当前位置:文档之家› 第十一章 苯和芳香烃 芳香亲电取代反应

第十一章 苯和芳香烃 芳香亲电取代反应

芳香类化合物是指从植物胶里取得的具有芳香气味的物质。现在人们把具有下列特殊稳定的不饱和环状化合物称为方向化合物: (1)从结构上看①芳香化合物一般都具有平面或接近平面的环状结构②键长趋于平均化③具有较高的C/H 比

(2)从性质上看①芳香化合物的芳环一般都难以氧化、加成②而易于发生亲电取代反应③具有特殊的光学性质,如芳环环外氢的化学位移处于NMR 低场,而环内氢处于高场等。 上述这些特点被称为芳香性。

1. 芳香烃的结构

1.1苯的结构和表达 1.1.1苯的结构

第十一章 苯和芳香烃 芳香亲电取代反应

120o

108pm

140pm

1.1.2苯的芳香性

环己烯的氢化热ΔH=-120kJ/mol,1,3-环己二烯的氢化热ΔH=-232kJ/mol(由于其共轭双键增加了其稳定性)。而苯的氢化热ΔH=-208kJ/mol。1,3-环己二烯失去两个氢变成苯时,不但不吸热,反而放出少量的热量。这说明:苯比相应的环己三烯类要稳定得多,从1,3-环己二烯变成苯时,分子结构已发生了根本的变化,并导致了一个稳定体系的形成。

苯难于氧化和加成,而易于发生亲电取代反应,与普通烯烃的性质有明显的区别。

1.2.3苯的表达

自1825年英国物理学家和化学家Farady M(法拉第)首先从照明气中分离出苯后,人们一直在探索苯结构的表达式。科学家们提出了各种有关苯结构式的假设;其中比较有代表性的苯的结构式有:

凯库勒式双环结构式棱形结构式向心结构式对位键结构式余键结构式

(凯库勒(杜瓦(拉敦保格(阿姆斯特朗、拜耳(克劳斯(悌勒

1865年提出)1866-1867年提出)1869年提出)1887-1888年提出)1888年提出)1899年提出)用内部带有一个圆圈的正六边形表示苯,圆圈强调了π电子的离域作用和电子云的均匀分布,它很好地说明了

碳碳键键长的均等性和苯环的完全对称性,但是这种方式用来表示其他方向体系时就不合适了,例如表示萘时很容

易造成误解,因为萘不是完全对称的分子,萘分子的碳碳键长也不是完全均等的。另外,圆圈没有说明π电子的数

目,萘分子的10个π电子用两个圆圈表示易误解成每个环有6个π电子而造成混淆。

1.1.4共振论对苯的结构和芳香性的描述

杂化苯的正六边形结构及π电子云的均匀分布是环电流产生的原因。加成反应会破坏极限结构的共振,使稳定的苯环变成不稳定的1,3-环己二烯,因此反应难以进行。而取代反应不会破坏极限结构的共振,反应易于进行。

1.1.5分子轨道对苯的结构和芳香性的描述

分子轨道理论把苯描述为一种离域的结构,它认为:苯分子的6个碳原子均为sp2杂化的碳原子,相邻碳原子之间以sp2杂化轨道互相重叠,形成6个均等的碳碳σ键,每个碳原子又各用一个sp2杂化轨道与氢原子的1s轨道重叠,形成碳氢σ键。所有轨道之间的键角都为120°,由于sp2杂化轨道都处在同一平面内,所以苯的6个氢原子和6个碳原子共平面,每个碳原子还剩下一个未参与杂化的垂直于分子平面的p轨道,6个p原子轨道彼此作用形成6个π分子轨道。分子轨道理论将两个能量相等的轨道称为简并轨道。

基态时,6个π电子占据三个成键轨道,所以苯的π电子云是由三个成键轨道叠加而成的,叠加的最后结果是π电子云在苯环上下对称均匀分布,又由于碳碳σ键也是均等的,所以碳碳键长完全相等,形成一个正六边形的碳架。闭合的电子云是苯分子在磁场中产生环电流的根由,环电流可以看作是没有尽头的,因此离域范围很广,所以苯很稳定。加成反应会导致苯封闭共轭体系的破坏,所以难以发生。取代反应最终不会破坏这种稳定结构,又由于环形离域π电子的流动性较大,能够向亲电试剂提供电子,因此苯易发生亲电取代反应。

1.2多苯代脂烃的结构

在多苯代脂烃中,每个苯环都保持了苯环的结构特性,但是苯环受取代基的影响变得更为活泼,比苯更易发生各种亲电取代反应;而与苯基相连的甲基、亚甲基和次甲基受苯环的影响也有很好的反应活性。例如:

氧化:

取代:

酸碱反应:

三苯甲基负离子呈深红色,它的钠盐是有机合成中常用的强碱。三苯甲烷的许多衍生物是有用的染料或分析中用的指示剂,如碱性孔雀绿、结晶紫、酚酞等。

孔雀绿 结晶紫 酚酞

与其它碳正离子、碳自由基、碳负离子相比,三苯甲基正离子、自由基、负离子都是最稳定的。这是因为它们同时和几个苯环发生离域作用,从而把这些不稳定的基团稳定下来。如将各类碳正离子、碳自由基按稳定性大小排列,可得到如下次序:

碳正离子的稳定性比较:(C 6H 5)3C +

> (C 6H 5)2CH +

> R 3C +

> R 2CH +

≈ C 6H 5CH 2+

≈ CH 2=CHCH 2+

> RCH 2+

> CH 3+

碳自由基的稳定性比较:(C 6H 5)3C ·

> (C 6H 5)2CH ·

> C 6H 5CH 2·

≈ CH 2=CHCH 2·

> R 3C ·

> R 2CH ·

> RCH 2·

> CH 3·

1.3稠环芳烃的结构和表达

1.3.1萘的结构和表达

萘是一个白色闪光的晶体。X射线衍射实验揭示,萘是一个平面分子,但萘的键长是长短交替出现的,也即萘的π电子云和键长不像苯那样完全平均化。分子轨道理论认为:萘分子中的碳原子都以sp2杂化轨道的形式形成σ键,各碳原子剩下的1个p轨道彼此平行重叠,在每个六元环中都形成了一个完整的六电子体系,而且整个π电子体系可以贯穿到10个碳原子的环系。

1.3.2蒽的结构和表达

蒽是无色的单斜片状晶体,有蓝紫色的荧光。X射线衍射实验揭示,蒽也是一个平面分子,但蒽的键长是不等的。

1.3.3菲的结构和表达

菲是无色的有荧光的单斜型片状晶体,是蒽的异构体。

1.3.4足球烯

足球烯是单纯由C元素结合形成的稳定分子,它具有60个顶点32个面,其中12个面为正五边形,20个面为正六边

形。足球烯中碳原子均采用sp2杂化,但是碳原子的三根σ键不是共平面的,键角约为108°或120°,整个分子为球状。每

个碳原子用剩下的一个p轨道互相重叠形成一个含60个π电子的闭壳层电子结构,因此在近似球形的笼内笼外都围绕着π

电子云。分子轨道计算表明:足球烯具有较大的离域能。足球烯的共振结构数高达12500个,按每个碳原子的平均共振能

比较,共振稳定性约为苯的两倍。因此足球烯是一个具有芳香性的稳定体系。

2.芳香烃的物理性质

芳香烃不溶于水,可溶于非极性有机溶剂。一般烃的结构都比水轻,芳香烃也不例外。通常对位异构体由于分子对称,熔点较高。

3.芳香烃的反应

1)芳香烃的加成反应

①苯的加成反应

苯具有特殊的稳定性,一般不易发生加成反应。但在特殊情况下,芳烃也能发生加成反应,而且总是三个双键同时发生反应,形成一个环

己烷体系。如苯和氯在光照下反应,生成六氯代环己烷。

②萘、蒽和菲的加成反应

萘比苯容易发生加成反应,例如:在不受光的作用下,萘和一分子氯气加成得1,4二氯化萘,后者可继续加氯气得1,2,3,4-四氯化萘,反应在这一步即停止,因为四氯化后的分子剩下一个完整的苯环,须在催化剂作用下才能进一步和氯气反应。1,4-二氯化萘和1,2,3,4-四氯化萘加热可以失去氯化氢而分别得1-氯代萘和1,4-二氯代萘。

由于稠环化合物的环十分活泼,因此一般不发生侧链的卤化。

蒽和菲的9、10位化学活性较高,与卤素的加成反应优先在9、10位发生。

2)芳香烃的还原反应

①Birch反应

碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或二级丁醇)的混合液中,与芳香化合物反应,苯环可被还原成1,4-环己二烯类化合物,这种反应叫做Birch(伯奇)还原。

机理:

首先是钠和液氨作用生成溶剂化电子,此时体系为一蓝色溶液。然后,苯环得到一个电子生成(I),(I)仍是环状共轭体系,但有一个单电子处在反键轨道上,因此不稳定而易被质子化,即从乙醇中夺取一个质子生成(Ⅱ)。(Ⅱ)再取得一个溶剂化电子转变成(Ⅲ),(Ⅲ)是一个强碱,可以再从乙醇中夺取一个质子生成1,4-环己二烯。

苯的同系物也能发生伯奇还原。

若取代基上有与苯环共轭的双键,伯奇还原首先在共轭双键处发生。不与苯环共轭的双键不能发生伯奇还原。

萘同样可以进行Birch还原。萘发生Birch还原时,可以得到1,4二氢化萘和1,4,5,8-四氢化萘。

②催化氢化反应

苯在催化氢化反应中一步生成环己烷体系。

萘在发生催化加氢反应时,使用不同的催化剂和不同的反应条件,可分别得到不同的加氢产物。

蒽和菲的9、10位化学活性较高,与氢气加成反应优先在9、10位发生。

③用金属还原

用醇和钠也可以还原萘,温度稍低时得1,4-二氢化萘,温度高时得1,2,3,4-四氢化萘。

3)芳香烃的氧化反应

①苯及其衍生物的氧化

烯、炔在室温下可迅速地被高锰酸钾氧化,但苯即使在高温下与高锰酸钾、铬酸等强氧化剂同煮,也不会被氧化。只有在五氧化二钒的催化作用下,苯才能在高温被氧化成顺丁烯二酸酐。

烷基取代的苯易被氧化,但一般情况下,氧化时苯环仍保持不变,只是和苯环相连的烷基被氧化成羧基。而且,不管侧链多长,只要和苯环相连的碳上有氢,氧化的最终结果都是侧链变成只有一个碳的羧基,如果苯环上有两个不等长的侧链,通常是长的侧链先被氧化。

只有苯环和一个三级碳原子相连或与一个极稳定的侧链相连时,在强烈的氧化条件下,侧链才得以保持,苯环被氧化成羧基。

②萘、蒽和菲的氧化

萘比苯易氧化,在室温用三氧化铬的醋酸溶液处理得1,4-萘醌。若在高温和五氧化二钒的催化下被空气氧化,则得重要的有机化工原料邻苯二甲酸酐。

有取代基时,活化基团常常使氧化反应在同环发生,而钝化基团使氧化反应在异环发生。

比侧链更易氧化,所以不能应用侧链氧化法来制备萘甲酸。(P456由于稠环化合物的环十分活泼,因此一般不发生侧链的卤化。)

氧化反应首先在9、10位发生。蒽用硝酸或三氧化铬的醋酸溶液或重铬酸钾的硫酸溶液氧化生成9,10 -蒽醌,9,10-蒽醌是合成蒽醌染料的重要中间体。菲用上述氧化剂氧化生成9,10 -菲醌。

4)苯环上的芳香亲电取代反应

①取代基的定位效应——取代基的定位效应是与取代基的诱导效应、共轭效应、超共轭效应等电子效应有关的。

卤原子的吸电子诱导效应大于给电子共轭效应,为钝化基团。

在苯中,每个位置的平均反应概率为20%,因此邻对位取代产物超过60%的为邻对位定位基,间位产物超过40%的为间位定位基。

上表中—CH3为弱活化基团,若甲基上氢逐步被氯取代,成为—CH2Cl,—CHCl2,—CCl3基团,就由原来的给电子效应转为逐步增强的吸电子效应,由原来的弱活化基团转为钝化基团。随着甲基中氢被氯原子逐步取代,取代基与苯的超共轭作用逐渐减少最后消失,因此它们的邻对位定位作用也逐渐减弱,最后完全转化为间位定位基。

两个取代基中间的位置一般不易进入新基团。

多数情况下,活化基团的作用超过钝化基团的作用。

②硝化反应

机理:

(I)硝酸(作为碱)在强酸(浓硫酸)作用下,先质子化,然后失水产生硝基正离子。

(II)硝基正离子进攻苯环生成中间体碳正离子。硝基正离子的结构是直线型的O=N+=O,它是一个强的亲电试剂,苯环上的π电子由于受到六个碳原子核的吸引,与一般烯烃的π电子相比,它们与碳结合较紧密,但与定域的σ键相比,它们与碳的结合仍然是松弛的,容易受到亲电试剂的进攻(碳原子由sp2转变为sp3)。

有些比较稳定的中间体碳正离子可以制备,并能在低温条件下分离出来,例如:

(III)碱(负离子)从碳正离子的sp3杂化态的碳原子上夺取一个质子,使其生成硝基苯。此时产物恢复了苯环的共轭体系结构。显然,该步反应只需要较少的能量。如果碱不去夺取质子,而去进攻环上的正电荷处,则反应与碳碳双键的加成相象,应得到加成产物。实验结果证明:只有取代苯生成。其原因是,发生取代反应的过渡态势能较低,且产物的能量比原料的低;如果生成加成物,过渡态势能较高,且产物的能量比苯的能量高,整个反应是吸热的,因此无论从动力学还是从热力学的观点考虑,进行加成反应都是不利的。

苯甲醛的硝化产物间硝基苯甲醛是生产强心急救药阿拉明的重要原料。

因为醛基易氧化,因此反应必须在低温(0℃)进行,操作时,先在浓硫酸中加入少量发烟硝酸,冷却至0℃,然后慢慢滴加苯甲醛和发烟硝酸,反应完成后,立即将产物倾倒在冰中。

广泛使用的强烈炸药TNT是2,4,6-三硝基甲苯,它是甲苯经分阶段硝化制备的,即三个硝基是在多次硝化反应中逐步引入的。

邻硝基甲苯和对硝基甲苯可以通过减压蒸馏或重结品分离提纯而分别获得,2,4二硝基甲苯也能通过重结晶提纯得到。

硝基苯的硝化:

硝基苯比苯难硝化的原因是:苯环的硝化是一个亲电取代反应,硝化反应的机理表明:整个反应的关键一步是硝基正离子进攻苯环形成中间体碳正离子。在硝基苯中,因氧、氮的电负性均大于碳,因此硝基有吸电子的诱导效应,又因为硝基的π轨道与苯环的离域π轨道形成一个π-π共轭体系,使苯环的π电子云也向硝基迁移,所以硝基是一个具有强吸电子诱导效应和吸电子共轭效应的取代基。它使苯环的电子云密度有较大程度的下降,这一方面增加了硝基正离子进攻苯环的难度,同时也降低了反应过程中产生的中间体碳正离子的稳定性,所以硝基苯比苯难硝化。

甲苯的硝化:

甲苯比苯容易硝化的原因是:甲基具有微弱的给电子超共轭效应,这种超共轭效应使苯环上的电子云密度有所增加,这一方面使硝基正离子更容易进攻苯环,同时也使反应过程中产生的中间体碳正离子的电荷得到分散而稳定。所以甲苯比苯更易硝化。但甲基的给电子能力是很弱的,因此它对苯环的活泼性影响较弱。

氯苯的硝化:

硝基从氯的邻、对位进攻苯环时,参与形成中间体碳正离子的极限结构中,正电荷位于与氯原子相连的碳原子上,这是不稳定的,但氯原子可通过共轭效应供给电子,形成氯离子,氯离子中的每个原子最外层均有8个电子,比较稳定。另外,参与形成邻、对位中间体碳正离子的极限结构有四个,而间位只有三个。

③卤化反应

氯化:

亲核取代反应的机理及影响因素.

教学目标:掌握各种因素对亲核取代反应机理的影响。 教学重点:烷基结构、亲核试剂、溶剂等因素对S N1 和S N2 反应的影响 教学安排:H 1,H3 —>H4;40min 基本概念:溶剂解:溶剂作为亲核试剂的亲核取代反应,称为溶剂解或溶剂解反应。溶剂解反应可根据所用的溶剂是水、乙醇还是乙酸,分别称为水解、乙醇解,乙酸解等。 卤代烷的亲核取代反应,既可按S N2 亦可按S N1 机理进行,但究竟按何种机理进行呢?这与卤代烷结构,离去基团亲核试剂和溶剂的性质等诸因素有关,下面分别讨论。 一、烷基结构的影响 1.烷基的结构对S N2 反应的影响 在卤代烷的S N2 反应中,如果中心碳原子上连接的取代烷基(支链)越多,它们对亲核试剂从碳卤键背后进攻中心碳原子的空间位阻就越大,使得发生有效碰撞的概率大为下降;而在过渡态时众多的支链与中心碳原子要保持在同一个平面内,其张力是很大的,这就使形 成过渡态需要有非常高的活化能,这些都将导致卤代烷进行S N2 反应的活性下降,反应速率减小。例如,I-与下面各溴代烷的丙酮溶液中于25℃发生S N2 反应时的相对反应速率为: 如果在卤代烷的β- 碳原子上连有支链烷基时,对S N2 反应的速率也有明显的影响,即卤代烷中心碳( α- 碳)原子上连接的烷基体积越大,其空间位阻越大,不利于亲核试剂的攻 击。例如,在C 2H5 OH 溶剂中C2H5ONa 与下面各溴代烷于55℃发生S N2 反应的相对反应速率为: 反应物CH3CH2B r CH3CH2CH2B r (CH3)2CHCH2B r (CH3)3CCH2B r 相对速 率 100 28 3.0 4.2×10-4 综上所述,卤代烷进行S N2 反应时,在其它条件相同时,不同结构卤代烷的反应活性次序为:

亲核取代反应及其影响因素

亲核取代反应及其影响因素 摘要:饱和碳原子上的亲核取代反应主要有两种:单分子亲核取代反应(S N1)与双分子亲核取代反应(S N2)。大多数反应介于这两种极端情况之间。人们提出离子对机理与邻近基团参与的理论来解释反应情况与构型变化的问题。亲核取代反应的反应速度,与烃基的数量、离去集团的大小、亲核试剂的活性以及溶剂的极性等有关。一般来说,烃基数量少,离去基团大,亲核试剂亲核性强,溶剂的极性弱,对S N2反应有利;烃基数量多,离去基团大,溶剂的极性强,对S N1反应有利。另外,亲核取代反应和对应的消除反应(单分子消除反应E1、双分子消除反应E2与S N1、S N2)互为竞争性反应。强碱和较高的温度有利于消除,弱碱和强亲核试剂有利于取代;有利于碳正离子生成的条件,有利于按单分子机理进行;不利于底物异裂的条件,有利于双分子反应。 正文: 一、烷基结构的影响 1.烷基的结构对S N2 反应的影响 反应中,如果中心碳原子上连接的取代烷基(支链)越多,它们对亲在卤代烷的S N2 核试剂从碳卤键背后进攻中心碳原子的空间位阻就越大,使得发生有效碰撞的概率大为下降;而在过渡态时众多的支链与中心碳原子要保持在同一个平面内,其张力是很大的,这就使形 反应的活性下降,反应速成过渡态需要有非常高的活化能,这些都将导致卤代烷进行S N2 率减小。例如,I-与下面各溴代烷的丙酮溶液中于25℃发生S N2 反应时的相对反应速率为: 反应的速率也有明显的影响,即卤如果在卤代烷的β- 碳原子上连有支链烷基时,对S N2 代烷中心碳( α- 碳)原子上连接的烷基体积越大,其空间位阻越大,不利于亲核试剂的攻击。 反应时,在其它条件相同时,不同结构卤代烷的反应活性综上所述,卤代烷进行S N2 次序为:

加成反应介绍(DOC)

加成反应 (addition reaction) ?定义 烯烃或炔烃分子中存在 键, 键键能较小,容易断裂形成两个 键。即能在含双键或三键的两个碳原子上各加上一个原子或原子团的反应即为加成反应(多为放热,是烯烃和炔烃的特征反应)。不稳定的环烷烃的开环反应也属于加成反应。 (1)催化加氢 在Pt、Pd、Ni等催化剂存在下,烯烃和炔烃与氢进行加成反应,生成相应的烷烃,并放出热量,称为氢化热(heat of hydrogenation,1mol不饱和烃氢化时放出的热量) ?催化加氢的机理(改变反应途径,降低活化能) 吸附在催化剂上的氢分子生成活泼的氢原子与被催化剂削弱了 键的烯、炔加成。 ?氢化热与烯烃的稳定性 乙烯丙烯 1-丁烯顺-2-丁烯反-2-丁烯 氢化热/kJ?mol-1 -137.2 -125.9 -126.8 -119.7 -115.5 (1)双键碳原子上烷基越多,氢化热越低,烯烃越稳定: R2C=CR2 > R2C=CHR > R2C=CH2 > RCH=CH2 > CH2=CH2 (2)反式异构体比顺式稳定: (3)乙炔氢化热为-313.8kJ?mol-1,比乙烯的两倍(-274.4kJ?mol-1)大,故乙炔稳定性小于乙烯。 ?炔烃加氢的控制 ——使用活性较低的催化剂,可使炔烃加氢停留在烯烃阶段。 ——使用不同的催化剂和条件,可控制烯烃的构型: 如使钯/碳酸钙催化剂被少量醋酸铅或喹啉钝化,即得林德拉(Lindlar)催化剂,它催化炔烃加氢成为顺式烯烃;炔烃在液氨中用金属钠或锂还原,能得到反式烯烃: ?炔烃催化加氢的意义: ——定向制备顺式或反式烯烃,从而达到定向合成的目的; ——提高烷烃(由粗汽油变为加氢汽油)或烯烃的含量和质量。 ?环烷烃的催化加氢 环烷烃催化加氢后生成烷烃,比较加氢条件知,环丙烷、环丁烷、环戊烷、环己烷开环难度依次增加,环的稳定性依次增大。 (2)与卤化氢加成 (a)对称烯烃和炔烃与卤化氢加成对称烯烃和炔烃与卤化氢进行加成反应,生成相应的卤化物:

有机反应和反应机理

十、反应和反应机理 有机反应:在一定的条件下,有机化合物分子中的成键电子发生重新分布,原有的键断裂,新的键形成,从而使原分子中原子间的组合发生了变化,新的分子产生。这种变化过程称为有机反应(organic reaction)。 一级反应:在动力学上,将反应速率只取决于一种化合物浓度的反应称为一级反应。 二级反应:在动力学上,将反应速率取决于两种化合物浓度的反应称为二级反应。 按化学键的断裂和生成分类 协同反应:在反应过程中,旧键的断裂和新键的形成都相互协调地在同一步骤中完成的反应称为协同反应。协同反应往往有一个环状过渡态。它是一种基元反应。 自由基型反应:由于分子经过均裂产生自由基而引发的反应称为自由基型反应。自由基型反应分链引发、链转移和链终止三个阶段:链引发阶段是产生自由基的阶段。由于键的均裂需要能量,所以链引发阶段需要加热或光照。链转移阶段是由一个自由基转变成另一个自由基的阶段,犹如接力赛一样,自由基不断地传递下去,像一环接一环的链,所以称之为链反应。链终止阶段是消失自由基的阶段,自由基两两结合成键,所有的自由基都消失了,自由基反应也就终止了。 离子型反应:由分子经过异裂生成离子而引发的反应称为离子型反应。离子型反应有亲核反应和亲电反应,由亲核试剂进攻而发生的反应称为亲核反应,亲核试剂是对原子核有显著亲和力而起反应的试剂。由亲电试剂进攻而发生的反应称为亲电反应。亲电试剂是对电子有显著亲合力而起反应的试剂。 按反应物和产物的结构关系分类 加成反应:两个或多个分子相互作用,生成一个加成产物的反应称为加成反应。 取代反应:有机化合物分子中的某个原子或基团被其它原子或基团所置换的反应称为取代反应。 重排反应:当化学键的断裂和形成发生在同一分子中时,会引起组成分子的原子的配置方式发生改变,从而形成组成相同,结构不同的新分子,这种反应称为重排反应。 消除反应:在一个有机分子中消去两个原子或基团的反应称为消除反应。可以根据两个消去基团的相对位置将其分类。若两个消去基团连在同一个碳原子上,称为1,1-消除或α-消除;两个消去基团连在两个相邻的碳原子上,则称为1,2-消除或β-消除;两个消去基团连在1,3位碳原子上,则称为1,3-消除或γ-消除。其余类推。 氧化还原反应:有机化学中的氧化和还原是指有机化合物分子中碳原子和其它原子的氧化和还原,可根据氧化数的变化来确定。氧化数升高为氧化,氧化数降低为还原。氧化和还原总是同时发生的,由于有机反应的属性是根据底物的变化来确定的,因此常常将有机分子中碳原子氧化数升高的反应为氧化反应,碳原子氧化数降低的反应为还原反应。有机反应中,多数氧化反应表现为分子中氧的增加或氢的减少,多数还原反应表现为分子中氧的减少或氢的增加。

苯环上亲电取代反应的定位规律

苯环上亲电取代反应的定位规律 基本概念:定位基:在进行亲电取代反应时,苯环上原有取代基,不仅影响着苯环的取代反应活性,同时决定着第二个取代基进入苯环的位置,即决定取代反应的位置。原有取代基称做定位基。 一、两类定位基 在一元取代苯的亲电取代反应中,新进入的取代基可以取代定位基的邻、间、对位上的氢原子,生成三种异构体。如果定位基没有影响,生成的产物是三种异构体的混合物,其中邻位取代物40%(2/5)、间位取代物40%(2/5)和对位取代物20%(1/5)。实际上只有一种或二种主要产物。例如各种一元取代苯进行硝化反应,得到下表所示的结果: 排在苯前面的取代硝化产物主要是邻位和对位取代物,除卤苯外,其它取代苯硝化速率都比苯快;排在苯后面取代硝化产物主要是间位取代物,硝化速率比苯慢得多。归纳大量实验结果,根据苯环上的取代基(定位基)在亲电取代反应中的定位作用,一般分为两类:第一类定位基又称邻对位定位基:—O-,—N(CH3)2,—NH2,—OH,—OCH3,—NHCOCH3,—OCOCH3,—F,—Cl,—Br,—I,—R,—C6H5等。 第二类定位基又称间位定位基:—N+(CH3)3,—NO2,—CN,—SO3H,—CHO,—COCH3,—COOH,—COOCH3,—CONH2,—N+H3等。 两类定位基的结构特征:第一类定位基与苯环直接相连的原子上只有单键,且多数有孤对电子或是负离子;第二类定位基与苯环直接相连的原子上有重键,且重键的另一端是电负性

大的元素或带正电荷。两类定位基中每个取代基的定位能力不同,其强度次序近似如上列顺 序。 苯环上亲电取代反应的定位规律 二、定位规律的电子理论解释 在一取代苯中,由于取代基的电子效应沿着苯环共轭链传递,在环上出现了电子云密度较 大和较小的交替分布现象,因而环上各位置进行亲电取代反应的难易程度不同,出现两种定 位作用。也可以从一取代苯进行亲电取代反 应生成的中间体σ络合物的相对稳定性的角度进行考察,当亲电试剂E +进攻一取代 时,生成三苯 σ络合物: Z 不同,生成的三种σ 络合物碳正离子的稳定性不同,出现了两种定位作用。 1.第一类定位基对苯环的影响及其定位效应 以甲基、氨基和卤素原子为例说明。 甲基在甲苯中,甲基的碳为sp3杂化,苯环碳为sp2杂化,sp2杂化碳的电负性比sp3杂 化碳的大,因此,甲基表现出供电子的诱导效应(A)。另外,甲基C—H σ 键的轨道与苯 环的π 轨道形成σ—π 超共轭体系(B)。供电诱导效应和超共轭效应的结果,苯环上电 子密度增加,尤其邻、对位增加得更多。因此,甲苯进行亲电取代反应比苯容易,而且主要 发生在邻、对位上。 亲电试剂E+进攻甲基的邻、间、对位置,形成三种σ 络合物中间体,三种σ 络合物 碳正离子的稳定性可用共振杂化体表示: 进攻邻位:

烯烃的亲电加成反应

烯烃的亲电加成反应 烯烃的亲电加成反应 与烯烃发生亲电加成的试剂,常见的有下列几种:卤素(Br2,Cl2)、无机酸(H2SO4,HCl,HBr,HI,HOCl,HOBr)及有机酸等。 1.与卤素加成 主要是溴和氯对烯烃加成。氟太活泼,反应非常激烈,放出大量的热,使烯烃分解,所以反应需在特殊条件下进行。碘与烯烃不进行离子型加成。 (1)加溴:在实验室中常用溴与烯烃的加成反应对烯烃进行定性和定量分析,如用5%溴的四氯化碳溶液和烯烃反应,当在烯烃中滴入溴溶液后,红棕色马上消失,表明发生了加成反应,一般双键均可进行此反应。 CH2=CH2+Br2→BrCH2CH2Br 卤素与烯烃的加成反应是亲电加成,反应机制是二步的,是通过环正离子过渡态的反式加成,主要根据以下实验事实: (a)反应是亲电加成:是通过溴与一些典型的烯烃加成的相对反应速率了解的: 可以看到,双键碳上烷基增加,反应速率加快,因此反应速率与空间效应关系不大,与电子效应有关,烷基有给电子的诱导效应与超共轭效应,使双键电子云密度增大,烷基取代越多,反应速率越快,因此这个反应是亲电加成反

应。当双键与苯环相连时,苯环通过共轭体系,起了给电子效应,因此加成速率比乙烯快。当双键与溴相连时,溴的吸电子诱导效应超过给电子共轭效应,总的结果起了吸电子的作用,因此加成速率大大降低。 (b)反应是分二步的:如用烯烃与溴在不同介质中进行反应,可得如下结果: 上述三个反应,反应速率相同,但产物的比例不同,而且每一个反应中均有BrCH2CH2Br产生,说明反应的第一步均为Br+与CH2=CH2的加成,同时这是决定反应速率的一步;第二步是反应体系中各种负离子进行加成,是快的一步。(上述三个反应,如溴的浓度较稀,主要产物为溴乙醇和醚。) (c)反应是通过环正离子过渡态的反式加成,而且是立体选择性的反应(stereoselectivereaction)。所谓环正离子过渡态,是试剂带正电荷或带部分正电荷部位与烯烃接近,与烯烃形成碳正离子,与烯烃结合的试剂上的孤电子对所占轨道,与碳正离子轨道,可以重叠形成环正离子,如 形成活性中间体环正离子,这是决定反应速率的一步。所谓反式加成,是试剂带负电荷部分从环正离子背后进攻碳,发生 S N2反应,总的结果是试剂的二个部分在烯烃平面的两边发生反应,得到反式加成的产物。如下所示:

邢其毅《基础有机化学》(第3版)(上册)名校考研真题-苯和芳香烃 芳香亲电取代反应(圣才出品)

第11章苯和芳香烃芳香亲电取代反应 一、选择题 1.下面的化合物进行硝化反应的速度顺序是()。[华中科技大学2000研] A.(3)>(4)>(2)>(1) B.(3)>(2)>(4)>(1) C.(4)>(2)>(3)>(1) D.(4)>(3)>(1)>(2) 【答案】A 【解析】给电子基的给电子能力越强,苯环上的硝化反应越快;吸电子基的吸电子能力越强,硝化反应越慢。 2.下面化合物的正确名称是()。[华中科技大学2000研] A.对甲基苯磺酰胺 B.N-甲基对甲苯磺酰胺 C.对甲苯甲基苯磺酰胺 D.甲氨基对甲苯磺酰胺 【答案】B 【解析】取代基中含磺酰胺基,要以苯磺酰胺作为主体命名。

3.苯甲醚在邻位进行硝化反应时,其中间体的极限结构对共振杂化体贡献最大的是()。[天津大学2000;大连理工大学2004研] 【答案】C 【解析】(C)中的正电荷位于与甲氧基相连的碳原子上,甲氧基的给电子效应使正电荷分散,因此该极限结构比其他三种极限结构相对稳定,对共振杂化体的贡献最大。 4.反应的主要产物是()。[武汉大学2001研] (D)(A),(B)等量(E)(A),(C)等量 【答案】B 【解析】氯原子为邻、对位定位基,因生成(A)时的空间位阻较大,故主要产物为(B)。 5.下列化合物,芳环上起亲核取代反应速率最快的是()。[南京大学2003研]

【答案】C 【解析】与氯原子相连的碳原子带的正电荷越多,则亲核取代反应速率越快。硝基为吸电子基,使苯环上邻、对位电子云密度降低,正电荷增多,故(C)亲核反应速率最快。 6.下列化合物有芳香性的是()。[华中科技大学2000研] 【答案】B,C 【解析】(B)项分子中有6个π电子,符合休克尔规则;(C)项中的七元环带一个单位正电荷,五元环带一个单位负电荷,这样七元环和五元环的π电子数都为6个,且在同一平面内,都符合休克尔规则。 7.下列化合物中有芳香性的是()。[中国科学院-中国科学技术大学2001研] 【答案】A 【解析】(A)中有10个π电子数,符合休克尔规则。 8.薁的亲核取代反应容易发生在哪些位置上?()[上海大学2004研]

亲核取代反应及其影响因素

亲核取代反应及其影响因素 航03班 林三春 2010011556 摘要: 本文分为四部分。第一部分论述了亲核取代反应的组成部分:亲核试剂、离去基团、反应底物,特地列出了常见的亲核试剂、常见的离去基团。第二部分论述了亲核取代反应机理,主要论述了四种:SN1、SN2、离子对机理和邻近基团参与机理,其中还包括各种机理的实验现象验证,以及对反应产物的影响,如对构型的影响。第三部分论述了亲核反应的影响因素,主要有烃基、离去基团、溶剂和亲核试剂四种,详细地说明了这四种因素如何影响反应。给出了判断离去基团的好坏,以及比较亲核试剂的亲核性的方法。最后一部分论述了亲和取代反应与消除反应的竞争关系,其中包括SN1与E1竞争,SN2与E2竞争。主要以卤代烃为例阐述的。 在论述的同时,还附有适当的图示,以及实验数据,通过比较等手段,使得论述更加有说服力。 全文通过这四个部分,详细、全面地介绍了亲核取代反应。 正文: 亲核取代反应,简称SN 亲核取代反应,通常发生在带有正电或部分正电荷的碳上,碳原子被带有负电或部分负电的亲核试剂(Nu:-)进攻而取代。 一、亲核取代反应的重要组成成分: 亲核取代反应中涉及到的三个重要组成成分为:亲核试剂、离去基团、反应底物。 称为反应底物。进攻反应底物的试剂CH30Na (或 CH3O —)是带着电子对与碳原子结合成键的,它本身具有亲核性,称为亲核试剂,一般用Nu 表示。这类反应之所以称为亲核取代也正是因为它是由亲核试剂进攻反应底物而引起的取代反应。反应底物上的溴原子带着电子对从碳原子上离去,所以Br-;称为离去基团,一般用L 表示。该取代反应是在与溴相连的那个碳原子上进行的,常称该碳原子为中心原子,或反应中心。 .一般的亲核取代反应可以用如下的通式表示: 。其中R —L 为反应底物,L —为离去基团,Nu —为亲核试剂,弯箭头表示电子转移的方向。 1、亲核试剂: 亲核性是指:带负电荷或孤对电子的试剂即亲核试剂对亲电子原子的进攻的能力。 具有亲核性的物质叫做亲核试剂。凡是带有未共享电子对的物质(如Lewis 碱)都具有一定的亲核性,它们都可能作为亲核试剂。亲核试剂可以是中性分子,也可以是带负电的阴离子。下表列出的是亲核取代反应中常见的一些亲核试剂:

芳环上的亲电和亲核取代反应

第七章 芳环上的亲电和亲核取代反应 7.1芳环的亲电取代反应 7.1.1芳环上的亲电取代历程 1、 亲电试剂的产生 HNO 3+2H 2SO 4 NO 2++H 3O ++2HSO 4- 亲电试剂 2、 π-络合物的形成 芳环上电子云密度 R +NO 2 π -络合物NO 2 3、 σ-络合物的形成 NO 2+ H NO 2 σ-络合物 硝基所在碳为sp 3 杂化 4、 消去-H + + NO 2 H NO 2 快 σ-络合物的证据 已分离出C + CH 3 +CH 3CH 2F +BF 3 CH 3 CH 2CH 3 H BF 4- 通过红外和核磁等可鉴定中间体的结构。

CH 3 CH 3 CH 3EtF 3CH 3 H Et CH CH 3 BF 4- 3 mp - 15 C 7.1.2苯环上亲电取代反应的定位规律 从反应速度和取代基进入的位置进行考虑 1、 第一类定位基(邻,对位定位基) 致活基 NH 2 NR 2 OH OR NHCR O Ph R 致钝基 F Cl Br I 2、 第二类定位基(间位定位基) 均为致钝基 NO 2 NR 3 COOH COOR SO 3H CN CHO CR O CCl 3 7.1.3定位规律在有机合成中的应用 7.1.4典型的芳香亲电取代反应 1.硝化反应 硝化试剂有HNO 3-H 2SO 4 HNO 3+2H 2SO 4 NO 2++H 3O ++2HSO 4- 真正的硝化试剂为硝酰正离子。混酸体系有强氧化性 OH 20%HNO 3 OH NO 2 + OH 2 如用混酸将得氧化产物 NH 2 浓HNO 浓H 2SO 4 NH 3HSO 4- NO 2 同时还有部分氧化产物 HNO 3/CCl 4低温时的硝化速度较快 (HNO 3)xH 2NO 3+ NO 2++H 2O +(HNO 3)x 0℃

烯烃亲电加成反应

烯烃可与卤素进行加成反应,生成邻二卤代烷。该反应可用于制备邻二卤化物. 烯烃可与卤化氢加成生成相应的卤代烷。通常是将干燥的卤化氢气体直接与烯烃混合进行反应,有时也使用某些中等极性的化合物如醋酸等作溶剂,一般不使用卤化氢水溶液,因为使用卤化氢水溶液有可能导致水与烯烃加成这一副反应发生。 实验结果表明,不同卤化氢在这一反应中的活性次序是:HI>HBr>HCl,这与其酸性强度次序相符合。 卤化氢是一不对称试剂,当它与乙烯这样结构对称的烯烃加成时,只能生成一种加成产物: 但遇到像丙烯这样的不对称烯烃时,则有可能生成两种不同的加成产物: 实验结果表明,卤化氢与不对称烯烃的加成具有择向性,即在这一离子型加成反应中,卤化氢中的氢总是加到不对称烯烃中含氢较多的双键碳上。这一规律是俄国化学家马尔柯夫尼可夫(V·Markovnikov)1869年提出的,称为马尔柯夫尼可夫定则,简称马氏定则。例如:

应用马氏定则,可以对许多这类反应的产物进行预测,并指导我们正确地利用这一反应来制备卤代烷。当然,某些双键碳上连有强吸电子基的烯烃衍生物在卤化氢加成时,从形式上看就表现出反马氏定则的特性。但从实质上看并不矛盾,因为亲电加成时,亲电试剂的正性部分总是首先加在电子云密度大的双键碳上,只不过大多数情况下,电子云密度大的双键碳上含氢原子多的缘故。例如: 此外,烯烃与溴化氢的加成当有过氧化物存在时,则真正表现出反马氏定则的特征。例如: 这种因过氧化物存在而导致加成反应取向发生改变的现象称为过氧化物效应。在烯烃的亲电加成反应中,只有溴化氢对双键的加成有过氧化物效应,其他亲电试剂对双键的加成则不受过氧化物存在与否的影响。因为过氧化物效应不按亲电加成反应机制进行,而是按自由基反应机制进行(见后)。 烯烃与硫酸加成生成硫酸氢酯,该酯经过水解便得到醇。例如:

第七章芳环上的亲电和亲核取代反应[1]

第七章芳环上的亲电和亲核取代反应7.1芳环的亲电取代反应 7.1.1芳环上的亲电取代历程 1、亲电试剂的产生 亲电试剂 2、π-络合物的形成 芳环上电子云密度R 3、σ-络合物的形成 硝基所在碳为sp3杂化 4、消去-H+ σ-络合物的证据 已分离出C+ 通过红外和核磁等可鉴定中间体的结构。

7.1.2苯环上亲电取代反应的定位规律 从反应速度和取代基进入的位置进行考虑 1、第一类定位基(邻,对位定位基) 2、第二类定位基(间位定位基) 均为致钝基 7.1.3定位规律在有机合成中的应用 7.1.4典型的芳香亲电取代反应 1.硝化反应 硝化试剂有HNO3-H2SO4 真正的硝化试剂为硝酰正离子。混酸体系有强氧化性 如用混酸将得氧化产物 同时还有部分氧化产物HNO3/CCl4低温时的硝化速度较快 温和的硝化试剂HNO2/C(NO2)4

可避免间位硝化与氧化 2.磺化反应 亲电试剂为SO3或(共轭酸) 特点:(1)可逆反应,可用于芳环的定向取代(占位)。(2)置换反应,合成一些难于合成的物质。 发生间接硝化 3.卤化反应 (1)卤素作卤化剂

(2)N-卤代酰胺或N-卤代磺酰胺作卤化剂 等 其卤化性能较差,只与活泼芳烃反应,可避免氧化反应发生(芳胺和酚)。 而在非极性CCl4等溶剂中是自由基引发剂 自由基取代反应。 1. Fridel-Crafts反应 (1) 烃基化 亲电试剂产生 催化剂活性 AlCl3>FeCl3>SbCl5>SnCl4>BF3>TiCl4>ZnCl2 特点 A. 易发生重排反应

亲电试剂发生重排 B. 易发生多烷基化 C. 可逆反应 动力学条件下,遵守定位规律,热力学控制条件下得稳定的间位产物。 D. 钝化的芳烃不发生烷基化 E.-OH,-NH2和-OR等与路易斯酸配位,使催化剂难于发生烷基化,可改用烯作烷基化剂,以酚铝或苯胺铝作催化剂 (2)酰基化反应 1 用酰氯时,ACl3的量要大于1mol,用酸酐时ACl3要大于2mol。 2 酚的酰化是Fries重排 3 不会发生重排 5.重氮盐的偶联反应

第十一章 苯和芳香烃 芳香亲电取代反应

芳香类化合物是指从植物胶里取得的具有芳香气味的物质。现在人们把具有下列特殊稳定的不饱和环状化合物称为方向化合物: (1)从结构上看①芳香化合物一般都具有平面或接近平面的环状结构②键长趋于平均化③具有较高的C/H 比 (2)从性质上看①芳香化合物的芳环一般都难以氧化、加成②而易于发生亲电取代反应③具有特殊的光学性质,如芳环环外氢的化学位移处于NMR 低场,而环内氢处于高场等。 上述这些特点被称为芳香性。 1. 芳香烃的结构 1.1苯的结构和表达 1.1.1苯的结构 第十一章 苯和芳香烃 芳香亲电取代反应 120o 108pm 140pm

1.1.2苯的芳香性 环己烯的氢化热ΔH=-120kJ/mol,1,3-环己二烯的氢化热ΔH=-232kJ/mol(由于其共轭双键增加了其稳定性)。而苯的氢化热ΔH=-208kJ/mol。1,3-环己二烯失去两个氢变成苯时,不但不吸热,反而放出少量的热量。这说明:苯比相应的环己三烯类要稳定得多,从1,3-环己二烯变成苯时,分子结构已发生了根本的变化,并导致了一个稳定体系的形成。 苯难于氧化和加成,而易于发生亲电取代反应,与普通烯烃的性质有明显的区别。 1.2.3苯的表达 自1825年英国物理学家和化学家Farady M(法拉第)首先从照明气中分离出苯后,人们一直在探索苯结构的表达式。科学家们提出了各种有关苯结构式的假设;其中比较有代表性的苯的结构式有: 凯库勒式双环结构式棱形结构式向心结构式对位键结构式余键结构式 (凯库勒(杜瓦(拉敦保格(阿姆斯特朗、拜耳(克劳斯(悌勒 1865年提出)1866-1867年提出)1869年提出)1887-1888年提出)1888年提出)1899年提出)用内部带有一个圆圈的正六边形表示苯,圆圈强调了π电子的离域作用和电子云的均匀分布,它很好地说明了 碳碳键键长的均等性和苯环的完全对称性,但是这种方式用来表示其他方向体系时就不合适了,例如表示萘时很容 易造成误解,因为萘不是完全对称的分子,萘分子的碳碳键长也不是完全均等的。另外,圆圈没有说明π电子的数 目,萘分子的10个π电子用两个圆圈表示易误解成每个环有6个π电子而造成混淆。

苯环上亲电取代反应的定位规律

排在苯前面的取代硝化产物主要是邻位和对位取代物,除卤苯外,其它取代苯硝 化速率都比苯快;排在苯后面取代硝化产物主要是间位取代物,硝化速率比苯慢得多。归纳 大量实验结果,根据苯环上的取代基(定位基)在亲电取代反应中的定位作用,一般分为两 类: 第一类定位基又称邻对位定位基:—O-,—N(CH3)2,—NH2,—OH,—OCH3,—NHCOCH3, —OCOCH3,—F,—Cl,—Br,—I,—R,—C6H5等。 第二类定位基又称间位定位基:—N+(CH3)3,—NO2,—CN,—SO3H,—CHO,—COCH3,—COOH,—COOCH3,—CONH2,—N+H3等。 两类定位基的结构特征:第一类定位基与苯环直接相连的原子上只有单键,且多数 有孤对电子或是负离子;第二类定位基与苯环直接相连的原子上有重键,且重键的另一端是 电负性大的元素或带正电荷。两类定位基中每个取代基的定位能力不同,其强度次序近似如 上列顺序。 苯环上亲电取代反应的定位规律 二、定位规律的电子理论解释 在一取代苯中,由于取代基的电子效应沿着苯环共轭链传递,在环上出现了电子云 密度较大和较小的交替分布现象,因而环上各位置进行亲电取代反应的难易程度不同,出现 两种定位作用。也可以从一取代苯进行亲电取代反 应生成的中间体σ络合物的相对稳定性的角度进行考察,当亲电试剂 E+进攻一取代苯时,生成三σ络合物: Z 不同,生成的三种σ 络合物碳正离子的稳定性不同,出现了两种定位作用。 1.第一类定位基对苯环的影响及其定位效应 以甲基、氨基和卤素原子为例说明。 甲基在甲苯中,甲基的碳为 sp3杂化,苯环碳为 sp2杂化,sp2杂化碳的电负性 比 sp3杂化碳的大,因此,甲基表现出供电子的诱导效应(A)。另外,甲基 C—H σ 键 的轨道与苯环的π 轨道形成σ—π 超共轭体系(B)。供电诱导效应和超共轭效应的结 果,苯环上电子密度增加,尤其邻、对位增加得更多。因此,甲苯进行亲电取代反应比苯容 易,而且主要发生在邻、对位上。 亲电试剂 E+进攻甲基的邻、间、对位置,形成三种σ 络合物中间体,三种σ 络 合物碳正离子的稳定性可用共振杂化体表示:

亲电取代反应

亲电取代反应 亲电取代反应是亲电试剂进攻化合物负电部分,取代其它基团的化学反应。一般发生于芳香族化合物,是一种向芳香环系引入官能团的重要方法,是芳香族化合物的特性之一。被取代的基团通常是氢原子,但其他基团被取代的情形也是存在的。一般来说,亲电取代特指芳香亲电取代。另一种比较少见的亲电取代反应是脂肪族的亲电取代。 中文名 亲电取代反应 外文名 Electrophilic Substitution 属性 亲电取代 性质 反应 主要反应 硝化反应,卤化反应磺化反应等。 目录 .1原理

.2主要反应 .?硝化反应 .?卤化反应 .?磺化反应 .3定位规则 原理 亲电取代反应主要发生在芳香体系或富电子的不饱和碳上,就本质而言均是较强亲电基团对负电子体系进攻,取代较弱亲电基团。但对于芳香体系和脂肪体系,由于具体环境不同,其反应历程亦有所不同,现分述如下。 亲电芳香取代反应(electrophilic aromatic substitution)是芳香体系最重要的有机反应之一,常用于向芳香环系引入官能团,因此研究时间较长,在机理方面已基本达成一致。 主要反应 对于亲电取代反应,其最为主要的反应类型均在芳香体系中产生,所以这里仅仅对芳香亲电取代进行一定的举例介绍。 硝化反应 硝化反应苯环体系一个重要的反应,其常用于向体系引入硝基或利用硝基引入氨基等其他各种官能团,有很强的泛用性,定位选择性较好,使用最多。由于硝基有较强氧化性,而有机体系本身又具有一定的还原性,硝基含量较多的体系就很容易成为良好的炸药材料,其中著名的TNT、苦味酸等就是通过硝化反应制备的。 Friedel(傅瑞德尔)-Crafts(克拉夫茨)反应

相关主题
文本预览
相关文档 最新文档