当前位置:文档之家› 中性点不接地系统单相接地故障零序电流分析

中性点不接地系统单相接地故障零序电流分析

中性点不接地系统单相接地故障零序电流分析
中性点不接地系统单相接地故障零序电流分析

中性点不接地系统单相接地故障零序电流分析

2003年9月22日作者: ZG电力系统自动化本文已被浏览 291 次

中性点不接地系统单相接地故障零序电流分析

王德江,梁清华,王晓明

(辽宁工学院,辽宁锦州121001)

摘要:对中性点不接地系统单相接地时零序暂态电流和零序全相电流特性进行分析。指出采用零序暂态电流选线时,由于存在无暂态过程的情况,因此有局限性;而采用零序基波电流选线,则必须在同一周波内完成采样,尽量增加采样点数,并在同一时刻精确测量对应采样点的量值。

关键词:暂态电流;基波电流;故障选线

1引言

小电流接地系统单相接地故障选线至今仍然是配电自动化的一个重要研究课题。根据单相接地时出现的区别于正常运行时的物理现象,国内外专家提出各种各样的故障选线方法。如采用零序基波或谐波电流的大小和方向进行故障选线,采用暂态电流故障选线,采用负序电流故障选线,等等。这些方法各有其优缺点,需要进一步研究和完善。本文通过对中性点不接地系统单相接地时零序暂态电流和零序全电流的分析,指出在中性点不接地系统中采用零序暂态电流故障选线的局限性和采用零序基波电流故障选线应注意的问题。

2零序等效电路和零序电流表达式

中性点不接地系统单相接地时3I0回路等效电路如图1所示。Cn为第n条线路的相对地等效电容,R为接地过渡电阻。由于线路相对地等效电阻值远大于相对地等效容抗值,故忽略不计。u=Umsin(ωt+α)是故障相电源电压。当发生单相接地故障时,相当于图1的零状态响应。

[ 相关贴图]

根据克希荷夫电压定律,列出t≥0图1电路中电压和电流的微分过程[ 相关贴图]

[ 相关贴图]

网址:https://www.doczj.com/doc/ad16258470.html,/article_view.asp?id=58

最新中性点不接地系统-发生单相接地故障问答大全

多用在中压10~35kV ;(1kV以下低压,1~10kV中低压) 中性点不接地系统正常运行时,各相对地电压是对称的,中性点对地电压为零,电网中无零序电压。由于任意两个导体之间隔以绝缘介质时,就形成电容,所以三相交流电力系统中相与相之间及相与地之间都存在着一定的电容。系统正常运行时,三相电压U A、U B、U C 是对称的,三相的对地电容电流i c0也是平衡的。所以三相的电容电流相量和等于0,没有电流在地中流动。每个相对地电压就等于相电压。 当系统出现单相接地故障时(假设C相接地) 。则C相对地电压为0,而A相对地电压U’A=U A+(-U C)=U AC,而B相相对地电压U′B=U B+(-U C)=U BC。由此可见,C相接地时,不接地的A、B两相对地电压由原来的相电压升高到线电压(即升高到原来对地电压的√3 倍,即1.732倍)。 C相接地时,系统接地电流(电容电流)IC应为A、B两相对地电容电流之和。由于一般习惯将从电源到负荷方向取为各相电流的正方向,所以:IC=-(ICA+ ICB)。IC在相 位上超前U C 90o(流过故障线路始端的零序电流是电容电流,所以零序电流超前零序电压 90°;由于在不接地系统中,单相接地是不会产生电流(对地分布电容的容性电流不算,所以小电流接地),即不会产生额外负载,所以不会影响各相电压包括相对中性点的电压关系);而在量值上由于IC=I CA又因I CA=U’A/X C= UA/XC= I C0,因此I C=3I C0,即一相接地的电容电流为正常运行时每相电容电流的三倍。 由于线路对地电容C很难确定,因此I C0和I C也不能根据电容C来精确计算。一般采用下列经验公式来计算中性点不接地系统的单相接地电容电流:I C=Ue(Ik+35IL)/350 Ue(为线路额定电压KV) Ik(为同一电压的具有电的联系的架空线路总长度) IL(为同一电压的具有电的联系的电缆线路总长度) 在不完全接地(即经过一些接触电阻接地,中性点经消弧线圈接地)时,故障相对地的电压将大于0而小于相电压,而未接地相对地电压小于线电压,接地电容电流也比较小。 必须指出,当中性点不接地的系统中发生单相接地时,三相用电设备的正常工作并未受到影响,因为线路的线电压无论是相位还是量值均未发生变化,因此三相用电设备仍照常运行。但是这种线路允许在一相接地的情况下长期运行,因为如果另一相又发生接地故障时就会发展成为相间短路,两相接地短路,这是很危险的,会产生很大的短路电流,可能损坏线路设备。所以在中性点不接地的系统中,应该装置专门的接地保护或绝缘监察系统,在发生单相接地时,给予报警信号,以提醒值班人员注意及时处理。按我国规程规定:中性点不接地电力系统发生单相接地故障时,允许暂时运行2小时。运行维修人员应争取在两小时以内查出接地故障,予以排除。 绝缘监察装置由测量和发信两部分组

配电网单相接地故障原因分析

配电网单相接地故障原因分析 发表时间:2018-08-17T13:40:38.403Z 来源:《河南电力》2018年4期作者:赵明露 [导读] 当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 (新疆光源电力勘察设计院有限责任公司新疆乌鲁木齐 830000) 摘要:配电网在电网中使用广泛,其运行的可靠性和安全性对促进社会的发展和提高人民的生活质量有着很大的作用。但是配电网也常出现单相接地故障,对社会经济发展和人民生活质量造成很大的影响。因此本文主要对配电网单相接地故障及处理进行探析,重点分析配电网单相接地故障原因及对电网的影响,同时也提出针对故障处理的一些措施及方法。通过对配电网单相接地故障定位及应用实例的探析指出,当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 关键词:配电网;单相接地故障;原因分析 导言 针对小电流接地系统过电压等弊端,特别是故障线路选择、故障点定位、测距的困难性,有专家建议我国配电网改用小电阻接地方式。但这样不仅要花费巨额的设备改造费,还丧失了小电流接地系统供电可靠性高的优点。随着社会的发展,对供电质量的要求越来越高,小电流接地方式无疑具有独特的优点。如果能够解决小电流接地故障的可靠检测问题,及时发现接地故障线路,找到故障点,并采取相应的处理措施,减少甚至避免接地故障带来的不良影响,小电流接地方式将是一种理想的模式。因此,研究中低压配电网的单相接地故障特征很有必要。 1配电网单项接地故障的影响 1.1线路影响 配电网发生单项接地故障时,故障点的位置会出现弧光接地,在附近的线路中形成谐振过电压,与正常配电网运行时相比,过电压要高出几倍,超出线路的承载范围,直接烧毁线路,或者是击穿绝缘子引起短路。单项接地故障对配电网线路的影响是直接性的,线路多次处于电压升高的状态,就会加速绝缘老化,配电网线路运行期间,有可能发生短路、断电的情况。 1.2设备影响 单项接地故障产生零序电流,容易在变电设备周围形成零序电压,不仅增加设备内的励磁电流,也会引起过电压的现象,导致设备面临着被烧毁的危害。例如:某室外配电网发生单项接地故障后,击穿变电设备的绝缘子,此时单项接地故障对变电设备的影响较大,导致该地区停电一天,引起了较大的经济损失,更是增加了设备维护的压力。 1.3人为因素造成单相接地故障 由于部分线路沿公路侧架设,道路车流量大,部分驾驶员违章驾驶,造成车辆撞倒、撞断杆塔的事件时有发生。城市转型升级建设步伐加快,伴随着三旧改造,大量的市政施工及基建项目不断涌现,基面开挖伤及地下敷设的电缆,施工机械碰触线路带电部位。因为不法分子这些贪图私利的窃盗行为引发电网故障,造成大规模大范围停电,给社会发展和人们生活带来了极大的影响。 2配电网系统单相接地故障的检测技术应用分析 在对单相接地故障进行检测过程中,传统的故障检测方法因为自身的局限性比较多,因此,需要全新的检测技术开展故障检测。本次研究过程中主要提出了S型注入法和TY型小电流接地系统单性接地选线和定位装置在配电网单项接地故障检测中的应用。 在实际故障检测过程中,首先将处于运行状态下的TV向接地线中注入相应的信号,并通过信号追踪和定位原理直接检查到故障点。设备和技术在实际应用过程中,该装置的原理和传统的故障检测方法存在很大的区别,在具备选线功能的前提下,还应该具备故障定位功能,这项技术在单相接地故障中有着广泛的应用前景。从这种故障诊断装置的组成分析,主要包括了主机、信号电流检测器等几个部分。在检测过程中,主机在信号发出之后,利用TV二次端子接入到故障线路中,从而通过自身的接地点达到回流的目的,主机内部要安装好信号检测器,当配电网系统中出现了接地故障之后,主机中的信号检测器就会自动启动,并向着故障相中输入特殊的故障信号,此时工作人员可以根据这个信号判断出故障点在哪一个位置上。如果配电网系统中某一个线路存在单相接地故障,变电站母线TV二次开口三角绕组输出电压将装置启动,这时装置就会对存在单相接地故障故障点进行自动判断,同时,在与之相对应的TB二次端口中注入220Hz的特殊信号,并利用TV将其转变转化后体现在整个配电网系统中。故障相和大地形成一个完成的回路,并使用无线检测设备对这种信号进行跟踪检测,从而就能实现对故障位置的精确定位。 3处理方法 3.1精准快速查找出故障区间 当发生单相接地故障后,工作人员第一时间要做的是精准快速查找出故障区间,以便后面故障处理行动的开展。因此,如何能精准快速查找出成了重要的问题。针对传统方法很难精准快速查找出故障区间的问题,本文提出的是一种小电流接地系统单相接地故障定位的方法。在供电线路干线和分支线路的出口处均布置零序电流测点,编号各个测点,测量数据。当某条出线线路发生单相接地时,故障相线对地的电压将降低,若是金属性的完全接地甚至能降为0kV,非故障相线对地电压将升高,若是金属性的完全接地甚至能升为线电压。此时利用小电流接地系统单相接地时所产生的零序电流,能准确判断出发生故障的线路及故障区间。利用测点确定故障支路,为后面故障处理工作提供依据。 3.2做好管理层面的预防工作 3.2.1在日常做好线路检修和巡视工作,采用定期和不定期的巡视方式,及时排出线路中可能存在的隐患,尤其是要注意高大建筑物、树木和线路之间的安全距离,做好绝缘子加固、更换工作,保证线路达到标准化程度,做好防雷击保护工作。 3.2.2在不同的运行环境应该采用合适的运行和维修措施,尤其是在容易受到污染的区域,要保证绝缘设备的绝缘能力,提高绝缘子的抗电压水平,这样才能更好地促进整个电网绝缘性能的提升。 3.3严谨快速抢修 当工作人员找出精准故障区间后,在天气晴朗条件允许的情况下,供电部门应及时派出有经验的工作人员快速到达故障地进行抢修。

中性点接地方式

1 中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。 中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2 中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。 中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。 中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。 此外,由于电网存在电容和电感元件,在一定条件下,因倒闸操作或故障,容易引发线性谐振或铁磁谐振,这时馈线较短的电网会激发高频谐振,产生较高谐振过电压,导致电压互感器击穿。对馈线较长的电网却易激发起分频铁磁谐振,在分频谐振时,电压互感器呈较小阻抗,其通过电流将成倍增加,引起熔丝熔断或电压互感器过

系统发生单相接地时零序电流与电压之间的关系分析

系统发生单相接地时零序电流与电压之间的关系分析: 将6KV系统简化为上图:用电系统中所有正常线路不止一条,为了容易表达,我们简化为一条线路,假定第二条线路出现接地故障,零序CT安装位置如图中1、2。 下面就分别对第三条回路存在或不存在接地故障情况下,电压及对地电容电流进行分析。 对该系统电压情况分析如下: 在正常情况下一次电压,二次电压(测量、开口三角)关系如图:其中UA为一次,Ua为测量二次,Ub0为开口二次电压,各相的向量方向相同。测量线圈电压变比为UA/Ua=UB/Ub=UC/Uc=6000/√3/100/√3=60,即一二次侧相电压之比60,即如果系统线电压为6000V,则在每一测量PT的二次线圈中电压为100/√3,相之间电压为100V。 开口三角线圈的变比为:UA/Ua0=UB/Ub0=UC/Uc0=6000/√3/100/3=60√3,如果系统6000V,则在每只PT的开口三角形线圈中电压为100/3 我们计算零序UL0向量=Ua向量+Ub向量+Uc向量,如果我们假定其中一相电压,另俩相电压与它相差120和240度。即UL0=Umsinwt+Umsin(wt+120)+Umsin(wt+240)=Um(sinwt+sin(wt+120)+sin(wt+240)=Um(sinwt +sinwtcos120+sin120coswt+sinwtcos240+sin240coswt),计算其中cos240=-1/2,COS120=-1/2 ,SIN120=√3/2,SIN240=-√3/2代入上式中得UL0=Um(sinwt-1/2sinwt+√3/2coswt-1/2sinwt-√3/2coswt)=0 正好等于0,即系统正常时开口三角UL0(向量)为0,三相向量正好对称如图所示 如果C相保险熔断,那么C相的向量就等于0,从而有UL0向量=Ua0向量+Ub0向量即= Umsinwt+Umsin(wt+120)=Um(sinwt+sinwtcos120+sin120coswt)=Um(sinwt-1/2sinwt+√3/2coswt)=

单相接地时零序电流电压分析

下面对系统单相接地时,零序电流与电压之间的关系做简单的分析: 将某用电系统简化为上图:(将所有正常回路简化为第一条回路,假定第二条回路出现接地故障,零序CT安装位置如图中1、2) 下面就分别对第三条回路存在或不存在接地故障情况下,电压及对地电容电流进行分析。 对该系统电压情况分析如下: 一、在正常情况下一次电压,二次电压(测量、开口三角)关系如图: UA(向量)与Ua(向量)、Ua0(向量); UB(向量)与Ub(向量)、Ub0(向量); UC(向量)与Uc(向量)、Uc0(向量); 方向分别相同 在测量线圈中变比为:

即一二次侧电压比为60,即如果系统线电压为6000V,则在每一测量PT的二次线圈中电压为V,两相之间的电压为100V 在开口三角线圈中变比为: 即一二次侧电压比为,即如果系统线电压为6000V,则在每只PT的开口三角 二次线圈中电压为V, UL0(向量)=Ua(向量)+ Ub(向量) +Uc(向量) = = = =0 用向量图的形式表示如下, 由上图也可以看出系统正常时开口三角UL0(向量)为0 二、如果C相保险熔断,那么UC(向量)=0,有 UL0(向量)= Ua0(向量)+ Ub0(向量) = =

= = = =-Uc0(向量) 用向量图的形式表示如下, 可以看出此时开口三角电压与C相电压大小相等,方向相反。即有: 一相保险熔断(无论高压侧低压侧)开口三角电压约为33.3V 同理可知:如果一相保险熔断(无论高压侧低压侧),开口三角电压与该相二次电压大小相等,方向相反。电压约为33.3V 如果两相保险熔断(无论高压侧低压侧),开口三角电压与正常相二次电压大小相等,方向相同。电压约为33.3V 三、如果存在一相金属性接地(假设为C相金属性接地)则有: UA’(向量)=UAC(向量)=UA(向量)-UC(向量) UB’(向量)=UBC(向量)=UB(向量)-UC(向量) UA’(向量)=UAC(向量)=UA(向量)-UC(向量)

中性点接地和中性点不接地的区别

中性点接地和中性点不接地的区别 电力系统中性点运行方式有不接地、经电阻接地、经消弧线圈接地或直接接地等多种。我国电力系统目前所采用的中性点接地方式主要有三种:即不接地、经消弧线圈接地和直接接地。小电阻接地系统在国外应用较为广泛,我国开始部分应用。 1、中性点不接地(绝缘)的三相系统 各相对地电容电流的数值相等而相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位一致。这时中性点接地与否对各相对地电压没有任何影响。可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运行状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。这种现象的产生,多是由于架空线路排列不对称而又换位不完全的缘故造成的。 在中性点不接地的三相系统中,当一相发生接地时:一是未接地两相的对地电压升高到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘水平应根据线电压来设计。二是各相间的电压大小和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运行一段时间,这是这种系统的最大优点。但不许长期接地运行,尤其是发电机直接供电的电力系统,因为未接地相对地电压升高到线电压,一相接地运行时间过长可能会造成两相短路。所以在这种系统中,一般应装设绝缘监视或接地保护装置。当发生单相接地时能发出信号,使值班人员迅速采取措施,尽快消除故障。一相接地系统允许继续运行的时间,最长不得超过2h。三是接地点通过的电流为电容性的,其大小为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发生电弧。弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场而产生过电压,损坏电气设备或发展成相间短路。故在这种系统中,若接地电流大于5A时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。 2、中性点经消弧线圈接地的三相系统 上面所讲的中性点不接地三相系统,在发生单相接地故障时虽还可以继续供电,但在单相接地故障电流较大,如35kV系统大于10A,10kV系统大于30A时,就无法继续供电。为了克服这个缺陷,便出现了经消弧线圈接地的方式。目前在35kV电网系统中,就广泛采用了这种中性点经消弧线圈接地的方式。 消弧线圈是一个具有铁芯的可调电感线圈,装设在变压器或发电机的中性点。当发生单相接地故障时,可形成一个与接地电容电流大小接近相等而方向相反的电感电流,这个滞后电压90°的电感电流与超前电压90°的电容电流相互补偿,最后使流经接地处的电流变得很小以至等于零,从而消除了接地处的电弧以及由它可能产生的危害。消弧线圈的名称也是这么得来的。当电容电流等于电感电流的时候称为全补偿;当电容电流大于电感电流的时候称为欠补偿;当电容电流小于电感的电流的时候称为过补偿。一般都采用过补偿,这样消弧线圈有一定的裕度,不至于发生谐振而产生过电压。 3、中性点直接接地 中性点直接接地的系统属于较大电流接地系统,一般通过接地点的电流较大,可能会烧坏电气设备。发生故障后,继电保护会立即动作,使开关跳闸,消除故障。目前我国110kV 以上系统大都采用中性点直接接地。 对于不通等级的电力系统中性点接地方式也不一样,一般按下述原则选择:220kV以上电力网,采用中性点直接接地方式;110kV接地网,大都采用中性点直接接地方式,少部分采用消弧线圈接地方式;20~60kV的电力网,从供电可靠性出发,采用经消弧线圈接地或不接地的方式。但当单相接地电流大于10A时,可采用经消弧线圈接地的方式;3~10kV电力网,供电可靠性与故障后果是其最主要的考虑因素,多采用中性点不接地方式。但当电网

中性点不接地系统发生单相接地时向量分析

中性点不接地系统单相接地时的向量分析 为了熟悉不接地电网的零序保护,需要首先熟悉这类电网发生单相接地故障时电压、电流零序分量的特点。下面着重介绍单相接地时稳态电容电流的特点。下面图a示出最简单的中性点不接地网,图中表示负荷是断开的,因为单相接地时三相的相线电压和负荷电流仍然对称,所以不考虑负荷电流,不会影响分析的结果。 正常运行情况下,各相对地有相同的电容 C(用集中参数表示), 在相电压的作用下,每相都有一超前电压90°的电容电流流入地中,并三相电容电流之和为零,中性点对地无电压,因为电容电流很小,其在线路上产生的电压降可以忽略不计,故可以认为各相电压均与各相电势相等,电压、电流向量图如图b所示。 发生单相(例如A相)金属性接地时,若忽略较小的电容电流

产生的电压降,则电网中各处故障相的对地电压都变为零。于是A 相对地电容被短接,只有B 相和C 相对地电容中还存在电流,此时 中性点对地电压上升为相电压(-a E ),非故障相的对地电压变为线 间电压(升高 3 倍),其向量关系图如下图c 。 这时三相对地电压可分别写为:A U ' =0,B U ' =BA U =A B E E -= 3A E 0 150j e -,C U ' =CA U =C E -A E = 3A E 0 150j e ,由于相电压和电容电流的 对称性已破坏,因而出现了零序电压和零序电流,因为A U ' =0,所以 零序电压0 3U =B U ' +C U ' =-3A E ,即等于故障相正常电势的三倍,则相位与之相反。在B U ' 和C U ' 的作用下,在两非故障相及其对地电容中出现超前电压90°的电流, B I = C B jX U -' =B U ' 0 jWC , C I = C C jX U -' =C U ' jWC ,其有效值为B I +C I = 3X U WC ,X U 为相电压的有效 值,从故障点流回的电流即零序电流为:0 3I =-(B I +C I )=-(B U ' +C U ' )0jWC 。式中负号表示零序电流与通常规定的电流方向相反,因 为B U ' +C U ' =-3A E ,所以故障点的零序电流有效值为0 3I =3X U 0 WC ,

34 单相接地与零序过电流保护

10kV变配电站单相接地与零序过电流保护有关问题分析微机保护装置有单相接地保护与零序过电流保护,单相接地保护又称为小电流接地选线。单相接地保护与零序过电流保护是两种完全不同的保护。 1 单相接地保护与零序过电流保护的区别 1.1单相接地保护与零序过电流保护都需要安装零序电流互感器,但二者的作用完全不相同。单相接地保护用于电源中性点不接地的供电系统。对于三相三线制供电系统,由于电源没有中性线(N线),只有三根相线穿过零序电流互感器时,零序电流互感器感应不出三相负荷不平衡电流,即零序电流,只能感应出三相对地不平衡电容电流,正常运行时此电流非常小,但在本供电系统发生单相接地故障后,就增加为全供电系统对地不平衡电容电流,它等于全供电系统一相对地电容电流的三倍。 1.2 零序过电流保护用于电源中性点直接接地,或通过接地变压器接地的供电系统。上述供电系统发生单相接地故障后,电源中性点通过大地和接地故障点形成回路,临时成为三相四线制供电系统,故障电流为非常大的短路电流。所以电源中性点接地的供电系统单相接地故障称为单相对地短路。此时只有三根相线穿过零序电流互感器时,零序电流互感器就可以感应出三相不平衡电流,即零序电流。可以实现零序过电流保护。 2 电源中性点不接地的供电系统单相接地小电流接地选线 2.1 电源中性点不接地的供电系统单相接地保护可选用小电流接地选线装置。二次电路设计时将所有零序电流互感器和Y/Y/△(开口三角形)型电压互感器的开口三角形电压接到小电流接地选线装置的测量端子上,就可以检测出是某一路线路发生单相接地故障,然后进行报警或跳闸。需要跳闸时还应将跳闸输出接到所需要跳闸的回路。二次电路接线比较多。 2.2 微机保护装置都有单相接地保护后,保护原理与小电流接地选线装置完全相同,不仅节省了一套设备,可以直接跳闸,二次电路接线也简化了许多。 3 电源中性点不接地的供电系统单相接地保护的整定 3.1 电源中性点不接地的供电系统发生单相接地故障后,全供电系统接地相对地电压为零,对地电容电流也为零。不接地回路也只有两相有对地电容电流,零序电流互感器就可以感应出对地不平衡电容电流,即零序电流,此电流等于本回路不接地两相对地电容电流的向量和,为一相对地电容电流的3倍。发生单相接地故障后不接地回路单相接地保护不应动作。需要计算出本回路一相对地电容电流,乘以3后再乘以可靠系数,作为本回路单相接地保护的动作电流。 单相接地保护动作的灵敏系数等于发生单相接地故障后全供电系统对地电容电流,减去发生单相接地相对地电容电流后,再除以单相接地保护动作电流。在进行灵敏系数校验是,还需要计算出全供电系统一相对地电容电流。 1

中性点不接地系统的单相接地向量分析

中性点不接地系统的 单相接地向量分析 需要首先熟悉这类电网发生单相接地故障时电压、电流零序分量的特点。下面着重介绍单相接地时稳态电容电流的特点。下面图a示出最简单的中性点不接地网,图中表示负荷是断开的,因为单相接地时三相的相线电压和负荷电流仍然对称,所以不考虑负荷电流,不会影响分析的结果。 C(用集中参数表示),在相电压正常运行情况下,各相对地有相同的电容0 的作用下,每相都有一超前电压90°的电容电流流入地中,并三相电容电流之和为零,中性点对地无电压,因为电容电流很小,其在线路上产生的电压降可以忽略不计,故可以认为各相电压均与各相电势相等,电压、电流向量图如图b所示。

发生单相(例如A 相)金属性接地时,若忽略较小的电容电流产生的电压降,则电网中各处故障相的对地电压都变为零。于是A 相对地电容被短接,只有B 相和C 相对地电容中还存在电流,此时中性点对地电压上升为相电压(-a E ),非故障相的对地电压变为线间电压(升高3倍),其向量关系图如下图c 。 这时三相对地电压可分别写为:A U ' =0,B U ' =BA U =A B E E -=3A E 0150j e -, C U ' =CA U =C E -A E =3A E 0150j e ,由于相电压和电容电流的对称性已破坏,因而 出现了零序电压和零序电流,因为A U ' =0,所以零序电压03U =B U ' +C U ' =- 3A E ,即等于故障相正常电势的三倍,则相位与之相反。在B U ' 和C U ' 的作用下, 在两非故障相及其对地电容中出现超前电压90°的电流,B I = C B jX U -' =B U ' 0jW C ,C I =C C jX U -' =C U ' 0jW C ,其有效值为B I + C I =3X U 0WC ,X U 为相电压的有效值,从故障点流回的电流即零序电流为:03I =-(B I +C I )=-(B U ' +C U ' )0jW C 。式中负号表示零序电流与通常规定的 电流方向相反,因为B U ' +C U ' =-3A E ,所以故障点的零序电流有效值为03I = 3X U 0WC ,其大小是正常运行时每相对地电容电流的三倍,其相位落后于零序电压90°。

低压电网中性点接地与不接地的利弊

低压电网中性点接地与不接地的利弊 北京农业机械化学院电气化系罗光荣 为了低压用电的安全,尤其是农业电网用电的安全,我国普遍推广使用触电保安器。保安器分为电压型和电流型两大类,它们对电网我中点的接地有不同的要求,电压型保安器要求电网中点不直接接地(实际是经过保安器的内部阻抗接地),而安装电流型保安器,则要求中点直接接地,因此认真深入地研究低压电网中点接地方式的利弊,对于安全用电工作是一项十分迫切的任务。并且它还关系到保安器研制工作的动向,为此我们对接地作一些分析。 一、国内外概况: 根据国外资料,电力网发展的初期,低压电网对地都是绝缘的,中点不接地,但是后来随着高压电网的发展,使了降压变压器,由于高低压线圈可能相互短路,低压线圈对地产生高压,对电气设备及人身安全造成危害,因此出现了中点接地系统。如今,低压电网中点接地已成为世界发展的趋势。绝大多数国家都是采用中性点接地系统,这个总的发展方向是肯定的。由于中点对地绝缘,在某些场合有一定的优点,但在一些特殊的场合,还采用中点不接地,例如日本的医院及游泳池,使用隔离变压器,中点就不接地。有些有易燃气体的化工厂、煤矿等也采用中点对地绝缘。日本也还有一些大工厂采用不接地方式,捷克在矿井采用500伏中点不接地系统。 我国解放前,低压电网,有接地的,也有不接地的,解放之后逐步趋于统一,就是380/220伏中点接地的低压电网。 但1962年以后有些省和地区,采用中点不接地系统,例如江苏省推广使用电犁,为了人身安全,安装简易型保安器,采用了不接地系统。当时广东、河南有些地区也采用不接地系统。目前我国广大农村,中点接地和不接地两种方式同时并用,为此我们有必要对其优缺点作一些探讨。 二、中点接地与非接地系统的优点缺点比较: 1、不接地系统: 优点:能限制接地电流 当电网的容量较少时,对地的分布电容也小,如果绝缘电阻很高,则人触及带电体时,通过人体的电流仅为不大的电容电流(如图1),因此是安全的。 此外从漏电引起的火灾来说,不接地系统也比较理想,因漏电接地电源很小,不易产生大的火花而引起火灾。 缺点:

35kv电网单相接地故障与零序电流检测

9 本科生毕业设计(论文) 题目:35KV电网零序电流的检测及谐波分析学生姓名:袁靖 系别:机械与电气工程系 专业年级:电气工程及其自动化2008级本科四班 指导教师:王铭 2012年6 月8 日

摘要 小电流接地系统发生单相接地故障时,故障电流小,故障检测较为困难。对小电流接地系统单相接地故障选线的研究已有几十年的历史,但目前为止所提选线方法仍不能达到现场对选线可靠性较高的要求。文中利用Matlab对中性点不接地系统单相接地故障进行仿真,重点探讨了仿真模型的搭建过程;通过对各线路零序电流波形的分析,判断出故障线路;该方法简单、准确、可靠,较好解决了中性点不接地系统单相接地问题。 关键词:小电流接地系统;仿真;零序电流;三相电压;三相电流。

ABSTRACT The single phase grounding fault happens in the small current grounding power system,the fault current is small, fault detection is more difficult .In small current grounding system, fault line selection has been studied for decades, but now the select line methods can not achieve the site on line selection of high reliability requirements. In this paper, using matlab to simulate single-phase tc earth fault of the neutral undergrounding power system, by analy2 zing zero sequence current of each line, the fault line is judged. The method is simple exact and reliable, which well solves single-phase grounding fault of the neutral undergrounding power system. Key words: small current grounding power system;simulation; zero sequence current; three-phase voltage; three-phase current

中性点不接地系统运行方式

(一)中性点不接地的电力系统 1、正常运行 (1)电压情况: 如三相导线经过完善换位,各相对地电容相等,即:C 1=C 2=C 3=C ,则Y 1=Y 2=Y 3=Y 。所以: 注意以上公式都是向量公式。 图1 正常运行时中性点不接地的电力系统 (a) 电路图; (b ) 相量图 可见正常运行中,电源中性点对地电压为零,即中性点对地电位相等。各相对地电压为: 第1相:11,1U U U U n ????=+=; 第2相: 22, 2U U U U n ????=+=; 3321=++-=????U U U U n Y Y Y Y U Y U Y U U n 321332211++++-=????

第3相:33, 3U U U U n ? ???=+=; 结论:正常运行时,各向对地电压为相电压,中性点对地电压为零。 (2)电流情况: 由于各相对地电压为电源各相的相电压。所以电容电流大小I C1、I C2、I C3相等,相位差为1200。它们之和仍为零I 3=I C1+I C2+I C3=0,所以没有电容电流流过大地。 当各相对地电容不等时, 不为零,发生中性点位移现象。在中性点不接地系统中,正常运行时中性点所产生的位移电压较小,可忽略。 2、发生单相接地故障时 (1)电压情况: 图2为第3相发生完全接地的情况,完全接地即是金属性接地,接地电阻很小,容易看出,这时中性点对地的电压:3U U n -=。 各相对地电压为: 第1相:131'1U U U U n ????=+=; 第2相: 232'2U U U U n ? ???=+=; 第3相:0'3=?U ; n U ?

低压电网中性点接地与不接地的利弊

低压电网中性点接地与不 接地的利弊 This model paper was revised by the Standardization Office on December 10, 2020

低压电网中性点接地与不接地的利弊北京农业机械化学院电气化系罗光荣 为了低压用电的安全,尤其是农业电网用电的安全,我国普遍推广使用触电保安器。保安器分为电压型和电流型两大类,它们对电网我中点的接地有不同的要求,电压型保安器要求电网中点不直接接地(实际是经过保安器的内部阻抗接地),而安装电流型保安器,则要求中点直接接地,因此认真深入地研究低压电网中点接地方式的利弊,对于安全用电工作是一项十分迫切的任务。并且它还关系到保安器研制工作的动向,为此我们对接地作一些分析。 一、国内外概况: 根据国外资料,电力网发展的初期,低压电网对地都是绝缘的,中点不接地,但是后来随着高压电网的发展,使了降压变压器,由于高低压线圈可能相互短路,低压线圈对地产生高压,对电气设备及人身安全造成危害,因此出现了中点接地系统。如今,低压电网中点接地已成为世界发展的趋势。绝大多数国家都是采用中性点接地系统,这个总的发展方向是肯定的。由于中点对地绝缘,在某些场合有一定的优点,但在一些特殊的场合,还采用中点不接地,例如日本的医院及游泳池,使用隔离变压器,中点就不接地。有些有易燃气体的化工厂、煤矿等也采用中点对地绝缘。日本也还有一些大工厂采用不接地方式,捷克在矿井采用500伏中点不接地系统。 我国解放前,低压电网,有接地的,也有不接地的,解放之后逐步趋于统一,就是380/220伏中点接地的低压电网。 但1962年以后有些省和地区,采用中点不接地系统,例如江苏省推广使用电犁,为了人身安全,安装简易型保安器,采用了不接地系统。当时广东、河南有些地区也采用不接地系统。目前我国广大农村,中点接地和不接地两种方式同时并用,为此我们有必要对其优缺点作一些探讨。 二、中点接地与非接地系统的优点缺点比较: 1、不接地系统: 优点:能限制接地电流 当电网的容量较少时,对地的分布电容也小,如果绝缘电阻很高,则人触及带电体时,通过人体的电流仅为不大的电容电流(如图1),因此是安全的。 此外从漏电引起的火灾来说,不接地系统也比较理想,因漏电接地电源很小,不易产生大的火花而引起火灾。

中性点不接地系统运行方式电子教案

中性点不接地系统运 行方式

(一)中性点不接地的电力系统 1、正常运行 (1)电压情况: 如三相导线经过完善换位,各相对地电容相等,即:C 1=C 2=C 3=C ,则Y 1=Y 2=Y 3=Y 。所以: 注意以上公式都是向量公式。 图1 正常运行时中性点不接地的电力系统 (a) 电路图; (b ) 相量图 可见正常运行中,电源中性点对地电压为零,即中性点对地电位相等。各相对地电压为: 第1相:11, 1U U U U n ? ???=+=; 第2相: 22, 2U U U U n ? ? ? ?=+=; 第3相:33, 3U U U U n ? ? ? ?=+=; 结论:正常运行时,各向对地电压为相电压,中性点对地电压为零。 (2)电流情况: 33 21=++-=? ??? U U U U n Y Y Y Y U Y U Y U U n 3 2 1 3 3 2 2 1 1++++-=? ?? ?

由于各相对地电压为电源各相的相电压。所以电容电流大小I C1、I C2、I C3相等,相位差为1200。它们之和仍为零I 3=I C1+I C2+I C3=0,所以没有电容电流流过大地。 当各相对地电容不等时, 不为零,发生中性点位移现象。在中性点不接地 系统中,正常运行时中性点所产生的位移电压较小,可忽略。 2、发生单相接地故障时 (1)电压情况: 图2为第3相发生完全接地的情况,完全接地即是金属性接地,接地电阻很小,容易看出,这时中性点对地的电压:3U U n -=。 各相对地电压为: 第1相: 131 ' 1 U U U U n ? ???=+=; 第2相: 23 2 ' 2 U U U U n ? ? ? ?=+=; 第3相:0' 3=?U ; 图2 生单相接地故障时的中性点不接地系统 结论:故障相对地电压为零,中性点对地电压为相电压,非故障相对地电压升高为线电压。因此,这类系统设备的对地的绝缘要按线电压来考虑。 n U ?

配电网中性点不同接地方式的优缺点

编号:SM-ZD-71752 配电网中性点不同接地方 式的优缺点 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

配电网中性点不同接地方式的优缺 点 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 配电网中性点与参考地的电气连接方式,按运行需要可将中性点不接地、经消弧线圈接地、经(高、中、低值)电阻器接地、经低值电抗器接地及直接接地等。这些中性点接地方式各具独有的优缺点。 1 配电网中性点不接地的优缺点 配电网中性点不接地是指中性点没有人为与大地连接。事实上,这样的配电网是通过电网对地电容接地。 中性点不接地系统主要优点: 电网发生单相接地故障时稳态工频电流小。这样

·如雷击绝缘闪络瞬时故障可自动清除,无需跳闸。 ·如金属性接地故障,可单相接地运行,改善了电网不间断供电,提高了供电可靠性。 ·接地电流小,降低了地电位升高。减小了跨步电压和接触电压。减小了对信息系统的干扰。减小了对低压网的反击等。 经济方面:节省了接地设备,接地系统投资少。 中性点不接地系统的缺点: a与中性点电阻器接地系统相比,产生的过电压高(弧光过电压和铁磁谐振过电压等),对弱绝缘击穿概率大。 b在间歇性电弧接地故障时产生的高频振荡电流大,达

低压电网中性点接地与不接地的利弊

低压电网中性点接地与不接地的利弊北京农业机械化学院电气化系罗光荣 为了低压用电的安全,尤其是农业电网用电的安全,我国普遍推广使用触电保安器。保安器分为电压型和电流型两大类,它们对电网我中点的接地有不同的要求,电压型保安器要求电网中点不直接接地(实际是经过保安器的内部阻抗接地),而安装电流型保安器,则要求中点直接接地,因此认真深入地研究低压电网中点接地方式的利弊,对于安全用电工作是一项十分迫切的任务。并且它还关系到保安器研制工作的动向,为此我们对接地作一些分析。 一、国内外概况: 根据国外资料,电力网发展的初期,低压电网对地都是绝缘的,中点不接地,但是后来随着高压电网的发展,使了降压变压器,由于高低压线圈可能相互短路,低压线圈对地产生高压,对电气设备及人身安全造成危害,因此出现了中点接地系统。如今,低压电网中点接地已成为世界发展的趋势。绝大多数国家都是采用中性点接地系统,这个总的发展方向是肯定的。由于中点对地绝缘,在某些场合有一定的优点,但在一些特殊的场合,还采用中点不接地,例如日本的医院及游泳池,使用隔离变压器,中点就不接地。有些有易燃气体的化工厂、煤矿等也采用中点对地绝缘。日本也还有一些大工厂采用不接地方式,捷克在矿井采用500伏中点不接地系统。 我国解放前,低压电网,有接地的,也有不接地的,解放之后逐步趋于统一,就是380/220伏中点接地的低压电网。 但1962年以后有些省和地区,采用中点不接地系统,例如江苏省推广使用电犁,为了人身安全,安装简易型保安器,采用了不接地系统。当时广东、河南有些地区也采用不接地系统。目前我国广大农村,中点接地和不接地两种方式同时并用,为此我们有必要对其优缺点作一些探讨。 二、中点接地与非接地系统的优点缺点比较: 1、不接地系统: 优点:能限制接地电流 当电网的容量较少时,对地的分布电容也小,如果绝缘电阻很高,则人触及带电体时,通过人体的电流仅为不大的电容电流(如图1),因此是安全的。 此外从漏电引起的火灾来说,不接地系统也比较理想,因漏电接地电源很小,不易产生大的火花而引起火灾。 缺点:

中性点接地系统

中性点直接接地系统 编辑词条 基本内容 编辑本段 中文名称: 中性点直接接地系统 英文名称: solidly earthed [neutral] system 定义: 中性点接地系统,就是中性点直接接地或经小电阻接地的系统,也称大接地电流系统。这种系统中一相接地时,出现除中性点以外的另一个接地点,构成了短路回路,接地故障相电流很大,为了防止设备损坏,必须迅速切断电源,因而供电可靠性低,易发生停电事故。但这种系统上发生单相接地故障时,由于系统中性点的钳位作用,使非故障相的对地电压不会有明显的上升,因而对系统绝缘是有利的。 应用学科: 电力(一级学科);电力系统(二级学科) 一个系统,其中性点是直接接地的,或者是经过一个相当小的电阻或电抗接地的。此电阻或电抗值应小到能抑制暂态振荡,且又能给出足够的电流供选择接地故障保护用。 A)所谓某一指定位置的中性点有效接地的三相系统,就是指该点的接地系数不超过80%的三相系统。 注:如果在整个系统布置中,其零序电抗与正序电抗之比小于3,且零序电阻与正序电抗之比小于1,则该条件一般均能达到。 B)所谓某一指定位置的中性点非有效接地的三相系统,就是指该点的接地系数会超过80%的三相系统。 我国电力系统中性点接地方式主要有两种,即:1、中性点直接接地方式(包括中性点经小电阻接地方式)。2、中性点不直接接地方式(包括中性点经消弧线圈接地方式)。 中性点直接接地系统(包括中性点经小电阻接地系统),发生单相接地故障时,接地短路电流很

大,这种系统称为大接地电流系统。 中性点不直接接地系统(包括中性点经消弧线圈接地系统),发生单相接地故障时,由于不直接构成短路回路,接地故障电流往往比负荷电流小得多,故称其为小接地电流系统。 在我国划分标准为:X0/X1≤4~5的系统属于大接地电流系统,X0/X1>4~5的系统属于小接地电流系统 注:X0为系统零序电抗,X1为系统正序电抗。 中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。 中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。 中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。

相关主题
文本预览
相关文档 最新文档