当前位置:文档之家› 110kV变电站保护配置及选型

110kV变电站保护配置及选型

110kV变电站保护配置及选型
110kV变电站保护配置及选型

摘要

本次设计的110KV变电站有两个等级,110KV/10KV,在本次设计中我主要对变压器、110KV线路及10KV线路进行了保护装置及整定计算,而且对其保护进行选型。对主变压器我配置了瓦斯保护和纵差保护为主保护,后备保护主要配置了过电流保护,复合电压启动的过电流保护、阻抗保护等。110KV线路配置了三段式距离保护和零序电流保护,10KV线路配置了定时限过流保护,为了达到直观易懂的目的,本次设计主要分为说明书和计算书两部分。

关键字:短路电流计算、保护配置分析、10kV变电站、保护配置、设备选型、整定计算

变压器保护配置

电力变压器是电力系统中十分重要的供电元件,它的故障将对供电可靠性和系统的正常运行带来严重的影响。同时大容量的电力变压器也是十分重要贵重的元件,再加上由于绝大部分安装在户外,受自然条件的影响较大,同时受到连接负荷的影响和电力系统短路故障的威胁因此,必须根据变压器的容量和重要程度考虑装设性能良好,工作可靠性的继电保护装置。

变压器内部故障可以分为油箱内和油箱外两种,油箱内故障包括绕组的相间短路、接地短路、匝间短路以及铁芯的烧损等。

变压器不正常运行状态主要有:由于变压器外部相间短路引起飞过电流和外部的过电流和而不接地短路的过电流和中性点过电流过电压,由于负荷过额定容量引起的过负荷以及由于漏油等原因而引起的油面降低。

根据上述故障类型和不正常运行状态,对变压器应装设下列保护:

(1)瓦斯保护

(2)纵差保护或电流速断保护

(3)反映外部相间短路时引起的过电流作为瓦斯、差动保护、电流速断保护的后备保护。

(1)过电流保护

(2)复合电压启动的过电流保护

(3)负序电流及低电流启动的过电流保护

(4)阻抗保护

(4)外部接地断短路时英采用的保护

(5)过负荷保护

(6)过励磁保护

(7)其他保护

变压器不正常运行状态:

由于变压器外部相间短路引起的过电流和外部接地短路引起的过电流和中性点过电压;由于负荷超过额定容量引起的过负荷以及漏油等原因而引起的油面下降。

①、零序过流:对于中性点不接地变压器而言,由于变压器的绕组一般都是分级绝缘的,绝缘水平在整个绕组上不一致,当区外发生接地短路时,会使中性点电压升高,影响变压器安全运行。

②、过电流:一般是由于外部短路后,大电流流经变压器而引起的。由于变压器在这种电流下会烧损,一般要求和区外保护配合后,经延时切除变压器。

③、过负荷:长期过负荷运行,会使变压器绕组的绝缘水平下降,加速其老化,缩短其寿命。

变压器的主接线介绍

常变电站主接线的高压侧应尽可能采用断路器数目较少的接线,以节省投资,减少占地面积。根据出现的线路不同,此次设计采用双母线形式。

主变压器的保护配置

①、主变压器差动保护

大型发电机一般采用差动保护反映相间短路,同时差动保护还能在一定程度上反应变压器内部相间短路故障以及中性点、接地侧的接地短路,同时还能反应引出线套管的短路故障。它能瞬时切除故障,

是变压器主保护之一。

②、气体(重、轻瓦斯)保护

能反应铁芯内部烧损、绕组内部短路及断线绝缘逐渐劣化,油面下降等故障,不能反应变压器本体以外的故障。它的优点是灵敏度高,几乎能反应变压器本体内部的所有故障。其缺点是动作时间长。气体保护包括本体重瓦斯、有载调压重瓦斯。

③、主变压器高压侧零序电流保护及接地电抗器接地电流保护

反应变压器内部或外部发生的接地短路故障。一般是由零序电流、间隙零序电流、零序电压共同构成完善的零序电流保护。

④、其他主保护包括:

过负荷保护、反时限过励磁保护、相间后备保护等。

主变压器的保护配置

①、主变压器差动保护

大型发电机一般采用差动保护反映相间短路,同时差动保护还能在一定程度上反应变压器内部相间短路故障以及中性点、接地侧的接地短路,同时还能反应引出线套管的短路故障。它能瞬时切除故障,是变压器主保护之一。

②、气体(重、轻瓦斯)保护

能反应铁芯内部烧损、绕组内部短路及断线绝缘逐渐劣化,油面下降等故障,不能反应变压器本体以外的故障。它的优点是灵敏度高,几乎能反应变压器本体内部的所有故障。其缺点是动作时间长。气体保护包括本体重瓦斯、有载调压重瓦斯。

③、主变压器高压侧零序电流保护及接地电抗器接地电流保护

反应变压器内部或外部发生的接地短路故障。一般是由零序电流、间隙零序电流、零序电压共同构成完善的零序电流保护。

④、其他主保护包括:

过负荷保护、反时限过励磁保护、相间后备保护等。

变压器各种保护的原理及配置原则

距离保护

距离保护是反应故障点到保护安装处的距离并加以时限配合的保护。距离保护是由阻抗继电器上的电压为额定电压、电流的比值测试,并根据比值的大小来判断故障的远近,并根据故障的远近,并根据故障的远近确定动作时间的一种保护装置。

距离保护的组成

距离保护是由启动元件、测量元件与逻辑回路三部分组成(1)启动元件

启动元件的主要作用是在被保护线路发生故障启动保护或进入故障计算程序。启动元件在线路流过最大

负荷电流时应当不动作,能够灵敏可靠地反映各种故

障,在保护区内部即使经大过度电阻短路是也应当可靠

快速动作,另外在电压回路故障时阻抗继电器可能误

动,因此一般采用电流量而不采用电压量作为启动元

件。目前广泛采用负序电流及电流突变量元件作为启动

元件。

(2)测量元件

测量元件完成保护安装处到故障点阻抗或距离的测量,并与事先确定好的整定值进行比较,当保护区内

部故障时动作外部故障时不动作。

(3)逻辑回路

逻辑回路一般由一些逻辑门与时间元件组成,用于判断保护区内部或外部故障,并在不同保护区内部

故障时以相应的动作延时控制断路器的动作。

纵差保护

变压器纵差保护的原理

变压器纵差保护的原理和发电机保护的原理相似,也采用比率制动式达到外部短路不误动而内部短路灵敏动作的目的。但在变压器差动保护有较大的不平衡电流。

主要原因:

①、电流只流过电力变压器一侧,可能的原因有:

⑴. 零序电流不能变换到另一侧

⑵. 初始、恢复时会产生励磁涌流。

⑶. 过励磁电流

②、电流互感器不同的特性、负荷和共况方面的原因有:

⑴. 电力变压器各侧电流互感特性不同

⑵. 电流互感器二次侧对应负荷不同

⑶. 电流互感器或变压器绕组串联布置,或在断路器中作为母线一部分布置,如一台半断路器接线。

③、由于不知道OLTC分接头位置,被保护变压器变比错误。

总之,变压器纵差保护的不平衡电流大,使得其制动系数比发电机的大,灵敏度相对较低。对于绕组开焊故障,无论变压器环是发电机,它们的纵差保护均不能反应,此时,对于变压器主要依靠气体保护或压力保护反应。

瓦斯保护

油浸式变压器利用变压器油作为绝缘及冷却介质。当油箱内部发生短路故障时,在短路电流及故障点电弧的作用下,绝缘油及其他绝缘材料因高温分解而产生气体。这些气体必然会从油箱内部流向油箱上面的油枕。故障越严重,产生的气体就越多,流向油枕的气流速度也就越大。利用这些气体来动作的保护,称为瓦斯保护。瓦斯保护是变压器油箱内故障的一种主要保护,它与纵差保护不能相互代替。

瓦斯保护的主要元件是气体继电器。

轻瓦斯触点动作值由气体容积来定,通常用改变重锤力臂的方法来调整,使气体容积在

250~3003

cm范围内变化。

重瓦斯触点动作值用油流速度来定,对于一般变压器整定在1~1.2m/s范围内,对于强迫循环冷却的变压器,为防止油泵启动的气体继电器误动,应整定在1.2~1.5m/s范围内。

*重瓦斯保护动作于断路器跳闸。轻瓦斯保护动作于信号。

接地保护

零序电压保护

保护反应变压器间隙零序电流大小和零序电压的大小。当变压器中性点不接地运行时,保护变压器绕组中性点过电压。零序电流保护反应变压器零序电流的大小。反应接地故障,该保护仅在变压器中性点接地时起作用。

双绕组变压器相间短路的后备保护

为防止外部相间短路引起的变压器的过电流及作为变压器主保护的后备保护,变压器应该配置相间短路的后备保护。保护动作后,应带时限动作于跳闸。规程(1)过电流保护宜用于降压变压器(2)、当过电流保护的灵敏度不够时,可采用复合电压启动的过电流保护,主要用于升压变压器或容量大较大的降压变器

变压器过负荷保护

变压器的过负荷电流在大多数情况下都是三相对称的,因此只需装设单相过负荷保护。变压器的过负荷保护反应变压器对称过负荷引起的过电流。保护只用一个电流继电器,接于任一相电流中,经延时动作信号。

过负荷保护的安装侧,应根据保护能反映变压器各侧绕组可能的过负荷情况来选择:

(1)对双绕组升压变压器,装与发动机电压侧。

(2)对一侧无电源的三绕组升压变压器,装与发动机电

压侧和无电源侧

(3)对三侧有电源的三绕组升压变压器,三侧均应装设。

(4)对于双绕组降压变压器装与高压侧。

(5)仅一侧电源的三绕组降压变压器,若三侧绕组的容

量相等只装与电源侧;若三侧绕组的容量不等,则

装与电源侧及绕组容量较小侧

(6)对两侧有电源的三绕组降压变压器,三册均应装设。

变压器零序电流、电压保护

在大接地电流系统中,接地故障的几率较大,因此大接地电流电网中的变压器,应装设接地故障(零序保护),作为变压器主保护的后备保护及相邻元件接地故障的后备保护。

大接地电流系统发生单相或两相接地短路时,零序电流的分部和大小与系统中变压器中性点的数目和位置有关。通常,对只有一台变压器的升压变电所,变压器都采用中性点直接接地的运行方式对有若干台变压器并联运行的变电所,则采用一部分变压器接地用行的方式以保证在各种运行方式下,变压器中性点接地的数目和位置尽量维持不变,从而保证零序保护有稳定的保护范围和足够的灵敏度。110KV以上变压器中性点是否接地运行,还与变压器中性点绝缘水平有关。

变压器微机保护的配置

高压电气设备(变压器、母线、电容器等)微机保护在硬件上与线路微机保护相类同,由于保护上的特殊要求,在软件上较常规高压设备保护在使用方便、性能稳定、灵敏度和可靠性各方面都有突出的优点。例如变压器差动保护允许所有的电流互感器二次侧均选用星型连接和幅值补偿系数均由软件自动实现这使

得保护的调试、整定、运行维护十分简便。星型的变压器微机保护软件采用了工频变化量比率差动元件提高了变压器内部小电

流故障(例如变压器绕组匝数较少的匝间短路)的检测灵敏度。

微机保护还解决了变压器空投内部故障,因解决相涌流制动而拒动的问题,提高保护的可靠性。多CPU微机保护的采用,使得变压器的后备保护按侧独立配置并与变压器主保护、人机接口管理相互独立运行,改善了保护运行和维护条件,同时也提高了保护的可靠性。

电力变压器的微机保护的配置原则与常规的配置原则是基本相同的,但由于微机保护软件的特点,一般微机保护的配置较齐全、灵活。

针对以上110kV变电站主变对主变装置的要求,我选择了以下的产品型号:

WBH-810A系列微机变压器保护装置

一.应用范围

WBH-810A系列微机变压器保护装置主要适用于110kV及以下电压等级的变压器保护。WBH-812A装置可完成一台变压器的主保护,WBH-813A装置可完成变压器一侧的后备保护;WBH-814A 装置可完成一台变压器的所有非电量保护,WBH-815A装置可完成一台变压器的全部电气量保护。

二、主要特点

1、采用虚拟制动电流识别TA饱和,抗区外TA饱和性能达到2ms;

2、采用变特性的保护设计,达到继电保护“四性”的辨证统一;

3、自动计算差动平衡系数,变压器联结组别可灵活整定。

4、AD回路、CPU插件、继电器线圈的全面自检,实现了装置硬件的免维护。

5、基于分层化、模块化、元件化的设计,全过程使用VLD可视化工具,实现了设计、仿真测试透明化;

6、通过配置工具满足不同客户需求,不需修改代码。

7、独特的“日志系统”和离线的逻辑仿真功能,实现了事故分析透明化。

8、类Windows图形用户界面设计,主接线图自动显示,菜单简洁、操作方便。

9、硬件存储容量大,可存储多达200条保护事件报告记录和100条保护动作报告记录。

10、开放性的通信设计,配置RS?-485、以太网等通信接口,支持IEC60870-5-103和IEC61850通讯规约,并具有方便的通信对点功能。

三、保护功能

1、主变差动保护

包括:TA断线、差流越限、差流速断、比率差动。差动保护采用二次电流自动调整相位的方法,并提供了可靠的励磁涌流判据,励磁涌流识别方式可采用不同原理。

2、复压闭锁(方向)过流保护

复合电压闭锁过流保护作为变压器或相邻元件相间故障的后备保护,可带方向闭锁,由控制字选择,方向电压取本侧电压并带有记忆。复合电压闭锁过流保护复压闭锁可取本侧或取三侧复合电压。该保护由复合电压元件、相间方向元件及三相过流元件“与”构成。其中复合电压元件、相间方向元件可由软件控制字选择“投入”或“退出”。

3、零序(方向)过流保护

零序(方向)过流保护作为变压器或相邻元件接地故障的后备保护,该保护由零序过流元件及零序功率方向元件“与”构成。其中,零序功率方向元件可由软件控制字整定“投入”或“退出”。

4、零序电压保护

中性点不直接接地变压器,系统发生单相接地故障时的保护。高中压侧电压取自开口三角电压;低压侧零序电压保护零序电压可用自产或低压侧母线的TV二次开口三角侧,作为绝缘检测用。

5、间隙零序电流保护/p>

用于中性点装设放电间隙的变压器,间隙击穿时的保护。电流取自间隙电流互感器。

6、限时速断保护

用于消除差动死区或作为相邻母线的后备保护。快速过流保护。

7、母线充电保护

母线充电保护是一种限时电流速断保护,仅在对没有母线保护的母线充电时短时投入。在检测到该侧断路器辅助触点(断路器HWJ)从断开变至闭合时,短时投入母线充电保护,20 s后自动退出母线充电保护。

8、失灵启动

失灵启动保护分两段时限,第一时限采用负序过流元件或零序过流元件,配合断路器合闸位置触点,及有跳该断路器的保护动作,去解除断路器失灵保护的复合电压闭锁。第二时限采用负序过流元件或零序过流元件或相电流过流元件,配合断路器合闸位置触点,及有跳该断路器的保护动作,去启动断路器失灵保护。

满足国电公司“25条反措”。

9、非电量保护

可实现14路非电量保护,其中8路非电量保护可以通过CPU 延时跳闸,所有的非电量保护都瞬时发跳闸或告警信号。

10、录波

装置记录保护启动前6周波,启动后4周波(每周波24点)的采样数据。

11、GPS对时

对时方式采用“数据流+脉冲”方式或IRIG-B方式,对时精度小于1ms。

12、打印功能

装置可配置打印机,打印定值及动作报告、自检报告、开入量变化等;

对于连接到变电站自动化系统的装置,通过主站打印,装置不必配置打印机。

13、网络通信

可直接与微机监控或保护管理机通信,通信接口为RS-485或以太网,规约可采用IEC60870-5-103或IEC61850。

14、自检功能

装置设置了完善全面的自检功能,包括对数据采集回路、数字回路及输出回路的自检,可自检到出口继电器线圈。若发生故障,装置的液晶显示器可以显示出故障信息并闭锁相应的保护,同时发告警信号。

第二章

110kV线路保护的配置

110kV线路上的故障类型及特点:

相间短路(三相相间短路、两相相间短路)

接地短路(单相接地短路、两相接地短路、三相接地短路)

2、2、110kV线路保护的配置原则:

⑴、相间短路的电流电压保护

①、保护的电流回路的电流互感器采用不完全星型接线,各

线路保护用电流互感器均装设在A、C两相上,以保证在

大多数两点接地情况下只切除一个故障接地点;

②、采用远后备保护方式

③、线路上发生短路时,应快速切除故障,以保证非故障部

分的电动机能继续运行。

⑵三段式距离保护

距离保护是以反应故障点到保护安装处之间阻抗(距离)的阻抗器为主要元件、(测量元件),动作时间具有阶梯特点的保护装置。距离保护一般装设三段,必要时也可采用四段,其中第I可以保护线路的80%——85%,其动作时间为保护装置的固有动作时间,第II段按阶梯特征与相邻保护相配合,动作时间一般为0.5——1s,通常能够灵敏而较快的切除全线范围内的故障。由I、II段构成的主保护。第III段,其动作时间一般在2s以上,作为后保护段

距离保护由启动元件、测量元件、逻辑回路等组成,其核心元件是阻抗测量元件。距离保护按被保护线路的不同又可安装相间距离保护和接地距离保护

⑶零序电流保护

零序电流保护反应中性点接地系统中发生接地短路时的零序电流分量,但不能反映两相短路故障和三相短路故障,因此只能作为接地保护的后备保护。零序电流保护接于电流互感器的零序滤过器,通常由多段组成。对于110kV电压等级,单侧电源线路的零序电流保护一般三段式,终端线路也可采用两段端式,双侧电源线路一般采用四段式。

(4)纵联保护

线路纵联保护是当线路发生故障时,使两侧开关同时快速跳闸的一种保护装置,是线路的主保护。它以线路两侧判别量的特定关系作为判据。即两侧均将判别量借助通道传送到对侧,然后,两侧分别按照对侧与本侧判别量之间的关系来判别区内故障或区外故障。因此,判别量和通道是纵联保护装置的主要组成部分。

(5)方向高频保护

方向高频保护是比较线路两端各自看到的故障方向,以判断是线路内部故障还是外部故障。如果以被保护线路内部故障时看到的故障方向为正方向,则当被保护线路外部故障时,总有一侧看到的是反方向。其特点是: 1)要求正向判别启动元件对于线路末端故障有足够的灵敏度; 2)

必须采用双频制收发信机。

(6)相差高频保护

相差高频保护是比较被保护线路两侧工频电流相位的高频保护。当两侧故障电流相位相同时保护被闭锁,两侧电流相位相反时保护动作跳闸。其特点是: 1)能反应全相状态下的各种对称和不对称故障,装置比较简单; 2)不反应系统振荡。在非全相运行状态下和单相重合闸过程中保护能继续运行; 3)不受电压回路断线的影响; 4)对收发信机及通道要求较高,在运行中两侧保护需要联调; 5)当通道或收发信机停用时,整个保护要退出运行,因此需要配备单独的后备保护。 3、高频闭锁距离保护是以线路上装有方向性的距离保护装置作为基本保护,增加相应的发信与收信设备,通过通道构成纵联距离保护。其特点是: 1)能足够灵敏和快速地反应各种对称与不对称故障; 2)仍保持后备保护的功能; 3)电压二次回路断线时保护将会误动,需采取断线闭锁措施,使保护退出运行。

选用许继WXH-810A系列数字式微机线路保护装置

一、应用范围

WXH-810A系列数字式微机线路保护装置主要用于35kV~110kV电压等级输电线,主保护可选光纤电流差动或纵联距离,并配置完备的后备保护及重合闸功能,含有操作及电压切换回路。

二、主要特点

1、动作速度快,主保护全线内典型金属性故障小于20ms。

2、采用虚拟制动电流识别TA饱和,抗区外TA饱和性能达到3ms。

3、采用双重数字滤波算法协调工作,有效保证距离保护的快速动作及测量精度。

4、采用变特性的保护设计,达到继电保护“四性”的辨证统一。

5、采用自适应的振荡判据及先进的振荡识别功能,提高了保护在系统振荡时的动作性能。

6、完全支持成帧通信格式,可实现通道故障精确诊断和定位功能。

7、通道传输采样值修补功能,提高了保护抗通道误码的能力。

8、AD回路、CPU插件、继电器线圈的全面自检,实现了装置硬件的免维护。

9、基于分层化、模块化、元件化的设计,全过程使用VLD可视化工具,实现了设计、仿真测试透明化。

10、独特的“日志系统”和离线的逻辑仿真功能,实现了事故分析透明化。

11、类Windows图形用户界面设计,主接线图自动显示,菜单简洁、操作方便。

12、硬件存储容量大,可存储多达100条保护动作报告记录和50条保护事件报告记录。

13、开放性的通信设计,配置RS-485、以太网等通信接口,支持IEC60870-5-103和IEC61850通讯规约,并具有方便的通信对点功能

三、保护功能

1、纵联距离保护

纵联距离保护由纵联距离(相间、接地)方向保护和零序功率方向保护构成。纵联距离方向元件采用快速相量算法,以实现故障后快速发信,使保护全线典型金属性故障小于30ms,零序功率方向元件采用全周付氏向量算法,并带零序电压补偿,使系统末端高阻故障可靠动作。

本保护能正确选相,亦可实现分相传送信号,进行分相跳闸;选相元件根据故障的进展情况自适应的投入突变量选相或稳态量选相。

本保护设有单(弱)电源判别元件,以适用于单(弱)电源系统。

2、分相电流差动保护

差动元件针对线路保护区内各种故障类型配置了分相稳态量差动、分相故障分量差动及零序电流差动。

稳态量差动元件设置快速区元件及灵敏区元件,快速区元件采用短窗相量自适应算法实现快速动作,使保护典型金属性故障小于20ms;灵敏区采用全周付氏向量算法作为快速区的补充。故障分量差动不受负荷影响,对于区内高阻故障及振荡中故障性能优越,元件本身采用全周付氏向量算法并略带延时保证其可靠性。零序电流差动作为稳态量差动及故障分量的后备延时100ms 动作,主要针对缓慢爬升高阻故障。

3、距离保护

用于110kV系统时配置三段式相间距离保护及三段式接地距离保护,用于35kV、66kV系统时配置三段式相间距离保护。

相间距离保护采用圆特性阻抗继电器,接地距离保护采用多边形特性阻抗继电器。

具有双回线相继速动和不对称故障相继速动功能。

4、零序电流(方向)保护

全相时投入零序Ⅰ段、零序Ⅱ段、零序Ⅲ段、零序Ⅳ段和零序加速段,零序Ⅰ段、零序Ⅱ段受零序方向控制不可整定,零序Ⅲ段、零序Ⅳ段是否经方向控制可整定。

5、TV断线后保护

TV断线后退出距离保护,同时自动投入TV断线相过流和TV 断线零序过流保护,零序电流方向保护Ⅰ、Ⅱ段退出,Ⅲ、Ⅳ段

若不经方向元件控制,则满足电流门槛定值动作出口,否则退出零序Ⅲ、Ⅳ段保护。

6、过流(方向和/或低电压)保护

配置四段(方向和/或低电压)过流保护。为了躲开线路避雷器的放电时间,过流Ⅰ段也设置了可以独立整定的延时时间。

7、自动重合闸

具有三重、停用两种方式。

满足无检定、检同期、检线路无压母线有压、检线路有压母线无压、检线路无压母线无压、检邻线有流的检定要求。

启动方式包括保护启动以及断路器位置不对应启动。

8、录波

装置记录保护启动前4周波,启动后6周波(每周波24点)的采样数据。

9、GPS对时

对时方式采用“数据流+脉冲”方式或IRIG-B方式,对时精度小于1ms。

10、打印功能

装置可配置打印机,打印定值及动作报告、自检报告、开入量变化等;

变电站的保护配置

一、变电站的保护配置: 220kV变电站主变三侧都就是双母带旁母接线。 220kV线路保护配置: 四方的保护已经淘汰。931南瑞、许继的。 225、226线路931、PSL602保护就是重点。 保护配置原则: 220kV以上电压等级要配两套,不论母线(915、BP-2B)还就是主变,还就是线路均为两套,不同厂家、不同原理,保护范围应一致,功能应一致。 220kV线路保护的范围就是两侧CT(TA)之间,TA在出线刀闸与开关之间,要了解一个变电站的二次保护,就应找到它的TA与线路TV,两套保护要取自不同的CT绕组,计量、测量、母线保护(两套)都要从CT不同的绕组上取电流。故障录波器也要用,还应有一组备用CT绕组。这些CT绕组都在开关与线路刀闸之间,CT串在主回路中,GIS设备的CT配在开关两侧,所以GIS装置的线路与母线保护范围交叉,消除死区。线路保护取自母线侧CT,母线保护取自线路侧CT绕组。PSL931纵联差动,产自南瑞;602产自南自,纵联距离。

线路两侧的保护应配置一致,否则不易配合。相同的厂家、原理应对应配置,升级版本时两侧应同时进行。速动保护,光纤进行信号传输,主保护都就是本线路的快速保护,0s切除本线路任何故障,纵联距离、纵联差动,投主保护压板就就是要投全线速动保护,光纤信号传输装置,两侧保护、主保护要配置光纤信号传输装置。 如果故障出了线路两侧CT之外,按理应启动母线保护,但还可启动后备保护。此时主保护不动作,主保护做不了相邻元件的后备保护,所以602与931均配置了以相间与接地距离为主的距离保护,还有四段零序保护。 三段式距离保护,I段本线路70-80%,动作时间零秒,II段保护范围为本线路的全长并延伸至下一线路出口,动作时间加了0、5秒,III段保护范围为本线路及下一级线路的全长并延伸至下一线路的一部分,时间为0、5秒加一个Δt。 相间距离就是相间故障的后备,接地距离与零序电流为接地故障的后备保护。 主保护动作后,报文中除有主保护信息外,还有I段后备的信息。 主保护就是全线速动的保护,光纤保护,后备保护……

变电站及线路继电保护设计和整定计算

继电保护科学和技术是随电力系统的发展而发展起来的。电力系统发生短路是不可避免的,为避免发电机被烧坏发明了断开短路的设备,保护发电机。由于电力系统的发展,熔断器已不能满足选择性和快速性的要求,于1890年后出现了直接装于断路器上反应一次电流的电磁型过电流继电器。19世纪初,继电器才广泛用于电力系统保护,被认为是继电保护技术发展的开端。1901年出线了感应型过电流继电器。1908年提出了比较被保护元件两端电流的电流差动保护原理。1910年方向性电流保护开始应用,并出现了将电流与电压相比较的保护原理。1920年后距离保护装置的出现。1927年前后,出现了利用高压输电线载波传送输电线路两端功率方向或电流相位的高频保护装置。1950稍后,提出了利用故障点产生的行波实现快速保护的设想。1975年前后诞生了行波保护装置。1980年左右工频突变量原理的保护被大量研究。1990年后该原理的保护装置被广泛应用。与此同时,继电保护装置经历了机电式保护装置、静态继电保护装置和数字式继电保护装置三个发展阶段。20世界50年代,出现了晶体管式继电保护装置。20世纪70年代,晶体管式保护在我国被大量采用。20世纪80年代后期,静态继电保护由晶体管式向集成电路式过度,成为静态继电保护的主要形式。20世纪60年代末,有了用小型计算机实现继电保护的设想。20世纪70年代后期,出现了性能比较完善的微机保护样机并投入系统试运行。80年代,微机保护在硬件结构和软件技术方面已趋成熟。进入90年代,微机保护以在我国大量应用。20世纪90年代后半期,继电保护技术与其他学科的交叉、渗透日益深入。为满足电网对继电保护提出的可靠性、选择性、灵敏性、速动性的要求,充分发挥继电保护装置的效能,必须合理的选择保护的定值,以保持各保护之间的相互配合关系。做好电网继电保护定值的整定计算工作是保证电力系统安全运行的必要条件。 电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断注入新活力。未来继电保护的发展趋势是向计算机化、网络化保护、控制、测量、数据通信一体化智能化发展。 随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。其发展将出现原理突破和应用革命,发展到一个新的水平。这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

110KV变电站继电保护整定与配置设计

110kV环形网络继电保护配置与整定(二) 摘要:继电保护是保证电力系统安全稳定运行的重要组成部分,而整定值是保证保护装置正确动作的关键。本文结合给定110kV电网的接线及参数,对网络进行继电保护设计,首先选择电流保护,对电网进行短路电流计算,确定电网的最大、最小运行方式,整定电流保护的整定值。在电流保护不满足的情况下,相间故障选择距离保护,接地故障选择零序电流保护,同时对距离保护、零序电流保护进行整定计算。本设计最终配置的保护有:电流速断保护、瓦斯保护、纵差动保护等。关键词:继电保护,短路电流,整定计算 Abstract:Relay protection is important part to guarantee the safe and stable operation of the power system, and setting value is the key to ensure the protection correct action. In this paper, with given the wiring and the parameters of 110kV power grid to design 110KV network protection of relay, first ,select the current protection, calculate short circuit current on the grid, determine the Maximum and minimum operating mode of the grid, set the setting value of the current protection. Second ,Selecting the distance protection if the current protection does not meet the case, the phase fault choose the distance protection and the ground fault select zero sequence current protection .while setting calculation the distance protection and zero sequence current protection, . The final configuration of the protection of this design include: current speed trip protection, gas protection, the longitudinal differential protection and so on. Keywords: protection of relay, short-circuit current, setting calculation

变电站的保护配置

一、变电站的保护配置: 220kV变电站主变三侧都是双母带旁母接线。 220kV线路保护配置: 四方的保护已经淘汰。931南瑞、许继的。 225、226线路931、PSL602保护是重点。 保护配置原则: 220kV以上电压等级要配两套,不论母线(915、BP-2B)还是主变,还是线路均为两套,不同厂家、不同原理,保护范围应一致,功能应一致。 220kV线路保护的范围是两侧CT(TA)之间,TA在出线刀闸和开关之间,要了解一个变电站的二次保护,就应找到它的TA和线路TV,两套保护要取自不同的CT绕组,计量、测量、母线保护(两套)都要从CT不同的绕组上取电流。故障录波器也要用,还应有一组备用CT绕组。这些CT绕组都在开关与线路刀闸之间,CT串在主回路中,GIS设备的CT配在开关两侧,所以GIS装置的线路和母线保护范围交叉,消除死区。线路保护取自母线侧CT,母线保护取自线路侧CT绕组。

PSL931纵联差动,产自南瑞;602产自南自,纵联距离。线路两侧的保护应配置一致,否则不易配合。相同的厂家、原理应对应配置,升级版本时两侧应同时进行。速动保护,光纤进行信号传输,主保护都是本线路的快速保护,0s切除本线路任何故障,纵联距离、纵联差动,投主保护压板就是要投全线速动保护,光纤信号传输装置,两侧保护、主保护要配置光纤信号传输装置。 如果故障出了线路两侧CT之外,按理应启动母线保护,但还可启动后备保护。此时主保护不动作,主保护做不了相邻元件的后备保护,所以602和931均配置了以相间和接地距离为主的距离保护,还有四段零序保护。 三段式距离保护,I段本线路70-80%,动作时间零秒,II段保护范围为本线路的全长并延伸至下一线路出口,动作时间加了0.5秒,III段保护范围为本线路及下一级线路的全长并延伸至下一线路的一部分,时间为0.5秒加一个Δt。 相间距离是相间故障的后备,接地距离与零序电流为接地故障的后备保护。 主保护动作后,报文中除有主保护信息外,还有I段后备的信息。

智能变电站继电保护题库

智能变电站继电保护题库 第一章判断题 1.智能变电站的二次电压并列功能在母线合并单元中实现。 2.智能变电站内智能终端按双重化配置时,分别对应于两个跳闸线圈,具有分相跳闸功能;其合闸命令输出则并接至合闸线圈。 3.对于500kV智能变电站边断路器保护,当重合闸需要检同期功能时,采用母线电压合并单元接入相应间隔电压合并单元的方式接入母线电压,不考虑中断路器检同期。 4.任意两台智能电子设备之间的数据传输路由不应超过4个交换机。当采用级联方式时,允许短时丢失数据。5.智能变电站内双重化配置的两套保护电压、电流采样值应分别取自相互独立的合并单元。 6.双重化配置保护使用的GOOSE(SV)网络应遵循相互独立的原则,当一个网络异常或退出时不应影响另一个网络的运行。 7.智能变电站要求光波长1310nm光纤的光纤发送功率为-20dBm ~-14dBm,光接收灵敏度为-31dBm ~-14dBm。8.智能变电站中GOOSE开入软压板除双母线和单母线接线外启动失灵、失灵联跳开入软压板既可设在接收端,也可设在发送端。 9.有些电子式电流互感器是由线路电流提供电源。这种互感器电源的建立需要在一次电流接通后迟延一定时间。此延时称为“唤醒时间”。在此延时期间,电子式电流互感器的输出为零。 10.唤醒电流是指唤醒电子式电流互感器所需的最小一次电流方均根值。 11.温度变化将不会影响光电效应原理中互感器的准确度。 12.长期大功率激光供能影响光器件的寿命,从而影响罗氏线圈原理中电子式互感器的准确度。 13.合并单元的时钟输入只能是光信号。 14.用于双重化保护的电子式互感器,其两个采样系统应由不同的电源供电并与相应保护装置使用同一直流电源。 15.电子式互感器采样数据的品质标志应实时反映自检状态,不应附加任何延时或展宽。 16.现场检修工作时,SV采样值网络与GOOSE网络可以联调。 17.GOOSE跳闸必须采用点对点直接跳闸方式。 18.220kV智能变电站线路保护,用于检同期的母线电压一般由母线合并单元点对点通过间隔合并单元转接给各间隔保护装置。 19.智能变电站母线保护按双重化进行配置。各间隔合并单元、智能终端均采用双重化配置。 20.智能变电站采用分布式母线保护方案时,各间隔合并单元、智能终端以点对点方式接入对应母线保护子单元。 21.智能变电站保护装置重采样过程中,应正确处理采样值溢出情况。 22.与传统电磁感应式互感器相比,电子式互感器动作范围大,频率范围宽。

110kv变电站继电保护课程设计

110k v变电站继电保护课程设计 110kV变电站继电保护设计 摘要 继电保护是电网不可分割的一部分,它的作用是当电力系统发生故障时,迅速地有选择地将故障设备从电力系统中切除,保证系统的其余部分快速恢复正常运行;当发生不正常工作情况时,迅速地有选择地发出报警信号,由运行人员手工切除那些继续运行会引起故障的电气设备。可见,继电保护对保证电网安全、稳定和经济运行,阻止故障的扩大和事故的发生,发挥着极其重要的作用。因此,合理配置继电保护装置,提高整定和校核工作的快速性和准确性,对于满足电力系统安全稳定的运行具有十分重要的意义。 继电保护整定计算是继电保护工作中的一项重要工作。不同的部门其整定计算的目的是不同的。对于电网,进行整定计算的目的是对电网中已经配置安装好的各种继电保护装置,按照具体电力系统的参数和运行要求,通过计算分析给出所需的各项整定值,使全网的继电保护装置协调工作,正确地发挥作用。因此对电网继电保护进行快速、准确的整定计算是电网安全的重要保证。 关键词:110kV变电站,继电保护,短路电流,电路配置 目录 0摘要....................................................................第一章电网继电保护的配置...............................................21.1电网继电保护的作用..................................................21.2电网继电保护的配置和原理............................................21.335kV线路保护配置原则................................................3第二章3继电保护整定计算.................................................2.1继电保护整定计算的与基本任务及步骤..................................32.2继电保护整定计算的研究与发展状况....................................4第三章线路保护整定计算.................................................53.1设计的原始材料分析...................................................53.2参数计

500KV变电站保护配置

500KV变电站继电保护 的配置 一、500KV变电站的特点: 1)容量大、一般装750MV A主变1-2台,容量为220KV变电站5-8倍。2)出线回路数多一般500KV出线4-10回 220KV出线6-14回 3)低压侧装大容量的无功补偿装置(2×120MAR) 4)在电力系统中一般都是电力输送的枢纽变电站。其地位重要,变电站的事故或故障将直接影响主网的安全稳定运行。 5)500KV系统容量大,一次系统时常数增大(50-200ms)。保护必须工作在暂态过程中,需用暂态CT。 6)500KV变电站,电压高、电磁场强、电磁干扰严重,包括对一些仪器仪表工作的干扰。 二、500KV变电站主设备继电保护的要求 1)500KV主变、线路、220KV线路,500KV‘220KV母线均采用双重化配置。 2)近后备原则 3)复用通道(包用复用截波通道,微波通道,光纤通道)。 三、500KV线路保护的配置

1、500KV线路的特点 a)长距离200-300km ,重负荷可达100万千瓦。 使短路电流接近负荷电流,甚至可能小于负荷电流 例:平式初期:姚双线在双河侧做人工短路试验。 姚侧故障相电流仅1200多A。送100万瓦千负荷电流=1300A b)500KV线路有许多同杆并架双回线,因其输送容易大,发生区内异名相跨线故障时,不允许将两回线同时切除。否则将影响系统的安全运行,线路末端跨线故障时,首端距离保护,会看成相间故障。 c)500KV一般采用1个半开关接线,线路停电时,开关要合环,需加短线保护。 d)线路输送功率大,稳定储备系数小,要保证系统稳定,要求保护动作速度快,整个故障切除时间小于100ms。保护动作时间一般要≤50ms。(全线故障) e)线路分布电容大 500KV线路、相间距离为13m、线分裂距离45cm、正四角分裂、相对地距离12m。 线路空投时,未端电压高。要加并联电抗器,并联电抗器保护需跳对侧开关,需加远方跳闸保护。 f)500KV线路一般采用单相重合闸,为限制潜供电流,中性点要加小电抗器 2、配置原则: 1)500KV线路保护配置原则: 设置两套完整、独立的全线速动保护,其功能满足: 每一套保护对全线路内部发生的各种故障(单相接地、相间短路,两相接地、三相短路、非全相再故障及转移故障)应能正确反映每套保护具有独立的选相相功能,实现分相和三相跳闸,当一套停用时,不影响另一套运行。 两套保护的交流电流、电压、直流电源彼此独立 断路器有2组挑圈时,每套保护分别起动一组跳闸线圈 每套主保护分别使用独立的通道信号传输设备,若一套采用专用收发信机,另一套可与通讯复用通道。 2) 500KV线路后备保护的配置原则 线路保护采用近后备方式 每条线路均应配置反映系统D1、D1-1、D2、D3 各种类型故障的后备保护,当双重化的主保护均有完善后备保护时可不另配。

500KV变电站保护配置及运行维护 交流资料(董双桥)

华中电网公司500kV 变电站 运行人员继电保护培训班 交 流 资 料

电力系统继电保护的基本知识 一、电力系统继电保护的作用 一)电力系统在运行中,可能由于以下原因,发生故障 1、外部原因:雷击,大风,地震造成的倒杆,线路覆冰造成冰闪,线路污秽造成污闪。 2、内部原因:设备绝缘损坏,老化。 3、系统中运行,检修人员误操作。 二)电力系统故障的类型: 1、单相接地故障D(1) 2、两相接地故障D(1.1) 3、两相短路故障D(2) 4、三相短路故障D(3) 5、线路断线故障 以上故障单独发生为简单故障。不同地点两个或以上同时发生称为复故障。 三)电力系统短路故障的后果 1、短路电流在短路点引起电弧烧坏电气设备。 2、造成部分地区电压下降。 3、使系统电气设备,通过短路电流造成热效应和电动力。 4、电力系统稳定性被破坏,可能引起振荡,甚至鲜列。

四)电力系统不正常工作状态:电力系统中电气设备的正常工作遭到破坏,但未发展成故障。 不正常工作状态有: 1、电力设备过负荷,如:发电机,变压器线路过负荷。 2、电力系统过电压。 3、电力系统振荡。 4、电力系统低频,低压。 五)电力系统事故:电力系统中,故障和不正常工作状态均可能引起系统事故,即系统全部或部分设备正常运行状况遭到破坏,对用户造成非计划停电、少送电、电能质量(频率,电压,波形)达不到标准、设备损坏等。 继电保护的作用:就检测电力系统中各电气设备的故障和不正常工作状态的信息,并作相应处理。 六)继电保护的基本任务: 1、将故障设备从系统中切除,保证非故障设备正常运行。 2、发生告警信号通知运行值班人员,系统不正常工作状态已发生或自行调整使系统恢复正常工作状态。 二、电力系统对继电保护的基本要求:(四性) 1、选择性:电力系统故障时,使停电范围最小的切除故障的方式

110KV变电站继电保护配置与整定方案

110kV环形网络继电保护配置与整定方案 摘要 继电保护是保证电力系统安全稳定运行的重要组成部分,而整定值是保证保护 装置正确动作的关键。本文结合给定110kV电网的接线及参数,对网络进行继电保 护设计,首先选择电流保护,对电网进行短路电流计算,确定电网的最大、最小运 行方式,整定电流保护的整定值。在电流保护不满足的情况下,相间故障选择距离 保护,接地故障选择零序电流保护,同时对距离保护、零序电流保护进行整定计算。 本设计最终配置的保护有:电流速断保护、瓦斯保护、纵差动保护等。 关键词:继电保护,短路电流,整定计算 目录 1、前言 (1) 1.1电力系统继电保护作用 (1) 1.2继电保护的基本原理及保护装置的组成 (2) 1.3电力系统继电保护整定计算的基本任务及步骤 (2) 1.4继电保护整定计算研究与发展状况 (3) 1.5本次设计的主要内容 (3) 2、继电保护的原理 (4) 2.1线路保护的原理 (4) 2.2变压器保护的原理 (5) 2.3母线保护的原理 (7) 3 、短路电流计算并确定运行方式 (8) 3.1阻抗标幺值的计算 (8) 3.2短路电流计算 (9) 3.2.1电力系统所有设备均投运且闭环情况下短路电流的计算 (9) 3.2.2只有G1、G2投运且可能存在开环情况下短路电流的计算 (12) 3.2.3只有G1、G3投运且可能存在开环情况下短路电流的计算 (18) 3.3系统运行方式的确定 (23) 4 、继电保护的设计 (25)

4.1母线保护的整定计算 (25) 4.2变压器保护的整定计算 (28) 4.3线路保护的整定计算 (37) 4.4其他元件的保护与保护结果 (40) 5、结论 (42) 6、总结 (44) 参考文献 (45) 附录一:110KV环网继电保护配置图 (46) 附录二:外文资料翻译 (48)

220kV智能变电站的继电保护配置方案

220kV智能变电站的继电保护配置方案 220kV智能变电站的发展是基于计算机平台的,随着智能化程度的提高,220kV智能变电站的信息化水平也随之增加,因此带来了许多问题,为了使220kV智能变电站调试到最佳的状态,相关工作人员需要与其他变电站进行对比分析,本文将从继电保护装置的局限性出发,深入研究220kV智能变电站继电保护配置方案,以供相关从业人员借鉴学习。 1 智能变电站与保护装置的特点 1.1 确保信息的精确性 智能保护装置内的合并单元有很多,能够具有滤波的作用,因此受到的数字量输出能够在最大的限度上得到保证,其次,职能保护装置的数据接收方式主要被小巧的光收发模块所取代,因此数字信号无需配置常规的保护装置,能够直接应用于保护逻辑运算,一定程度上避免了采样出差的出现。模拟量输入变换、低滤波单元的工作都是造成采样误差的重要原因,因此采用直接通过光钎传输,能够减少这些中间环节带来的不良影响。智能保护装置最重要的特征,体现在电子式互感器上,能够通过光钎采集数据,因此在压送的过程中,不含有高次谐波,这在一定程度上提高了采集信息的准确性,减少信息数据失真的情况发生。 1.2 处理能力強 微处理器的模拟量巨大,需要处理采样单元与逻辑处理单元,这导致大部分的运算模拟都要在数字核心单元完成,增加了微机处理器的工作量。而智能保护装置使用互感器采集数据信息,因此智能保护装置的通信接口、中央处理单元、通信接口都各自独立,因此更容易完成信息采集的工作。常规的微机保护与智能保护存在着巨大的差异,最明显的差异表现在硬件方面,首先,微处理器通常采用数字电路,并且人机对话、通信接口都通过信号处理单元来完成,这使得执行元

变电站继电保护及自动装置

变电站继电保护及自动装置 一、对继电保护的基本要求 1、继电保护及自动装置的定义:当电力系统中的电力元件(如 线路、变压器、母线等)或电力系统本身发生了故障或危及其安全运行的事件时,能够向值班员及时发出警告信号、或者直接向所控制的断路器发出跳闸命令,以终结这些事件发展的设备。 2、继电保护的作用: (1)自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于遭到破坏,保证其他无故障部分迅速恢复正常 运行。 (2)反应电气元件的不正常运行状态,并根据运行维护的条件,而动作于发出信号、减负荷或跳闸。 3、继电保护的基本要求: (1)选择性:保护装置动作时仅将故障元件从电力系统中切除,使停电范围尽可能缩小,以保证系统中无故障部分继续运行。即:保护装置不该动作时就不动作(如发生在下一段线路的故障,本段的保护就不应该动作跳闸)。 (2)快速性:保护装置应尽快将故障设备从系统中切除,其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围。 (3)灵敏性:指保护装置在其保护范围内发生故障或不正常运行时的反应能力。

(4)可靠性:在规定的保护范围内发生应该动作的故障,保护装置应可靠动作,而在任何不应动作的情况下,保护装置不应误动。 二、变电站继电保护装置的分类: 1、根据保护装置的作用,保护可分为:主保护、后备保护、辅助 保护。 (1)主保护:为满足系统稳定和设备安全要求,能以最快速度有选择性地切除故障的保护。 (2)后备保护:当主保护或断路器拒动时,用来切除故障的保护。 后备保护又分为: 远后备保护:当主保护拒动时,由相邻电力设备或线路的保护来实现的后备保护。 近后备保护:当主保护或断路器拒动时,由本电力设备或线路的另一套保护来实现的后备保护。 (3)辅助保护:为补充主保护与后备保护的性能或当主保护与后备保护退出运行时而起作用的保护。例如:断路器三相不一致保护、充电保护等。 2、根据保护的动作原理不同,保护可分为: (1)反映电流变化的电流保护:如过流保护; (2)反映电压变化的电压保护:如低电压、过电压等; (3)同时反映电流和电压变化的保护: 1)复合电压(低电压、负序电压、零序电压)闭锁的过流保护:在电流保护的基础上,加装电压闭锁元件,只有电压和电流都满足条件时,保护才动作出口,这样可以提高保护的灵敏度。

220kV变电站设计讲解

《 220kV 终端变电站电气主接线及配电装置设计》毕业设计说明书 昆明理工大学 电气工程及其自动化专业 二 OO 八年十月 毕业设计(论文任务书电力工程学院电气工程及其自动化专业 2006级学生姓名:梁勇学号:06418613119 毕业设计(论文题目:220kV 终端变电站电气一次主接线及配电装置设计毕业设计(论文内容: 220kV 终端变电站电气一次与系统分析;

220kV 终端变电站电气一次电气主接线方案比较、设计, 绘制电气主接线图; 短路电流计算; 220kV 终端变电站电气一次导体和电气设备选择设计; 220kV 终端变电站电气一次高压配电装置设计, 绘制配电装置平面布置图、断面图; 220kV 终端变电站电气一次过电压保护及防雷规划设计; 220kV 终端变电气一次继电保护配置规划设计,绘制保护配置图; 编制设计说明书。 专题内容: 设计题目 220kV 终端变电站电气一次系统设计变电站设计参数: 220kV 最终两回进出线

设计自然条件 : 海拔 :1000m <,本地区污秽等级 :2级,地震烈度 :7<级, 最大风速 :2.5/m s ,最高气温:38C ,最低气温:2C - , 平均温度:15C 设计(论文指导教师(签字 : 主管人(签字 : 2 0 0 8 年 10 月 25日 目录 目录.......................................................................................... 4 摘要 (5) 前言……………………………………………………………………………… 6 第一章变电站主接线设计……………………………………………………… 7 第二章短路电流计算…………………………………………………………… 19 第三章电器设备及导体的选择……………………………………………… 27 第四章配电装置设计

110kV变电站继电保护及安全自动装置配置原则精编版

保定供电公司 保定吉达电力设计有限公司电气二次室 110kV变电站继电保护及安全自动装置配置原则 保定吉达电力设计有限公司电气二次室田辉1 总则 1.1 本原则制定依据: 1.1.1 GB14285 《继电保护和安全自动装置技术规程》; 1.1.2 DL/T 559-94 《220~500kV电网继电保护装置运行整定规程》; 1.1.3 DL/T 584-95 《3~110kV电网继电保护装置运行整定规程》; 1.1.4 《电力系统继电保护及安全自动装置反事故措施要点》; 1.1.5 国电调[2002]138号文件关于印发《“防止电力生产重大事故的二十五项重点要求”继电保护实施细则》的通知; 1.1.6 华北电力集团公司《防止电力生产重大事故的二十五项重点要求实施细则》; 1.1.7 北京电力公司:继电保护及安全自动装置配置原则; 1.1.8 河北省电力公司冀电调[2003]24号文《关于印发河北南网微机型母线保护若干技术原则的通知》及其附件1、附件2、附件3。 附件1:关于微机型母线保护有关功能使用原则规定的说明; 附件2:河北南网微机型母线保护技术要求; 附件3:微机型母线保护有关功能使用的原则规定。 1.1.9 河北省电力公司冀电调[2005]12号文《关于印发“河北南网变压器、高压电抗器非电量保护运行管理指导意见”的通知》及其附件 1.1.10 河北省电力公司冀电调[2003]13号文《关于印发河北继电保护技术要点、微机型变压器保护和微机型母线保护技术原则的通知》及其附件1~附件7; 1.1.11 国家电网公司《十八项电网重大反事故措施》; 1.1.12 国家电网公司《十八项电网重大反事故措施(继电保护反事故措施重点要求)》; 1.1.13 华北电力集团公司华北电网调【2006】30号《华北电网继电保护基建工程规范》; 1.1.14 河北省电力公司冀电调【2006】68号《河北南网继电保护技术规范》。

变电站继电保护配置原则及内容

【tips】本文由李雪梅老师精心收编,值得借鉴。此处文字可以修改。 变电站继电保护配置原则及内容 变电站继电保护配置原则及内容 随着我国电力建设事业改革的逐步深化,针对信息化的变革以及智能化变电站的变革势在必行,同时,此项工作也是改革过程当中最为基础的一个环节。根据我国以往各个地区的电力建设以及变电站的发展情况,全面的构建起一个网络覆盖面积广、性能出色的继电保护系统,是一个不可或缺的工作环节,同时,在变电站的建设进程之中,还需要综合性的结合继电保护的配置原则、变电站运行的基本原则以及供电层的电力保护系统配置要求等,对电力系统进行建设和开发,进而对继电保护装置的建设和发展做出必要的规划,针对工作当中的不完善之处提出合理化的意见与建议,最终提升电力建设系统的质量和工作水平。 摘要:变电站继电保护配置的基本原则和内容对于整个电力设施建设而言有关键性的价值和意义。文章针对这一方面的内容展开论述,详细的分析了变电站继电保护的基本原则,同时对过程层的继电保护以及变电站层中的继电保护进行了深层次的探究,分析了母线保护、线路保护以及变压器保护等重要的内容,旨在不断的提升继电保护的应用质量,为发展新时期的电力建设工作奠定坚实的基础。 关键词:继电保护,配置原则,保护内容,母线保护,研究分析 一、变电站继电保护系统的配置 在变电站继电保护系统的配置工作之中,主要需要确立继电保护的基本原则,并且结合配置的主要内容,对工作进行加强和改进。变电站之中的继电保护配置主要分为过程层以及供电层两个环节的内容。在继电保护之中过程层可以根据实际的情况,独立的进行继电保护或者是电力设备的保护,同时,过程层在整个保护工作之中占据主导地位。而在一次智能变电调节

220kV变电站主变压器保护配置与整定计算

论文题目:220kV变电站主变压器保护配置及整定计算 专业:电气工程及其自动化 本科生:(签名) 指导教师:(签名) 摘要 变电站作为电力系统中承担升降压与潮流调整功能的重要组成部分,一旦发生故障得不到及时有效的解决,将会引起整个电力网的异常甚至是崩溃。而变压器作为变电站中的核心设备,其安全等级决定了整个变电站的运行效益。所以,一个安全、可靠、经济的变压器保护设计,将会对电力系统的运行起到至关重要的作用。 本文是对给定资料的220kV变电站主变压器保护进行配置与整定计算的设计说明书。该设计的主要过程为:通过对该变电站原始资料进行分析,进行电气一次主接线设计后,得到电网简化图,从而有针对性地对其主变压器保护进行配置及整定计算。其中计算部分主要包括短路电流计算、设备选型参数计算、保护配置的整定计算;所需绘制的工程图纸主要有电气一次主接线图和变压器保护配置图。 关键词:220kV变电站设计,变压器保护,短路计算,互感器选择

Subject: The configuration and setting calculation of Main Transformer in 220kV Substation Specialty: Electric Engineering and Automation Name: (Signature) Instructor: (Signature) ABSTRACT Substation is very important in the power system because of its function of changing the voltage and adjusting the trend of power. When of faults are not be solved timely and effectively, they will cause the irregular operation or even collapse in the power system. The transformers are regarded as the core equipments in the substation, its safety level determines the running benefit of the whole substation. That’s to say, a safe, reliable and economic design of transformer protection, will play a crucial role in the operation of the power system. This article is the instruction and procedure of the configuration and setting calculation of a main transformer protection in a 220kV substation. Analyzing the raw data of the substation, determining the main electrical wiring forms, and then we can get the grid simplified diagram, which is used for doing configuration and calculation of the main transformer protection. The part mainly includes the short circuit current calculation, equipment selection, and the setting calculation of the protection configuration. The main electrical wiring diagram and the protection’s configuration diagram will be needed. KEY WORDS:the design of the substation,the transformer protection,the short

110kV变电站保护配置及选型

摘要 本次设计的110KV变电站有两个等级,110KV/10KV,在本次设计中我主要对变压器、110KV线路及10KV线路进行了保护装置及整定计算,而且对其保护进行选型。对主变压器我配置了瓦斯保护和纵差保护为主保护,后备保护主要配置了过电流保护,复合电压启动的过电流保护、阻抗保护等。110KV线路配置了三段式距离保护和零序电流保护,10KV线路配置了定时限过流保护,为了达到直观易懂的目的,本次设计主要分为说明书和计算书两部分。 关键字:短路电流计算、保护配置分析、10kV变电站、保护配置、设备选型、整定计算

变压器保护配置 电力变压器是电力系统中十分重要的供电元件,它的故障将对供电可靠性和系统的正常运行带来严重的影响。同时大容量的电力变压器也是十分重要贵重的元件,再加上由于绝大部分安装在户外,受自然条件的影响较大,同时受到连接负荷的影响和电力系统短路故障的威胁因此,必须根据变压器的容量和重要程度考虑装设性能良好,工作可靠性的继电保护装置。 变压器内部故障可以分为油箱内和油箱外两种,油箱内故障包括绕组的相间短路、接地短路、匝间短路以及铁芯的烧损等。 变压器不正常运行状态主要有:由于变压器外部相间短路引起飞过电流和外部的过电流和而不接地短路的过电流和中性点过电流过电压,由于负荷过额定容量引起的过负荷以及由于漏油等原因而引起的油面降低。 根据上述故障类型和不正常运行状态,对变压器应装设下列保护: (1)瓦斯保护 (2)纵差保护或电流速断保护 (3)反映外部相间短路时引起的过电流作为瓦斯、差动保护、电流速断保护的后备保护。 (1)过电流保护 (2)复合电压启动的过电流保护

220kV智能变电站继电保护配置

220kV智能变电站继电保护配置 【关键词】220kV智能变电站继电保护组网方式保护配置 相关工作人员在选择继电保护配置方案时,需要考虑到技术因素和经济因素,还要保证220kV智能变电站继电保护配置能够满足未来的发展趋势,因此相关工作人员需要对比不同的配置方案的优缺点,从而选择较为优化、实用的继电保护配置方案,因此本文将从220kV 智能变电站继电保护的内涵出发,探讨220kV智能变电站继电保护配置方案,以供相关从业人员借鉴学习。 1 智能保护装置的结构特点 1.1 硬件方面的差异 常规的微机保护与智能保护存在着巨大的差异,最明显的差异表现在硬件方面,首先,微处理器通常采用数字电路,并且人机对话、通信接口都通过信号处理单元来完成,这使得执行元件的运行情况极为重要,直接影响到常规保护装置的工作状态,此外,微处理器的模拟量巨大,需要处理采样单元与逻辑处理单元,这导致大部分的运算模拟都要在数字核心单元完成,增加了微机处理器的工作量。而智能保护装置使用互感器采集数据信息,因此智能保护装置的通信接口、中央处理单元、通信接口都各自独立,因此更容易完成信息采集的工作。 1.2 智能保护装置的接口实现方式 智能保护装置最重要的特征,体现在电子式互感器上,能够通过光钎采集数据,因此在压送的过程中,不含有高次谐波,这在一定程度上提高了采集信息的准确性,减少信息数据失真的情况发生。此外,智能保护装置内的合并单元有很多,能够具有滤波的作用,因此受到的数字量输出能够在最大的限度上得到保证,其次,职能保护装置的数据接收方式主要被小巧的光收发模块所取代,因此数字信号无需配置常规的保护装置,能够直接应用于保护逻辑运算,一定程度上避免

数字化变电站继电保护配置方案

5数字化变电站继电保护配置方案 5.1继电保护概述 在电力系统中,除应采取各项积极措施消除或减少发生故障的可能性以外, 故障一旦发生,必须迅速而有选择性地切除故障元件,这是保证电力系统安全运行的最有效方法之一。切除故障的时间常常要求小到十分之几甚至百分之几秒,实践证明只有装设在每个电气元件上的保护装置才有可能满足这个要求。这种保护装置直到目前为止,大多是由单个继电器或继电器与其附属设备的组合构成的,故称为继电保护装置。在电力式静态保护装置和数字式保护装置出现以后,虽然继电器已被电力元件计算机所代替,但仍沿用此名称。在电业部门常用继电保护一词泛指继电保护技术式由各种继电保护装置组成的继电保护系统。继电保护装置一词则指各种具体的装置。 继电保护装置,就是指能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。它的基本任务是: (1)自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于 继续遭到破坏,保证其它无故障部分迅速恢复正常运行; (2)反应电气元件的不正常运行状态,并根据运行维护的条件(例如有无 “ U " i -j [I 经常值班人员),而动作于发出信号、减负荷或跳闸。此时一般不要求保护迅速动作,而是根据对电力系统及其元件的危害程度规定一定的延时,以免不必要的动作和由于干扰而引起的误动作。 5.2数字化变电站对继电保护的影响 数字化变电站可分为过程层、间隔层和站控层,分别实现不同的功能。过程层设备主要包括电子式电流互感器(electro nic curre nt transformer ,ECT、电子式电压互感器(electronic voltage transformer ,EVT、智能开关、智能变压器等智能一次设备。目前采用常规开关加智能操作箱的过渡方案,也属于过程层。过程层设备具有自检测、自描述功能。通过过程层网络给间隔层设备提供一次设备信息,接受间隔层设备的控制命令。间隔层设备包括保护及测控设备、测量表计等。站控层设备包括管理机、远动工作站、监控系统等,主要功能是为变电站提供运行、管理、工程配置的界面,记录变电站内的相关信息,同时,可将站内信息转化为远动和集控设备所能接受的协议规范,实现监控中心远方控制。站控层设备建立在IEC 61850的模型基础上,具有面向对象的统一数据建模。数字化变电站对继电保 护的影响主要体现在两个方面: (1)简化二次接线设计。ECT和EVT实现了数字化输出,并借助光纤传输,不仅增强了抗干扰能力,也完全摒弃了传统互感器的二次交流回路,不再有二次回路开路及短路接地的传统概念,真正实现了一、二次系统之间的电气

相关主题
文本预览
相关文档 最新文档