当前位置:文档之家› 高考专题函数的单调性与最值

高考专题函数的单调性与最值

高考专题函数的单调性与最值
高考专题函数的单调性与最值

2.2函数的单调性与最值[知识梳理]

1.函数的单调性

(1)单调函数的定义

(2)函数单调性的三种等价形式

设任意x 1,x 2∈[a ,b ]且x 1

①x 1-x 2<0,若f (x 1)-f (x 2)<0?f (x )在[a ,b ]上是增函数;若f (x 1)-f (x 2)>0?f (x )在[a ,b ]上是减函数.

②f (x 1)-f (x 2)x 1-x 2>0?f (x )在[a ,b ]上是增函数;f (x 1)-f (x 2)x 1-x 2

<0?f (x )在[a ,b ]上是减函数.

③(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数.

注:研究函数单调区间的注意事项

(1)单调性是与“区间”紧密相关的概念,一个函数在不同的区间上,可以有不同的单调性.

(2)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域.

(3)函数的单调性是对某个区间而言的,所以要受到区间的限

制.例如函数y =1x 分别在(-∞,0),(0,+∞)内都是单调递减的,

但不能说它在整个定义域即(-∞,0)∪(0,+∞)内单调递减,只能分开写,即函数的单调减区间为(-∞,0)和(0,+∞).

2.函数的最值

函数的最大值对应图象最高点的纵坐标,函数的最小值对应图象最低点的纵坐标.

注:(1)函数的值域一定存在,而函数的最值不一定存在.

(2)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间上的端点值就是函数的最值.

[诊断自测]

1.概念思辨

(1)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )

(2)设任意x 1,x 2∈[a ,b ]且x 1≠x 2,那么f (x )在[a ,b ]上是增函数?f (x 1)-f (x 2)x 1-x 2

>0?(x 1-x 2)[f (x 1)-f (x 2)]>0.( ) (3)函数y =f (x )在[0,+∞)上为增函数,则函数y =f (x )的增区间为[0,+∞).( )

(4)闭区间上的单调函数,其最值一定在区间端点取到.( ) 答案 (1)× (2)√ (3)× (4)√

2.教材衍化

(1)(必修A1P 39B 组T 3)下列函数中,在区间(-∞,0)上是减函数的是( )

A .y =2x

B .y =log 12

x C .y =x -1 D .y =x 3

答案 C

解析 函数y =2x 在区间(-∞,0)上是增函数;

函数y =log 12

x 在区间(-∞,0)上无意义;

函数y =x -1在区间(-∞,0)上是减函数;

函数y =x 3在区间(-∞,0)上是增函数.故选C.

(2)(必修A1P 45B 组T 4)已知函数f (x )=

??? -x 2-ax -5(x ≤1),

a x (x >1)

是R 上的增函数,则a 的取值范围是

( ) A .-3≤a <0

B .-3≤a ≤-2

C .a ≤-2

D .a <0 答案 B

解析 ∵函数f (x )=??? -x 2-ax -5(x ≤1),a x (x >1)是R 上的增函数,

设g (x )=-x 2

-ax -5(x ≤1),h (x )=a x (x >1), 由分段函数的性质可知,函数g (x )=-x 2-ax -5在(-∞,1]单

调递增,函数h (x )=a x 在(1,+∞)单调递增,且g (1)≤h (1),∴

??? -a 2≥1,a <0,-a -6≤a ,∴????? a ≤-2,a <0,a ≥-3,

解得-3≤a ≤-2.故选B.

3.小题热身

(1)(2014·天津高考)函数f (x )=log 12

(x 2-4)的单调递增区间为

( )

A .(0,+∞)

B .(-∞,0)

C .(2,+∞)

D .(-∞,-2)

答案 D

解析 由x 2-4>0得x <-2或x >2.令u =x 2-4,易知u =x 2-4在(-∞,-2)上为减函数,在(2,+∞)上为增函数,y =log 12

u 为减

函数,故f (x )的单调递增区间为(-∞,-2).故选D.

(2)(优质试题·保定期末)直角梯形OABC 中AB ∥OC ,AB =1,OC =BC =2,直线l :x =t 截该梯形所得位于l 左边图形面积为S ,则函数S =f (t )的图象大致为( )

答案 C

解析 由题意可知:当0

当1

所以f (t )=?????

t 2,0

题型1 函数单调性的判断与证明 典例

已知函数f (x )=x 2+1-ax ,其中a >0. (1)若2f (1)=f (-1),求a 的值;

(2)证明:当a ≥1时,函数f (x )在区间[0,+∞)上为单调减函数.

本题用定义法.

解 (1)由2f (1)=f (-1),

可得22-2a =2+a ,得a =23.

(2)证明:任取x 1,x 2∈[0,+∞),且x 1

f (x 1)-f (x 2)=x 21+1-ax 1-x 22+1+ax 2

=x 21-x 22x 21+1+x 22+1

-a (x 1-x 2) =(x 1-x 2)? ??

???x 1+x 2 x 21+1+x 22+1 -a . ∵0≤x 1

∴0

<1. 又∵a ≥1,∴f (x 1)-f (x 2)>0,∴f (x )在[0,+∞)上单调递减. 方法技巧

确定函数单调性(区间)的常用方法

1.定义法:本例采用了定义法.一般步骤为设元→作差→变形→判断符号→得出结论.其关键是作差变形.见典例.

2.图象法:如冲关针对训练1.

3.导数法:本例也可采用求导法.利用导数取值的正负确定函数的单调性.见冲关针对训练2.

冲关针对训练

1.已知函数f (x )=?????

x 2+4x ,x ≥0,4x -x 2,x <0,若f (2-a 2)>f (a ),则实数a 的取值范围是( )

A .(-∞,-1)∪(2,+∞)

B .(-1,2)

C .(-2,1)

D .(-∞,-2)∪(1,+∞)

答案 C

解析 依题意知f (x )在R 上是增函数,由f (2-a 2)>f (a ),得2-a 2>a ,解得-2

2.讨论函数f (x )=x +a x (a >0)在(0,+∞)上的单调性.

解∵f(x)=x+a

x(a>0),

∴f′(x)=1-a

x2=x2-a

x2=

(x+a)(x-a)

x2,

令f′(x)=0,计算得出x=±a,

当f′(x)>0,即x>a时,f(x)单调递增,

当f′(x)<0,即0

综上所述,x∈(a,+∞)函数f(x)单调递增,x∈(0,a)函数f(x)单调递减.

题型2求函数的单调区间

典例1(优质试题·全国卷Ⅱ)函数f(x)=ln (x

2-2x-8) 的单调递增区间是()

A.(-∞,-2) B.(-∞,1)

C.(1,+∞) D.(4,+∞)

根据复合函数单调性的“同增异减”求解.

答案 D

解析由x2-2x-8>0,得x>4或x<-2.

设t=x2-2x-8,则y=ln t为增函数.

要求函数f(x)的单调递增区间,即求函数t=x2-2x-8的单调递增区间.

∵函数t=x2-2x-8的单调递增区间为(4,+∞),

∴函数f(x)的单调递增区间为(4,+∞).故选D.

[条件探究]若将本典例自然对数变为指数函数如何求解呢?

典例2

求函数f (x )=|x 2-4x +3|的单调区间. 本题用图象法.

解 先作出函数y =x 2-4x +3的图象,由于绝对值的作用,把x 轴下方的部分翻折到上方,可得函数y =|x 2-4x +3|的图象.如图所示.

由图可知f (x )在(-∞,1]和[2,3]上为减函数,在[1,2]和[3,+∞)上为增函数,故f (x )的增区间为[1,2],[3,+∞),减区间为(-∞,1],

[2,3].

[条件探究] 若将本典例中的绝对值符号挪动位置,那如何求解呢?

例如:f (x )=-x 2+2|x |+3.

解 ∵f (x )=?????

-x 2+2x +3(x ≥0),-x 2-2x +3(x <0),

其图象如图所示,所以函数y =f (x )的单调递增区间为(-∞,-1]和[0,1];单调递减区间为[-1,0]和[1,+∞).

典例3

求函数f (x )=x -ln x 的单调区间. 本题采用导数法.

解 由题意,得x >0.

y ′=1-1x =x -1x .由y ′=0解得x =1.

列表如下:

由上表可知,函数的单调递增区间为(1,+∞),单调递减区间为(0,1).

[条件探究] 若本典例变为f (x )=ax +ln x .研究单调区间时,应注意什么问题?

解 由于参数a 范围未定,所以要对a 进行分类讨论. f (x )=ax +ln x 的定义域为(0,+∞),

f ′(x )=a +1x =ax +1x ,

①当a ≥0时,f ′(x )>0,

故函数f (x )的单调递增区间为(0,+∞);

②当a <0时,x ∈? ??

??0,-1a 时,f ′(x )>0, x ∈? ??

??-1a ,+∞时,f ′(x )<0; 故函数f (x )的单调递增区间为? ??

??0,-1a , 单调递减区间为? ??

??-1a ,+∞ . 方法技巧

1.研究函数的单调性及求单调区间问题,首先求出函数的定义域(定义域优先原则).

2.对已知函数解析式的构成进行分析,变形转化,变成几个基本初等函数组成的形式,再根据基本初等函数的性质,研究函数的单调性.例如:典例1函数f (x )=ln (x 2-2x -8)是由y =ln u ,u =x 2-2x -8复合而成的,u 是中间变量.典例2条件探究函数f (x )=-x 2+2|x |+3,带绝对值符号的可去掉绝对值符号,化为分段函数f (x )=?????

-x 2+2x +3(x ≥0),-x 2-2x +3(x <0). 3.若函数解析式是由y =ln x ,y =e x 与其他基本函数构成的复杂函数,需要考虑求导法.如典例3.

冲关针对训练

1.(优质试题·洛阳二模)函数y =f (x )(x ∈R )的图象如图所示,则函数g (x )=f (log a x )(0

A.???

?0,2 B .[a ,1]

C .(-∞,0)∪????

??12,+∞ D .[a ,a +1]

答案 B

解析 由图象可知,函数y =f (x )的单调递减区间为(-∞,0)和

? ????12,+∞,单调递增区间为?

?????0,12. ∵0

0≤log a x ≤12,解得a ≤x ≤1,即所求递减区间为[a ,1].故选B.

2.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为

( )

A .(-∞,1]

B .[3,+∞)

C .(-∞,-1]

D .[1,+∞)

答案 B

解析 设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3.

所以函数的定义域为(-∞,-1]∪[3,+∞).

因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.

所以函数f (x )的单调递增区间为[3,+∞).故选B. 题型3 函数单调性的应用

角度1 利用函数的单调性比较大小 典例

(优质试题·福州模拟)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,

设a =f ? ?

?-2,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >b D .b >a >c

本题利用对称性转化到同一单调区间,

再用单调性比较大小.

答案 D

解析 根据已知可得函数f (x )的图象关于直线x =1对称,且在(1,

+∞)上是减函数,所以a =f ? ????-12=f ? ??

??52,故b >a >c .故选D. 角度2 利用函数的单调性解不等式

典例

f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )

A .(8,+∞)

B .(8,9]

C .[8,9]

D .(0,8)

本题用转化法,利用函数单调性把不等

式从抽象转化到具体.

答案 B

解析 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有????? x >0,x -8>0,x (x -8)≤9,解得8

角度3 利用函数的单调性求最值

典例

(优质试题·福州一模)如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x -1),那么函数f (x )在[-

2,0]上的最大值与最小值之和为( )

A .2

B .3

C .4

D .- 1

本题采用数形结合思想.

答案 C

解析 根据f (1+x )=f (-x ),可知函数f (x )的图象关于直线x =12对

称.又函数f (x )在??????12,+∞上单调递增,故f (x )在? ??

??-∞,12上单调递减,则函数f (x )在[-2,0]上的最大值与最小值之和为f (-2)+f (0)=f (1+2)+f (1+0)=f (3)+f (1)=log 28+log 22=4.故选C.

角度4 利用函数的单调性求参数的取值或范围

典例 已知f (x )=?????

(3a -1)x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是( )

A .(0,1) B.? ????0,13 C.??????17,13 D.????

??17,1 本题用定义法.

答案 C

解析 当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -

1)x +4a >0在x <1时恒成立,

令g (x )=(3a -1)x +4a ,则必有????? 3a -1<0,g (1)≥0,

即 ?????

3a -1<0,3a -1+4a ≥0,且0

方法技巧

函数单调性应用问题的常见类型及解题策略

1.比较函数值的大小,应将自变量转化到同一个单调区间内,

然后利用函数的单调性解决.如角度1典例.

2.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时,应特别注意函数的定义域.如角度2典例.

3.利用单调性求解最值问题,应先确定函数的单调性,然后再由单调性求解.如角度3典例.

4.利用单调性求参数时,通常要把参数视为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.如角度4典例.

提醒:若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.

冲关针对训练

1.(优质试题·江西三校第一次联考)定义在R 上的偶函数f (x )满

足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2

<0.则下列结论正确的是( )

A .f (0.32)

B .f (log 25)

C .f (log 25)

D .f (0.32)

答案 A

解析 ∵对任意x 1,x 2∈(-∞,0),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2

<0,∴f (x )在(-∞,0)上是减函数,

又∵f (x )是R 上的偶函数,∴f (x )在(0,+∞)上是增函数,∵0<0.32<20.3

2.(优质试题·湖南益阳箴言中学三模)已知a >0且a ≠1,若函数

f (x )=lo

g a []ax 2-(2-a )x +3在????

??13,2上是增函数,则a 的取值范围是________.

答案 ? ????16,25∪????

??65,+∞ 解析 由复合函数单调性可知

①当a >1时,???

2-a 2a ≤13,19a -2-a 3+3>0,解得a ≥65; ②当00,解得16

∴a 的取值范围是? ????16,25∪??????65,+∞.

1.(优质试题·山东高考)若函数e x f (x )(e =2.71828…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )

A .f (x )=2-x

B .f (x )=x 2

C .f (x )=3-x

D .f (x )=cos x 答案 A

解析 若f (x )具有性质M ,则[e x f (x )]′=e x [f (x )+f ′(x )]>0在f (x )的定义域上恒成立,即f (x )+f ′(x )>0在f (x )的定义域上恒成立. 对于选项A ,f (x )+f ′(x )=2-x -2-x ln 2=2-x (1-ln 2)>0,符合题意.经验证,选项B ,C ,D 均不符合题意.故选A.

2.(优质试题·三门峡模拟)设函数f (x )=?????

2x ,x <2,x 2,x ≥2,若f (a +1)≥f (2a -1),则实数a 的取值范围是( )

A .(-∞,1]

B .(-∞,2]

C .[2,6]

D .[2,+∞)

答案

B

解析 函数f (x )=?????

2x ,x <2,x 2,x ≥2是在定义域为R 上的增函数. ∵f (a +1)≥f (2a -1),∴a +1≥2a -1,解得a ≤2.

故实数a 的取值范围是(-∞,2].故选B.

3.(优质试题·合肥模拟)若2x +5y ≤2-y +5-x ,则有( )

A .x +y ≥0

B .x +y ≤0

C .x -y ≤0

D .x -y ≥0 答案 B

解析 设函数f (x )=2x -5-x ,易知f (x )为增函数,又f (-y )=2-y -5y ,由已知得f (x )≤f (-y ),

∴x ≤-y ,∴x +y ≤0.故选B.

4.(优质试题·辽宁三校联考)已知函数f (x )=

?????

log 2(1-x )+1,-1≤x <0,x 3-3x +2,0≤x ≤a 的值域是[0,2],则实数a 的取值范围是( )

A .(0,1]

B .[1, 3 ]

C .[1,2]

D .[3,2]

答案 B

解析 先作出函数f (x )=log 2(1-x )+1,-1≤x <0的图象,再研究f (x )=x 3-3x +2,0≤x ≤a 的图象.

令f ′(x )=3x 2-3=0,得x =1(x =-1舍去),由f ′(x )>0得x >1,由f ′(x )<0,得0

∴当x =1时,f (x )在0≤x ≤a 上有最小值f (1)=0.又f (3)=2.∴1≤a ≤ 3.故选B.

[基础送分 提速狂刷练]

一、选择题

1.(优质试题·衡阳四中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )

A .f (1)

??72 B .f ? ????72

??72 答案 B

解析 因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2),即函数f (x )的图象关于x =2对称,又函数y =f (x )在[0,2]上单调递增,所以

函数y =f (x )在区间[2,4]上单调递减.因为f (1)=f (3),72>3>52,所以f ? ??

??72

??52.故选B. 2.(优质试题·武汉调研)若函数f (x )=ax +1在R 上递减,则函数g (x )=a (x 2-4x +3)的增区间是( )

A .(2,+∞)

B .(-∞,2)

C .(4,+∞)

D .(-∞,4)

答案 B

解析 ∵f (x )=ax +1在R 上递减,∴a <0.

而g (x )=a (x 2-4x +3)=a (x -2)2-a .

∵a <0,∴在(-∞,2)上g (x )递增.故选B.

3.若函数y =log a (x 2+2x -3),当x =2时,y >0,则此函数的单调递减区间是( )

A .(-∞,-3)

B .(1,+∞)

C .(-∞,-1)

D .(-1,+∞) 答案 A

解析 当x =2时,y =log a (22+2×2-3)=log a 5,

∴y =log a 5>0,∴a >1.由复合函数单调性知,单调递减区间需满足?????

x 2+2x -3>0,x <-1,解之得x <-3.故选A. 4.已知函数f (x )=x 2-2ax +a 在区间(0,+∞)上有最小值,则

函数g (x )=f (x )x 在区间(0,+∞)上一定( )

A .有最小值

B .有最大值

C .是减函数

D .是增函数

答案 A

解析 ∵f (x )=x 2-2ax +a 在(0,+∞)上有最小值,

∴a >0.∴g (x )=f (x )x =x +a x -2a 在(0,a )上单调递减,在(a ,+

∞)上单调递增.

∴g (x )在(0,+∞)上一定有最小值.故选A.

5.(优质试题·太原模拟)已知f (x )=x 2-cos x ,则f (0.6),f (0),f (-0.5)的大小关系是( )

A .f (0)

B .f (0)

C .f (0.6)

D .f (-0.5)

答案 B

解析 ∵f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),∴f (x )是偶函数.∴f (-0.5)=f (0.5).

又∵f ′(x )=2x +sin x ,当x ∈(0,1)时,f ′(x )>0.

∴f (x )在(0,1)上是增函数,∴f (0)

6.(优质试题·贵阳模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a

A .-1

B .1

C .6

D .12

答案 C

解析 由已知得当-2≤x ≤1时,f (x )=x -2,

当1

∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.

∴f (x )的最大值为f (2)=23-2=6.故选C.

7.(优质试题·天津质检)已知f (x )为R 上的减函数,则满足f ? ??

??1x -1>f (1)的实数x 的取值范围是( ) A .(-∞,2)

B .(2,+∞)

C .(-∞,1)∪(1,2)

D .(-∞,1)∪(2,+∞)

答案 D

解析 ∵f (x )为R 上的减函数,

∴由f ? ????1x -1>f (1)得1x -1<1. 解得x <1或x >2.

∴x 的取值范围是(-∞,1)∪(2,+∞).故选D.

8.已知a >0,设函数f (x )=2018x +1+20102018x +1

(x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =( )

A .优质试题

B .2019

C .4028

D .4027

答案 C

解析 由题意得f (x )=2018x +1+20102018x +1

=优质试题-82018x +1

. ∵y =优质试题x +1在[-a ,a ]上是单调递增的,

∴f (x )=优质试题-82018x +1

在[-a ,a ]上是单调递增的, ∴M =f (a ),N =f (-a ),∴M +N =f (a )+f (-a )=4036-82018a +1

82018-a +1

=4028.故选C. 9.(优质试题·集宁期末)函数f (x )=ax +1x +2

在区间(-2,+∞)上单调递增,则实数a 的取值范围是( )

A.? ????0,12

B.? ??

??12,+∞ C .(-2,+∞) D .(-∞,-1)∪(1,+∞)

答案 B

解析 ∵当a =0时,f (x )=1x +2

在区间(-2,+∞)上单调递减,故a =0舍去,

∴a ≠0,此时f (x )=ax +1x +2=a (x +2)+1-2a x +2=a +1-2a x +2

, 又因为y =1x +2

在区间(-2,+∞)上单调递减, 而函数f (x )=ax +1x +2

在区间(-2,+∞)上单调递增, ∴1-2a <0,即a >12.故选B.

10.(优质试题·山西联考)若函数f (x )=log 0.2(5+4x -x 2)在区间(a -1,a +1)上递减,且b =lg 0.2,c =20.2,则( )

A .c

B .b

C .a

D .b

答案 D

解析 f (x )定义域为{x |-1

性知f (x )在(-1,2)上为减函数,(a -1,a +1)?(-1,2)即?????

a +1≤2,a -1≥-1?0≤a ≤1,又由于

b =lg 0.2<0,所以a >b ,

c =20.2>20=1,c >a >b .故选D.

二、填空题

高中数学函数的单调性与最值练习题

函数的单调性与最值 1.下列函数中,在区间(-1,1)为减函数的是( ) A .x y -=11 B .x y cos = C .)1ln(+=x y D .x y -=2 2.函数)82ln()(2--=x x x f 的单调递增区间是( ) A .)2,(--∞ B .)1,(-∞ C .),1(+∞ D .),4(+∞ 3.若函数m x x x f +-=2)(2在),3[+∞上的最小值为1,则实数m 的值为( ) A .-3 B .-2 C .-1 D .1 4函数x x x f -=1)(的单调递增区间是( ) A .)1,(-∞ B .),1(+∞ C .)1,(-∞,),1(+∞ D .)1,(--∞,),1(+∞ 5设函数)1()(,0,10,00,1)(2-=?? ???<-=>=x f x x g x x x x f ,则函数g (x)的单调递减区间是( ) A .]0,(-∞ B .)1,0[ C .),1[+∞ D .]0,1[- 6.若函数R x x a x x f ∈++=,2)(2在区间),3[+∞和]1,2[--上均为增函数,则实数a 的取值范围是( )A .]3,311[-- B .]4,6[-- C .]22,3[-- D .]3,4[-- 7.函数],(,1 2n m x x x y ∈+-=的最小值为0,则m 的取值范围是( ) A .)2,1( B .)2,1(- C .)2,1[ D .)2,1[- 8.已知函数a ax x x f +-=2)(2在区间)1,(-∞上有最小值,则函数x x f x g )()(=在区间),1(+∞上一定( )A .有最小值 B .有最大值 C .是减函数 D .是增函数 9.若函数2)(2-+=x a x x f 在),0(+∞上单调递增,则实数a 的取值范围是 10.已知函数f (x)的值域为]9 4,83[,则函数)(21)()(x f x f x g -+=的值域为 1.已知函数)1(log 2-=ax y 在)2,1(上单调递增,则实数a 的取值范围是( ) A .]1,0( B .]2,1[ C .+∞,1[) D .+∞,2[)

三角函数的单调性和最值

三角函数的单调性和最值问题 例1已知函数22()sin 2sin cos 3cos f x x x x x =++,x R ∈.求: (I) 函数()f x 的最大值及取得最大值的自变量x 的集合; (II) 函数()f x 的单调增区间. 解(I)1cos 23(1cos 2)()sin 21sin 2cos 222sin(2)224 x x f x x x x x π-+=++=++=++ ∴当2242x k π ππ+=+,即()8x k k Z π π=+∈时, ()f x 取得最大值22+. 函数()f x 的取得最大值的自变量x 的集合为{/,()}8x x R x k k Z ππ∈=+ ∈. (II) ()22sin(2)4f x x π=++ 由题意得: 222()242k x k k Z πππππ- ≤+≤+∈ 即: 3()88 k x k k Z ππππ-≤≤+∈ 因此函数()f x 的单调增区间为3[,]()88 k k k Z ππππ- +∈. 例2 已知函数f (x )=π2sin 24x ??-+ ???+6sin x cos x -2cos 2x +1,x ∈R . (1)求f (x )的最小正周期; (2)求f (x )在区间π0,2 ?? ???? 上的最大值和最小值. (3)求f (x )在区间π0,2?????? 的单调区间和值域。 解:(1)f (x )=2-sin 2x ·ππcos 2cos 2sin 44 x -?+3sin 2x -cos 2x =2sin 2x -2cos 2x =π22sin 24x ??- ?? ?. 所以,f (x )的最小正周期T =2π2 =π. (2)因为f (x )在区间3π0,8??????上是增函数,在区间3ππ,82?????? 上是减函数.又f (0)=-2,3π228f ??= ???,π22f ??= ???,故函数f (x )在区间π0,2??????上的最大值为22,最小值为-2.

函数的单调性、极值与最值问题

函数的单调性、极值与最值问题 典例9 (12分)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 审 题 路 线 图 求f ′(x ) ――――――→讨论f ′(x ) 的符号 f (x )单调性―→f (x )最大值―→解f (x )max >2a -2.

评分细则(1)函数求导正确给1分; (2)分类讨论,每种情况给2分,结论1分; (3)求出最大值给2分; (4)构造函数g(a)=ln a+a-1给2分; (5)通过分类讨论得出a的范围,给2分.

跟踪演练9(优质试题·天津)已知函数f(x)=a x,g(x)=log a x,其中a>1. (1)求函数h(x)=f(x)-x ln a的单调区间; (2)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2, g(x2))处的切线平行,证明x1+g(x2)=-2ln ln a ln a; (3)证明当a≥1e e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线. (1)解由已知得h(x)=a x-x ln a, 则h′(x)=a x ln a-ln a. 令h′(x)=0,解得x=0. 由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表: 所以函数h(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞). (2)证明由f′(x)=a x ln a,可得曲线y=f(x)在点(x1,f(x1))处 的切线斜率为1x a ln a.由g′(x)= 1 x ln a,可得曲线y=g(x)在点

函数的单调性与最值练习题(适合高三)

函数的单调性与最值练习题 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(每小题4分) 1.函数2()log f x x =在区间[1,2]上的最小值是( ) A.1- B.0 C.1 D.2 2.已知212()log (2)f x x x =-的单调递增区间是( ) A.(1,)+∞ B.(2,)+∞ C.(,0)-∞ D .(,1)-∞ 3.定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有 ()()0f a f b a b ->-成立, 则必有( ) A.()f x 在R 上是增函数 B.()f x 在R 上是减函数 C.函数()f x 是先增加后减少 D.函数()f x 是先减少后增加 4.若在区间(-∞,1]上递减,则a 的取值范围为( ) A. [1,2) ? B. [1,2] ? C. [1,+∞)???D. [2,+∞) 5.函数y=x 2﹣2x ﹣1在闭区间[0,3]上的最大值与最小值的和是( ) A.﹣1 B.0 C.1 D.2 6.定义在),0(+∞上的函数()f x 满足对任意的))(,0(,2121x x x x ≠+∞∈,有 2121()(()())0x x f x f x -->.则满足(21)f x -<1()3 f 的x 取值范围是( ) A.(12,23) B.[13,23) C. (13,23) D.[12,23 ) 7.已知(x)=???≥<+-)1(log )1(4)13(x x x a x a a 是(-∞,+∞)上的减函数,那么a的取值范围是( ) A.(0,1) B .(0,31 ) C.[71,31) D.[71,1) 8.函数22log (23)y x x =+-的单调递减区间为( ) A.(-∞,-3) B .(-∞,-1) C.(1,+∞) D .(-3,-1) 9.已知函数()f x 是定义在[0,) +∞的增函数,则满足(21)f x -<1()3f 的x 取值范围是( ) (A )(∞-,23) (B )[13,23) (C)(12,∞+) (D)[12,23 ) 10.下列函数中,在定义域内是单调递增函数的是( ) A .2x y = B.1y x = C.2y x = D .tan y x =

人教版高中数学《函数的单调性与最值》教学设计全国一等奖

1.3.1函数的单调性与最大(小)值(第一课时) 教学设计 一、教学内容解析: (1)教学内容的内涵、数学思想方法、核心与教学重点; 本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。 函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质. 函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质. 函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画. 函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位. 教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数). (2)教学内容的知识类型; 在本课教学内容中,包含了四种知识类型。函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题----提出问题----解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识. (3)教学内容的上位知识与下位知识; 在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识. (4)思维教学资源与价值观教育资源; 生活常见数据曲线图例子,能引发观察发现思维;函数f(x)= +1和函数 1 y x x =+,能引发 提出问题---分析问题----解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观. 二、教学目标设置: 本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。 “课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。 “课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时) 为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下: (1)知识与技能: 理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念; 能利用图象法直观判断函数的单调性;

函数的单调性与最值(含解析

第三节函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义 增函数 减函数 定义 设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1, x 2 当x 1f (x 2) ,那么就说 函数f (x )在区间D 上是减函数 图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1x D .y =x |x | 解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D. 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >1 2 B .k <12 C .k >-12 D .k <- 1 2

高考总复习:函数的单调性与最值

第三节函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义

图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 [小题能否全取] 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1 x D .y =x |x | 解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D. 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12 C .k >-1 2 D .k <-1 2 解析:选D 函数y =(2k +1)x +b 是减函数, 则2k +1<0,即k <-1 2 .

3.(教材习题改编)函数f (x )=1 1-x 1-x 的最大值是( ) A.4 5 B.54 C.3 4 D.43 解析:选D ∵1-x (1-x )=x 2 -x +1=? ????x -122+34≥34 ,∴0<11-x 1-x ≤43. 4.(教材习题改编)f (x )=x 2 -2x (x ∈[-2,4])的单调增区间为________;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8 5.已知函数f (x )为R 上的减函数,若m f (n ); ???? ??1x >1,即|x |<1,且x ≠0. 故-1 (-1,0)∪(0,1) 1.函数的单调性是局部性质 从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调. 2.函数的单调区间的求法 函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间. [注意] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.

函数的单调性与最值(讲义)

函数的单调性与最值 【知识要点】 1.函数的单调性 (1)单调函数的定义 (2)单调区间的定义 如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y = f (x )的单调区间. (3)判断函数单调性的方法 ①根据定义;②根据图象;③利用已知函数的增减性;④利用导数;⑤复合函数单调性判定方法。 2.函数的最值 求函数最值的方法: ①若函数是二次函数或可化为二次函数型的函数,常用配方法;

②利用函数的单调性求最值:先判断函数在给定区间上的单调性,然后利用单调性求最值; ③基本不等式法:当函数是分式形式且分子、分母不同次时常用此法。 【复习回顾】 一次函数(0)y kx b k =+≠具有下列性质: (1)当0k >时,函数y 随x 的增大而增大 (2)当0k <时,函数y 随x 的增大而减小 二次函数y =ax 2+bx +c (a ≠0)具有下列性质: (1)当a >0时,函数y =ax 2+bx +c 图象开口向上,对称轴为直线x =-2b a ;当x <2b a -时, y 随着x 的增大而减小;当x >2b a - 时,y 随着x 的增大而增大; (2)当a <0时,函数y =ax 2+bx +c 图象开口向下,对称轴为直线x =-2b a ;当x <2b a -时, y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小; 提出问题: ①如图所示为一次函数y=x ,二次函数y=x 2和y=-x 2的图象,它们的图象有什么变化规律?这反映了相应的函数值的哪些变化规律? ①这些函数走势是什么?在什么范围上升,在什么区间下降? ②如何理解图象是上升的?如何用自变量的大小关系与函数值的大小关系表示函数的增减性? ③定义:一般地,设函数f(x)的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就说函数f(x)在区间D 上是减函数.简称为:步调不一致减函数. 几何意义:减函数的从左向右看,图象是的. 例如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数? 解:函数y=f(x)的单调区间是[-5,2),[-2,1),[1,3),[3,5].其中函数y=f(x)在区间[-5,2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数. 点评:图象法求函数单调区间的步骤是第一步:画函数的图象;第二步:观察图象,利用函数单调性的几何意义写出单调区间.

函数的基本性质——单调性与最大(小)值

函数的基本性质——单调性与最大(小)值 【教学目标】 1.知识与技能:了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思 2.过程与方法:理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区间 3.情感、态度与价值观:掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单函数的单调性 【教学重难点】 教学重点:函数的单调性的概念。 教学难点:利用函数单调的定义证明具体函数的单调性 【教学过程】 一、复习引入。 1 分别画函数2x y =和3x y =的图象。2 x y =的图象如图1,3x y =的图象如图2. 2.引入:从函数2x y = 的图象(图1)看到: 图象在y 轴的右侧部分是上升的,也就是说,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,即如果取21,x x ∈[0,+∞),得到1y =)(1x f ,2y =)(2x f ,那么当 1x <2x 时,有1y <2y 。 这时我们就说函数y =)(x f =2x 在[0,+∞)上是增函数。图象在y 侧部分是下降的,也就是说,当x 在区间(-∞,0)上取值时,随着x 的增大,相应的y 值反而随着减小,即如果取21,x x ∈(-∞,0),得到1y =)(1x f , 2y =)(2x f ,那么当1x <2x 时,有1y >2y 。

这时我们就说函数y =)(x f =2x 在(-∞,0)上是减函数。函数的这两个性质,就是今天我们要学习讨论的。 二、讲解新课。 1.增函数与减函数。 定义:对于函数)(x f 的定义域I 内某个区间上的任意两个自变量的值 21,x x ,(1)若当1x <2x 时,都有)(1x f <)(2x f ,则说)(x f 在这个区间上是 增函数(如图3);(2)若当1x <2x 时,都有)(1x f >)(2x f ,则说)(x f 在这个区间上是减函数(如图4)。 说明:函数是增函数还是减函数,是对定义域内某个区间而言的。有的函数在一些区间上是增函数,而在另一些区间上不是增函数。例如函数2 x y =(图1),当x ∈[0,+∞)时是增 函数,当x ∈(-∞,0)时是减函数。 2.单调性与单调区间。 若函数y=f (x )在某个区间是增函数或减函数,则就说函数)(x f 在这一区间具有(严格的)单调性,这一区间叫做函数)(x f 的单调区间。此时也说函数是这一区间上的单调函数。 在单调区间上,增函数的图象是上升的,减函数的图象是下降的。 说明:(1)函数的单调区间是其定义域的子集; (2)应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在21,x x 那样的特定位置上,虽然使得)(1x f >)(2x f , (3)除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“)(1x f <)(2x f 或)(1x f >)(2x f ,”改为“)(1x f )(2x f 或) (1x f ≥ )(2x f ,”即可; (4)定义的内涵与外延: 内涵是用自变量的大小变化来刻划函数值的变化情况; 外延①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减。 ②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数。 三、讲解例题。

第05讲-函数的单调性与最值(讲义版)

第05讲-函数的单调性与最值 一、考情分析 借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义. 二、知识梳理 1.函数的单调性 (1)单调函数的定义 增函数减函数 定义设函数y=f(x)的定义域为A,区间M?A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当 Δy=f(x2)-f(x1)>0时,就称 函数y=f(x)在区间M上是增 函数 Δy=f(x2)-f(x1)<0时,就称函数y =f(x)在区间M上是减函数 图象 描述 自左向右看图象是上升的自左向右看图象是下降的 (2)上是增函数或是减函数, 性,区间M称为单调区间. 2.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件(1)对于任意x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0)=M (3)对于任意x∈I,都有f(x)≥M; (4)存在x0∈I,使得f(x0)=M 结论M为最大值M为最小值 [方法技巧] 1.(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取到. (2)开区间上的“单峰”函数一定存在最大值(或最小值).

2.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1 f (x ) 的单调性相反. 3.“对勾函数”y =x +a x (a >0)的增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ]. 三、 经典例题 考点一 确定函数的单调性(区间) 【例1-1】(2019·安徽省泗县第一中学高二开学考试(理))如果函数f(x)在[a ,b]上是增函数,对于任意的x 1,x 2∈[a ,b](x 1≠x 2),下列结论不正确的是( ) A . ()()1212 f x f x x x -->0 B .f(a)0 D .()() 2121x x f x f x -->0 【答案】B 【解析】 试题分析:函数在[a ,b]上是增函数则满足对于该区间上的12,x x ,当12x x <时有()()12f x f x <,因此 ()()1212 0f x f x x x ->-,(x 1-x 2) [f(x 1)-f(x 2)]>0, ()() 21 210x x f x f x ->-均成立,因为不能确定12,x x 的 大小,因此f(a)

函数单调性与最值讲义及练习题.docx

函数的单调性与最值 基础梳理 1.函数的单调性 (1) 单调函数的定义 增函数减函数 一般地,设函数 f ( x) 的定义域为 I . 如果对于定义域I 内某个区间 D 上的任意两个自变量的值x1,x2 定义当x1<x2时,都有 f ( x1 ) 当x1<x2时,都有 f ( x1) <f ( x2) ,那么就 >f ( x2 ) ,那么就说函数f 说函数 f ( x) 在区间 D 上是增函数 ( x ) 在区间 D上是减函数 图象 描述 自左向右图象是上升的自左向右图象是下降的(2)单调区间的定义 若函数 f ( x) 在区间 D上是增函数或减函数,则称函数 f ( x) 在这一区间上具有 ( 严格的 ) 单调性,区间 D 叫做 f ( x) 的单调区间. 2.函数的最值 前提 设函数 y=f ( x) 的定义域为 I ,如果存在实数 M 满足 ①对于任意 x∈ I ,都①对于任意 x∈I ,都有 条件有 f ( x) ≤ M; f ( x) ≥ M; .②存在 x0∈ I ,使得②存在 x0∈ I ,使得 f ( x0 ) f ( x0 ) = M M = . 结论M为最大值M为最小值注意:

一个防范 1 函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y=x分别在 ( -∞, 0) ,(0 ,+∞ ) 内都是单调递减的,但不能说它在整个定义域即 ( -∞,0) ∪(0 ,+∞ ) 内单调递减,只能分开写,即函数的单调减区间为 ( -∞,0) 和(0 ,+∞ ) ,不能用“∪”连 接.两种形式 设任意 x1,x2∈[ a, b] 且 x1<x2,那么 f x1-f x2 f x1-f x2 ①> 0? f ( x) 在 [ a,b] 上是增函数;<0? f ( x) x1-x2x1-x2 在 [ a,b] 上是减函数. ②( x1- x2 )[ f ( x1) -f ( x2)] >0? f ( x) 在[ a,b] 上是增函数;( x1-x2)[ f ( x1) -f ( x2)] <0? f ( x) 在 [ a,b] 上是减函 数.两条结论 (1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最 值一定在端点取到. (2)开区间上的“单峰”函数一定存在最大 ( 小 ) 值. 四种方法 函数单调性的判断 (1)定义法:取值、作差、变形、定号、下结论. (2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函 数. (3)导数法:利用导数研究函数的单调性. (4)图象法:利用图象研究函数的单调性. 单调性与最大(小)值同步练习 一、选择题 1、下列函数中,在 (0 ,2) 上为增函数的是 ( )

高一数学函数的单调性与最值教案

高一数学函数的单调性 与最值教案 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

高一数学——函 数 第三讲 函数的单调性与最大(小)值 【教学目标】: (1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义; (2)学会运用函数图象理解和研究函数的性质; (3)能够熟练应用定义判断数在某区间上的的单调性; (4)理解函数的最大(小)值及其几何意义。 【重点难点】: 1.重点:函数的单调性、最大(小)值及其几何意义, 2.难点: 利用函数的单调性定义判断、证明函数的单调性,利用函数的单调性求函数的最大(小)值。 【教学过程】:用具: 一、知识导向或者情景引入 1、观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: (3)函数图象是否具有某种对称性 2、画出下列函数的图象,观察其变化规律: (1)f(x) = x ○ 1 从左至右图象上升还是下降 ______ ○ 2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ .

(2)f(x) = -2x+1 ○1从左至右图象上升还是下降 ______ ○2在区间 ____________ 上,随着x的增大,f(x)的值随着 ________ . (3)f(x) = x2 ○1在区间 ____________ 上,f(x)的值随着x的增大而 ________ . ○2在区间 ____________ 上,f(x)的值随着x的增大而 ________ . 二、新课教学 (一)函数单调性定义 1.增函数 一般地,设函数y=f(x)的定义域为I, 如果对于定义域I内的某个区间D内的任意两个自变量x 1,x 2 ,当x 1

函数的单调性与最值(含例题详解)

函数的单调性与最值 一、知识梳理 1.增函数、减函数 一般地,设函数f(x)的定义域为I,区间D?I,如果对于任意x1,x2∈D,且x1f(x2) . 2.单调区间的定义 若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间. 3.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件①对于任意x∈I,都有 f(x)≤M;②存在x0∈I,使得 f(x0)=M ①对于任意x∈I,都有f(x)≥M;②存在 x0 ∈ I,使得f(x0) =M 结论M为最大值M为最小值 注意: 1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 2.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但 f(x)·g(x),1等的单调性与其正负有关,切不可盲目类比. f( x) [试一试] 1.下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=ln(x+2) B.y=-x+1 D.y=x+1 解析:选 A 选项 A 的函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数. 2.函数f(x)=x2-2x(x∈[-2,4])的单调增区间为___ ;f(x)max= ________ . 解析:函数f(x)的对称轴x=1,单调增区间为[1,4],f(x)max=f(-2)=f(4)=8. 答案:

2013函数的单调性及最值⑵

函数的单调性及最值之二 一、例题讲解 例1.已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间; (Ⅱ)设函数()f x 在区间2133??-- ???,内是减函数,求a 的取值范围. 例2、已知函数32()(3)x f x x x ax b e -=+++ (1)如3a b ==-,求()f x 的单调区间; (1)若()f x 在(,),(2,)αβ-∞单调增加,在(,2),(,)αβ+∞单调减少,证明: βα-<6. 例3.已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间; (Ⅱ)设函数()f x 在区间2133??-- ???,内是减函数,求a 的取值范围. 例4.已知a 是实数,函数())f x x a =-。 (Ⅰ)求函数()f x 的单调区间;Ⅱ)设)(a g 为()f x 在区间[]2,0上的最小值。 (i )写出)(a g 的表达式;(ii )求a 的取值范围,使得2)(6-≤≤-a g 。 二、课后作业 1.(2009年广东卷文)函数x e x x f )3()(-=的单调递增区间是 ( ) A. )2,(-∞ B.(0,3) C.(1,4) D. ),2(+∞ 2.(2009天津重点学校二模)已知函数=y )(x f 是定义在R 上的奇函数,且当)0,(-∞∈x 时不等式0)()('<+x xf x f 成立, 若)3(33.03.0f a =,),3(log )3(log ππf b = )9 1(log )91(log 33f c =,则c b a ,,的大小关系是 ( )A .c b a >> B .a b c >> C .c a b >> D .b c a >> 3.(2009浙江文)若函数2()()a f x x a x =+∈R ,则下列结论正确的是 ( ) A.a ?∈R ,()f x 在(0,)+∞上是增函数 B.a ?∈R ,()f x 在(0,)+∞上是减函数 C.a ?∈R ,()f x 是偶函数 D.a ?∈R ,()f x 是奇函数 4.(2007年福建理11文)已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x > 时,()0()0f x g x ''>>,,则0x <时 ( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 5.( 08年湖北卷)若21()ln(2)2 f x x b x =-++∞在(-1,+)上是减函数,则b 的取值 范围是 ( ) A . [1,)-+∞ B . (1,)-+∞ C . (,1]-∞- D . (,1)-∞- 6(2009辽宁卷文)若函数2()1 x a f x x +=+在1x =处取极值,则a = 7.(2009江苏卷)函数32()15336f x x x x =--+的单调减区间为 .

高一函数的单调性与最值

函数的单调性与最值 1.函数的单调性 (1)单调函数的定义 增函数 减函数 定义 一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2 当x 1

高一数学《函数的单调性与最值》第二课时教案

1 函数的单调性与最值 学习目标: 1. 使学生理解函数的最值是在整个定义域上来研究的,它是函数单调性的应用。 2. 会用单调性求最值。 3. 掌握基本函数的单调性及最值。 知识重现 1、一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (1) 对于任意的x ∈I ,都有f(x)≤M ; (2) 存在x 0∈I,使得f(x 0)=M. 那么,我们称M 是函数y=f(x)的最大值(maximum value ) 2、一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (3) 对于任意的x ∈I ,都有f(x)≥ M ; (4) 存在x 0∈I,使得f(x 0)=M. 那么,我们称M 是函数y=f(x)的最小值(minimum value ) 理论迁移 例1 “菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂。如果烟花距地面的高度h 米与时间t 秒之间的关系为h(t )=-4.9t 2+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1米)? 例2 已知函数f(x)= 1 x 2-(x ∈[2,6]),求函数的最大值和最小值。 归纳基本初等函数的单调性及最值 1. 正比例函数:f(x)=kx(k ≠0),当k 0时,f(x)在定义域R 上为增函数;当k 0时,f(x)在 定义域R 上为减函数,在定义域R 上不存在最值,在闭区间[a,b ]上存在最值,当k 0时函数f(x)的最大值为f(b)=kb,最小值为f(a)=ka, 当k 0时, ,最大值为f(a)=ka ,函数f(x)的最小值为f(b)=kb 。 2. 反比例函数:f(x)=x k (k ≠0),在定义域(-∞,0) (0,+∞)上无单调性,也不存在最值。当k 0时,在(-∞,0),(0,+∞)为减函数;当k 0时,在(-∞,0),(0,+∞)

(完整word版)2017高考一轮复习教案-函数的单调性与最值.doc

第二节函数的单调性与最值 1.函数的单调性 理解函数的单调性及其几何意义. 2.函数的最值 理解函数的最大值、最小值及其几何意义. 知识点一函数的单调性 1.单调函数的定义 增函数减函数 一般地,设函数f(x)的定义域为 I .如果对于定义域 I 内某个区间 A 上的任意两个 自变量的值 x1 2 , x 定义 当 x1f(x2),那么就说函数 就说函数 f(x)在区间 A 上是增加的f( x)在区间 A 上是减少的 图象描述 自左向右看图象是逐渐上升的自左向右看图象是逐渐下降的 2.单调区间的定义 如果函数 y= f(x) 在区间 A 上是增加的或是减少的,那么称 A 为单调区间.易误提醒求函数单调区间的两个注意点: (1)单调区间是定义域的子集,故求单调区间应树立“ 定义域优先” 的原则. (2)单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“ ∪”联结,也不能用“或” 联结. 必记结论 1.单调函数的定义有以下若干等价形式: 设x1, x2∈[a, b] ,那么

f x1- f x2 ①>0? f(x)在 [a, b]上是增函数; x1- x2 f x1- f x2 <0? f(x) 在[a, b] 上是减函数. x1- x2 ②(x1- x2)[f(x1)- f(x2 )]>0 ? f(x)在 [a, b]上是增函数; (x1- x2 )[f(x1)- f(x2)]<0? f(x)在[ a,b]上是减函数. 2.复合函数y= f[ g(x)] 的单调性规律是“同则增,异则减”,即y=f(u)与u=g(x)若具有相同的单调性,则y= f[g(x)]为增函数,若具有不同的单调性,则y= f[g(x)] 必为减函数. [ 自测练习 ] 1.下列函数中,在区间(0,+∞ )上单调递减的是 ( ) 1 A . f(x)=x B . f(x)= (x- 1) 2 C.f(x)= e x D .f(x)= ln( x+1) 2.函数 f(x)= log5(2x+ 1)的单调增区间是________. - x2- ax- 5, x≤ 1, 3.已知函数 f(x)= a 在 R 上为增函数,则 a 的取值范围是 () x, x>1 A . [- 3,0) B . [-3,- 2] C.( -∞,- 2] D .(-∞, 0) 知识点二函数的最值 前提设函数 y= f(x)的定义域为 I,如果存在实数 M 满足 对于任意 x∈ I ,都有 f(x) ≤M 对于任意 x∈ I,都有 f(x)≥ M 条件 存在 x0∈I ,使得 f( x0)= M 存在 x0∈ I,使得 f(x0)= M 结论M 为最大值M 为最小值 易误提醒在求函数的值域或最值时,易忽视定义域的限制性. 必备方法求函数最值的五个常用方法 (1)单调性法:先确定函数的单调性,再由单调性求最值. (2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值. (3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等 式求出最值. (5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.

文本预览
相关文档 最新文档