookatz, upx, upy, upz)方法就是使用的上面的步骤进行相机矩阵的设置。它的前三个参数就是相机的位置向量,中间三个参数是所观察的目标位置向量,最后三个参数就是辅助向量up。

相机矩阵的推导

上面我们已经说明了UVN系统,标准流水线中就是使用了UVN系统来描述相机。U, V, N

分别对应相机坐标系的三个基向量。

此外,对于一个相机来说,它在开始的时候和世界坐标系是重合的,用户控制相机在世界空间中移动之后,相机的状态可以用两个属性来描述——朝向和位置。也就是说,有了这两个属性,一个相机模型在世界中的状态就确定了。而这两个属性,我们用变换的理论来描述,就是旋转和平移。可以想象,对于世界中的任何一个相机状态,我们都可以把它看成是:相机先围绕自身基原点旋转一定的角度,然后平移到世界空间的某个地方。下图展示了这个过程

图中,红色是相机的基,而黑色是世界的基,也就是参考系。小人是世界中的一个物体。相机在移动之前,两个基是重合的。当相机在屏幕中定位时,它首先会进行朝向的确定——旋转,然后进行位置的确定——平移。图中的Rotation和Translation两步就是相机定位时所发生的变换。可以看到相机相对于小人的运动。而当进行相机变换的时候,小人应该从世界基变换到相机的基里面。这样,他应该进行一个相机定位的逆定位,先逆平移小人和相机,然后再逆旋转小人和相机,最后相机归位,小人随相机变到了相机空间。这是由Inverse Translation和Inverse Rotation两个步骤完成的,这两个步骤就是相机变换。现在我们推导这个变换。我们把关系写出来,相机本身的变换C包括两个元素

其中T是平移变换,R是旋转变换。而相机变换是相机本身变换的逆变换

这个C^-1就是我们要求出的相机变换。其中T^-1很容易求出,即

而R^-1就没有这么容易求出来了。所以,我们不求它,我们用UVN系统。什么意思?请看上面的那张相机变换的图,当相机变换进行完Inverse Translation这一步之后,相机的原点和世界原点就重合了,也就是处理完了关于平移的变换。接下来我们要做的是逆旋转,而

其实逆旋转的目的,就是要得到目前世界坐标中经过逆平移的小人在相机坐标系中的坐标。是不是似曾相识?我们的坐标变换理论就派上用场了。我们回忆上面坐标变换的公式

这个坐标转换公式可以解释为:对于世界坐标系中的向量v’,它在坐标系R中的坐标是v’’。那么,我们可以套用在这里:对于世界坐标中的已经经过逆平移的坐标v’,它在相机坐标系R中的坐标是v’’。什么是相机坐标系R?就是我们的相机UVN系统!就是

则相机变换的完整公式就是

这里,v是小人在世界空间中的坐标,v’’是小人在相机空间中的坐标。则相机变换矩阵就是

至此,我们就完成了相机矩阵的推导。物体经过这个矩阵就从世界空间变换到了相机空间,等待流水线对它进行投影变换。OpenGL就使用了上面推导出的最后的那个矩阵。希望你能够理解这个推导过程,如果你有什么问题或者不同的看法,请一定给我发信J下次见

本文来自CSDN博客,转载请标明出处:https://www.doczj.com/doc/a87663479.html,/popy007/archive/2010/01/02/5120158.aspx

2020高考矩阵与变换知识点基础与提高(含答案)

2020高考矩阵与变换知识点基础与提高(含答案) 主要考查二阶矩阵的基本运算,选修内容考的题目大都不难,同学们注意基本概念。 1求逆矩阵,注意2*2矩阵的乘法。 2利用矩阵求坐标式的方程。 (10上海 4)行列式6πcos 3πsin 6πsin 3π cos 的值是____________. 考点:行列式的运算法则 解析:考查行列式运算法则6πcos 3 πsin 6π sin 3πcos 02πcos 6πsin 3πsin 6πcos 3πcos ==-= 答案:0. (10福建 21)选修4-2:矩阵与变换 已知矩阵M =???? ??11b a ,??? ? ??=d c N 02,且???? ??-=0202MN , (Ⅰ)求实数a ,b ,c ,d 的值;(Ⅱ)求直线x y 3=在矩阵M 所对应的线性变换下的像的方程. 考点:矩阵的基本运算和线形变换 解析:(1)?? ????-=??????++=????????????=020*******d b bc ad c d c b a MN , 对应系数有???????-==-==????????=+-==+=1 212022022a d b c d b bc ad c ; (2)取x y 3=上一点()y x ,,设经过变换后对应点为()','y x ,则??????--=??????1111''y x ?? ????--=??????x y y x y x ,从而''x y =,所以经过变换后的图像方程为x y -=. 注意:本题相对基础,要求同学们对矩阵的基本运算方法,尤其是乘法 (09江苏 21)选修4-2:矩阵与变换 求矩阵?? ????=1223A 的逆矩阵. 考点:逆矩阵的求法,考查运算求解能力

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)矩阵与变换第2课时 逆变换与逆矩阵、矩阵的特征值

《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-2 矩阵与变换第2课时 逆变换与逆矩阵、矩 阵的特征值 1. 设M =???? ??0110,N =? ??????? 10012,求MN . 解:MN =??????0110????????100 12=????? ???01210. 2. 已知矩阵M =?? ????a 273,若矩阵M 的逆矩阵M -1 =???? ??b -2-7a ,求a 、b 的值. 解:由题意,知MM -1 =E ,??????a 273??????b -2-7a =??????1001,即???? ?? ab -1407b -213a -14= ?? ?? ??10 01 , 即???? ?ab -14=1,7b -21=0,3a -14=1,解得a =5,b =3. 3. 求矩阵?? ?? ?? 12-12的特征多项式. 解:f(λ)=??????λ-1-21 λ-2=(λ-1)(λ-2)+2=λ2 -3λ+4.

4. (选修42P 73习题第1题改编)求矩阵M =[ 1 6 -2-6 ]的特征值. 解:矩阵M 的特征多项式为f(λ)=?? ?? ?? λ-1-6 2 λ+6=(λ+2)·(λ+3)=0, 令f(λ)=0,得M 的特征值为λ1=-2,λ2=-3. 5. (选修42P 73习题第1题改编)求矩阵N =???? ?? 3652的特征值及相应的特征向量. 解:矩阵N 的特征多项式为f(λ)=?? ?? ?? λ-3-6-5λ-2 =(λ-8)·(λ+3)=0, 令f(λ)=0,得N 的特征值为λ1=-3,λ2=8, 当λ1=-3时?????-6x -6y =0,-5x -5y =0,一个解为? ????x =-1,y =1, 故特征值λ1=-3的一个特征向量为?? ?? ?? -1 1; 当λ2=8时?????5x -6y =0,-5x +6y =0,一个解为? ????x =6, y =5, 故特征值λ2=8的一个特征向量为???? ?? 65. 1. 逆变换与逆矩阵 (1) 对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵. (2) 若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1 . (3) 利用行列式解二元一次方程组. 2. 特征值与特征向量 (1) 设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使A α=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量. (2) 从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量. [备课札记]

旋转矩阵公式法

旋转矩阵公式法!一,选11个号,中了5个号,100%能组合到4个号。假设你选了01、02、03、04、05、06、07、08、09、10、11,则可以组合成以下22注,需投入44元: (1)01、05、07、09、11 (2)01、05、06、08、10 (3)01、04、06、08、09 (4)01、04、05、07、10 (5)01、03、07、08、11 (6)01、03、04、09、10 (7)01、02、06、10、11 (8)01、02、04、08、11 (9)01、02、03、06、07 (10)01、02、03、05、09 (11)02、07、08、09、10 (12)02、05、06、07、08 (13)02、04、07、09、11 (14)02、04、05、06、09 (15)02、03、05、10、11 (16)02、03、04、08、10 (17)03、06、08、09、11 (18)03、06、07、09、10 (19)03、04、05、07、08 (20)03、04、05、06、11 (21)04、06、07、10、11 (22)05、08、09、10、11 二,选11个号,中了4个号,100%能组合到4个号。假设你选了01、02、03、04、05、06、07、08、09、10、11,则可以组合成以下66注,只要132元就能搞定: (1)01、07、08、09、10 (2)01、06、07、09、11 (3)01、05、08、09、11 (4)01、05、07、10、11 (5)01、05、06、08、10 (6)01、04、09、10、11 (7)01、04、06、08、11 (8)01、04、06、07、10 (9)01、04、05、07、08 (10)01、04、05、06、09 (11)01、03、08、10、11 (12)01、03、06、09、10 (13)01、03、06、07、08 (14)01、03、05、07、09 (15)01、03、05、06、11 (16)01、03、04、08、09 (17)01、03、04、07、11 (18)01、03、04、05、10

分块矩阵在行列式计算中的应用(1)

矩阵与行列式的关系 矩阵是一个有力的数学工具,有着广泛的应用,同时矩阵也是代数特别是线性代数的一个主要研究对象.矩阵的概念和性质都较易掌握,但是对于阶数较大的矩阵的运算则会是一个很繁琐的过程,甚至仅仅依靠矩阵的基本性质很难计算,为了更好的处理这个问题矩阵分块的思想应运而生[]1. 行列式在代数学中是一个非常重要、又应用广泛的概念.对行列式的研究重在计算,但由于行列式的计算灵活、技巧性强,尤其是计算高阶行列式往往较为困难.行列式的计算通常要根据行列式的具体特点采用相应的计算方法,有时甚至需要将几种方法交叉运用,而且一题多种解法的情况很多,好的方法能极大降低计算量,因此行列式计算方法往往灵活多变.在解决行列式的某些问题时,对于级数较高的行列式,常采用分块的方法,将行列式分成若干子块,往往可以使行列式的结构清晰,计算简化.本文在广泛阅读文献的基础上,从温习分块矩阵的定义和性质出发,给出了分块矩阵的一些重要结论并予以证明,在此基础上讨论利用分块矩阵计算行列式的方法,并与其他方法相互比较,以此说明分块矩阵在行列式计算中的优势. 1.1 矩阵的定义 有时候,我们将一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的一样[]1.特别在运算中,把这些小矩阵当做数一样来处理.这就是所谓的矩阵的分块.把原矩阵分别按照横竖需要分割成若干小块,每一小块称为矩阵的一个子块或子矩阵,则原矩阵是以这些子块为元素的分块矩阵.这是处理级数较高的矩阵时常用的方法. 定义1[]2 设A 是n m ?矩阵,将A 的行分割为r 段,每段分别包含r m m m 21行,将 A 的列分割为s 段,每段包含s m m m 21列,则 ?? ? ? ? ? ? ??=rs r r s s A A A A A A A A A A 21 2222111211 , 就称为分块矩阵,其中ij A 是j i m m ?矩阵(,,,2,1r i =s j ,,2,1 =). 注:分块矩阵的每一行(列)的小矩阵有相同的行(列)数. 例如,对矩阵A 分块, = ?? ? ? ? ? ? ? ?-=21010301012102102301A ??? ? ??22211211 A A A A , 其中

旋转变换(一)旋转矩阵

旋转变换(一)旋转矩阵 1. 简介 计算机图形学中的应用非常广泛的变换是一种称为仿射变换的特殊变换,在仿射变换中的基本变换包括平移、旋转、缩放、剪切这几种。本文以及接下来的几篇文章重点介绍一下关于旋转的变换,包括二维旋转变换、三维旋转变换以及它的一些表达方式(旋转矩阵、四元数、欧拉角等)。 2. 绕原点二维旋转 首先要明确旋转在二维中是绕着某一个点进行旋转,三维中是绕着某一个轴进行旋转。二维旋转中最简单的场景是绕着坐标原点进行的旋转,如下图所示: 如图所示点v 绕原点旋转θ角,得到点v’,假设v点的坐标是(x, y) ,那么可以推导得到v’点的坐标(x’, y’)(设原点到v的距离是r,原点到v点的向量与x轴的夹角是? ) x=rcos?y=rsin? x′=rcos(θ+?)y′=rsin(θ+?) 通过三角函数展开得到 x′=rcosθcos??rsinθsin? y′=rsinθcos?+rcosθsin? 带入x和y表达式得到 x′=xcosθ?ysinθ y′=xsinθ+ycosθ 写成矩阵的形式是: 尽管图示中仅仅表示的是旋转一个锐角θ的情形,但是我们推导中使用的是三角函数的基本定义来计算坐标的,因此当旋转的角度是任意角度(例如大于180度,导致v’点进入到第四象限)结论仍然是成立的。 3. 绕任意点的二维旋转 绕原点的旋转是二维旋转最基本的情况,当我们需要进行绕任意点旋转时,我们可以把这种情况转换到绕原点的旋转,思路如下: 1. 首先将旋转点移动到原点处 2. 执行如2所描述的绕原点的旋转 3. 再将旋转点移回到原来的位置

也就是说在处理绕任意点旋转的情况下需要执行两次平移的操作。假设平移的矩阵是T(x,y),也就是说我们需要得到的坐标v’=T(x,y)*R*T(-x,-y)(我们使用的是列坐标描述点的坐标,因此是左乘,首先执行T(-x,-y)) 在计算机图形学中,为了统一将平移、旋转、缩放等用矩阵表示,需要引入齐次坐标。(假设使用2x2的矩阵,是没有办法描述平移操作的,只有引入3x3矩阵形式,才能统一描述二维中的平移、旋转、缩放操作。同理必须使用4x4的矩阵才能统一描述三维的变换)。 对于二维平移,如下图所示,P点经过x和y方向的平移到P’点,可以得到: x′=x+tx y′=y+ty 由于引入了齐次坐标,在描述二维坐标的时候,使用(x,y,w)的方式(一般w=1),于是可以写成下面矩阵的形式 按矩阵乘法展开,正好得到上面的表达式。也就是说平移矩阵是 如果平移值是(-tx,-ty)那么很明显平移矩阵式 我们可以把2中描述的旋转矩阵也扩展到3x3的方式,变为:

高考数学压轴专题人教版备战高考《矩阵与变换》知识点总复习附解析

【最新】单元《矩阵与变换》专题解析 一、15 1.已知函数cos 2()sin 2m x f x n x = 的图象过点( 12 π 和点2( ,2)3 π -. (1)求函数()f x 的最大值与最小值; (2)将函数()y f x =的图象向左平移(0)??π<<个单位后,得到函数()y g x =的图象;已知点(0,5)P ,若函数()y g x =的图象上存在点Q ,使得||3PQ =,求函数 ()y g x =图象的对称中心. 【答案】(1)()f x 的最大值为2,最小值为2-;(2)(,0)()24 k k Z ππ +∈. 【解析】 【分析】 (1)由行列式运算求出()f x ,由函数图象过两点,求出,m n ,得函数解析式,化函数式为一个角的一个三角函数式,可求得最值; (2)由图象变换写出()g x 表达式,它的最大值是2,因此要满足条件,只有(0,2)Q 在 ()g x 图象上,由此可求得?,结合余弦函数的性质可求得对称中心. 【详解】 (1)易知()sin 2cos 2f x m x n x =- ,则由条件,得sin cos 66 44sin cos 233m n m n ππππ?-=????-=-?? , 解得 1.m n = =- 故()2cos22sin(2)6 f x x x x π =+=+ . 故函数()f x 的最大值为2,最小值为 2.- (2)由(1)可知: ()()2sin(22)6 g x f x x π ??=+=++ . 于是,当且仅当(0,2)Q 在()y g x =的图象上时满足条件. (0)2sin(2)26g π?∴=+=. 由0?π<<,得.6 π ?= 故()2sin(2)2cos 22 g x x x π =+ =. 由22 x k =+ π π,得().24 k x k Z ππ = +∈ 于是,函数()y g x =图象的对称中心为:(,0)()24 k k Z ππ +∈. 【点睛】 本题考查行列式计算,考查两角和的正弦公式,图象平移变换,考查三角函数的性质,如最值、对称性等等.本题主要是考查知识点较多,但不难,本题属于中档题.

矩阵知识点归纳

矩阵知识点归纳 (一)二阶矩阵与变换 1.线性变换与二阶矩阵 在平面直角坐标系xOy 中,由? ?? ?? x ′=ax +by , y ′=cx +dy ,(其中a ,b ,c ,d 是常数)构成的变换 称为线性变换.由四个数a ,b ,c ,d 排成的正方形数表?? ?? ?? a b c d 称为二阶矩阵,其中a ,b ,c ,d 称为矩阵的元素,矩阵通常用大写字母A ,B ,C ,…或(a ij )表示(其中i ,j 分别为元素a ij 所在的行和列). 2.矩阵的乘法 行矩阵[a 11a 12]与列矩阵??????b 11b 21的乘法规则为[a 11a 12]??????b 11b 21=[a 11b 11+a 12b 21],二阶矩阵???? ? ? a b c d 与列矩阵??????x y 的乘法规则为??????a b c d ??????x y =???? ?? ax +by cx +dy .矩阵乘法满足结合律, 不满足交换律和消去律. 3.几种常见的线性变换 (1)恒等变换矩阵M =???? ?? 1 00 1; (2)旋转变换R θ对应的矩阵是M =?? ?? ?? cos θ -sin θsin θ cos θ; (3)反射变换要看关于哪条直线对称.例如若关于x 轴对称,则变换对应矩阵为M 1=??????1 00 -1;若关于y 轴对称,则变换对应矩阵为M 2=???? ?? -1 0 0 1;若关于坐标原点对称,则变 换对应矩阵M 3=???? ?? -1 0 0 -1; (4)伸压变换对应的二阶矩阵M =???? ?? k 1 00 k 2,表示将每个点的横坐标变为原来的k 1倍,纵 坐标变为原来的k 2倍,k 1,k 2均为非零常数; (5)投影变换要看投影在什么直线上,例如关于x 轴的投影变换的矩阵为M =?????? 1 00 0; (6)切变变换要看沿什么方向平移,若沿x 轴平移|ky |个单位,则对应矩阵M =???? ?? 1 k 0 1, 若沿y 轴平移|kx |个单位,则对应矩阵M =???? ?? 1 0k 1.(其中k 为非零常数). 4.线性变换的基本性质 设向量α=??????x y ,规定实数λ与向量α的乘积λα=??????λx λy ;设向量α=??????x 1y 1,β=???? ?? x 2y 2,规定 向量α与β的和α+β=???? ?? x 1+x 2y 1+y 2. (1)设M 是一个二阶矩阵,α、β是平面上的任意两个向量,λ是一个任意实数,则①M (λα)=λM α,②M (α+β)=M α+M β. (2)二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点).

高考数学1几种特殊的矩阵变换专题1

高考数学1几种特殊的矩阵变换专题1 2020.03 1,圆22 1x y +=在矩阵10102?????? ? ?对应的变换作用下的结果为 . 2,当兔子和狐狸处于同一栖息地时,忽略其他因素,只考虑兔子数量和狐狸数量的相互影响,为了简便起见,不妨做如下假设: (1)由于自然繁殖,兔子数每年增长10%,狐狸数每年减少15%; (2)由于狐狸吃兔子,兔子数每年减少狐狸数的0.15倍,狐狸数每年增加兔子数的0.1倍; (3)第n 年时,兔子数量n R 用表示,狐狸数量用n F 表示; (4)初始时刻(即第0年),兔子数量有1000=R 只,狐狸数量有300=F 只。 请用所学知识解决如下问题: (1)列出兔子与狐狸的生态模型; (2)求出n R 、n F 关于n 的关系式; (3)讨论当n 越来越大时,兔子与狐狸的数量是否能达到一个稳定的平衡状态,说明你的理由。 3,在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一巨大汽油罐.已知只有5发子弹备用,且首次命中只能使汽油流出,再次命 中才能引爆成功,每次射击命中率都是3 2 .,每次命中与否互相独立. (1) 求油罐被引爆的概率. (2) 如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及ξ的数学期望 4,在空间四边形ABCD 中, AC 和BD 为对角线,G 为ABC ?的重心,E 是BD

上一点,3BE ED =,以{ },,AB AC AD u u u r u u u r u u u r 为基底,则GE =u u u r ___ 5,设M 是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的 伸压变换. 求逆矩阵1M -以及椭圆22 149x y +=在1M -的作用下的新曲线的 方程. 6,已知变换A :平面上的点P (2,-1)、Q (-1,2)分别变换成点P 1(3,-4)、 Q 1(0,5) (1)求变换矩阵A ; (2)判断变换A 是否可逆,如果可逆,求矩阵A 的逆矩阵A -1;如不可逆,说明理由. 7,两个人射击,甲射击一次中靶概率是21,乙射击一次中靶概率是31 , (Ⅰ)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少? (Ⅱ)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少? (Ⅲ)两人各射击5次,是否有99%的把握断定他们至少中靶一次? 8,如图,正方体ABCD -A 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱CD 上的动点. (Ⅰ)试确定点F 的位置,使得D 1E ⊥平面AB 1F ; (Ⅱ)当D 1E ⊥平面AB 1F 时,求二面角C 1―EF ―A 的余弦值以及BA 1与面C 1EF 所成的角的大小.

高考数学压轴专题最新备战高考《矩阵与变换》知识点总复习有解析

【高中数学】数学《矩阵与变换》高考知识点 一、15 1.已知矩阵2101M ?? =? ??? (1)求矩阵M 的特征值及特征向量; (2)若21α??=? ?-?? r ,求3M αv . 【答案】(1)特征值为2;对应的特征向量为210α?? =???? u u r (2)91????-?? 【解析】 【分析】 (1)先根据特征值得定义列出特征多项式,令()0f λ=解方程可得特征值,再由特征值列出 方程组即可解得相应的特征向量;(2)由12ααα=+u u r u u r r 可得333 12M M M ααα=+u u r u u r r ,求解即 可. 【详解】 (1)矩阵M 的特征多项式为2 1 ()0 1 f λλλ--= -(2)(1)λλ=--, 令()0f λ=,得矩阵M 的特征值为1或2, 当1λ=,时由二元一次方程0 000x y x y --=?? +=? . 得0x y +=,令1x =,则1y =-, 所以特征值1λ=对应的特征向量为111α?-? =? ??? ; 当2λ=时,由二元一次方程00 00 x y x y -=?? +=?. 得0y =,令1x =, 所以特征值2λ=对应的特征向量为210α?? =???? u u r ; (2)1221ααα??==+??-??u u r u u r r Q , 333 12M M M ααα∴=+u u r u u r r 331212αα=+u u r u u r 311210????=+????-????91??=??-?? . 【点睛】 本题考查矩阵特征值与特征向量的计算,矩阵的乘法运算,属于基础题.

三维旋转矩阵的计算

三维旋转矩阵的计算 旋转矩阵(Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。 在三维空间中,旋转变换是最基本的变换类型之一,有多种描述方式,如Euler 角、旋转矩阵、旋转轴/旋转角度、四元数等。本文将介绍各种描述方式以及它们之间的转换。 1. 旋转矩阵 用一个3阶正交矩阵来表示旋转变换,是一种最常用的表示方法。容易证明,3阶正交阵的自由度为3。注意,它的行列式必须等于1,当等于-1的时候相当于还做了一个镜像变换。 2. Euler角 根据Euler定理,在三维空间中,任意一种旋转变换都可以归结为若干个沿着坐标轴旋转的组合,组合的个数不超过三个并且两个相邻的旋转必须沿着不同的坐标轴。因此,可以用三个沿着坐标轴旋转的角度来表示一个变换,称为Euler角。旋转变换是不可交换的,根据旋转顺序的不同,有12种表示方式,分别为:XYZ、XZY、XYX、XZX、YXZ、YZX、YXY、YZY、ZXY、ZYX、ZXZ、ZYZ,可以自由选择其中的一种。对于同一个变换,旋转顺序不同,Euler角也不同,在指定Euler角时应当首先约定旋转顺序。 2.1 Euler角转化为旋转矩阵 不妨设先绕Z轴旋转γ,再绕Y轴旋转β,最后绕X轴旋转α,即旋转顺序为XYZ,旋转矩阵

3. 旋转轴/旋转角度 用旋转轴的方向向量n和旋转角度θ来表示一个旋转,其中 θ>0表示逆时针旋转。 3.1 旋转轴/旋转角度转化为旋转矩阵 设v是任意一个向量,定义

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生. 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处.因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,一般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法.比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A 、C 都是n 阶矩阵,其中0A ≠,并且AC CA =,则可求得A B AD BC C D =-;分块矩阵也可以在求解线性 方程组应用. 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利.

1 分块矩阵的定义及相关运算性质 1.1分块矩阵的定义 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理. 定义1设A 是一个m n ?矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 分成s 块,于是有rs 块的分块矩阵,即1111...............s r rs A A A A A ???? =?????? ,其中ij A 表示的是一个矩阵. 1.2分块矩阵的相关运算性质 1. 2.1加法 设() ij m n A a ?=() ij m n B b ?=,用同样的方法对,A B 进行分块 () ij r s A A ?=,() ij r s B B ?=, 其中ij A ,ij B 的级数相同, 则 ()ij ij r s A B A B ?+=+. 1.2.2数乘 设是任() () ,ij ij m n r s A a A k ??==为任意数,定义分块矩阵() ij r s A A ?=与k 的数乘为 () ij r s kA kA ?= 1.2.3乘法 设() () ,ij ij s n n m A a B b ??==分块为()(),ij ij r l l r A A B B ??==,其中ij A 是i j s n ?矩阵,ij B 是 i j n m ?矩阵,定义分块矩阵() ij r l A A ?=和()ij l r B B ?=的乘积为 () 1122...,1,2,...;1,2,3,...,ij i j i j il lj C A B A B A B i t j l =+++==.、 1.2.4转置 设() ij s n A a ?=分块为() ij r s A A ?=,定义分块矩阵() ij r s A A ?=的转置为 () ji s r A A ?''= 1.2.5分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换:

《1.2.3 几类特殊的矩阵变换》教案新部编本1

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

《1.2.3 几类特殊的矩阵变换》教案1 教学目标 1. 理解可以用矩阵来表示平面中常见的几何变换,掌握恒等、伸压、反射、旋转、投影、 切变变换的矩阵表示及其几何意义 2.理解二阶矩阵对应的几何变换是线性变换,了解单位矩阵 3.了解恒等、伸压、反射、旋转、投影、切变变换这六个变换之间的关系 教学重难点 了解并掌握几种特殊的矩阵变换,可以简单的运用。 教学过程 1.理解可以用矩阵来表示平面中常见的几何变换,掌握恒等、伸压、反射、旋转、投影、切变变换的矩阵表示及其几何意义 (1)一般地,对于平面向量变换T ,如果变换规则为T :?? ? ???y x →??????''y x =??????++dy cx by ax ,那么根据二阶矩阵与平面列向量在乘法规则可以改写为T :??? ???y x →??????''y x =??? ? ??d c b a ?? ????y x 的矩阵形式,反之亦然(a 、b 、c 、d ∈R) 由矩阵M确定的变换,通常记为T M ,根据变换的定义,它是平面内点集到自身的一个映射,平面内的一个图形它在T M ,的作用下得到一个新的图形. 在本节中研究的变换包括恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换等六个变换. (2)由矩阵M=?? ? ???1001确定的变换T M 称为恒等变换,这时称矩阵M 为恒等变换矩 阵或单位矩阵,二阶单位矩阵一般记为E.平面是任何一点(向量)或图形,在恒等变换之下都把自己变为自己. (3)由矩阵M=??????100k 或M=?? ? ???k 001)0k (>确定的变换T M 称为(垂直)伸压变 换,这时称矩阵M=???? ??100k 或M=?? ????k 001伸压变换矩阵.

旋转矩阵

三维旋转矩阵 三维旋转特性 给定单位向量u和旋转角度φ,则R(φ,u)表示绕单位向量u旋转φ角度。 R(0,u)表示旋转零度。 R(φ,u)= R(?φ,?u)。 R(π+φ,u)= R(π?φ,?u)。 如果φ=0,则u为任意值。 如果0<φ<π,则u唯一确定。 如果φ= π,则符号不是很重要。因为- π和π是一致的,结果相同,动作不同。 由旋转矩阵求旋转角和旋转轴 每一个三维旋转都能有旋转轴和旋转角唯一确定,好多方法都可以从旋转矩阵求出旋转轴和旋转角,下面简单介绍用特征值和特征向量确定旋转轴和旋转角的方法。 将旋转矩阵作用在旋转轴上,则旋转轴还是原来的旋转轴,公式表示如下: Ru=u 转化得: Ru=Iu =>(R?I)u=0 可以确定的是u在R-I的零空间中,角度可有下面的公式求得,Tr表示矩阵的迹: Tr(R)=1+2cosθ 从旋转轴和旋转角求旋转矩阵 假设给定单位向量u=(u x,u y, u z) T ,并且u为单位向量即: u x2+u y2+u z2=1,给定绕u旋转的角度θ,可以得出旋转矩阵R: R=[cosθ+u x2(1?cosθ)u x u y(1?cosθ)?u z sinθu x u z(1?cosθ)+u y sinθ u y u x(1?cosθ)+u z sinθcosθ+u y2(1?cosθ)u y u z(1?cosθ)?u x sinθ u z u x(1?cosθ)?u y sinθu z u y(1?cosθ)+u x sinθcosθ+u z2(1?cosθ) ] 上面的公式等价于: R=cosθI+sinθ[u]×+(1?cosθ)u?u 其中[u]×是单位向量u的叉乘矩阵,?表示张量积,I是单位向量. 这是罗德里格斯旋转方程的矩阵表示。下面给出叉乘和张量积的公式:

几类特殊线性变换及其二阶矩阵优秀教学设计

几类特殊线性变换及其二阶矩阵 【教学目标】 1.了解二阶矩阵的概念,线性变换与二阶矩阵之间的关系。 2.熟练运用旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示解决具体问题。 3.亲历几类特殊线性变换的探索过程,体验分析归纳得出其二阶矩阵,进一步发展学生的探究、交流能力。 【教学重难点】 重点:掌握几类特殊线性变换及其二阶矩阵。 难点:旋转变换、反射变换、伸缩变换、投影变换、切变变换的实际应用。 【教学过程】 一、直接引入 师:今天这节课我们主要学习几类特殊线性变换及其二阶矩阵,这节课的主要内容有旋转变换、反射变换、伸缩变换、投影变换、切变变换,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。 二、讲授新课 (1)教师引导学生在预习的基础上了解线性变换与二阶矩阵内容,形成初步感知。 (2)首先,我们先来学习线性变换及其相关概念,它的具体内容是: 在平面直角坐标系xoy 内,很多几何变换都具有下列形式:x ax by y cx dy '=+??'=+? ③; 其中系数a ,b ,c ,d 均为常数,我们把形如③的几何变换叫做线性变换。 ③式叫做这个线性变换的坐标变换公式。 (,)P x y '''是(,)P x y 在这个线性变换作用下的像。 像这样,由4个数a ,b ,c ,d 排成的正方形表a b c d ?? ???称为二阶矩阵。数a ,b ,c ,d 称为矩阵的元素 元素全为0的二阶矩阵0000?? ???称为零矩阵,简记为0。

矩阵1001?? ??? 称为二阶单位矩阵,记为E 它是如何在题目中应用的呢?我们通过一道例题来具体说明。 例:在直角坐标系xoy 内,将每个点绕原点O 按逆时针方向旋转30°的变换称为旋转角是30°的旋转变换。求点(1,0)A 在这个旋转变换作用下的像A '。 解析:教师板书。 (3)接着,我们再来看下旋转变换的概念,它的具体内容是: 在直角坐标系xOy 内的每个点绕原点O 按逆时针方向旋转α角的旋转变换(通常记为n R )的坐标变换公式:cos sin sin cos x x y y x y αααα'=-??'=+?,对应的二阶矩阵为:cos sin sin cos αααα-?? ??? 。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:例:在直角坐标系xoy 内,将每个点绕原点O 按逆时针方向旋转30°的变换称为旋转角是30°的旋转变换,写出这个旋转变化的表达式。 解析:教师板书。 (4)接着,我们再来看下反射变换内容,它的具体内容是: 一般地,我们把平面上的任意一点P 变成它关于直线l 的对称点P '的线性变换叫做关于l 的反射。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:在直角坐标系xoy 内,直线l 过原点,倾斜角为α。求关于直线l 的反射变换的坐标变换公式。 学生板书,教师纠正解答。 (5)接着,我们再来看下伸缩变换内容,它的具体内容是: 在直角坐标系xOy 内,将每个点的横坐标变为原来1k 倍,纵坐标变为原来的2k 倍,其中1k ,2k 均为非零常数,我们称这样的几何变换为伸缩变换。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:直角坐标系xOy 内,将每一点的纵坐标变为原来的2倍,横坐标保持不变。 (1)试确定该伸缩变换的坐标变换公式及其对应的二阶矩阵。 (2)求点A (1,1)-在该伸缩变换作用下的像A ' 教师请同学上讲台解答,并纠正总结。

知识点总结 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质

设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=:存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=:存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使 (2)对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵; 即~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)~P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 (4)方阵A 可逆的充分必要条件是存在有限个初等方阵1212,,,,l l P P P A PP P =L L 使。 (5)~r A A E 可逆的充分必要条件是。(课本P ? ) 初等变换的应用 (1)求逆矩阵:()1(|)|A E E A -????→初等行变换或1A E E A -????????→ ? ????? 初等列变换。 (2)求A -1B :A (,) ~ (,),r A B E P 即() 1(|)|A B E A B -??→行,则P =A -1B 。或1E A B BA -????????→ ? ????? 初等列变换. 第二节 矩阵的秩

旋转矩阵

性质 设是任何维的一般旋转矩阵: ?两个向量的点积(内积)在它们都被一个旋转矩阵操作之后保持不变: ?从而得出旋转矩阵的逆矩阵是它的转置矩阵: 这里的是单位矩阵。 ?一个矩阵是旋转矩阵,当且仅当它是正交矩阵并且它的行列式是单位一。正交矩阵的行列式是±1;如果行列式是?1,则它包含了一个反射而不是真旋转矩阵。 ?旋转矩阵是正交矩阵,如果它的列向量形成的一个正交基,就是说在任何两个列向量之间的标量积是零(正交性)而每个列向量的大小是单位一(单位向量)。 ?任何旋转向量可以表示为斜对称矩阵A的指数: 这里的指数是以泰勒级数定义的而是以矩阵乘法定义的。A矩阵叫做旋转的“生成元”。 旋转矩阵的李代数是它的生成元的代数,它就是斜对称矩阵的代数。生成元可以通过 M 的矩阵对数来找到。 二维空间 在二维空间中,旋转可以用一个单一的角定义。作为约定,正角表示逆时针旋转。把笛卡尔坐 标的列向量关于原点逆时针旋转的矩阵是: 三维空间 在三维空间中,旋转矩阵有一个等于单位1的实特征值。旋转矩阵指定关于对应的特征向量的旋转(欧拉旋转定理)。如果旋转角是θ,则旋转矩阵的另外两个(复数)特征值是 exp(iθ) 和 exp(-i θ)。从而得出 3 维旋转的迹数等于 1 + 2 cos(θ),这可用来快速的计算任何 3 维旋转的旋转角。

3 维旋转矩阵的生成元是三维斜对称矩阵。因为只需要三个实数来指定 3 维斜对称矩阵,得出只用三个是实数就可以指定一个 3 维旋转矩阵。 [编辑] Roll, Pitch 和 Yaw 主条目:Tait-Bryan角 生成旋转矩阵的一种简单方式是把它作为三个基本旋转的序列复合。关于右手笛卡尔坐标系的x-, y- 和z-轴的旋转分别叫做roll和pitch,yaw旋转。因为这些旋转被表达为关于一个轴的旋转,它们的生成元很容易表达。 ?绕x-轴的主动旋转定义为: 这里的是 roll 角。 ?绕y-轴的主动旋转定义为: 这里的是 pitch 角。 ?绕z-轴的主动旋转定义为: 这里的是 yaw 角。 在飞行动力学中,roll, pitch 和 yaw 角通常分别采用符号, , 和;但是为了避免混淆于 欧拉角这里使用符号, 和。 任何 3 维旋转矩阵都可以用这三个角, , 和来刻画,并且可以表示为roll, pitch 和 yaw 矩阵的乘积。

分块矩阵的初等变换及应用_百度文库.

十.研究创新题 解: 1.分块矩阵的初等变换 分块矩阵的初等变换与初等矩阵 吴云在1997年8月的《工科数学》上的《分块矩阵的初等变换》一文中提到定义1分块矩阵的行(列初等变换是指: (1)交换两行(列的位置; (2)第i行(列的各个元素分别左乘(右乘该行(列的一个阶左(右保秩因子H; (3)第i行(列的各个元素分别左乘(右乘一个阶矩阵K后加到第j行. 定义2 对应于分块矩阵的初等分块矩阵是指: (1)= 或=

(2)=或= 其中H为第i行(列的一个左(右保秩因子; (1 = (2 或= 初等分块矩阵与通常的初等矩阵类似,但由于矩阵乘法不满足交换律,故需要分为左、右两种.直接验算可得: 定理1(1交换的第i行与第j行,相当于左乘一个m阶初等分块矩阵,其中中的元素为h(i阶单位矩阵,为h(j阶单位矩阵, 当r≠i且r≠j时,为h(r阶单位矩阵;交换的第i列与第j列相当于右乘一个n阶初等分块矩阵,其中为l(i阶单位矩阵,为l(j阶单位矩阵,当r≠i且r≠j时,为l(r阶单位矩阵;

(2 的第i行的每一个元素左乘一个矩阵H相当于左乘一个m阶分块矩阵 中H为h(i阶方阵; 的第i列的每一个元素右乘一个矩阵H,相当于 右乘一个n阶初等到变换矩阵,其中H为l(i阶方阵; (3 的第j行的每个元素分别左乘一个h(i×h(j矩阵K后加到第i行,相当 于左乘一个初等分块矩阵;第j列的每一个元素分别右乘l(j×l(i矩阵K后加到第i列,相当于右乘. 定理2设A为方阵,则分块矩阵施行第一种行初等变换后,对应的行列式为 , 其中 h(i,j=h(ih(j-l+h(i+l]+…+h(j[h(i+h(i+j+…+h(j-l], l(i,j=l(ih(j-l+l(i+l]+…+l(j[l(i+l(i+j+…+l(j-l], 施行第二种初等变换后,对应的行列式为|H|·|A|;施行第三种初等变换后,对应的行列式的值不变. 证明: ,显然成立. 下证,所在的第1行逐次与它相邻的行交换,移至前,共进行h(i-1+h(i+1+…+h(j-1次交换两行,第2行逐次与它相邻的行交换,移至前,同样进行相同次交换两行,依此类推,把所在的行移至所在的行前,共进行 h(i[h(i-1+h(i+1+…+h(j-1]次交换两行,然后把移至适当的位置,同理共进行h(j[h(i+h(i+1+…+h(j-1]次交换两行,所以交换两行的总次数为h(i,j,故 ;同理. 所以有==(-1或==(-1) ==或= ==== 定理3 分块矩阵进行初等变换后,秩不变.

高中数学选修4-2矩阵与变换知识点复习课课件_苏教版

2.1.1 矩阵的概念 1.矩阵的概念,零矩阵,行矩阵,列矩阵; 2.矩阵的表示; 3.相等的矩阵; 2.1.2 二阶矩阵与平面列向量的乘法1.二阶矩阵与平面向量的乘法规则; 2.理解矩阵对应着向量集合到向量集合的映射; 3.待定系数法是由原象和象确定矩阵的常用方法. 2.1 2.1 二阶矩阵与平面向量 二阶矩阵与平面向量

1,3形如??????8090,6085??????23324m ???????的矩形数字(或字母)阵列称为矩阵.通常用大写黑体的拉丁字母A 、B 、C …表示,或者用(a ij )表示,其中i,j i,j 分别表示元素a ij ij 所在的行与列. 同一横排中按原来次序排列的一行数(或字母)叫做矩阵的行,同一竖排中按原来次序排列的一行数(或字母)叫做矩阵的列. 组成矩阵的每一个数(或字母)称为矩阵的元素。

13?????? 80906085??????23324m ???????21矩阵×22×矩阵23矩阵×0所有元素均为的矩阵叫做0矩阵. ,. 对于两个矩阵、的行数与列数分别相等,且对应位置上的元素也分别相和时,记等才相等作A B B A A B =

[][][]111112211111121111122121,规定: 行矩阵与列矩阵的乘法法则为 =b a a b b a a a b a b b ?????? ??×+×???? 01112212200110120111221220210220.x a a b b y x a x a y a a b b y b x b y ???????????? ×+×????????????×+×?????? 二阶矩阵与列向量的乘法规则为=

相关主题
文本预览
相关文档 最新文档