当前位置:文档之家› 积分中值定理

积分中值定理

积分中值定理
积分中值定理

第一章 积分中值定理

一、本章有一个按序排列而成的定理系列,即罗尔定理、拉格朗日中值定理、柯西定理和泰勒定理。由于它们都拥有一个“微分中值点ξ”,故有时也将其统称为微分中值定理,该定理系列在微分学的理论中起着极为重要的作用,故需要大家学习时要格外重视。在应用这些定理时,要特别注意“点ξ”,定理只告诉了我们//的存在性,并未指出它的确切位置(实际上,许多情况下我们并不需要知道它的确切位置,只要知道//存在就足够了),若忽视了这一点,在作题的过程中就容易出错或无法达到目的。如设)(x f 在],[b a 上连续,在),(b a 内有二阶导数,证明存在//,使得

)(4

)()()2(2)(2

ξf a b a f b a f b f ''-=++-。 分析:根据给出的条件以及要证明的表达式,我们往往联想采用如下的方法

)()2

(

2)(a f b a f b f ++- )]()2

([)]2()([a f b a f b a f b f -+-+-= (*) )]()([2

21ξξf f a b '-'-= )()(2

21ξξξf a b ''--= (1212,2ξξξξξ<<<<+<

21a b -=-ξξ,也就达不到题目的要求。但是,这种尝试给了我们有益的启示:我们把(*)每一个方括号内的值看成一个函数的函数值,从而(*)表达式即可视为某函数在一个区间的两个端点的函数值之差,在此基础上再使用中值定理,问题就可以解决。

证明:令

)()2()(x f a b x f x --+=?, 则)(x ?在区间]2

,[b a a +上可以使用拉格朗日中值定理,故有

)(2

)()2(

1ξ???'-=-+a b a b a )]()2([211ξξf a b f a b '--+'-= )22(11b a b b a a <-+<+<

<ξξ 再在]2

,[11a b -+ξξ上对)(x f '应用拉格朗日中值定理(因为)(x f 在),(b a 内有二阶导数),则存在),()2

,(11b a a b ?-+∈ξξξ,使得 )(2

)()2(11ξξξf a b f a b f ''-='--+', 从而问题得证。

二、用罗必达法则求不定式的极限,由于分类清楚、规律性强且可以连续进行运算,故在求极限时经常用到。但需要注意法则的使用需要满足相应的条件,尤其要注意以下几点:

1.罗必达法则的条件是充分的,也就是说,如果L x g x f →'')()((或∞),则L x g x f →)

()((或∞)。但是如果

)

()(x g x f ''振荡发散,)()(x g x f 仍可以有极限,这一点需要引起大家的注意。例如求 x

x x x 2sin 1

sin

lim 20→, 这是00型未定式,极限明显存在,但使用一次罗必达法则后,就会出现振荡发散的情形,从而问题就变的无法解决。

正确的解法应为

原式=01sin 21lim 1sin 2sin lim 00=??=??→→x

x x x x x x x 。 2.不是未定式,也去使用罗必达法则。例如求

1

lim +++∞→xt xt x e B Ae ,A 与B 是常数。 这是含参变量的极限,应该清楚,这样的极限往往与参变量是有关系的。但我们大多数同学在处理时会不加区别的使用罗必达法则,从而出现如下的错误:

1lim +++∞→xt xt x e B Ae A te Ate xt

xt

x ==+∞→lim 。 实际上,上面的过程只有在0>t 时才是正确的!而0=t 及0

3.不能灵活使用罗必达法则,而是视其为万能的,以至有时会陷入“泥潭”。例如求 )cot 1(1lim 0x x

x x -→。 这是一个未定式的极限,可以使用罗必达法则进行计算。但需要注意的是,若不假思索的直接使用罗必达法则,计算起来就会很繁琐。比较合理的办法是先进行有理运算,然后进行化简或利用等价无穷小代换,最后再使用罗必达法则就简单多了。解法如下:

原式3

020cos sin lim sin cos sin lim

x x x x x x x x x x x -=-=→→ 31sin lim 313sin cos cos lim 020==+-=→→x x x x x x x x x 。 教材中有类似的例题及练习题,希望大家在学习是认真体会。

三、泰勒公式是本章的一大难点,大家在学习时首先要清楚泰勒定理成立的条件,清楚泰勒公式、麦克劳林公式的表达形式以及常见的麦克劳林展开式。实际上,泰勒公式在证明、极限计算等方面有着广泛而独到的应用,大家可以通过多做一些相应的练习题来体会。

四、关于函数性态的研究应注意以下几点:

1.若)(x f 为),(b a 内的严格单调增加函数,且在),(b a 内可导,则必有0)(>'x f 。 这一结论是不正确的。例如函数3

)(x x f =在区间)1,1(-内的点0=x 就不满足结论。

2.若0)(='x f ,则0x 必为)(x f 的极值点(或曰驻点一定为极值点)。

此结论同样错误。当然,结论的逆命题也不正确。教材中有相应的例子,相信大家会很容易理解。所以在实际求极值时,除了驻点外还需要格外注意导数不存在的点。

3.极大值必大于极小值。

由于极值是函数在某点邻域内的局部性质,因而极大值与极小值没有必然的大小关系。也就是说,函数在某区间内的极大值不一定大于其在该区间内的极小值。

五、不等式的证明

本章的内容进一步丰富了不等式的证明方法。

1.中值定理。由于中值定理中//是存在于区间之内的值,很明显把//用区间的两个不同端点去代换时,必然产生不等式,这就为不等式的证明提供了一种方法,实际上中值定理确

实是不等式证明的一种有力工具。教材以及课后练习题中有比较多的题目可以训练,大家自己认真做一下,以真正掌握这种方法。

2.泰勒公式。泰勒公式证明不等式一般来说困难一些,但有些时候特别是给定的条件涉及到可导又给出某些具体点的导数时,尝试利用泰勒公式也是一种不错的选择。例如下题:

设函数)(x f 在]1,0[上有三阶导数,且0)0(=f ,21)1(=f ,0)2

1(='f ,求证存在)1,0(∈ξ,使得12)(≥'''ξf 。

证明:由于)(x f 在]1,0[上有三阶导数,且0)21(='f ,故可将)0(f 、)1(f 在2

1=x 处展开成至二阶带拉格朗日余项的泰勒公式,即 312)211)((!31)211)(21(!21)211)(21()21()1(-'''+-''+-'+=ξf f f f f ,12

11<<ξ; 322)210)((!31)210)(21(!21)210)(21()21()0(-'''+-''+-'+=ξf f f f f ,2

102<<ξ。 显然,由)0()1(f f -得

321)2

1()]()([!3121?'''+'''=ξξf f 。 令),(12ξξξ∈,且使得})(),(max{)(21ξξξf f f ''''''=''',则不等式得证。

3.函数单调性(导数)。这种方法证明不等式理论依据简单直接,只是需要大家在构造函数时注意一点:有时函数的构造需要对所证明的不等式进行一定的变化之后实施。例如下题:

证明:π<

x x >2sin 。 此题看似简单,若构造函数πx x x f -=2sin

)(,则得到π12cos 21)(-='x x f 。但是这样以来问题却变的复杂了(当然,利用二阶导数借助于凹凸性问题仍可得以解决而且比较简单),可见直接移项构造函数并不总是最好的方法。而利用下面的方法解决起来似乎更好: 令π12sin

)(-=x x x f (因为原不等式可变形为π

12sin >x x ),则 0)2tan 2(2cos )(2<-='x x x x x f (20π<

积分中值定理的推广与应用

积分中值定理的推广与应用 系别数学系 专业数学与应用数学姓名韩凤 指导教师张润玲 职称副教授 日期2011年6月

国内图书分类号: 吕梁学院本科毕业论文(设计) 积分中值定理的推广与应用 姓名韩凤 系别数学系 专业数学与应用数学 申请学位学士学位 指导教师张润玲 职称副教授 日期2011年6月

摘要 在微积分学中积分中值定理与微分中值定理一样有着重要的地位.微积分的许多问题和不等式的证明都以它为依据,积分中值定理在证明有关中值问题时具有极其重要的作用.它是《数学分析》、《高等数学》课程中定积分部分的基本定理之一.众所周知积分中值定理包括积分第一中值定理与积分第二中值定理,而在数学分析课本上已有过这两个定理的详细证明,但这两个定理的推广与应用尚未提及.因此,在教学过程中,学在运用这一知识点解决有关的数学问题比较困难,常常不知如何下手,本文主要讲述的是积分第一中值定理的各种形式的推广以及通过以下几方面的列举例题,加以归纳总结,并充分体现积分中值定理在学习解题练习中的应用. 关键词:积分中值定理;推广;应用

ABSTRACT The integral median value theorem and differential median value theorem has the same important position in the questions and the proof of the inequality are all based on the integral theorem,the integral median theorem has played an important role in solving the problems about is one of the basic theorems in the definite integral part of“the mathematical analysis”and“the higher mathematics”.Well-known that the integral median theorem include the first median theorem for integrals and the second median theorem for integrals and the textbooks of the mathematical analysis have the detailed proof about the two theorems,but the popularization and application of the two theorems have not been addressed .Therefore,it is difficult when students use this knowledge to solve the related problems during the process of article mainly introduce various popularization of the first median theorem for integrals and giving some example through the following aspects,and giving some summary,strive to reflect the application of integral median value theorem in studying the way which can slove the ploblems. Keywords:Integral median value theorem; Promotion; Applications.

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

第二积分中值定理

第二积分中值定理 若函数()f x 在区间[,]a b 上连续,而()p x 是区间[,]a b 上的单调有界函数,则有点()c a c b ≤≤,使 ()()d () ()d () ()d b c b a a c p x f x x p a f x x p b f x x + - =+? ? ? 其中()lim ()x a p a p x + +→=【右极限】,()lim ()x b p b p x --→=【左极限】。特别,若()0p a +=,则 ()()d () ()d b b a c p x f x x p b f x x - =? ? ()a c b ≤≤ 证明前的说明:()p x 是单调有界函数,所以它是可积的,而()()p x f x 作为可积函数的乘积也是可积的。其次,在下面的证明中, ①不妨认为()0p a +=,否则,令()()()q x p x p a +=-,则()0q a +=,于是由 ()()d () ()d b b a c q x f x x q b f x x - =? ? 即 [()()]()d [()()]()d b b a c p x p a f x x p b p a f x x + - + -=-?? ,可得一般情形 ()()d () ()d () ()d b c b a a c p x f x x p a f x x p b f x x + - =+? ? ? ②不妨认为()p x 是单调增加函数,因为若()p x 是单调减小函数,就用[()]p x -替换()p x 。 证 首先划分区间[,]a b ,即 01211i i n n a x x x x x x x b --=<<< <<<<<= 而在每一个小区间1[,]i i x x -上,都存在点1(,)i i i x x ξ-∈,使 1 1()d ()()i i x i i i x f x x f x x ξ--=-? 【第一积分中值定理】 于是,1 1() ()d ()()()i i x i i i i i x p f x x p f x x ξξξ--=-? ,求和得 1 11 1 ()()d ()()()i i n n x i i i i i x i i p f x x p f x x ξξξ--=== -∑∑? (※) 现在,将左端做变换,即 1 11 1 ()()d ()()d ()d i i i i n n x b b i i x x x i i p f x x p f x x f x x --==?? =-??????∑∑ ? ?? ξξ 1 11 2 () ()d ()()()d i n b b i i a x i p f x x p p f x x ξξξ--=??=+ -??∑? ? 因为()p x 是单调增加函数且()()0p x p a +≥=,所以11()0,()()0i i p p p ξξξ-≥-≥;再用m 和

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理 如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf 罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理

若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --= ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理 3.1 教材证法 证明 作辅助函数 ()()()()f b f a F x f x x b a -=-- 显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且 ()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使 ()()()()0''=--- =a b a f b f f F ζζ.即()()()a b a f b f f --=ζ'. 3.2 用作差法引入辅助函数法 证明 作辅助函数 ()()()()()()?? ???? ---+-=a x a b a f b f a f x f x ? 显然,函数()x ?在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ??,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得 ()()()()0''=---=a b a f b f f ζζ?,即 ()()()a b a f b f f --=ζ' 推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ?,因为直线OT 的斜率与直线AB 的斜率相同,即有:

推广的积分中值定理及其应用

推广的积分中值定理及其应用 摘要:定积分是微积分的重要组成部分,而积分中值定理是定积分的重要性质之一,所以积分中值定理在微积分中占了很重要的地位,本文系统的叙述了推广的积分中值定理包括:ξ必可以在开区间中取得,导函数的积分中值定理等多个方面,我们所学知识中积分中值定理与微分中值定理的中间点的存在区间是不统一的,但推广后的积分中值定理能够与微分中值定理的存在区间从形式上统一起来,使与其相关的理论得以联系和应用.同时,在本篇论文中以实例的形式列举了推广的积分中值定理在确定零点分布、证明积分不等式、求极限等方面的应用,显然,推广的积分中值定理的优点就在于此,它可以解决原积分中值定理无法解决的问题,这表明了积分中值定理在推广后更具有应用性. 关键词:积分中值定理;导函数;微分中值定理 Promotion of Integral Mean Value Theorem and Its Application Abstract:Definite integral is an important component of calculus, the mean value theorem is one of the important properties of the definite integral, so integral mean value theorem in calculus plays a very important position .This paper describes the system to promote the integral mean value theorem, including: ξwill be achieved in the open interval ,of the derivatives and other integral mean value theorem, we have the knowledge of the differential mean value theorem and the Intermediate Value Theorem Existence interval is not uniform, but after the promotion of integral mean value theorem and the Mean Value Theorem to the presence of range from the formal unity, so that contact can be associated with the theory and application. Meanwhile, in this paper an example to cite a form of integral mean value theorem in determining the zeros to prove inequality, such as the application of limit, obviously, to promote the advantages of integral mean value theorem in this, it Can solve the original integral mean value theorem can not solve the problem, suggesting that the integral mean value theorem in the promotion of a more applied after. Keywords: Integral mean value theorem, derivative, mean value theorem

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

高等数学-中值定理证明

第三章中值定理证明

1.闭区间上连续函数定理① ② ③ ④ 2.微分中值定理 ① ② ③ ④ 3.积分中值定理 ① ② 不等式证明思路 ①构造函数(利用极值) ②拉格朗日中值定理 ③函数凹凸性定义

1.若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0 f f ξλξ'+=2.设,0a b >,证明:(,)a b ξ?∈,使得(1)() b a ae be e a b ξξ-=--3.设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0 F ξ''=4.设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.

5.若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

(完整版)中值定理的应用方法与技巧

中值定理的应用方法与技巧 中值定理包括微分中值定理和积分中值定理两部分。微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述。积分中值定理有积分第一中值定理和积分第二中值定理。积分第一中值定理为大家熟知,即若)(x f 在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得))(()(a b f dx x f b a -=?ξ。积分第二中值定理为前者的推广,即若)(),(x g x f 在[a,b]上连续,且)(x g 在[a,b]上不变号,则在[a,b]上至少存在一点ξ,使得??=b a b a dx x g f dx x g x f )()()()(ξ。 一、 微分中值定理的应用方法与技巧 三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。 例一.设)(x ?在[0,1]上连续可导,且1)1(,0)0(==??。证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a b a +='+') ()(η?ξ?成立。 证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ?==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(??ξ?。 任意给定正整数b ,再令)()(,)(21x x g bx x g ?==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=') 0()1(0)(??η?。 两式相加得:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得 b a b a +='+') ()(η?ξ? 成立。 证法2:任意给定正整数b a ,,令)()(,)(21x x f ax x f ?==,则在[0,1]上对

二元函数的积分中值定理的探究

目录 摘要................................................................................ I 关键词.............................................................................. I Abstract ........................................................................... II Key words .......................................................................... II 前言.. (1) 1预备知识 (1) 1.1相关定理 (1) 2 多元函数积分中值定理的各种形式 (2) 2.1 曲线积分中值定理的推广 (2) 2.1.1第一型曲线积分中值定理 (2) 2.1.2第二型曲线积分中值定理 (4) 2.2二重积分中值定理的探究及推广 (5) 2.3曲面积分中值定理的探究及推广 (7) 2.3.1第一型曲面积分中值定理 (7) 2.3.2第二型曲面积分中值定理 (7) 结论 (9) 参考文献 (10) 致谢 (11)

摘要:积分中值定理是数学分析的重要定理,我们主要讨论了二元函数的曲线、重积分、曲面的各种形式中值定理,而且还给出了这些定理的证明过程,最后总结出各类积分中值定理的形式. 关键词:积分中值定理;第二中值定理;曲线积分中值定理;二重积分中值定理;曲面积分中值定理

拉格朗日中值定理的证明

拉格朗日中值定理是微分学中最重要的定罗尔定理来证明。理之一,它是沟通函数与其导数之间的桥梁,也是微分学的理论基础。一般高等数学教材上,大都是用罗尔定理证明拉朗日中值定理,直接给出一个辅助函数,把拉格朗日定理的证明归结为用罗尔定理,证明的关键是给出—个辅助函数。 怎样构作这一辅助函数呢?给出两种构造辅助函数的去。 罗尔定理:函数满足在[a,b止连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一点∈,使f(∈)==o (如图1)。 拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)内可导,则在(a,b)内至少存在_ ∈,使(如图2). 比较定理条件,罗尔定理中端点函数值相等,f ,而拉格朗日定理对两端点函数值不作限制,即不一定相等。我们要作的辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为: 1.首先分析要证明的等式:我们令 (1) 则只要能够证明在(a,b)内至少存在一点∈,使f(∈ t就可以了。 由有,f(b)-tb=f(a)-ta (2) 分析(2)式,可以看出它的两边分别是F(X)=f(x)-tx在b,a观点的值。从而,可设辅助函数F(x)=f(x)-tx。该函数F(x)满足在{a.b{上连续,在(a,b)内可导,且 F(a)=F(b) 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F。(∈)=O。也就是f(∈)-t=O,也即f(∈ )=t,代人(1 )得结论 2.考虑函数

我们知道其导数为 且有 F(a)=F(b)=0. 作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且f F 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F’ 从而有结论成立.

积分中值定理的证明与应用

积分中值定理的证明与应用 作者:王晶岩 作者单位:黑龙江工商职业技术学院,黑龙江,哈尔滨,150000 刊名: 中国新技术新产品 英文刊名:CHINA NEW TECHNOLOGIES AND PRODUCTS 年,卷(期):2009,""(5) 被引用次数:0次 参考文献(4条) 1.刘玉琏.傅沛仁教学分析 1988 2.马玲高等数学解题方法指导 1996 3.阎政平积分中值定理证明的一点注记 1996(04) 4.薛嘉庆高等数学题库精编 2000 相似文献(10条) 1.期刊论文余桂东.YU Gui-dong积分中值定理的逆-安庆师范学院学报(自然科学版)2001,7(1) 从积分中值定理的几何意义出发,探讨出有关积分中值定理的逆,并进一步推出微分中值定理的逆. 2.期刊论文郝玉芹.时立文.欧阳占瑞.HAO Yu-qin.SHI Li-wen.OUYANG Zhan-rui对积分中值定理结论的一点改动-河北能源职业技术学院学报2007,7(3) 本文对积分中值定理中取值区间进行讨论,证明在开区间上该定理仍然成立.这样可使积分中值定理与微分中值定理中的取值区间得以统一,从而更能体现积分中值定理的中值性以及两个中值定理之间的联系. 3.期刊论文张武关于积分中值定理的正确应用与理解-太原教育学院学报2002,20(4) 积分中值定理是微积分学中最基本的定理之一,但是在实际教学与应用中常常会有误解,对它的理解也不够全面和深刻.因此,有必要对一般情况下积分中值定理进行推广和证明,并阐述它与微分中值定理的关系. 4.期刊论文唐伟国.唐仁献微分中值定理的级数表达式-湖南科技学院学报2008,29(8) 本文探寻得到了罗尔中值定理、拉格朗日中值定理与柯西中值定理的级数表达式,并作为其应用,方便地得到了第一积分中值定理的两种新的形式. 5.期刊论文唐仁献微分中值定理的级数表达式-零陵学院学报2004,25(6) 探寻得到了罗尔中值定理、拉格朗日中值定理与柯西中值定理的级数表达式,并作为其应用,方便地得到了第一积分中值定理的两种新的形式. 6.期刊论文潘新对积分中值定理的推广与应用-考试周刊2008,""(26) 文章对积分中值定理进行了讨论与推广.得到了四个推论,并且对给出的积分中值定理进行了一些应用. 7.期刊论文孙翠芳.程智微积分中值定理间点的关系-高等数学研究2009,12(6) 根据微分中值定理和积分中值定理定义微分点与积分点.证明严格单调函数与凸(凹)函数中微分点与积分点间的一些关系式,指出在函数对称的情况下微分点与积分点之间也存在着对称关系,并给出一类向量函数以及多项式函数中微分点与积分点间的关系式. 8.期刊论文宁存法.陈丫丫关于积分中值定理的注记-太原大学教育学院学报2007,25(z1) 在分析教材中第一积分中值定理的条件下,证明了介值点ξ必可在开区间(a,b)内取得,进一步将这个结论推广到被积函数f以区间端点a和b为第一类间断点或瑕点以及在(a,b)内有间断点的情形,并且给出以上结果的一些应用. 9.期刊论文哈申浅谈微分中值定理与牛顿-莱布尼兹公式-内蒙古科技与经济2007,""(21) 本文介绍微分中值定理与牛顿-莱布尼兹公式的简单应用,找出微分中值定理与牛顿-莱布尼兹公式的辩证关系,从而使我们深入理解和运用微积分学的基本定理. 10.期刊论文薛国民关于一道数学竞赛题的解法探讨-考试周刊2008,""(26) 本文对江苏省普通高等学校第六届高等数学竞赛中一道试题的解法进行了探讨,分析了原有解法的不足,并且给出了另一种解法. 本文链接:https://www.doczj.com/doc/ad9841379.html,/Periodical_zgxjsxcpjx200905194.aspx 授权使用:台州科技职业学院(tzkjzy),授权号:1d0d7b6a-acd1-4f5e-850e-9e170098c7d5 下载时间:2010年10月22日

积分中值定理

编号 2010011202 毕业论文(设计) ( 2014 届本科) 论文题目:积分中值定理 学院:数学与统计学院 专业:数学与应用数学 班级: 2010级本科(2)班 作者姓名:曹强 指导教师:完巧玲职称:副教授 完成日期: 2014 年 5 月 5 日

目录 诚信声明-------------------------------------------------------------------------------------------------- 错误!未定义书签。摘要 ---------------------------------------------------------------------------------------------------------------------------------- 2 1积分中值定理 ------------------------------------------------------------------------------------------------------------------- 2 1.1定积分中值定理及推广 ---------------------------------------------------------------------------------------------- 2 1.1.1定积分中值定理----------------------------------------------------------------------------------------------- 2 1.1.2定积分中值定理的推广 ------------------------------------------------------------------------------------- 2 1.2定积分第一中值定理及推广---------------------------------------------------------------------------------------- 3 1.2.1定积分第一中值定理----------------------------------------------------------------------------------------- 3 1.2.2定积分第一中值定理的推广 ------------------------------------------------------------------------------- 3 1.3定积分第二中值定理及推广---------------------------------------------------------------------------------------- 4 1.3.1定积分第二中值定理----------------------------------------------------------------------------------------- 4 1.3.2积分第二中值定理的推广 ---------------------------------------------------------------------------------- 6 1.4 重积分的中值定理 --------------------------------------------------------------------------------------------------- 7 1.4.1二重积分的中值定理----------------------------------------------------------------------------------------- 7 1.4.2三重积分的中值定理----------------------------------------------------------------------------------------- 8 1.5曲线积分中值定理 ---------------------------------------------------------------------------------------------------- 8 1.5.1第一曲线积分中值定理 ------------------------------------------------------------------------------------- 8 1.5.2第二曲线积分中值定理 ------------------------------------------------------------------------------------- 8 1.6 曲面积分中值定理 -------------------------------------------------------------------------------------------------- 10 1.6.1第一曲面积分中值定理 ------------------------------------------------------------------------------------ 10 1.6.2第二曲面积分中值定理 ------------------------------------------------------------------------------------ 10 2中值点的渐进性 --------------------------------------------------------------------------------------------------------------- 10 2.1第一积分中值定理中值点的渐进性 ----------------------------------------------------------------------------- 10 2.2第二积分中值定理中值点的渐进性 ----------------------------------------------------------------------------- 13 3积分中值定理的应用--------------------------------------------------------------------------------------------------------- 14 3.1估计积分值------------------------------------------------------------------------------------------------------------- 14 3.2求含定积分的极限 --------------------------------------------------------------------------------------------------- 15 3.3确定积分值符号 ------------------------------------------------------------------------------------------------------ 15 3.4比较积分大小---------------------------------------------------------------------------------------------------------- 16 3.5证明函数的单调性 --------------------------------------------------------------------------------------------------- 16 3.6证明定理---------------------------------------------------------------------------------------------------------------- 16 结论 ------------------------------------------------------------------------------------------------------------------------------- 18 参考文献--------------------------------------------------------------------------------------------------------------------------- 19 英文摘要-------------------------------------------------------------------------------------------------- 错误!未定义书签。致谢 ------------------------------------------------------------------------------------------------------------------------------- 21

微分与积分中值定理及其应用

第二讲 微分与积分中值定理及其应用 1 微积分中值定理 0 微分中值定理 .......................................................................................... 0 积分中值定理 .......................................................................................... 2 2 微积分中值定理的应用 . (3) 证明方程根(零点)的存在性 ............................................................... 3 进行估值运算 .......................................................................................... 7 证明函数的单调性................................................................................... 7 求极限 ...................................................................................................... 8 证明不等式 . (9) 引言 Rolle 定理,Lagrange 中值定理,Cauchy 中值定理统称为微分中值定理。微分中 值定理是数学分析中最为重要的内容之一,它是利用导数来研究函数在区间上整体性质的基础,是联系闭区间上实函数与其导函数的桥梁与纽带,具有重要的理论价值与使用价值。 1 微积分中值定理 微分中值定理 罗尔(Rolle)定理: 若函数f 满足如下条件 (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )内可导; (ⅲ))()(b f a f =, 则在(a,b )内至少存在一点ξ,使得 0)(='ξf . 朗格朗日(Lagrange)中值定理: 设函数f 满足如下条件: (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )上可导; 则在(a,b )内至少存在一点ξ,使得 a b a f b f f --= ') ()()(ξ.

二、三重积分中值定理的证明与应用

《数学分析》自主研究课题: 二、三重积分中值定理的证明和应用 摘要:本报告探究的是由积分第一中值定理和推广的积分第一中值定理引伸出的推广形式的二重积分中值定理和二、三重积分中值定理的证明及其相关应用。 关键词:积分第一中值定理,推广形式的二重积分中值定理,二、三重积分中值定理 一、引言 在《数学分析》的学习过程中我们已经详细了解了的积分第一中值定理(一重积分中值定理)及其证明和应用,而对二、三重积分中值定理并没有给出详细的证明和应用,所以本报告将详细的对其作出证明和说明其简单的应用. 二、积分第一中值定理(一重积分中值定理) (积分第一中值定理)若f 在[a,b]上连续,则至少存在一点ε∈[a,b],使得 )()()(a b f dx x f b a -=? ε.

??=D D S f d y x f ),(),(ηεσ和(推广形式的积分第一中值定理)若f 和g 都在[a,b]上连续,且)(x g 在[a,b]上不变号,则至少存在一点b][a,∈ε,使得 ? ?=b a b a dx x g f dx x g x f )()()()(ε (明显当1g ≡) (x 时,即为积分第一中值定理) 三、推导二、三重积分中值定理及证明 由积分第一中值定理我们类似的推导出 二重积分中值定理:若),(y x f 在有界闭区域D 上连续,则存 在D ∈) ηε,(,使得 ??=D D S f d y x f ),(),(ηεσ, 这里S D 是区域D 的面积. 证明:由于),(y x f 在有界闭区域D 上连续,S D 为这个区域的面积.存在最大值M 和最小值m ,得 m ≤),(y x f ≤M,D y x ∈),(, 使用积分不等式性质得 mS D ≤??D d y x f σ),(≤MS D , 即 m ≤ ??D D d y x f S σ),(1 ≤M. 再由连续函数的介值性,至少存在一点D ∈) ηε,(,使 ??= D D d y x f S f ,),(1 ),(σηε 即

相关主题
文本预览
相关文档 最新文档