当前位置:文档之家› 臭氧氧化设备深度处理技术及工艺效果

臭氧氧化设备深度处理技术及工艺效果

臭氧氧化设备深度处理技术及工艺效果

臭氧氧化设备深度处理技术及工艺效果

近年来,由于我国原油劣质化和原油资源全球化步伐加快,石化企业加工重质、劣质原油所占比例不断加大,从而导致企业高浓度有机废水的排放量不断增加:再加上为了提高市场竞争力,企业纷纷进行扩能改造,使废水产量不断加大:此外,国家即将提高外排废水的水质指标,这些都使废水处理装置的压力不断加大。虽然有少数企业对高浓度废水采用如臭氧氧化法等预处理工艺处理后再进人生化系统。

但生化处理后的炼油企业外排废水,出水水质不稳定,外排废水未达标的情况依然存在。这些不达标废水由于经过前期的生化处理,可生化性很差,所以处理起来比较困难。因为这些废水再采用生化法深度处理已无能为力,而臭氧氧化设备采活性炭吸附等深度处理技术成本又过高。膜分离技术由于投资昂贵和膜污染等实际问题,在应用上也存在一定难度。目前。多数企业只能通过混掺清水或其他中水来满足排放要求,造成水资源的巨大浪费。

臭氧氧化设备广泛用于去除水中的难生物降解有机物,能提高废水的BOD5和COD的比值,使其进一步生化处理成为可能。目前的高级氧化技术主要包括化学氧化法、电化学氧化法、湿式氧化法、超临界水氧化法和光催化氧化法等。

本研究探索采用臭氧氧化法处理可生化性很差的炼油废水的生化处理出水,考察了氧化反应的影响因素及氧化方法提高废水可生化性的能力。最后估算出氧化工艺的运行成本,为该类不达标炼油废水的进一步处理提供可以借鉴的思路。

(1)采用臭氧氧化法处理废水。在偏碱性的条件下降低废水COD的效果较好,同时废水COD的去除效果随臭氧浓度的增大而提高。

(2)采用臭氧氧化法处理废水,臭氧氧化设备能显著提高废水的可生化性。在碱性和臭氧浓度较高的条件下,对废水BOD 与COD的比值的提高效果较好。

(3) 过臭氧氧化设备后的废水。其中的难降解的芳烃类的含量也大大降低,废水中芳烃类物质的含量越少,废水的BOD 与COD的比值越高,可生化性越好。

(4)随着废水处理效果的提高,臭氧氧化设备的成本也随之增加,单纯采用臭氧氧化法来降低废水的COD从经济上并不合理,而通过臭氧氧化法适度处理,提高废水的可生化性后,再通过生化的方法降低废水的COD,经济上会更合理。

臭氧联合氧化技术在污水处理方面的新进展

臭氧联合氧化技术在污水处理方面的新进展 贾瑞平,陈烨璞 (上海大学理学院化学系,上海200444) 【摘要]介绍了近年来国内外采用臭氧以及臭氧联合氧化技术在污水处理研究方面的新进展。在低剂量和短时间内臭氧难以完全矿化有机物,且分解生成的中间产物会阻止臭氧的进一步氧化。但以其他方法与臭氧联用,可大大促进臭氧分解,提高有机物的去除率。因此臭氧与过氧化氢、紫外线、超声波、光催化以及生物技术等多种手段联用于水处理已经成为目前研究的热点,并取得了显著的进步。 【关键词]臭氧;污水处理;高级氧化;生物处理;联合氧化 水是人类社会得以存在和发展的重要资源。随着人们对水的需求越来越多。污水处理后回用成为解决水资源短缺问题的有效途径。 臭氧是一种强氧化剂。用于污水处理可有效地消毒、除色、除臭、改善水味、去除有机物和降低COD等。因此,近年来臭氧及其与其他手段联合用于处理各种污水的技术获得了迅速的发展。笔者着重讨论了近年来臭氧联合氧化技术用于污水处理方面的新进展。l臭氧氧化法 臭氧是一种强氧化剂,氧化电势为2.07V,与有机物反应时速度快并且可就地生产,原料易得,使用方便,不产生二次污染。臭氧能与水中各种形态存在的污染物质(溶解、悬浮、胶体物质及微生物等)起反应,将复杂的有机物转化成为简单有机物,使污染物的极性、生物降解性和毒性等发生改变。多余O3可自行分解为O2。 刘和义等对极难生物降解的呋吗唑酮模拟废水进行了臭氧化处理研究。当模拟废水中呋吗唑酮初始质量浓度为500mg/L,pH128,臭氧投加量2g/L时,BOD5/COD>03,可生化性显著高;臭氧投加量6g/L时,脱色率达100%,CODQ和TOC去除率分别达到95.9%和95.2%。水中有机物基本矿化。卢宁川等采用臭氧氧化的方法.对某厂苯酐车间的增塑剂废水的氧化降解过程进行了探讨。结果表明,将废水pH调至9、臭氧氧化时间为60min时,对增塑剂废水中COD的去除率较高,可达41.5%,适当提高pH可加快污染物的氧化速率,同时降低了臭氧投加计量比值。从而增加了臭氧的利用率。 王长友等采用臭氧氧化法降解金矿氰化废水,废水水样pH为8.0~9.0,当氧化反应时间达到12min,臭氧投加量为133.33mg/L时,氰化物去除率达到98.1%.残余氰化物质量浓度为0.43mg/L。 Y.Chen等研究了臭氧氧化降解水溶液中的2-巯噻唑(2一MT)。当2一MT全部分解时,硫酸盐生成率和TOC去除率分别为24%和2.3%。在实验中,增加臭氧量,则硫酸盐生成率和TOC去除率最大值分别可达48%和16%。实验结果同时也表明,在2一MT的杂环结构中,N、S原子很难被氧化成硝酸盐和硫酸盐。所以2一MT臭氧化的产物还需进一步氧化。 2臭氧联合氧化法 2.1高级氧化技术 利用催化降解技术或光化学方法氧化降解污染物的过程通常称为高级氧化过程(AdvancedOxidationProcessAOP)。与其他传统水处理方法相比,高级氧化技术具有选择性小、反应速度快、可有效减少THMs的生成量、可将THMs的前体物彻底氧化为二氧化碳和水以及对TOC和COD去除效率高等优点。

臭氧—生物活性炭工艺对化工污水深度处理方法的研究

臭氧—生物活性炭工艺对化工污水深度处理方法的研究 摘要:本研究采用臭氧- 生物活性炭工艺深度处理化工污水,并对其的作用机理进行详细论述,探讨了化工污水深度处理的工艺流程,考察了影响此工艺对化工污水的处理效果的因素。结果表明:臭氧-生物活性炭工艺主要是利用臭氧化学氧化、活性炭物理吸附和微生物氧化降解的原理。水温、处理水量、臭氧投加量等都对工艺的去除效果产生影响。 关键词:臭氧生物活性炭化工污水深度处理 随着经济的迅速发展和科技的进步,工厂的不断扩建,水污染逐渐加剧。工业废水是水污染最主要的原因,造成的水污染最严重。主要是由于工业废水中含有重金属、各种有机物等污染物,成分复杂,不易分解,在水中得不到净化,处理困难。水资源回用是实现污水资源化的直接措施,是解决城市水资源危机的重要途径,是保护水资源、改善水环境的必然要求,也是协调城市水资源与水环境的根本出路[1]。 一、臭氧-生物活性炭工艺 1.论述 1.1 臭氧-生物活性炭工艺的概念 臭氧-生物活性炭工艺利用臭氧的强氧化能力将难降解有机物分解为易降解的小分子有机物,再通过活性炭吸附和微生物降解的协同作用将其去除,结合了过滤、吸附、高级氧化和生物处理等多种技术[2]。臭氧在室温下为无色气体,但有臭味,具有较强氧化能力,用于废水处理不仅反应速度快,脱色效果好,不产生污泥和无二次污染,而且可杀菌及除臭,操作简单。活性炭吸附能力强,活性炭可以作为微生物繁殖生长的载体,利用微生物的降解作用,来处理废水,效率更高。 1.2 深度处理 深度处理是将二级处理出水经过物理、化学和生物处理去除污水中各种不同性质的杂质的技术。污水深度处理的新技术逐渐被发现,主要有对污水进行消毒、混凝—沉淀—过滤、活性炭吸附、曝气生物滤池、人工湿地、高级氧化、膜处理(包括微滤、超滤、纳滤和反渗透等)和电渗析、离子交换等[3]。当水中污染物含有亚甲蓝活性物质,可采用泡沫分离、活性炭吸附、生物氧化的手段,含有有毒有机物时,采用化学氧化、活性炭吸附的方法进行处理。当废水中含有无机物氨氮时,采用吹脱、生物氧化、化学氧化、离子交换、反渗透等方法,含有磷酸盐,采用混凝、沉淀、生物氧化的方法,存在硝酸盐时,采用生物脱氮、离子交换等方法。

高级氧化技术

高级氧化技术 Advanced Oxidation Process 摘要:随着我国国民经济的快速发展,高浓度的有机废水对我国宝贵的水资源造成了威胁。高级氧化法(Advanced Oxidation Process,简称AOPs)可将其直接矿化或通过氧化提高污染物的可生化性,同时还在环境类激素等微量有害化学物质的处理方面具有很大的优势,具有很好的应用前景。 关键词:高级氧化技术;臭氧氧化;湿式氧化;污水处理 Abstract: With the rapid dev elopment of our country’s national economy, the high-concentration organic wastewater has been threatening precious water resources in our country. However, a new technology called Advanced Oxidation Process (short for AOPs) is able to improve the biodegradability of the wastewater through mineralizing or oxidizing it. Additionally, it has the advantage over handling environmental hormone mimic and the other micro harmful chemicals. So that, AOPs has a very good application prospect. Key words: Advanced Oxidation Process, Ozone Oxidation, Wet Oxidation, Wastewater Treatment. 一、高级氧化的概述 目前废水处理最常用的生物法对可生化性差、相对分子质量从几千到几万的物质处理较困难,而化学氧化法可将其直接矿化或通过氧化提高污染物的可生化性,同时还对环境类激素等微量有害化学物质的处理方面有很大的优势。然而 O3、H2O2和Cl2等氧化剂的氧化能力不强且有选择性等缺点难以满足要求。1987年Gaze等人提出了高级氧化法(Advanced Oxidation processible, 简称AOPs),它克服了普通氧化法存在的问题,并以其独特的优点越来越引起重视。 1.高级氧化的过程 Glaze等人将水处理过程中以羟基自由基为主要氧化剂的氧化过程称为AOPs过程,用于水处理则称为AOP法。典型的均相AOPs过程有O3/UV, O3/H2O2, UV/H2O2, H2O2/Fe2+(Fenton试剂)等,在高pH值情况下的臭氧处理也可以被认为是一种AOPs过程,另外某些光催化氧化也是AOP过程。 2.高级氧化的特点 近几十年来,国内外在难降解持久性有机污染废水处理方面开展了较多的研究,高级氧化法以其巨大的潜力以及独特的优势在过去二十多年中脱颖而出,与其它传统水处理方法相比,高级氧化法具有以下特点: (1)产生大量非常活泼的HO?自由基,其氧化能力(2.80V)仅次于氟(2.87V),

饮用水处理中的臭氧氧化及其相关氧化工艺

饮用水处理中的臭氧氧化及其相关氧化工艺 曹仲宏 摘要:本文总结了臭氧(O3)氧化及其相关氧化工艺(如O3/H2O2和O3/UV)在天然水(地表水及地下水)处理中的主要应用。在整个水处理中氧化剂可在多点投加:预氧化,中间氧化,末端消毒。文中论及O3氧化的以下几个方面:去除无机物,促进凝聚-絮凝处理,氧化天然有机物,氧化微污染物,消毒。 关键词:臭氧;深度氧化工艺;饮用水;氧化副产物;三卤甲烷 由于O3具有强氧化能力,O3在近几年已被广泛应用于去除天然水中的化合物(主要是有机类,腐殖质,有毒微污染物)。然而,在O3氧化处理中,也有一些污染物很难处理,有些则生成难于更进一步处理的氧化副产物。 在整个处理过程中,氧化剂的投入主要有三种方式:预氧化,中间氧化及末端消毒。通常,预氧化可去除无机矿化物、色度、浊度、悬浮物及令人不愉快的嗅和味,还可部分地降解天然有机物和灭活微生物,预氧化还可强化凝聚-絮凝效果。中间氧化旨在降解有毒微污染物,去除三卤甲烷(THMs)前体,及增强可生物降解性(以便后续砂滤或GAC(granular activated carbon颗粒活性炭)过滤能较完全地去除有机物)。末端消毒应去除所有剩余微生物并使DBPs (disinfection by-products 消毒副产物)的形成最少[1]。 本文论及O3氧化的以下几个方面:(1)去除无机物;(2)促进凝聚-絮凝处理;(3)氧化天然有机物;(4)氧化微污染物;(5)消毒。 一、去除无机物 预氧化可去除大多数无机物,但预氧化后必须有过滤或凝聚-絮凝-沉淀处理措施,以除去金属离子氧化后形成的不溶物。氨氮可由O3氧化成硝酸根离子,这样氨可通过后续生物硝化作用去除(在砂滤器中或GAC过滤器中)。此外,在溴化物存在情况下,通过O3氧化氨能被分解成为氮气(N2),此过程中,Br-被O3迅速氧化成HOBr,HOBr进一步与氨反应生成N2和Br-;溴化物能被O3再氧化,从而迅速去除氨。 水中溴化物在预氧化中会生成HOBr/BrO-,长时间氧化会生成潜在致癌物溴酸盐,因此必须最大限度减少其生成,这可通过优化影响溴酸盐生成的O3氧化

催化臭氧氧化反应器适用范围及工艺概述

催化臭氧氧化反应器适用范围及工艺概述 化工废水、印染废水、印刷油墨废水、喷漆喷油废水、电镀废水治理工艺到现在已有很多成熟的工艺了,氧化反应器在废水治理中为做出很大的贡献。常规工艺是化学混凝沉淀、气浮和生化处理工艺,但废水中各种成分的污染物都有,废水有机物浓度高,盐类含量高,有的成分对微生物有毒害作用,生化处理效果不是很理想。且很多有机物是溶于水中,用物理方法如沉淀、气浮工艺处理效果也不佳。 针对这种状况,我公司组织一了批长期从事废水治理的专家、技术员,经多年的攻关研究,开发出了一套常温常压光电催化氧化反应器的废水治理设备,专门对高浓度,难生化的工业污水进行处理。 三、设备优点 1、设备适用范围广:即可适用于新建废水处理的配套设备,也可适用于现在废水处理设备的改造。可放于废水治理工艺的前端,根据实际情况也可用于废水治理后面(主要是去除COD)。还可适用于高浓度难降解废水的生物预处理,改善废水可生化性。特别适用于小型工业废水有机物的一次性治理。 2、紫外灯装置采用一体化浸没式,可从管两端安装和拆卸,清洗更换方便,因废水PH 调节在弱酸性,金属离子不会发生沉积,有机物被彻底氧化,催化氧化装置内不会发生结垢和有机物粘附现象,无需经常清洗。这样处理工艺简单,操作管理方便。根据情况进水前可选择安装前置永磁防垢除垢器,利用永磁(铷、铁、硼),当水通过磁场时,水分子在磁场的作用下,产生扭曲、变形、反转、震动、使其分子加强从而使原来的水中缔合形成的各种链状、团状的大分子(H2O)N,解离成单个双分子 (H2O)2,使水的活性增加,改变了水的物理结构通过磁场对溶液中的离子产生作用,使水中钙、镁盐类结垢物的针状结晶改变成颗粒状结晶体,使它们不能交织在一起成为坚硬的水垢附着在器壁或管壁上。而成为微小的颗粒沉淀于底部,随排污排出,从而达到防水垢的作用;对原有的老水垢也可通过已处理水的作用,使之逐渐剥蚀、软化、松动、龟裂、直到脱落,达到除垢目的。防止废水中的盐类在紫外灯套管表面结垢。 3、该设备在常温常压下运行,控制简单方便,维护少,可实现全自动控制。 4、反应最终产物是二氧化碳、水、氮气及其它无害氧化物,不产生二次污染,特别适用于污水回用的预处理工艺,保证污水回用进水水质,防止有机物对RO膜造成污堵。 5、催化表面积大,一立方水的平均催化面积达20平方米,催化效率高;紫外光能利用充分,大大降低单位处理能耗。运行成本较原有工艺要低,药剂用量比原有工艺要少,处理效果比原有工艺好,同时减少废水中可溶性固体的增加。 四、废水治理工艺说明:

利用臭氧深度处理污水并进行尾气回收利用的技术实例

利用臭氧深度处理污水并进行尾气回收利用的技术实例 金 敦 (上海市政工程设计研究总院(集团)有限公司,上海 200092) 摘要 臭氧工艺在污水处理行业是一种先进、高效的处理方法,在市政污水处理中,可利用臭氧的强氧化性,脱色、去除COD、消毒等。受制于处理成本的因素,臭氧工艺在市政污水处理行业使用不多。如果将臭氧工艺产生的尾气予以回收利用,则可以降低臭氧工艺的处理成本,提升该工艺的竞争力。通过对即墨市污水处理厂臭氧尾气回收利用设计实例的介绍,分析了臭氧尾气回收利用技术适用情况与应用前景。 关键词 污水处理厂 臭氧 尾气回收利用 收集 增压 输送 控制  0 前言 在污水处理行业中,臭氧工艺因其处理成本较高,仅在小规模工业废水处理中有所应用,而市政污水处理应用较少。 随着城市经济发展,进入市政污水处理厂的污水组成也日趋复杂,纯粹以处理生活污水为主的污水处理厂少之又少,大部分污水处理厂还需纳入部分工业废水一并处理,如果纳入的工业废水中含有印染、医药、化工等难降解的废水,采用常规的处理手段难以处理;与此同时,国家对水域生态环境保护也日益重视,各地污水处理厂尾水水质标准日益提高,目前,排入主要流域的尾水水质基本都要求达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)中的一级A标准,对尾水COD、色度、粪大肠菌群的达标排放都提出了更高的要求。在这样的背景下,臭氧工艺在市政污水处理的应用也将逐步增多。 在市政污水处理中,可利用臭氧的强氧化性,在深度处理阶段进行脱色、去除COD(尤其是可溶性不可降解COD,亦称nbsCOD)、消毒等。大多数情况下,臭氧工艺产生的尾气———氧气都白白排出,按臭氧浓度10wt%计,用于制备臭氧的90%氧气最终将浪费。运行成本是臭氧工艺在污水处理中应用的一个瓶颈,如果能对这部分尾气予以利用,将极大降低臭氧工艺的处理成本,充分发挥臭氧工艺在市政污水处理行业的作用,提升该工艺的竞争力。 本文结合青岛即墨市污水处理厂扩建升级工程的实例,介绍了污水处理厂臭氧尾气回收利用的技术。在即墨市污水处理厂扩建升级工程中,臭氧氧化后产生的尾气———氧气,予以回收利用,用于生物反应池的供氧,即发挥了臭氧氧化工艺的效用,又降低了臭氧氧化工艺的处理成本,为臭氧尾气回收利用的应用提供了参考和借鉴。 1 工程概况 即墨市污水处理厂一、二期工程处理规模为12万m3/d,采用A2/C氧化沟工艺,经生物处理、加氯消毒后排放,设计出水水质执行《城镇污水处理厂污染物排放标准》(GB 18918—2002)中的二级标准。随着当地污水量的增长及当地环保部门对流域水环境保护的要求,需对污水处理厂实施扩建升级工程。扩建规模3万m3/d,扩建后污水处理厂处理规模达到15万m3/d,出水水质执行《城镇污水处理厂污染物排放标准》(GB 18918—2002)中的一级A标准。 即墨市污水处理厂进水成分非常复杂,近50%的污水为工业废水,且印染废水的比重较大,进水色度较高(达到200~300倍),透光率低,即墨市污水处理厂一、二期工程采用二氧化氯的消毒工艺,对脱色效果不明显,感观较差,出水色度指标较高。为解决脱色问题,污水处理厂也尝试使用了多种脱色剂,但由于污水处理厂进水成分复杂,单一的脱色剂并不能有效的去除各类成分的发色基团,虽然脱色剂投加后对尾水脱色有一定效果,但是效果并不明显。因此,出水标准提高后,采用常规处理手段,色度很难稳定达标。除了色度问题以外,大量的工业废 水

臭氧氧化技术在废水处理的运用

臭氧是一种具有强氧化性的化学药剂,可在水中开展如氧化还原等各类化学反应,利用臭氧氧化技术对污水进行二次处理可有效提升水的质量。相较于世界其他国家,我国对于臭氧氧化技术的应用时间较晚,因此,臭氧氧化技术在我国工程中的实际应用效果与其他国家相比也具有一定差距。此种状况下,我们更加致力于研究臭氧氧化技术于工程中的应用,努力拓展臭氧氧化技术的使用范围,使之更加广泛的服务于我国各类工程废水处理工作当中。 1利用臭氧氧化技术处理废水的工作过程 现如今,臭氧氧化技术已然成为废水处理领域的未来趋势,臭氧氧化技术与废水处理领域的运用可有效降低废水处理工艺中所耗费 的各项资金。臭氧氧化技术可有效降解废水中的各类生物,并对其中包含的化合物进行良好处理。在臭氧氧化技术的实际应用过程中需充分考量废水溶剂流量及符合率,并以此两者的实际变化程度作为依据,选取不同的处理方式。若废水具有较高的容积流量且具有较低的符合率,可利用生物处理-臭氧的方法来开展废水处理工作,此种处理方法的操作流程较为简单,具有较强实用性,处理起来也较为方便,臭氧消耗程度较低。若废水处理工作中需用到生物处理-臭氧-生物处理方法,则需在对其的实际应用过程中细致分析臭氧投加量,并对其予以良好管控,通过调节臭氧投加量的方式来提升废水处理过程中生物的可降解程度。在各领域应用臭氧氧化方法行废水处理操作时需充

分考虑所运用处理方法的经济效益,以在使废水处理质量得到保障的同时降低对各项能源与资金的消耗[1]。 2臭氧氧化技术在我国废水处理工作中的实际应用 饮用水处理领域是臭氧氧化技术与我国大规模工业化应用的首要阵地,臭氧氧化技术是近些年来才开始逐步应用于我国废水处理领域中的。臭氧氧化技术在我国废水处理工作中的实际应用案例如下:(1)我国某公司污水处理站以往采用的污水处理工艺为混凝-厌氧-好氧 生物组合工艺,每天可处理废水15000立方米,出于对部分出水进行深度处理并回收利用的目的,其采取了一体化臭氧曝气生物滤池与上流式曝气生物滤池的组合工艺,将此项废水处理工艺作为后续膜分离系统的预处理方法,确保废水处理工序结束后所得的反渗透水可回收并应用于该公司的染整工序,且浓缩液质量达到国家相关排放标准。该公司污水处理站在升级改造后每天可多处理废水5000立方米,在公司生化出水后对废水行砂滤操作,并利用一体化臭氧曝气生物滤池与上流式曝气生物滤池对其进行处理,处理完毕后再对其进行砂滤、超滤操作,得到反渗透水。该公司共投入约800万元用以污水处理站的改造,改造结束后该公司的废水处理运行费用为每立方米废水0.45元[2]。(2)我国中石化某分公司将经过膜生物反应器处理的炼油废水作为原水,利用臭氧氧化-多级过滤-活性炭吸附-臭氧氧化方式对其进行处理,使废水中的污染物含量获得了有效降低,处理后的出水水质与中石化所制定的回用水水质要求相符,成功使处理后的废水成为了补充水与循环水。(3)我国某企业,以生产手机显示屏强化玻

臭氧氧化法处理印染废水

臭氧氧化法处理印染废水 在我国工业废水中,印染废水占的比例较高,因其有机物含量高、碱性大、水质变化大、废水量大,而成为极难处理的工业废水之因具有很强的氧化能力(酸性溶液中氧化还原电位高达2.07V),一。O 3 成为诸多难降解工业废水处理工艺的首选氧化剂。Khadhraoui等在利用臭氧处理刚果红的研究中发现,在氧化初期,臭氧本身可以将刚果红完全氧化脱色,且该实验结果符合假一级反应动力学模型。臭氧对直接、酸性、碱性、活性等亲水性染料脱色速度快,效果好;对于还原、纳夫妥、氧化、硫化、分散性染料等疏水性染料脱色效果较差,臭氧用量大;对于含铬染料废水,反而会生成六价铬离子,毒性更强。通过高级氧化和活性炭负载催化剂来提高臭氧催化氧化性能。 1.臭氧氧化机理 臭氧氧化有机物的途径有两种:直接反应和间接反应。直接反应是臭氧通过环加成、亲电或亲核作用直接与污染物反应;间接反应是臭氧在碱、光照或其它因素作用下,生成氧化性更强(氧化还原电位为2.8eV)的羟基自由基(·OH),·OH可以通过不同的反应使溶解态无机物和有机物氧化,主要包括:电子转移反应、抽氢反应和·OH 加成反应。臭氧直接作用于有机物时反应具有选择性,速度慢。而臭氧溶于水后形成的·OH,可以无选择性地将水中的有机物矿化,或使结构复杂、有毒的大分子有机物发生断链、开环等反应,生成结构简单、无毒或低毒的小分子化合物,且速度较快。 臭氧的强氧化性能破坏染料分子中的—N==N—、C==C、C

==O、—N==O等发色基团,使印染废水脱色。费庆志等采用臭氧氧化法降解酸性嫩黄染料,发现在酸性条件下(pH=4)臭氧对该染料的脱色效果较好。Zhang Hui等采用臭氧氧化法降解酸性橙7模拟染料废水时,加入氯化物屏蔽·OH,并未对染料的脱色率造成影响,从而得出了臭氧对该染料的脱色以直接氧化为主的结论。而章飞芳等用臭氧氧化活性艳红KE-3B模拟染料废水,发现在碱性条件下(pH=10)脱色效果好,且脱色速度较快。这可能是因为不同种类的染料,其分子结构有很大差异,有些染料与臭氧的反应活性较强,直接反应就能使其脱色。在碱性条件下虽然产生氧化性更强的·OH,但·OH可以无选择性地与染料发色基团之外的其它结构反应,导致在相同臭氧投加量下染料的脱色率降低。对于一些不易被直接氧化的染料,则需要依靠·OH来破坏其发色基团,以达到脱色的效果。 2.臭氧高级氧化处理印染废水 用复合氧化剂分解水中的有机污染物比单一氧化剂O3或H2O2 的处理速率显著加快,其原因是复合氧化剂产生的氧化作用不同于单一O3或H2O2自身的氧化作用。在O3水溶液中添加H2O可提高O3进入水中的质量迁移(提高因子为1.7),增强了O3分解产生·OH的能力,提高氧化效率。由于·OH的发生量取决于O3和H2O2的用量,因而直接影响到CODCr的脱除效果。 Glaze等的研究表明,增加O3水溶液的pH值或向其中添加H2O2能极大提高·OH的产生量和速率,并能将水溶液中的·OH物质的量浓度维持在较高的水平。随pH值增加,氧化速率增大,在pH<7时,反应

均相催化臭氧氧化设备处理染料废水技术

均相催化臭氧氧化设备处理染料废水技术 催化臭氧氧化设备是使催化剂和反应物作用, 形成不稳定的中间产物, 改变反应途径, 或加快氧化剂的分解并使之与水中有机物迅速反应, 在较短的时间内降解染料分子并提高氧化剂的利用效率的方法。而光电催化氧化技术根据催化剂的形态不同又分为均相催化臭氧化和非均相催化臭氧化。 催化臭氧氧化设备 1、均相催化臭氧氧化设备处理染料废水技术 前人多选用均相催化剂处理染料废水,虽然均相催化臭氧氧化可以达到令人满意的处=理效果, 但因为催化剂是以离子的形态分布在水中,无法与反应体系分离, 处理完毕后催化剂便同染料废水一起排放, 不仅造成催化剂的流失浪费, 同时也造成了水体的金属离子的二次污染。为了解决这一问题, 研究人员把具有催化作用的活性组分通过某些方法固定到一些载体上, 把负载了活性组分的固体催化剂投入到废水中在臭氧存在的条件下与废水反应, 进行非均相催化臭氧氧化反应。 2、非均相催化臭氧氧化设备处理染料废水技术 在非均相催化中, 催化剂是以固态存在, 主要有贵金属系、铜系和稀土系三大类。而贵金属因为价格昂贵其应用受到限制, 目前研究最多的是廉价金属及金属氧化物。非均相催化剂根据其制备工艺分为非负载型和负载型, 目前研究的重点在负载型非均相催化剂。负载型非均相催化剂由载体、活性组分和助剂三部分组成。常用的载体有Al2O3、沸石、活性炭纤维、分子筛等, 活性组分多为过渡金属。

为了进一步提高催化臭氧氧化的效果, 往往需要在单组分催化剂的基础上进行多元组分催化剂的研究, 根据催化剂的制备条件、各种活性组分的配比和助剂的选择来制备催化效率更高的催化剂。

臭氧高级氧化设备操作说明

超临界臭氧高级氧化—旋流溶气气浮 一体装置(CDOF) 操 作 手 册 深圳科力迩科技有限公司

一、臭氧高级氧化技术 1、臭氧的性质 在水中具有高达2.7V的氧化还原电位,氧化能力仅次于氟,能与水中各种形态存在的污染物质(溶解、乳化、悬浮、胶体及微生物等)起反应,将复杂的有机物转化成简单有机物、酸及醛等,将氨氮、总磷转化成酸和盐类,同时也能够有效去除浊度、色度、臭味以及杀菌等作用。由于臭氧对各种污染物综合去除能力强,不产生二次污染,已广泛用于饮用水、石油石化废水等处理。 2、高级氧化技术 目前,单独使用臭氧氧化,仍然存在反应速率较慢,利用率不高,导致成本偏高,高级氧化技术能够有效提高臭氧利用率和氧化能力,已经逐步得到应用。 A、O3/H2O2等高级催化氧化、 B、O3/UV高级氧化、 C、O3/超临界高级氧化 D、O3/活性炭高级氧化、 O3/金属催化剂高级氧化等 3、臭氧氧化技术特点 1)处理效果好,能够有效去除各种污染物,实现“一弹多星”; 2)反应速度快,处理效率高,占地面积小; 3)无需任何化学药剂,无二次污染。 4)占地面积少,体积小,重量轻; 5)自动化程度高、运行稳定、安全可靠。

二、臭氧高级氧化-旋流溶气气浮一体装置-CDOF设备介绍 CDOF创造性地将超临界臭氧高级氧化技术、旋流技术和溶气气浮技术有机结合,相互强化,能够有效去除水中各种状态(溶解、胶体、乳化等)污染物。去除效果和分离速度是常规臭氧氧化和气浮无法达到的。 1、CDOF原理 超临界空化效应:当用足够大振幅的超临界作用于液体介质时,在负压区内介质分子间的平均距离会超过使液体介质保持不变的临界分子距离,液体介质就会发生断裂,形成微泡,微泡进一步长大成为空化气泡。在紧接着的压缩过程中,这些空化气泡被压缩,其体积缩小,甚至崩溃消失,在空化泡崩溃的极端时间内,会在其周围的极小空间范围内产生1900-5200K的高温和超过压力100MPs 、急剧冷却速度达10,000000000K/s,并伴有强烈的冲击波和时速高度400Km/h的射流。这些极端的条件下会使水中溶解的臭氧和水的分子键发生断裂,产生具有强氧化性的羟基自由基·OH。它可以快速地无选择性的分解难降解有机污染物。 2、CDOF技术特点 1)快速高效去除绝大多数有机物(溶解、悬浮、胶体等),降低COD,提高可生化性; 2)去除乳化油,溶解油,悬浮物 3)去除氨氮、磷、酚类、硫化物、氰化物等; 4)去除浊度、色度、臭味等 5)细菌、病毒、芽孢、软体微生物等

催化臭氧技术

一、水处理催化臭氧技术 催化臭氧技术是基于臭氧的高级氧化技术,它将臭氧的强氧化性和催化剂的吸附、催化特性结合起来,能较为有效地解决有机物降解不完全的问题。催化臭氧化按催化剂的相态分为均相催化臭氧化和多相催化臭氧化,在均相催化臭氧化技术中,催化剂分布均匀且催化活性高,作用机理清楚,易于研究和把握。但是,它的缺点也很明显,催化剂混溶于水,导致其易流失、不易回收并产生二次污染,运行费用较高,增加了水处理成本。多相催化臭氧化法利用固体催化剂在常压下加速液相(或气相)的氧化反应,催化剂以固态存在,易于与水分离,二次污染少,简化了处理流程,因而越来越引起人们的广泛重视。 1催化臭氧化 对于催化臭氧化技术,固体催化剂的选择是该技术是否具有高效氧化效能的关键。研究发现,多相催化剂主要有三种作用。 一是吸附有机物,对那些吸附容量比较大的催化剂,当水与催化剂接触时,水中的有机物首先被吸附在这些催化剂表面,形成有亲和性的表面螯合物,使臭氧氧化更高效。 二是催化活化臭氧分子,这类催化剂具有高效催化活性,能有效催化活化臭氧分子,臭氧分子在这类催化剂的作用下易于分解产生如羟基自由基之类有高氧化性的自由基,从而提高臭氧的氧化效率。 三是吸附和活化协同作用,这类催化剂既能高效吸附水中有机污染物,同时又能催化活化臭氧分子,产生高氧化性的自由基,在这类催化剂表面,有机污染物的吸附和氧化剂的活化协同作用,可以取得更好的催化臭氧氧化效果[3]。在多 相催化臭氧化技术中涉及的催化剂主要是金属氧化物(Al 2O 3 、TiO 2 、MnO 2 等)、 负载于载体上的金属或金属氧化物(Cu/TiO 2 、Cu/Al 2 O 3 、TiO 2 /Al 2 O 3 等)以及具有 较大比表面积的孔材料。这些催化剂的催化活性主要表现对臭氧的催化分解和促进羟基自由基的产生。臭氧催化氧化过程的效率主要取决于催化剂及其表面性质、溶液的pH值,这些因素能影响催化剂表面活性位的性质和溶液中臭氧分解反应[4]。 1.1 (负载)金属催化剂 通过一定方式制备的金属催化剂能够促使水中臭氧分解, 产生具有极强氧

臭氧在废水处理中的应用

Cu-丝光沸石/臭氧催化—坡缕石联用工艺降解染料污水的初步研究 中国非金属矿工业导刊.2004年第5期 赵波1,尹琳1,卢保奇2,李真1,邹婷婷2,郑意春1 (1.南京大学地球科学系内生金属矿床成矿作用国家重点实验室,南京210093; 2.上海大学材料科学与工程学院,上海201800) [摘要]对于生物难降解性有机染料,利用臭氧化加催化方法进行处理的效果较好。但由于臭氧能与许多有机物或官能团发生反应,生成有机小分子酸,使后处理的水体酸度大大增强,造成二次污染。本文主要针对这一问题将粘土矿物凹凸棒石和Cu-丝光沸石固体催化剂进行矿物复配。一方面提高臭氧化效果;另一方面调节臭氧化过程中的水体pH值。 O3/BAC工艺应用于城市污水深度处理 中国给水排水2004Vol.20 蒋以元1,杨敏1,张昱1,邓荣森2,周军3,淳二4(1.中科院生态环境研究中心环境水质学国家重点实验室,北京100085;2.重庆大学城市建设与环境工程学院,重庆400045;3.北京城市排水集团有限责任公司,北京100061;4.三菱电机株式会社先端技术综合研究所,日本国) 摘要:为使再生水适合不同用途,对经过混凝沉淀和砂滤处理的再生水进行了臭氧—生物活性炭的深度处理。在臭氧消耗量和反应时间分别为5mg/L和10min,BAC空床停留时间(EBCT)为10min的条件下,臭氧—生物活性炭工艺对CODMn、DOC、UV254和色度平均去除率为32.4%、29.2%、48.6%和80.1%,出水CODMn、DOC、UV254和色度的平均值分别为3.3mg/L、4.0mg/L、0.05cm-1和2.0倍;臭氧生物活性炭工艺出水SDI<4,从而满足了反渗透系统的进水要求。

无锡中桥水厂臭氧-活性炭深度处理工艺的运行研究

无锡中桥水厂臭氧一活性炭深度处理工艺的运行研究 邹琳,笪跃武,周圣东,胡侃 (无锡市自来水总公司,江苏无锡214073) 摘要:中桥水厂臭氧.生物活性炭深度处理工程是无锡优质安全供水工程之一.本文概述了项目背景,工程规族与水厂现有工艺流程,通过对臭氧一活性炭运行条件、主要污染物去除的研究,以及对管理经验、运行维护成本的分析,为其他以高藻,微污染特性为水源的水厂提供借鉴经验. 关键词:深度处理;臭氧活性炭;污染物去除;碘值;生物量;运行成本 WuxiZhongqiaoWaterStudyonOperationofOzone-ActiveCarbonProcessin Plant ZOULin,DAYue-wu,ZHOUSheng-dong 咖WaterSupplyGeneralCompany,Wuxi214073。China) Abstract:Theozone-biologicactivecarbonprocessforadvancedwatertreatmentofZhongqiaowaterplantisoneofwatersupplyprojectforsaflyandquality.Inthispaper,thebackgroundandthescaleofengineering,theprocessofplantarepresented.TheoperationconditionandCOStof03-BAC,removalofcontaminantsandmanagerialexperiencesarestudiedasakeyissue.Theresultofresearchcanprovideeffectivereferenceintreatingmicro-pollutedandalgaeladenrawwaterforotherwaterplants. Keywords:Advancedwatertreatment;Ozone-biologicactivecarbon;Contaminantsremoval;Iodinevalue;Biomass;Operationcost 1项目背景 2007年无锡“5.29”太湖蓝藻爆发事件发生后,社会各界对环境治理,太湖保护的重视达到了空前高度,在水源治理、调水引流、取水点优化延伸、蓝藻打捞、强化处理、控源截污、生态恢复、工程建设等多项举措保障下fl】,太湖水源水质逐年好转(部分指标见表1),从以Ⅳ类和V类为主的水体,转为以II类和Ⅲ类为主的水体。 裹1中桥水厂2006年-2011年水源水质情况 ‘j『、~竺.2006年2007矩2∞8年2009年2010年月 2011年1.7 7.77.57.77.57.77.6pH 浊度(NTU)54.152.654.648.748.738.4藻类(万个/L)1738230814958151372284COD(mg/L)6.395.494.654.123.842.87溶解氧(me/L)8.488.749.589.188.7610.5Nl-13-N(me/L)1.16O.78O.550.12O.12O.10N02-N(rag/L)0.0940.0290.0130.007O.0190.006尽管如此,太湖仍易受气候、水利、外排污染的影响,原水水质波动较大,夏季常受高 .193.

臭氧氧化法深度处理城市污水研究

臭氧氧化法深度处理城市污水研究 【摘要】臭氧属于一种强氧化剂,其有较强的氧化能力,仅次于天然元素氟的氧化能力。我们利用臭氧进行污水处理,不仅可以除掉水的臭味和脱色的效果,还可以杀菌进行消毒并降酚和降解COD、BOD等有机物的功效。运用以臭氧氧化法进行城市污水的深度处理的试验,主要是通过调整不同的反应时间进行调控臭氧投加量。实验的结果表明了臭氧氧化法对去除城市污水中的各类细菌数量、总大肠菌的群数、TOC、UV254和色度等可以达到预期的处理效果。 【关键词】臭氧氧化法;深度处理;城市污水 就世界的水资源状况来说,我国是水资源短缺比较严重的国家,因此进行城市污水的回收利用可以适度的缓解水资源短缺所带来的困境。但是现实问题是我国的多数城市污水处理厂所处理的水还不能直接发挥作用,还需要进一步的做深度处理。臭氧在杀菌、消毒、除臭、脱色、氧化难降解有机物等方面的作用较为显著,在各种水处理中运用越来越广泛。采用臭氧氧化法深度处理城市污水是一种较好的污水处理措施,能达到回收和利用水的水质标准的要求。 1 城市污水处理现状及常用方法 1.1 污水处理现状 从上世纪70年代开始我国就开始对城市污水的净化问题进行研究。这可以说是污水处理的第一阶段,主要重视引进国外的先进技术和设备,并与国外进行各项的技术交流,开始探索适合我国国情工程和技术,这为以后的全面的发展城市污水处理奠定了一定基础。从上世纪80年代开始,我国的城市排水设施技术发展较快,多数城市对污水的处理达到了较高的层次。到1995年前后,我国城市排水系统的建设已经达到了较完备的层次,按实际的发挥的作用的面积计算,城市排水管网的建设普及率已经达到70%以上。到2000年以后,全国大面积的投入污水处理设施,加强了城市污水处理工程的建设,就2000年投资额达到了150亿元。现阶段的城市污水处理的处理设施多数已经废旧。但更新设备和更新技术方面需要的运行资金严重缺乏,污水处理的工艺技术开始有所改进,由过去仅仅注重去除有机物,到有效的除掉磷和脱氮功能。 1.2 常用的污水处理方法 常用的污水处理方法有活性污泥法、生物膜法和氧化法。城市生活污水的处理多数情况下运用活性污泥法,目前它是世界各国常用的的一种生物处理流程,不仅能够达到较好的水质的优点;而且有较强的处理能力。另外就是出水生物膜法,其在污水生物处理的发展和应用中过程中也占有一定的地位。生物膜法多是用于从废水中去除溶解性有机污染物,其主要的特点是微生物附着在介质“滤料”表面,形成生物膜,污水同生物膜接触后,溶解的有机污染物被微生物吸附转化为H2O、CO2、NH3和微生物细胞物质,最后达到净化污水的效果。 2 臭氧氧化法污水深度处理 2.1 臭氧氧化法污水深度处理特点 臭氧在水溶液中的强烈氧化作用,主要是由臭氧在水中分解的中间产物OH 基及HO2基引起的。很多有机物都容易与臭氧发生反应。臭氧对水溶性染料、蛋白质、氨基酸、有机氨及不饱和化合物、酚和芳香族衍生物以及杂环化合物、木质素、腐殖质等有机物有强烈的氧化降解作用;还有强烈的杀菌、消毒作用。 2.2 臭氧氧化法深度处理污水实验

臭氧在自来水厂深度处理工程中的应用

臭氧在自来水厂深度处理工程中的应用(图) 信息来源:本站搜集更新时间:2006-12-12 16:49:14 (一)自来水厂深度处理工程介绍 水厂供水水源为大运河支流,全长约10km,河宽41m,最大水深2.72m,平均流速达0.025m/s,近年来受有机污染的程度逐年加大,水中的氨氮、色度、亚硝酸盐、耗氧量及铁、锰的含量偏高,原水浊度25~272.6NTU,色度6~40,铁0.23~2.80mg/L,氨氮0.5~5.0,CODMn3.28~8.90。按地面水环境质量标准(GB3838--2002)评价属Ⅳ~Ⅴ类,为微污染原水。 为了降低出厂水色度、氨氮及有机污染物的含量,水厂投入了大量资金及人力进行技改,增加生产及管理的技术含量,克服种种不利因素,基本保证了供水水质综合合格率达标,但随着在常规处理工艺中氯的大量投加,增加了出厂水中三氯甲烷等卤化烃和致癌变物质等的含量。水中的异味严重,色、嗅、味不能满足要求。 随着人们生活水平的提高,市民对饮用水质量的要求相应提高。国家已颁布新的《生活饮用水卫生规范》,因此针对日益恶化的原水水质,采用新颖的预处理工艺、臭氧活性炭深度处理工艺,是改善出厂水水质的必要手段。 水厂深度处理工程设计规模为15×104m3/d,结合原有8万吨常规处理,二期扩建7万吨包括常规处理,处理对象为微污染原水,主要水质指标是色度、耗氧量、氨氮及锰。 水厂目前设计供水能力8万立方米/日,远期规模达到15万立方米/日。水厂有常规处理2.5万立方米网格反应平流沉淀池两座,5万立方米四阀滤池1座,3万立方米网格反应平流沉淀池、四阀滤池各1座。深度处理工程,即在原有常规处理工艺基础上,增加预处理和臭氧活性炭深度处理工艺。现将该工程设计和建设特点介绍如下: 1 设计介绍 水厂深度处理工程建设规模为15万立方米/日,分两期建设。一期工程8万立方米/日,2002年7月正式动工,2003年5月投入运行。二期工程7万立方米深度处理包括常规处理,将在2003年8月正式动工。 通过技术经济比较,生物接触氧化工艺比较适合源水的水质特点,生物接触氧化池容易与水厂现有构筑物连接,且投资和运行费用较省。该工艺具有去除氨氮和有机物效果好、容积负荷高、耐冲击负荷、出水水质好且稳定、动力消耗相对较低等优点。同时此工艺在应用实践中,对停留时间曝气方式、填料品种、排泥和操作技术等工艺要素已有了大量的试验研究和较多的工程实例,取得了比较成熟的经验。因此,本工程采用生物接触氧化法作为预处理工艺。 原水经过生物预处理和常规处理后,水中有机污染物有了明显的去除。但由于水源水质较差,源水有机污染物含量较高,此时出水中有机物浓度还比符合《生活饮用水卫生规范》的要求,需后续补充深度处理工艺才能较大幅度去除。 饮用水深度处理的方法有高级氧化、活性炭吸附和膜法水处理工艺等,综合考虑经济和技术因素,在水厂中生产性运用较多的是臭氧--活性炭联用技术。本工程采用臭氧-活性炭法作为深度处理工艺。 臭氧-活性炭工艺主要涉及到臭氧的制造生产、投加及活性炭过滤等。臭氧的生产原料分为空气、纯氧和液氧三种,对三种臭

高级氧化技术——臭氧氧化技术在水处理中的应用

高级氧化技术——臭氧氧化技术在水处理中的应用摘要:高级氧化技术(Advanced Oxidation Processes,简称AOP):运用点、光辐射、催化剂,有时还与氧化剂结合,在反应中产生活性极强的自由基(·OH),正在通过自由基与有机化合物之间的加合、取代、电子转移、断键等,使水体中的大分子难降解有机物氧化降解为低毒或无毒的小分子物质,甚 至直接降解成为CO 2和H 2 O,接近完全矿化。 关键词:水污染高级氧化技术臭氧氧化 1简介 随着工业的迅猛发展和人类物质生活水平的提高,水环境污染已是普遍存在的问题。过去十年,许多国家都制定了十分严格的标准,这些标准都特别要求对生态系统有毒害影响的物质实施严格监控。对那些有毒且难以生物降解的化合物,需要用非生物降解的其它处理技术去除,化学氧化法就是其中之一,其目的就是将这些难降解的有害物质氧化成二氧化碳、水和无机物或至少也要氧化成无害的物质。许多文献报道那些难生物降解的污染物常常具有高化学稳定性,很难完全氧化,因此采用比常规净化处理工艺更有效的技术是必要的。【1】高级氧化技术是近年发展起来的一种新型的在常温常压下将那些难以用臭 氧单独氧化或降解的有机物氧化的方法。同其它高级氧化技术如O 3/H 2 O 2 、UV/ O 3、UV/ H 2 O 2 、UV/ H 2 O 2 / O 3 、TiO 2 / UV和CWAO 等一样,催化臭氧化技术也是 利用反应过程中产生大量高氧化性自由基(羟基自由基) 来氧化分解水中的有机物从而达到水质净化。 2臭氧氧化技术的特点 相对于传统工艺来说,臭氧氧化技术拥有它不可代替的领先优势: O 3+H 2 O+hv → O 2 +H 2 O 2 H 2O 2 +hv → 2·OH (1)此反应过程中产生大量氢氧自由基·OH(表现强氧化性的原因),反应速度快,多数有机物在此过程中的氧化速率常数可达106 ~109 L/(mol.s)。 (2)适用范围广,较高的氧化电位使得·OH几乎可将所有有机物氧化直至矿化,不会产生二次污染。

臭氧氧化设备深度处理技术及工艺效果

臭氧氧化设备深度处理技术及工艺效果 近年来,由于我国原油劣质化和原油资源全球化步伐加快,石化企业加工重质、劣质原油所占比例不断加大,从而导致企业高浓度有机废水的排放量不断增加:再加上为了提高市场竞争力,企业纷纷进行扩能改造,使废水产量不断加大:此外,国家即将提高外排废水的水质指标,这些都使废水处理装置的压力不断加大。虽然有少数企业对高浓度废水采用如臭氧氧化法等预处理工艺处理后再进人生化系统。 但生化处理后的炼油企业外排废水,出水水质不稳定,外排废水未达标的情况依然存在。这些不达标废水由于经过前期的生化处理,可生化性很差,所以处理起来比较困难。因为这些废水再采用生化法深度处理已无能为力,而臭氧氧化设备采活性炭吸附等深度处理技术成本又过高。膜分离技术由于投资昂贵和膜污染等实际问题,在应用上也存在一定难度。目前。多数企业只能通过混掺清水或其他中水来满足排放要求,造成水资源的巨大浪费。 臭氧氧化设备广泛用于去除水中的难生物降解有机物,能提高废水的BOD5和COD的比值,使其进一步生化处理成为可能。目前的高级氧化技术主要包括化学氧化法、电化学氧化法、湿式氧化法、超临界水氧化法和光催化氧化法等。 本研究探索采用臭氧氧化法处理可生化性很差的炼油废水的生化处理出水,考察了氧化反应的影响因素及氧化方法提高废水可生化性的能力。最后估算出氧化工艺的运行成本,为该类不达标炼油废水的进一步处理提供可以借鉴的思路。 (1)采用臭氧氧化法处理废水。在偏碱性的条件下降低废水COD的效果较好,同时废水COD的去除效果随臭氧浓度的增大而提高。 (2)采用臭氧氧化法处理废水,臭氧氧化设备能显著提高废水的可生化性。在碱性和臭氧浓度较高的条件下,对废水BOD 与COD的比值的提高效果较好。 (3) 过臭氧氧化设备后的废水。其中的难降解的芳烃类的含量也大大降低,废水中芳烃类物质的含量越少,废水的BOD 与COD的比值越高,可生化性越好。 (4)随着废水处理效果的提高,臭氧氧化设备的成本也随之增加,单纯采用臭氧氧化法来降低废水的COD从经济上并不合理,而通过臭氧氧化法适度处理,提高废水的可生化性后,再通过生化的方法降低废水的COD,经济上会更合理。

相关主题
文本预览
相关文档 最新文档