当前位置:文档之家› 钒钛磁铁矿的基本知识

钒钛磁铁矿的基本知识

钒钛磁铁矿的基本知识
钒钛磁铁矿的基本知识

钒钛磁铁矿

简述

我国钒钛磁铁矿床分布广泛,储量丰富,储量和开采量居全国铁矿的第三位,已探明储量98.3亿吨,远景储量达300亿吨以上,主要分布在四川攀枝花地区、河北承德地区、陕西汉中地区、湖北郧阳、襄阳地区、广东兴宁及山西代县等地区。其中,攀枝花地区是我国钒钛磁铁矿的主要成矿带,也是世界上同类矿床的重要产区之一,南北长约300km,已探明大型、特大型矿床7处,中型矿床6处。钒矿资源较多,总保有储量V2O5 2596万吨,居世界第3位。钒矿主要产于岩浆岩型钒钛磁铁矿床之中,作为伴生矿产出。钒矿作为独立矿床主要为寒武纪的黑色页岩型钒矿。钒矿分布较广,在19个省(区)有探明储量,四川钒储量居全国之首,占总储量的49%;湖南、安徽、广西、湖北、甘肃等省(区)次之。钒钛磁铁矿主要分布于四川攀枝花-西昌地区及河北承德地

区,黑色页岩型钒矿主要分布于湘、鄂、皖、赣一带。钒矿成矿时代主要为古生代,其他地质时代也有少量钒矿产出。

钛矿主要为钒钛磁铁矿中的钛矿、金红石矿和钛铁矿砂矿等。钒钛磁铁矿中的钛主要产于四川攀枝花地区。金红石矿主要产于湖北、河南、山西等省。钛铁矿砂矿主要产于海南、云南、广东、广西等省(区)。钛铁矿的TiO2保有储量为3.57亿吨,居世界首位。钛矿矿床类型主要为岩浆型钒钛磁铁矿,其次为砂矿。从成矿时代来看,原生钛矿主要形成于古生代,砂钛矿则于新生代形成。

铬矿资源比较贫乏,按可满足需求的程度看,属短缺资源。总保有储量矿石1078万吨,其中富矿占53.6%。铬矿产地有56处,分布于西藏、新疆、内蒙古、甘肃等13个省(区),以西藏为最主要,保有储量约占全国的一半。中国铬矿床是典型的与超基性岩有关的岩浆型矿床,绝大多数属蛇绿岩型,矿床赋存于蛇绿岩带中。西藏罗布莎铬矿和新疆萨尔托海铬矿等皆属此类。从成矿时代来看,中国铬矿形成时代以中、新生代为主。

锰矿资源较多,分布广泛,在全国21个省(区)均有产出;有探明储量的矿区213处,总保有储量矿石5.66亿吨,居世界第3位。中国富锰矿较少,在保有储量中仅占6.4%。从地区分布看,以广西、湖南为最丰富,占全国总储量的55%;贵州、云南、辽宁、四川等地次之。从矿床成因类型来看,以沉积型锰矿为主,如广西下雷锰矿、贵州遵义锰矿、湖南湘潭锰矿、辽宁瓦房子锰

矿、江西乐平锰矿等;其次为火山-沉积矿床,如新疆莫托沙拉铁锰矿床;受变质矿床,如四川虎牙锰矿等;热液改造锰矿床,如湖南玛璃山锰矿;表生锰矿床,如广西钦州锰矿。从成矿时代来看,自元古宙至第四纪均有锰矿形成,以震旦纪和泥盆组为最重要。

我国是铁矿资源总量丰富、矿石含铁品位较低的一个国家。目前已探明储量的矿区有1834处,总保有储量矿石463亿吨,居世界第5位。除上海市、香港特别行政区外,铁矿在全国各地均有分布,以东北、华北地区资源为最丰富,西南、中南地区次之。就省(区)而言,探明储量辽宁位居榜首,河北、四川、山西、安徽、云南、内蒙古次之。中国铁矿以贫矿为主,富铁矿较少,富矿石保有储量在总储量中占2.53%,仅见于海南石碌和湖北大冶等地。从铁矿成因类型来看,根据程裕淇和赵一鸣等的意见,主要有与铁质基性、超基性岩浆侵入活动有关的岩浆型铁矿床,如四川攀枝花铁矿床,与中酸性(包括偏基性与偏碱性)岩浆侵入活动有关的接触交代-热液铁矿床,如湖北大冶、福建马坑、内蒙古黄岗等;与中性钠质或偏钠质火山-侵入活动有关的铁矿,如江苏、安徽两省的宁芜铁矿、云南大红山铁矿等;沉积型赤铁矿和菱铁矿床如鄂西、赣西、湘东地区的赤铁矿;变质沉积铁矿,如鞍山铁矿、冀东铁矿等;风化淋滤残积型铁矿,如广东大宝山、贵州观音山等。铁矿成因类型以分布于东北、华北地区的变质-沉积磁铁矿为最重要。该类型铁矿含铁量虽低(35%左右),但储

量大,约占全国总储量的一半,且可选性能良好,经选矿后可以获得含铁65%以上的精矿。从成矿时代看,自元古宙至新生代均有铁矿形成,但以元古宙为主。

四川攀枝花钒钛磁铁矿化学成分

化学成分含量(%)

Fe 铁30.55

TiO2 二氧化钛10.42

V2O5 五氧化二钒0.30

Co 钴0.017

Ni 镍0.014

S 硫(硫化物)0.64

P 磷(磷化物)0.013

四川攀枝花钒钛磁铁矿选矿产品化学成分

(%)Fe TiO2 V2O5 Co Ni Al2O3 SiO2 CaO MgO S P

铁钒精矿51.56 12.73 0.564 0.020 0.013 4.69 4.64 1.57 3.

91 0.53 0.004

钛精矿31.56 47.53 0.68 0.016 0.006 1.16 2.78 1.20 4.48 0.25 0.01

硫钴精矿49.01 1.62 0.282 0.258 0.192 1.40 5.42 1.69 2.1 6 36.61 0.019

含钒钛磁铁矿岩体分为基性岩(辉长岩)型和基性-超基性岩(辉长岩-辉石岩-辉岩)型两大类,前者有攀枝花、白马、太和等矿床,后者有红格、新街等矿床。总的来说,两种类型的地质特征基本相同,前者相当于后者的基性岩相带部分的特征,后者除铁、钛、钒外,伴生的铬、钴、镍和铂族组分含量较高,因而综合利用价值更大。

钒钛磁铁矿不仅是铁的重要来源,而且伴生的钒、钛、铬、钴、镍、铂族和钪等多种组份,具有很高的综合利用价值。

五氧化二钒(V2O5):攀枝花钒钛磁铁矿伴生V2O5,198 7年底探明储量约占全国储量的59.1%,名列全国第一、世界第三位。

二氧化钛(TiO2):攀枝花钒钛磁铁矿伴生的TiO2,1987年底探明储量约占全国TiO2储量的97.78%,名列世界第一。钒钛磁铁矿

钒钛磁铁矿

&Nb sp; 我国钒钛磁铁矿床分布广泛,储量丰富,储量和开采量居全国铁矿的第三位,已探明储量98.3亿t,远景储量达300亿吨以上,主要分布在四川攀枝花—西昌地区、河北承德地区、陕西汉中地区、湖北郧阳、襄阳地区、广东兴宁及山西代县等地区。其中,攀枝花—西昌地区是我国钒钛磁铁矿的主要成矿带,也是世界上同类矿床的重要产区之一,南北长约300km,已探明大型、特大型矿床7处,中型矿床6处。原矿及选矿产品的化学成分见表1、表2。

表1 四川攀枝花钒钛磁铁矿化学成分[2]

表2 四川攀枝花钒钛磁铁矿选矿产品化学成分(%)[2]

含钒钛磁铁矿岩体分为基性岩(辉长岩)型和基性-超基性岩(辉长岩-辉石岩-辉岩)型两大类,前者有攀枝花、白马、太和等矿床,

后者有红格、新街等矿床。总的来说,两种类型的地质特征基本相同,前者相当于后者的基性岩相带部分的特征,后者除铁、钛、钒外,伴生的铬、钴、镍和铂族组分含量较高,因而综合利用价值更大。

钒钛磁铁矿不仅是铁的重要来源,而且伴生的钒、钛、铬、钴、镍、铂族和钪等多种组份,具有重要的综合利用价值。

钒(V2O5):攀西地区钒钛磁铁矿伴生V2O5,1987年底探明储量约占全国储量的591%,名列全国第一、世界第三位。

钛(TiO2):攀西地区钒钛磁铁矿伴生的TiO2,1987年底探明储量约占全国TiO储量的9778%,名列全国第一、世界前茅。

兴宁市罗岗镇霞岚钒钛磁铁矿简介

霞岚钒钛磁铁矿区位于广东省兴宁市罗岗镇原霞岚公社辖区内。属京九铁路沿钱经济发展带内,仅距广梅汕铁路兴宁站33公里,兴宁市区分别有S225线和S226线可通矿区,交通便利。矿区地形地貌属低丘台地,汽车可直达山顶,一览全矿。矿区共占地15.61平方公里,共涉二个镇四个行政村,人口1万多人,近2500户。首期拟开发矿区占地5平方公里,涉及罗岗镇二个行政村,人口近3千人,需搬迁民房600多座,小学校舍2座。霞岚矿在合水水库的上游西北角约15公里处.

该矿在1997年由国家地矿部、国家计委立项开始搞地质普查,重点是对罗岗霞岚钒钛磁铁矿风化壳矿床进行地质普查。主要是省七二三地质大队摸清矿床地质情况;省矿产应用研究所(九室)进行初步的可选性试验。

经多年的地质勘查和部分首采段的详细勘探工作,已圈定可开采的矿床范围和矿量,探明该矿区远景储量4.5亿吨,矿床潜在价值98年市值590多亿元以上,拟首期开采的矿区分布约5平方公里范围内,储量约0.8亿多吨,矿品位为全铁(TFe)24.55%、钛(TiO2)6.08%、钒(V2O5)0.23%。根据冶金部长沙矿冶研究院完成的《兴宁市罗岗霞岚钒钛磁铁矿选矿试验报告》显示:铁精矿品位为全铁(TFe)57.78%,二氧化钛(TiO2)12.87%,五氧化二钒(V2O5)0.92%。其中五氧化二钒品位在国内现有钒钛磁铁矿中居首位,且有害杂质含量低。

附:《广东省矿产资源开发与综合利用数据库》有关广东兴宁霞岚钒钛铁矿的资料

广东兴宁霞岚钒钛铁矿

风化壳型钒钛磁铁矿床在综合评价阶段,其工业价值主要取决于矿石的可选性和矿床可能达到的规模。广东兴宁霞岚矿床的含矿母岩为沿北西方向深断裂侵入的燕山期第二期岩株状基性岩体——辉绿辉长岩。岩体结晶分异作用良好,岩石具中细粒全晶质辉绿结构。主要矿物为单斜辉石、基性斜长石,次要矿物有角闪石、橄榄石、黑云母、钒钛磁铁矿、钒铁矿等。岩体地面面积约 5 km2(以往勘查面积 4 km2),出露地形为呈

舒缓波状起伏的平缓山丘,地表及浅部风化程度很深,易风化的铁镁硅酸盐造岩矿物辉石、斜长石等风化成土状(褐铁矿),大部分风化完全,其中呈浸染状、稠密浸染状的钒钛磁铁矿、钛铁矿以水洗脱泥即可达到初步富集。对70年代详查报告中有编录和采样分析成果的20个浅钻孔统计,风化壳矿体厚7.96~25.36 m,平均厚度14.35 m;矿石品位:TFe 16.47%~27.85%(平均21.86%),TiO2平均5.62%,V2O5平均0.248%。广东省地勘局根据报告资料,重新统计了见有风化壳矿体的20个浅钻孔、20个浅井和部分(深)钻孔的厚度,风化壳矿体厚(深)12.8~65.6 m,平均厚28.2 m,TFe 含量15%~25%。据广东省地勘局723地质大队最近的勘查资料⑧,霞岚矿床风化壳矿体的最厚(深)处达到72.34 m(基性岩第一相带),其余相带20~30 m。

矿石的可选性

广东省地质局在70年代勘查霞岚矿床时曾采大样作选矿试验,结果表明:风化壳矿石中铁的回收效果较好(该结果是笔者提出对霞岚矿床重新评价的重要依据)。近来,广东省矿产应用研究所、长沙矿冶研究院选矿研究所先后对风化壳矿石作进一步选矿试验或物质组分研究,也得出相近的论述,三个单位的选矿情况分述如下:

1. 70年代勘查时,在主干线22、26、36线的地表工程中混合采取风化矿石作可选性选矿试验。样重875 kg,风化完全,不经破碎即可通过孔径5 mm的筛孔。原矿品位:TFe 27.45%、TiO2 7.18%、V2O5 0.37%、Co 0.03%。试样中主要矿物:( 钒钛)磁铁矿32%、钛铁矿8.5%、(赤铁矿+褐铁矿)1.5%、粘土矿物35%,其他硅酸盐矿物21%。样品经水力旋流器粗选脱泥(-0.002 mm占37.85%)后再经磁选—重选,获得铁钒钛精矿、钛精矿(表1)。从选矿结果(表1)看,铁的选矿效果很好,钒也能回收(因铁与钛部分呈固熔体状态,故钛的回收率低),铁精矿中钛的含量也较高。

表1 风化壳矿石选矿试验结果

2. 1998年,广东省矿产应用研究所对风化壳矿石的物质组分作了研究,试样的平均品位为:TFe 24.93%、TiO210.09% 、V2O50.35%、Co 0.012%、Sn 0.0054%。主要金属矿物为磁铁矿、钛磁铁矿、钛铁矿、褐铁矿,主要脉石矿物为铁染微晶云母集

合体、长石、粘土。磁铁矿、钛磁铁矿粒径0.1~1 mm 的占97%(钛铁矿粒径0.1~1 mm 的占96%),二者常被赤铁矿、褐铁矿交代。褐铁矿呈土状集合体,易碎成粉状。磁铁矿和钛铁矿除呈独立矿物外,还呈固熔体分离结构,在磁铁矿主晶中包含网格状钛铁矿片晶(宽0.003~0.01 mm)。矿石中金属矿物的半定量测定结果为:磁铁矿、钛磁铁矿 32.86%,钛铁矿8.0%,褐铁矿 13.34%,褐铁矿的矿物量占全部铁矿物的20%~25%。矿石的矿泥量(-0.074 mm)约占矿石量的50%,其成分以褐铁矿为主体、含铁量约占总铁的28%。

3. 1999年,长沙矿冶研究院选矿研究所对风化壳矿石(由723队采集的209个样品组成的组合样原矿品位:TFe 22.79%、TiO26.08%、 V2O50.23%、Al2O317.13%、SiO229.16%、Cu 0.061%、Co 0.027%、Ni 0.009%、S 0.018%、P 0.063%)作了选矿试验,共获得以下主要认识:

(1)原矿中可以经选矿回收的组分为铁、钒、钛,可考虑综合回收利用的组分(铜、钴、镍等)及有害杂质(硫、磷等)的含量都很低,选矿过程要排除Al2O3、SiO2等主要组分。

(2)矿石中主要金属矿物是磁铁矿、半假象赤铁矿、褐铁矿、钛铁矿等,脉石矿物主要是粘土矿物和长石、石英等(表2)。

表2 风化壳矿石的矿物含量

磁铁矿的粒径一般0.1~2 mm,大于0.3 mm的占92.87%,含固熔体分离的钛铁矿片晶(宽0.005~0.02 mm)、尖晶石微粒,以及呈类质同像形式的TiO2(平均含量8.64%)。磁铁矿单矿物分析结果为TFe 60.68%、TiO2 11.68%、V2O5 1.06%,次生变化主要是假象赤铁矿化。钛铁矿大部分呈粒状集合体(与包裹于磁铁矿中片晶的比例为15∶85),粒径0.1~0.8 mm,大于0.1 mm 的占91.78%,钛铁矿单矿物分析的 TiO249.61%。褐铁矿粒径一般0.1~0.5 mm,由假象赤铁矿和辉石等含铁硅酸盐类矿物氧化或蚀变而成。高岭石等粘土矿物,铁染成浅红色等,包裹磁铁矿等矿物。

(3)风化壳矿石中,铁和钛的赋存状态都比较复杂。表3为铁和钛的物相分析结果。在磁铁矿和半假象赤铁矿中铁的分布率合计为39.53%,如采用弱磁选的选矿方法,此值即为理论最大回收率。钛矿物(钛铁矿、锐钛矿)中TiO2的分布率共

53.29%,但磁铁矿和硅酸盐(脉石)中的 TiO2分别达到27.63%、19.08%,使TiO2的回收率降低。

表3 铁和钛的物相分析

(4)风化壳矿石的脱泥试验(表4)中矿石的含泥量较高,-0.074 mm 粒级的占含量的58.45%;脱泥量约占原矿的1/4,脱泥效果明显(金属量的损失并不大)。

表4 风化壳矿石脱泥试验

(5)对风化壳矿石中的磁铁矿采用3种弱磁选方法(表5)试验:原矿直接弱磁选、原矿磨矿后弱磁选、原矿弱磁选后粗精矿磨矿再磁选。结果表明,3种方法都能得到全铁品位大于55%的铁精矿。但第1种方法的铁精矿品位、回收率都较第2种方法低,且铁精矿的品位很难再提高;第2种方法和第3种方法的铁精矿品位、回收率相近,前者钛的回收率稍高,但后者可节约75%的磨矿量。铁的回收率虽接近40%,但已达到霞岚矿床铁的理论回收率。铁精矿中TiO2、V2O5的含量较高,钒的回收率达70%左右。

表5 风化壳矿石磁铁矿选别试验

(6)以弱磁选的尾矿对钛铁矿作了多种选别试验。粗选采用强磁选、螺旋、摇床等试验,精选采用浮选、摇床、电选等

攀枝花钒钛磁铁矿选矿探索

会理县秀水河矿业有限公司 秀水河矿山钒钛磁铁矿 选铁探索试验 攀钢集团研究院有限公司 二0一三年二月

会理县秀水河矿业有限公司 秀水河矿山钒钛磁铁矿 选铁探索试验 攀钢集团研究院有限公司 二0一三年二月

院 长:文孝廉 主管院长:汪传松 室 主 任:王 勇 项目负责:吴雪红 试验人员:王建平王勇祝勇涛 李凤菊景 兰 杨利斌 化验人员:张晓华张文玲宋巧玲 王凤琴刘 馨 镜鉴人员:陈碧尹秀琼 报告编写:吴雪红 报告审查:王洪彬王勇

目 录 1前言 (1) 2试验样品的制备 (3) 3原矿性质研究 (4) 3.1原矿化学多元素分析 (4) 3.2原矿全粒级筛析 (4) 3.3原矿镜鉴 (5) 3.4原矿相对可磨度测定 (10) 3.5原矿性质小结 (11) 4试验方案的确定和试验设备 (12) 4.1试验方案 (12) 4.2试验设备 (12) 5选矿试验 (15) 5.1一段磨选试验 (15) 5.2两段阶磨阶选流程试验 (19) 5.3三段阶磨阶选流程试验 (30) 5.4选矿试验小结 (33) 6产品检测 (35) 7技术经济简评 (37) 7.1各品级选矿成本估算 (37) 7.2各品级铁精矿销售价格估算 (38) 7.3各品级铁精矿选矿利润 (39) 8推荐流程 (39) 9结论 (41)

1前言 秀水河矿山矿石为钒钛磁铁矿,以下将其简称秀水河矿。我院受会理县秀水河矿业有限公司(以下简称甲方)委托,对该矿进行选铁探索试验,并于2012年12月18日签订了技术服务合同。 合同要求:通过选矿探索试验,确定该矿52%-53%、53%-54%、54%-55%和55%以上四个品级铁精矿的选矿工艺流程,并按照每年处理原矿100万吨原矿进行技术经济简评,提供一种经济合理开发该矿的选矿工艺流程及设备参数,为下一步选厂工艺技术改造提供技术依据。 本次试验主要对甲方采取的秀水河矿进行工艺矿物学研究和选矿试验研究。经取样化验,该样品原矿TFe品位26.48%、TiO2品位8.56%。 工艺矿物学研究表明该矿可回收利用的矿物主要为钛磁铁矿,但该钛磁铁矿的客晶矿物镁铝尖晶石片晶发育较好,会影响其铁精矿的品质。 根据合同并结合该矿石的性质特点以及国内钒钛磁铁矿选矿技术发展水平,本次选矿工艺研究主要进行了阶段磨选试验。试验内容按合同要求进行且全面完成,试验获得的各品级铁精矿指标见表1-1。 表1-1各品级铁精矿生产指标 铁精矿品级试验流程 产率 (%) TFe品位 (%) TFe回收率 (%) 52%-53% 两段磨选 35.22 52.56 69.91 53%-54% 两段磨选 32.80 53.36 66.10 54%-55% 两段磨选 30.92 54.35 63.46 55%以上三段磨选 29.97 55.61 62.94

第三章钒钛磁铁矿直接还原基本原理

3.1 钒钛磁铁矿矿物特征及其还原特点 3.1.1 钒钛磁铁矿的矿物特征 钒钛磁铁矿还原过程表现的种种特点都是由它的矿物组成及结构特征和精矿处理过程(如钠化-氧化)所导致的变化而引起的。 钒钛磁铁矿的主要金属矿物为钛磁铁矿和钛铁矿,其次为磁铁矿、褐铁矿、针铁矿、次生黄铁矿;硫化物以磁黄铁矿为主,另有钴镍黄铁矿、硫钴矿、硫镍钻矿、紫硫铁镍矿、黄铜矿、黄铁矿和墨铜矿等。脉石矿物以钛普通辉石和斜长石为主,另有钛闪石、橄榄石、绿泥石、蛇纹石、伊丁石、透闪石、榍石、绢云母、绿帘石、葡萄石、黑云母、拓榴子石、方解石和磷灰石等。某单位对太和铁精矿的矿相组成鉴定结果为:钛磁铁矿占92%,钛铁矿占3%,硫化物占1.5%,脉石占3.5%。 化学光谱分析表明,攀西地区钒钛磁铁矿中含有各类化学元素30多种,有益元素10多种,若按矿物含量进行排序,依次为Fe、Ti、S、V、Mn、Cu、Co、Ni、Cr、Sc、Ga、Nb、Ta、Pt;若以矿物经济价值排列,则排序为Ti、Sc、Fe、V、Co、Ni。 钛磁铁矿是由磁铁矿(Fe3O4)、钛铁晶石(2FeO·TiO2)、铝镁尖晶石(MgO·Al2O3)、钛铁矿(FeO·TiO2)所组成的复合体。钛铁晶石是磁铁矿固溶体分解的连晶,交织成网格状,片宽仅0.0002~0.0006毫米。镁铝尖晶石呈粒状及片晶状与磁铁矿晶体密切共生,其粒度一般为0.002~0.030毫米,片晶宽度一般为0.002~0.008毫米。钛铁矿多为片状、板格状,粒晶多为0.01毫米,片晶一般宽0.030~0.0015毫米。 由于精矿磨矿粒度要求-200目(相当于0.074毫米)占80%,故上述与磁铁矿共生的各种矿物无法机械分离,在铁富集时,钛也富集了,这就是钒钛磁铁矿不能通过选矿将铁与钛分离的根本原因。 3.1.2 钒钛磁铁矿的还原特点 (1)含Ti的铁氧化较难还原 钛磁铁矿矿物中的铁处于还原难易程度不同的状态中,与磁铁矿相比,钛铁晶石、钛铁矿等含Ti的铁氧化物较难还原的。根据Ti与Fe的结合的形式不同,含Ti的铁氧化物还原的难易程度又有很大差异,这部分铁占全铁的比率对球团还原的金属化率影响较大。 攀枝花红格矿区钒钛铁精矿的化学成分组成如表3-1所示。 表3-1钒钛铁精矿化学分析结果(%) Fe 下:

磁铁矿矿石选矿流程中的浮选工艺(精)

磁铁矿矿石选矿流程中的浮选工艺 辛杰莫娃 摘要采用浮选工艺对磁选过程中产出的磁铁矿精矿进行精选,能达到降低磁铁矿精矿中的S iO2和S的含量,以生产出能适用于高炉熔炼和直接还原铁所需的磁铁矿精矿。采用浮选工艺后就能在较早的磨矿阶段,获得所需质量的最终精矿,因而就能达到减少磨矿物料的数量和降低电能消耗。 关键词磁选-浮选联合流程分选磁铁矿矿石节能提高生产能力 处理细粒浸染状磁铁矿矿石的一些选矿厂,是俄罗斯铁精矿的主要生产企业。如在美国的明尼苏达州和密执安州、加拿大安大略省的许多大型采矿公司都在开采铁燧岩矿石,它们是矿物成分接近细粒浸染的磁铁矿石英岩矿石。俄罗斯和这些国家处理这些矿石的很多大型采选公司,多数都是在20世纪60~80年代建成的。 磁铁石英岩和铁燧岩矿石中大约含有30%~ 35%的铁。俄罗斯国内的一些采选公司生产的精矿的铁品位基本上都在65%~66%之间,少数达到了68 0%~68 5%。 目前世界黑色金属产量中,大约97%都是进入高炉熔炼成铸铁。对于高炉熔炼过程来说,对铁矿石原料的基本要求之一,就是在尽可能降低硫、磷、锌、砷和其它杂质以及合适的造渣组分含量的条件下,达到很高的含铁量。 此外,运输较富的精矿和球团矿,也会节省运输费用。 提高精矿铁品位基本上都是通过降低精矿中的SiO2含量而实现的。铁矿石原料中的SiO2含量降低1%,就能使焦炭的消耗量大约减少3%,并能提高高炉的生产能力。力求达到更合理地利用燃料-动力资源和不断提高的对金属质量的要求,这些都决定了需要开发非高炉冶金法,以及扩大适于炉外炼铁的矿物原料基地。 在俄罗斯的一些采选公司中,分选磁铁石英岩的原则工艺流程包括三到四段破碎和三段磨矿。分选过程是通过在每段磨矿以后进行湿式磁选以获取最终尾矿,在

攀枝花钒钛磁铁矿情况简介

四川攀枝花钒钛磁铁矿矿床浅析 ——020131 林少伟一、区域地质简介 区内最古老的地层为上震旦系,分两层,下部是蛇绿岩石化大理岩;上部是透辉石和透辉石大理岩互层。上三叠纪地层在本地区最发育,分布在矿区北部和西北部,其底部是紫红色砂砾岩;上部为灰绿色砂岩与黑色砂页岩互层,含煤。老第三系紫红色砂砾岩呈水平或近水平,不整合覆盖于老底层之上。(如图1-1) 图1-1 攀西地区位于峨眉山大火成岩省的内带,是世界上最大的V-Ti 磁铁矿矿集区, 其中多处为大型-超大型V-Ti 磁铁矿床(Zhou, 2005; 宋谢炎等, 2005; 张招崇等, 2007; 胡瑞忠等, 2010)。沿南北向的磨盘山——元谋断裂和攀枝花断裂带发育一系列含Fe-Ti-V 矿的层状基性-超基性岩体,从北向南依次为太和岩体、白马岩体、新街岩体、红格岩体和攀枝花岩体。 攀枝花层状辉长岩体走向北东,倾向北西,倾角50°~ 60°,长19 km,宽2 km,厚2000~3000m, 出露面积约30 km2。下部主要含矿带厚70~500 m,平均210 m,其中矿体累计厚度为20~230 m,平均130 m,沿倾向延伸850 m 未见变薄(李德惠等, 1982; 王正允, 1982; 宋谢炎等, 1994)。后期由于受南北向反扭性平移断裂破坏,自北东向南西可将矿床划分为朱家包包、兰家火山、尖山、刀马坎、公山等赋矿地段(图1-2)。岩体上盘因断层影响只见三叠纪地层与之呈断层接触。下盘围岩争议较大,多认为靠近岩体底部的大理岩是岩体底板围岩,并认定属于上震旦统灯影灰岩(图1-2)。 攀枝花岩体自下而上可分为底部边缘带、下部含矿带、中部岩相带、上部含矿带和顶部岩相带等5个岩相带,可划分出五个旋回;上部岩相带则以磷灰石含量的突然增高为标志,韵律层理减弱(王正允, 1982; 宋谢炎等, 1994)。攀枝花岩体中部岩相带火成韵律构造发育,富含斜长石的辉长岩和富含单斜辉石、橄榄石和钛铁氧化物(包括磁铁矿和少量钛铁矿)的暗色辉长岩交替出现(李德惠等, 1982; 王正允, 1982)。原生火成韵律构造与岩体产状一致。岩石中硅酸盐矿物

钒钛磁铁矿选矿方法浅析

钒钛磁铁矿选矿方法浅析 1引言 钒钛磁铁矿在中国分布广泛,储量丰富,储量和开采量居 全国铁矿的第三位。地质勘测表明,仅攀枝花-西昌地区的钒钛磁铁矿储量就达100亿t ,占全国铁矿探明储量的20%;钒资源

储量为1 578.8万「占全国钒资源储量的62%,占世界钒储量的11.6%;钛资源储量为8.7亿t ,占全国钛资源储量的90.5%,占世界钛储量的35.2%。此外还伴生有90万t钻、70 万t镍、25万t 钪、18万t镓以及大量的铜、硫等资源。 钒钛磁铁矿的开发利用经历了以高炉冶炼钒钛磁铁矿、雾化提钒和钛精矿选矿为代表的三个重要阶段,逐步实现了铁、钒和钛元素的规模化利用。随着提取冶金技术进步以及开发利用技术的不断完善,综合利用矿石中的钻、镍、铜、钪、镓和硫等有价元素也正在成为可能。 2钒钛磁铁矿的性质 钒钛磁铁矿矿床主要产在基性、超基性侵入岩中,矿石以 富含铁、钛为特征。矿床生成方式分为晚期岩浆分异型矿床及晚期岩浆贯入型矿床;含矿岩石组合类型有辉长岩型-辉石岩-橄榄岩型等。矿石中主要金属矿物组分为钛磁铁矿、钛铁矿、硫化矿物三种,而主要工业矿物中均富含多种有用组分:钛磁铁矿主要有Fe、Ti、Vi、Cr、Co、Ni、G a,钛铁矿主要有Ti、Fe、Sc ,硫化矿物主要有S、C o、Vi、Cu及铂族等。矿石中有用组分的分布特征如下。 (1)铁。主要含在钛磁铁矿中,其分配值及分配率随矿石品级增高而增加,一般为高品位矿93%左右,中品位矿78%?88%,低品位矿67%?75%, Fe表外矿51%?63%。此外,钛铁矿及脉石矿物也含有较多的铁,钛铁矿中分配率随矿石品级

铁矿选矿工艺

我国铁矿石资源供给形势 随着我国经济持续高速的发展,钢铁工业迅速发展。国内各钢铁企业对矿石的需求量增长迅猛,国内的矿山生产已远远满足不了需求,不得不依靠国外的优质铁矿石资源。据统计,1985年我国进口铁矿石突破1000万t,2002年突破1亿t,2004年突破2亿t,2005 年1~7月份累计进口铁矿石已达2亿t。 国内的铁矿石资源中易选的磁铁矿资源日益减少,充分利用国内的资源,提高钢铁企业矿石的自给率,缓解进口铁矿石的压力,维持优质的铁矿原料供给,必须以科技的进步来推动贫铁矿资源的高效开发与利用。我国铁矿矿床类型多,贮存条件复杂,矿石类型多,硫、磷、二氧化硅等有害组分含量高,多组分共生铁矿石占了很大比重,而且有用组分嵌布粒度细,因此采选难度大、效率低、产品质量差。 几十年来,广大选矿工作者针对我国铁矿资源“贫、细、杂”的特点开展了大量的研究工作,解决了诸多技术难题,使我国铁矿选矿技术得到长足进步和发展,总体水平有很大提高。尤其是近年来,研制并成功应用了新的高效分选设备、新的高效浮选药剂以及新的分选工艺。从而使选矿工艺指标取得了突破性进展。 铁矿选矿技术及选矿设备简介 (一)矿石破碎 我国选矿厂一般采用粗破、中破和细破三段破碎流程破碎铁矿石。粗破多用1.2m或1.5m旋回式破碎机,中破使用2.1m或2.2m标准型圆锥式破碎机,细破采用2.1m或2.2m 短头型圆锥式破碎机。通过粗破的矿石,其块度不大于1m,然后经过中、细破碎,筛分成矿石粒度小于12mm的最终产品送磨矿槽。 (二)磨矿工艺 我国铁矿磨矿工艺,大多数采用两段磨矿流程,中小型选矿厂多采用一段磨矿流程。由于采用细筛再磨新工艺,近年来一些选矿厂已由两段磨矿改为三段磨矿。采用的磨矿设备一般比较小,最大球磨机3.6m×6m,最大棒磨机3.2m×4.5m,最大自磨机5.5m×1.8m,砾磨机2.7m×3.6m。磨矿后的分级基本上使用的是螺旋分级机。为了提高效率,部分选矿厂用水力旋流器取代二次螺旋分级机。 (三)选别技术 1.磁铁矿选矿主要用来选别低品位的“鞍山式”磁铁矿。由于矿石磁性强、好磨好选,国内磁选厂均采用阶段磨矿和多阶段磨矿流程,对于粗粒嵌布的磁铁矿采用前者(一段磨矿),细粒、微细粒嵌布的磁铁矿采用后者(二段或三段磨矿)(图3. 2.23)。我国自己研制的系列化的永磁化,使磁选机实现了永磁化。70年代以后,由于在全国磁铁矿选矿厂推广了细筛再磨新技术,使精矿品位由62%提高到了66%左右,实现了冶金工业部提出精矿品位达到65%的要求。 2.弱磁性铁矿选矿主要用来选别赤铁矿、褐铁矿、镜铁矿、菱铁矿、假象赤铁矿或混合矿,也就是所谓的“红矿”。这类矿石品位低、嵌布粒度细、矿物组成复杂,选别困难。80年代后,选矿技术方面对焙烧磁选、湿式强磁选、弱磁性浮选和重选等工艺流程、装备和新品种药剂的研究不断改进,使精矿品位、金属回收率不断提高。如鞍钢齐大山选矿厂采用弱磁—强磁—浮选的新工艺流程,获得令人鼓舞的成就。 3.多金属共(伴)生矿选矿这类矿石成分复杂、类型多样,因此采用的方法、设备和流程也各不相同,如白云鄂博铁矿采用反浮选—多梯度磁选、絮凝浮选、弱磁-反浮选-强磁选、弱磁-正浮选、焙烧磁选等不同的工艺流程,以提高铁的回收率,并综合回收稀

钒钛磁铁矿选矿项目项目可行性研究报告

专业编制可行性研究报告了解更多详情..咨询公司网址https://www.doczj.com/doc/ae87821.html, XX矿业有限公司 钒钛磁铁矿选矿项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司 编制时间:https://www.doczj.com/doc/ae87821.html,

专业编制可行性研究报告了解更多详情..咨询公司网址https://www.doczj.com/doc/ae87821.html, 目录 第一章项目总论 (1) 一、项目名称及承办单位 (1) 二、项目拟建地址 (1) 三、可行性研究的目的 (1) 四、可行性研究报告编制依据和范围 (2) (一)项目可行性报告编制依据 (2) (二)可行性研究报告编制范围 (2) 五、研究的主要过程 (3) 六、建设规模与产品方案 (4) 七、项目总投资估算 (4) 八、工艺技术装备方案的选择 (4) 九、项目建设期限 (5) 十、投资项目备案数据 (5) 项目备案数据一览表 (5) 十一、研究结论 (5) 十二、项目主要经济技术指标 (8) 项目主要经济技术指标一览表 (8) 第二章项目承办单位 (17) 第三章项目产品概述 (18) 第四章建设规模与生产方案 (20) 一、建设规模的确定原则 (20) 二、项目建设规模 (20) 三、项目生产纲领 (21) (2222) 第五章项目建设选址及土建工程.........................................................

专业编制可行性研究报告了解更多详情..咨询公司网址https://www.doczj.com/doc/ae87821.html, 一、项目建设地选择原则 (22) 二、项目建设地概况 (22) 三、项目建设选址方案 (23) 四、选址用地权属性质类别及占地面积 (23) 五、项目用地利用指标 (23) 项目占地及建筑工程投资一览表 (24) 六、项目建筑工程方案 (25) (一)建筑工程概况 (25) (二)建筑结构设计 (26) (三)标准化厂房设计 (28) 七、项目选址综合评价 (31) 项目总图布置主要技术经济指标一览表 (32) 第六章原材料及能源需求情况 (33) 原辅材料及能源供应情况一览表 (33) 第七章技术生产方案 (35) 一、工艺技术方案的选用原则 (35) 二、产品工艺流程 (35) 钒钛磁铁矿选矿工艺流程示意简图(磁选工艺) (39) 钒钛磁铁矿选矿工艺流程示意简图(浮选工艺) (40) 钒钛磁铁矿选矿工艺流程示意简图(重选工艺) (41) 三、设备的选择 (42) (一)设备配置原则 (42) (二)设备配置方案 (43) 主要设备投资明细表 (43) 第八章环境保护 (44) 一、环境保护设计依据 (44)

钒钛磁铁矿基本情况

钒钛磁铁矿基本情况 我国钒钛磁铁矿床分布广泛,储量丰富,储量和开采量居全国铁矿的第三位,已探明储量98.3亿吨,远景储量达300亿吨以上,主要分布在四川攀枝花地区、河北承德地区、陕西汉中地区、湖北郧阳、襄阳地区、广东兴宁及山西代县等地区。其中,攀枝花地区是我国钒钛磁铁矿的主要成矿带,也是世界上同类矿床的重要产区之一,南北长约300km,已探明大型、特大型矿床7处,中型矿床6处。钒矿资源较多,总保有储量V2O5 2596万吨,居世界第3位。 钒矿主要产于岩浆岩型钒钛磁铁矿床之中,作为伴生矿产出。钒矿作为独立矿床主要为寒武纪的黑色页岩型钒矿。钒矿分布较广,在19个省(区)有探明储量,四川钒储量居全国之首,占总储量的49%;湖南、安徽、广西、湖北、甘肃等省(区)次之。钒钛磁铁矿主要分布于四川攀枝花-西昌地区及河北承德地区,黑色页岩型钒矿主要分布于湘、鄂、皖、赣一带。钒矿成矿时代主要为古生代,其他地质时代也有少量钒矿产出。 钛矿主要为钒钛磁铁矿中的钛矿、金红石矿和钛铁矿砂矿等。钒钛磁铁矿中的钛主要产于四川攀枝花地区。金红石矿主要产于湖北、河南、山西等省。钛铁矿砂矿主要产于海南、云南、广东、广西等省(区)。钛铁矿的TiO2保有储量为3.57亿吨,居世界首位。钛矿矿床类型主要为岩浆型钒钛磁铁矿,其次为砂矿。从成

矿时代来看,原生钛矿主要形成于古生代,砂钛矿则于新生代形成。 含钒钛磁铁矿岩体分为基性岩(辉长岩)型和基性-超基性岩(辉长岩-辉石岩-辉岩)型两大类,前者有攀枝花、白马、太和等矿床,后者有红格、新街等矿床。总的来说,两种类型的地质特征基本相同,前者相当于后者的基性岩相带部分的特征,后者除铁、钛、钒外,伴生的铬、钴、镍和铂族组分含量较高,因而综合利用价值更大。钒钛磁铁矿不仅是铁的重要来源,而且伴生的钒、钛、铬、钴、镍、铂族和钪等多种组份,具有很高的综合利用价值。 钒钛磁铁矿一般技术路线为磁选-重选-浮选、浮选-磁选-重选、磁选-浮选-重选-浮选、浮选-弱磁-强磁-重选等相结合的选矿工艺。 例如:磁选-重选-浮选工艺,首先采用弱磁选,获得钒铁精矿,磁选尾矿经重选或者重选和强磁结合得钛精矿,重选尾矿再浮选除硫磷分别获得钴硫精矿和磷精矿。 浮选-磁选-重选工艺,首先优先浮选除S,获得钴硫精矿,再浮选除P,获得磷精矿,使钴、硫、磷最大限度富集在相应的精矿产品中,除杂效果也比较彻底,使浮选尾矿经磁选富集的钒钛磁铁精矿、磁选尾矿经重选富集的钛精矿的硫磷将至最低。 钒钛磁铁矿工业品位一般为:TFe≥20%,V2O5≥0.1—0.5%;TiO2≥12%,

铁矿石选矿技术

铁矿选矿与加工技术 一、铁矿石分类 各种含铁矿物按其矿物组成,主要可分为4大类:磁铁矿、赤铁矿、褐铁矿和菱铁矿。由于它们的化学成分、结晶构造以及生成的地质条件不同,因此各种铁矿石具有不同的外部形态和物理特性。 (一)磁铁矿 主要含铁矿物为磁铁矿,其化学式为Fe3O4,其中FeO=31%,Fe2O3=69%,理论含铁量为72.4%。这种矿石有时含有TiO2及V2O5组合复合矿石,分别称为钛磁铁矿或矾钛磁铁矿。在自然纯磁铁矿矿石很少遇到,常常由于地表氧化作用使部分磁铁矿氧化转变为半假象赤铁矿和假象赤铁矿。所谓假象赤铁矿就是磁铁矿(Fe3O4)氧化成赤铁矿(Fe2O3),但它仍保留原来磁铁矿的外形,所以叫做假象赤铁矿。磁铁矿具有强磁性,晶体常成八面体,少数为菱形十二面体。集合体常成致密的块状,颜色条痕为铁黑色,半金属光泽,相对密度4.9~5.2,硬度5.5~6,无解理,脉石主要是石英及硅酸盐。还原性差,一般含有害杂质硫和磷较高。 (二)赤铁矿 赤铁矿为无水氧化铁矿石,其化学式为Fe2O3,理论含铁量为70%。这种矿石在自然界中经常形成巨大的矿床,从埋藏和开采量来说,它都是工业生产的主要矿石。赤铁矿含铁量一般为50%~60%,含有害杂质硫和磷比较少,还原较磁铁矿好,因此,赤铁矿是一种比较优良的炼铁原料。赤铁矿有原生的,也有野生的,再生的赤铁矿的磁铁矿经过氧化以后失去磁性,但仍保存着磁铁矿的结晶形状的假象赤铁矿,在假象赤铁矿中经常含有一些残余的磁铁矿。有时赤铁矿中也含有一些赤铁矿的风化产物,如褐铁矿(2Fe2O3·3H2O)。赤铁矿具有半金属光泽,结晶者硬度为5.5~6,土状赤铁矿硬度很低,无解理,相对密度4.9~5.3,仅有弱磁性,脉石为硅酸盐。 (三)褐铁矿 褐铁矿是含水氧化铁矿石,是由其他矿石风化后生成的,在自然界中分布得最广泛,但矿床埋藏量大的并不多见。其化学式为nFe2O3·mH2O(n=1~3、m=1~4)。褐铁矿实际上是由针铁矿(Fe2O3·H2O)、水针铁矿(2Fe2O3·H2O)和含不同结晶水的氧化铁以及泥质物质的混合物所组成的。褐铁矿中绝大部分含铁矿物是以2Fe2O3·H2O形式存在的。 一般褐铁矿石含铁量为37%~55%,有时含磷较高。褐铁矿的吸水性很强,一般都

钒钛资源分类及储量

钒钛资源分类及储量 成都工业学院材料工程学院邹建新 攀枝花学院材料工程学院彭富昌 根据国家《钒钛资源综合利用和产业发展“十二五”规划》、《攀枝花钒钛矿资源潜力评价报告》等资料显示,我国钒资源主要赋存于钒钛磁铁矿和含钒石煤中。其中钒钛磁铁矿中钒资源占总储量的53%,集中分布在四川攀西和河北承德地区;其中含钒石煤中钒资源占总储量的47%,主要分布在陕西、湖南、湖北、安徽、浙江、江西、贵州等地。我国钛资源主要赋存于钒钛磁铁矿、钛铁矿和金红石矿中。其中钒钛磁铁矿中钛资源占总储量的95%;钛铁矿中钛资源占总储量的近5%,主要分布在云南、海南、广东、广西等地;金红石矿储量较少,主要分布在湖北、河南、山西等地。 攀枝花钒钛磁铁矿除含铁外,还共生钛,伴生钒、铬、钴、钪、镓等元素,均达到相应元素的特大型矿山储量。其中: 钛的潜在资源量为19.8亿吨(以TiO2计,下同),探明资源储量约7.22亿吨,保有资源储量4.39亿吨,占全国储量的93%,为全球的32%,居世界第一位; 钒的潜在资源量为4463.8万吨(以V2O5计,下同),探明储量4290万吨,保有储量1020万吨,占全国储量的63%,居世界第三位; 伴生的铬、钴、钪、镓等元素,是国家重要的战略资源,均属海量。其中:铬(Cr2O3)保有储量为696万吨;钴(Co)保有储量为152万吨;钪保有储量为23万吨;镓(Ga)保有储量为21万吨,仅攀枝花、红格、白马三矿区伴生在表内矿中的镓储量就相当于55个大型镓矿床的储量。 参考文献: 1. 邹建新,彭富昌.钒钛概论[M],北京:冶金工业出版社,2019 2. 邹建新,崔旭梅,彭富昌.钒钛化合物及热力学[M],北京:冶金工业出版社,2019 3. 邹建新,周兰花,彭富昌.钒钛功能材料[M],北京:冶金工业出版社,2019

铁矿石基础知识

铁矿石 铁是世界上发现最早,利用最广,用量也是最多的一种金属,其消耗量约占金属总消耗量的95%左右。铁矿石主要用于钢铁工业,冶炼含碳量不同的生铁(含碳量一般在2%以上)和钢(含碳量一般在2%以下)。生铁通常按用途不同分为炼钢生铁、铸造生铁、合金生铁。钢按组成元素不同分为碳素钢、合金钢。合金钢是在碳素钢的基础上,为改善或获得某些性能而有意加入适量的一种或多种元素的钢,加入钢中的元素种类很多,主要有铬、锰、钒、钛、镍、钼、硅。此外,铁矿石还用于作合成氨的催化剂(纯磁铁矿),天然矿物颜料(赤铁矿、镜铁矿、褐铁矿)、饲料添加剂(磁铁矿、赤铁矿、褐铁矿)和名贵药石(磁石)等,但用量很少。钢铁制品广泛用于国民经济各部门和人民生活各个方面,是社会生产和公众生活所必需的基本材料。 铁矿石分类: 1.磁铁矿 磁铁矿(Magnetite)是一种氧化铁的矿石,主要成份为Fe3O4,是Fe2O3和FeO 的复合物。FeO 31.03%,Fe2O3 68.97%或含Fe 72.2%,O 27.6%,等轴晶系。单晶体常呈八面体,较少呈菱形十二面体。在菱形十二面体面上,长对角线方向常现条纹。集合体多呈致密块状和粒状。颜色为铁黑色、条痕为黑色,半金属光泽,不透明。硬度5.5~6.5,比重4.9~5.2, 无解理,脉石主要是石英及硅酸盐。具有强磁性。还原性差,一般含有害杂质硫和磷较高。在选矿(Beneficiation)时可利用磁选法,处理非常方便;但是由于其结构细密,故被还原性较差。经过长期风化作用后即变成赤铁矿。磁铁矿中常有相当数量的Ti4+以类质同象代替Fe3+,还伴随有Mg2+和V3+等相应地代替Fe2+和Fe3+,因而形成一些矿物亚种,即: (1)钛磁铁矿 Fe2+(2+x)Fe3+(2-2x)TixO4(0<x<1=,含TiO212%~16%。常温下,钛从其中分离 成板状和柱状的钛铁矿及布纹状的钛铁晶石。 (2)钒磁铁矿 FeV2O4或Fe2+(Fe3+V)O4,含V2O5有时高达68.41%~72.04%。 (3)钒钛磁铁矿为成分更为复杂的上述两种矿物的固溶体产物。 (4)铬磁铁矿含Cr2O3可达百分之几。 (5)镁磁铁矿含MgO可达6.01%。 磁铁矿是岩浆成因铁矿床、接触交代-热液铁矿床、沉积变质铁矿床,以及一系列与火山作用有关的铁矿床中铁矿石的主要矿物。此外,也常见于砂矿床中。在自然纯磁铁矿矿石很少遇到,常常由于地表氧化作用使部分磁铁矿氧化转变为半假象赤铁矿和假象赤铁矿。所谓假象赤铁矿就是磁铁矿(Fe3O4)氧化成赤铁矿(Fe2O3),但仍能保持其原来的晶形,所以叫做假象赤铁矿。 2.赤铁矿 赤铁矿(Hematite)赤铁矿为无水氧化铁矿石,其化学式为Fe2O3,理论含铁量为70%。这种矿石在自然界中经常形成巨大的矿床,从埋藏和开采量来说,它都是工业生产的主要矿石。由其本身结构状况的不同又可分成很多类别,如赤色赤铁矿(Red hematite)、镜铁矿(Specularhematite)、云母铁矿(Micaceous hematite)、粘土质赤铁(Red Ocher)等。赤铁矿含铁量一般为50%~60%,含有害杂质硫和磷比较少,还原较磁铁矿好,因此,赤铁矿是一种比较优良的炼铁原料。赤铁矿有原生的,也有野生的,再生的赤铁矿的磁铁矿经过氧化以后失去磁性,但仍保存着磁铁矿的结晶形状的假象赤铁矿,在假象赤铁矿中经常含有一些残余的磁铁矿。有时赤铁矿中也含有一些赤铁矿的风化产物,如褐铁矿(2Fe2O3·3H2O)。赤铁矿具有半金属光泽,结晶者硬度为 5.5~6,土状赤铁矿硬度很低,无解理,相对密度4.9~5.3,仅有弱磁性,脉石为硅酸盐。自然界中Fe2O3的同质多象变种已知有两种,即α-Fe2O3和γ-Fe2O3。前者在自然条件下稳定,称为赤铁矿;后者在自然条件下不如α-Fe2O3稳定,处于亚稳定状态,称之为磁赤铁矿。赤铁矿:Fe 69.94%,O 30.06%,常含类质同象混入物Ti、Al、Mn、Fe2+、Ca、Mg及少量Ga和Co。三方晶系,完好晶体少见。结晶赤铁矿为钢灰色,隐晶质;土状赤铁矿呈红色。条痕为樱桃红色或鲜猪肝色。金属至半金属光泽。有时光泽暗

铁矿石常用的选矿方法

第一章铁矿石常用的选矿方法 第一节磁铁矿选矿流程 磁铁矿石主要包括单一磁铁矿矿石、钒钛磁铁矿 矿石、含磁铁矿混合矿石和含磁铁矿多金属共生矿石, 磁铁矿属强磁性产物,在磁铁矿选矿中普遍采用以弱 磁选工艺为主的选别流程: 1、单一弱磁选流程:选别作业采用单一弱磁选工艺,适合于矿物组成简单的易 选单一磁铁 矿矿石;可进一步划分为两类:连续磨矿-弱磁选流程、阶段磨矿-阶段选别流程。 1)连续磨矿-弱磁选流程:适用于嵌布粒度较粗或含铁品位较高的矿石。根据 铁矿无的嵌布 粒度,可采用一段磨矿或两段连续磨矿,磨矿产品达到选别要求后进行弱磁选。 2)阶段磨矿-阶段选别流程:适用于嵌布粒度较细的低品位矿石。在一段磨矿 石进行磁选粗 选,抛弃部分合格尾矿,磁选粗精矿在给入二段磨矿(再磨)进行再磨再选。如果能再粗磨条件下,经过选别丢弃大量尾矿,对于减少后续磨矿和分选作业负荷、降低成本是有利的。 2、弱磁选-反浮选流程:主要针对的是某些铁矿石精矿石品位难以提高、铁精 矿中SiO2等 杂质组成偏高的问题,工艺方法包括磁选-阳离子反浮选流程和磁选-阴离子反浮选流程两种。

3、弱磁选-精选流程:这种流程方法是对某些铁矿石精矿品位难以提高、铁精 矿石中SiO2 等杂质组分偏高的问题开发出来的。 4、弱磁-强磁-浮选联合流程:主要用于处理多金属共生铁矿石和混合铁矿石, 分为三类: 1)弱磁选-浮选流程:主要用于处理伴生硫化物的磁铁矿矿石。根据矿石性质 进一步分为先 磁后浮和先浮后磁两种。 2)弱磁-强磁流程:主要用于处理磁性率较低的混合矿石。特点是采用弱磁选 首先分离弱磁 性的磁铁矿,弱磁选尾矿再采用强磁选回收赤铁矿等弱磁性矿物。 3)弱磁-强磁-浮选流程:主要用于处理多金属共生铁矿石。 第二节赤铁矿选矿流程 赤铁矿化学成分为Fe2O3、晶体属三方晶系的氧化物 矿物。与等轴晶系的磁赤铁矿成同质多象。晶体常呈板状; 集合体通常呈片状、鳞片状、肾状、鲕状、块状或土状等。 呈红褐、钢灰至铁黑等色,条痕均为樱红色。 1、焙烧磁选流程:当矿物组成比较复杂而其他选矿方法难以获得良好的选别指 标时,往往 采用磁化焙烧宣发;对于粉矿常用强磁选、重选、浮选等方法及其联合流程进行选别。 2、赤铁矿浮选流程:

铁矿石基础知识

铁矿石基础知识 v 1 铁矿石的分类及特性 v 2 配料计算 v 3 铁矿石经济性评价 v 1.1 矿石和脉石 v 地壳中的铁贮量比较丰富,按元素总量计占4.2%,仅次于氧、硅及铝居第四位。但在自然界中铁不能纯金属状态存在,绝大多数形成氧化物、硫化物或碳酸盐等化合物。不同的岩石含铁品位可以差别很大。凡在当前技术条件下,从中经济地提取出金属铁的岩石称为铁矿石。这样,铁矿石中除了含Fe的有用矿物外,还含有其他化合物,统称为脉石。常见的脉石有SiO2、Al2O3、CaO及MgO等。v 1.2 天然铁矿石的分类及特征 v 天然铁矿石按其主要矿物分为磁铁矿、赤铁矿、褐铁矿和菱铁矿等几种,主要矿物组成及特征见表1-1。 v 赤铁矿又称红矿,其主要含铁矿物为Fe2O3,其中铁占70%,氧占30%,常温下无磁性。但Fe2O3有两种晶形,一为α- Fe2O3 ,一为γ- Fe2O3 ,在一定温度下,当α- Fe2O3转变为γ- Fe2O3时,便具有了磁性。 v 色泽为赤褐色到暗红色, v 由于其硫、磷含量低,还原性较磁铁矿好,是优良原料。 v 赤铁矿的熔融温度为:1580~ 1640℃。 磁铁矿主要含铁矿物为Fe3O4,具有磁性。其化学组成可视为Fe2O3·FeO,其中FeO=30%,Fe2O3·=69%;TFe=72.4%,O=27.6%。磁铁矿颜色为灰色或黑色,由于其结晶结构致密,所以还原性比其它铁矿差。磁铁矿的熔融温度为:1500~1580℃。这种矿物与TiO2和V2O5共生,叫钒钛磁铁矿;只与TiO2共生的叫钛磁铁矿,其它常见混入元素还有Ni、Cr、Co等。在自然界中纯磁铁矿很少见,常常由于地表氧化作用使部分磁铁矿氧化转变为半假象赤铁矿和假象赤铁矿。所谓假象就是Fe3O4虽然氧化成Fe2O3·,但它仍保留原来磁铁矿的外形。v 在自然界中纯磁铁矿很少见,常常由于地表氧化作用使部分磁铁矿氧化转变为半假象赤铁矿和假象赤铁矿。所谓假象就是Fe3O4虽然氧化成Fe2O3·,但它仍保留原来磁铁矿的外形。它们一般可用TFe/FeO的比值来区分: v TFe/FeO=2.33 为纯磁铁矿石 v TFe/FeO<3.5 为磁铁矿石 v TFe/FeO=3.5~7.0 为半假象赤铁矿石 v TFe/FeO>7.0 为假象赤铁矿石 v 式中,TFe-矿石中的总含铁量(%),又称全铁;FeO-矿石中的FeO含量(%)。 v 褐铁矿通常指含水氧化铁的总称。 v 如3Fe2O3·4H2O称为水针铁矿;2Fe2O3·3H2O才称褐铁矿。这类矿石一般含铁较低,但经过焙烧去除结晶水后,含铁量显著上升。颜色为浅褐色、深褐色或黑色,硫、磷、砷等有害杂质一般多。

钒钛磁铁矿可研原始资料

第一章总论 1.1概述 1.1.1项目名称、建设单位 项目名称:年处理60万吨钒钛磁铁矿工程项目 建设单位:朝阳金工钒钛科技有限公司 法人代表:孙志国 建设地址:喀左县公营子镇冶金铸造工业园区 企业介绍:该公司是按照现代企业制度,由朝阳金河创业投资有限公司、喀左鑫晟矿业有限公司、上唐矿业投资有限公司、喀左县晟奥钒钛科技有限公司和自然人丛培军合资组建,公司注册资金3000万元,注册地址位于喀左县公营子冶金铸造工业园区。 朝阳金工钒钛科技有限公司成立于2012年11月,公司致力于中国冶金行业发展,先后于中国冶金研究院、北京钢院、东北大学、承钢、攀钢、北京神雾集团建立了产学研合作关系;围绕共伴生难选复合矿综合利用技术,深度开采技术,合理利用低品位矿,钒钛资源综合利用和尾矿资源合理回收利用,发展新一代电炉熔分提钛和转炉提钒等可循环流程工艺技术开发与应用开展研发工作,目前,开发项目己进入中试阶段,研发产品经专家评定和各项实验结果证明,采用快速立式还原炉加电炉熔分新型创新还原生产工艺,可使喀左区域资源量富集,可进入规模化生产阶段。 1.1.2项目建设的必要性 钒是一种重要钢铁合金元素,可显著提高钢的硬度、强度、耐磨性、延展性、改善钢的切削性能,在钢中添加万分之几就对钢的强度有明显的提高,因此在国民经济中得到广泛应用。钒常用于低碳钢或高碳钢、HSLA 钢、高合金钢、工具钢和铸铁生产中,这些合金被用于喷气机和火箭等的超耐热材料,溅射靶,真空管蒸镀,V3Ga合金系超导材料,原子能工业的

快中子反应堆的包套材料,空压机,起落架,汽车等。 钒的氧化物也是化学工业中不可缺少的催化剂,用于生产硫酸及石油产品的裂化过程的催化剂。在硫酸生产过程中,钒可防止二氧化硫的排放,去除天然气中的硫化物和石油燃烧所生成的氮氧化物。 钛作为一种重要钢铁合金元素,也在国民经济中得到广泛应用。钛及其合金具有重量轻、强度大、耐热性强、耐腐蚀等许多优特性,钛及其合金不仅在航空、宇宙航行工业中有着十分重要的应用,而且已经开始在化工、石油、轻工、冶金、发电等许多工业部门中广泛应用。 辽宁朝阳地区具有大量的低品位钒钛磁铁矿,矿中含铁、钛、钒为主并伴生有少量其他可综合利用组分的矿物。如何将朝阳地区的贫矿资源就地转化,进而达到提升当地超低品位矿产资源附加值最大化的终极目标,是目前急需解决的问题。 辽西超贫钒钛磁铁矿资源,具有原矿品位低、矿物结构复杂、难以简单选别富集等诸多先天性的不足。但通过深入研究发现,该矿也具有自身的鲜明特点,采取一定的选冶手段,可以使Ti、V、Fe加和品位达到一定的富集度,再通过针对性强的工艺开发,能找到适合的清洁生产的工艺手段,达到较短流程、相互分离、低度排放、环境友好、高附加值产出的工艺路线效果,从而有望形成围绕辽西超贫钒钛磁铁矿的资源供应、产业拓展(Ti、V、Fe)、合理延伸这样的产业格局,并且这样的产业与东北及华北地区现有大宗产业能很好地兼容互补,能够产生很好的经济及社会效益。为此,朝阳金工钒钛科技有限公司决定建设年处理60万吨钒钛磁铁矿工程项目。 本项目的建设及运行将为唤醒辽西沉睡的超贫钒钛磁铁矿做出突破性贡献,将该类资源的开发及综合利用引向可持续的资源化、高效化道路。针对辽西钒钛磁铁矿的特点,开发了具有鲜明特点的清洁新工艺,走循环经济及生态经济道路,切入Ti、V、Fe综合利用产业经济,除攀西及承德

铁矿选矿技术概述(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 铁矿选矿技术概述(通用版) Safety management is an important part of production management. Safety and production are in the implementation process

铁矿选矿技术概述(通用版) 我国铁矿由于贫矿多(占总储量的97.5%)和伴(共)生有其他组分的综合矿多(占总储量的1/3),所以在冶炼前绝大部分需要进行选矿处理。 1996年全国入选铁矿石21497万t,占全国产铁矿石原矿25228万t的85.2%。入选铁矿石生产铁精矿粉8585.7万t,其中重点选矿厂处理原矿10961万t,生产铁精矿粉4158万t,占全国铁精矿粉产量的48.4%。 (一)矿石破碎 我国选矿厂一般采用粗破、中破和细破三段破碎流程破碎铁矿石。粗破多用1.2m或1.5m旋回式破碎机,中破使用2.1m或2.2m标准型圆锥式破碎机,细破采用2.1m或2.2m短头型圆锥式破碎机。通过粗破的矿石,其块度不大于1m,然后经过中、细破碎,筛分成矿石粒度小于12mm的最终产品送磨矿槽。

(二)磨矿工艺 我国铁矿磨矿工艺,大多数采用两段磨矿流程,中小型选矿厂多采用一段磨矿流程。由于采用细筛再磨新工艺,近年来一些选矿厂已由两段磨矿改为三段磨矿。采用的磨矿设备一般比较小,最大球磨机3.6m×6m,最大棒磨机3.2m×4.5m,最大自磨机5.5m×1.8m,砾磨机2.7m×3.6m。磨矿后的分级基本上使用的是螺旋分级机。为了提高效率,部分选矿厂用水力旋流器取代二次螺旋分级机。 (三)选别技术 1.磁铁矿选矿 主要用来选别低品位的“鞍山式”磁铁矿。由于矿石磁性强、好磨好选,国内磁选厂均采用阶段磨矿和多阶段磨矿流程,对于粗粒嵌布的磁铁矿采用前者(一段磨矿),细粒、微细粒嵌布的磁铁矿采用后者(二段或三段磨矿)(图3.2.23)。我国自己研制的系列化的永磁化,使磁选机实现了永磁化。70年代以后,由于在全国磁铁矿选矿厂推广了细筛再磨新技术,使精矿品位由62%提高到了66%

攀枝花钒钛磁铁矿选矿厂(220万吨年)设计

攀枝花钒钛磁铁矿选矿厂(220万吨年)设计 目录 摘要V Abstract VI 第一章总论 1 第一节选矿厂概况 1 一、设计能力 1 二、选矿厂地理交通位置和交通状况 1 三、矿区气象 1 四、居民和农业经济 2 第二节厂址选择 2 第三节供水、供电、尾矿处理2 一、供水 2 二、供电 2 三、尾矿处理 3 第二章原矿、试验及产品方案 3 第一节原矿性质 3 一、原矿多元素分析 3 表2.1.1原矿多元素分析结果 3 二、矿物组成及嵌布粒度 3

三、元素赋存状态 5 四、结构构造和矿物物理参数 5 第二节选矿试验研究 5 一、阶磨阶选扩大连选试验 6 二、两段磨矿、粗精矿再磨再选工业试验 6 三、阶磨阶选工业试验7 第三节选矿流程及选矿指标确定7 一、破碎流程7 二、选别流程7 三、选矿指标的确定7 第四节产品方案和产品销售8 第三章选矿厂设计计算10 第一节制度和生产能力10 第二节破碎流程和破碎设备的选择计算10 一、破碎筛分流程选择计算10 第三节各产物的产率和产量的计算13 一、粗碎作业13 二、预先检查筛分 14 三、设备的选型计算16 四、设备的选择21 第四节磨矿流程和磨矿设备选型计算23 一、磨矿流程计算 23

二、磨矿设备的选型计算26 三、磨矿机生产能力的计算30 四、磨矿机台数的计算30 五、水力旋流器的选型34 第五节选别流程和选别设备的选择计算38 一、选别流程的确定38 二、矿浆流程计算 43 三、磁选设备的选型51 四、脱水作业设备选型53 第四章辅助设施及辅助设备的计算55 第一节矿仓的计算 55 一、原矿矿仓的选择计算55 二、中碎缓冲矿仓 56 三、预先检查筛分分矿仓57 四、细碎缓冲仓58 五、粉矿仓58 第二节给矿机的计算59 一、粗碎产品给料机59 二、中碎给料机60 三、细碎给料机61 四、检查筛分给料机62 五、磨矿给料机62

矿业基础知识

矿业基础知识 第一部分地质 一、矿产资源的分类 1、矿产资源的定义 是指赋存于地下或地表的,由地质作用形成的呈固态、液态或气态的具有现实或潜在经济价值的天然富集物。其特点是再生速度很慢或不能再生,因而应珍惜和保护矿产资源。 2、矿产资源的分类 能源矿产、金属矿产、非金属矿产和水气矿产四类。 3、金属矿产的分类 按金属元素的性质和主要用途分为:根据我国矿产储量统计分类,将金属矿产分为:黑色金属矿产、有色金属矿产、贵重金属矿产、稀有金属矿产、稀土金属矿产,以及分散元素金属矿产。 ⑴黑色金属:铁、锰、铬、钒、钛; ⑵有色金属:铜、铅、锌、铝、镍、钨、镁、钴、锡、铋、钼、汞、锑; ⑶贵重金属:金、银和铂族金属(铂、钯、铱、铑、钌、锇); ⑷稀有金属:铌、钽、铍、锂、锆、锶、铷、铯; ⑸稀土金属:钪、轻稀土矿(镧、铈、镨、钕、钜、钐、铕)、重稀土矿(钆、铽、镝、钬、铒、铥、镱、镥、钇); ⑹分散元素金属:锗、镓、铟、铊、铪、铼、镉、硒矿和碲矿; ⑺放射性金属:包括铀、钍等放射性元素。 4、铁矿的分类 具有工业利用价值的铁矿种类主要包括磁铁矿、赤铁矿、磁赤铁矿、钛铁矿、褐铁矿、菱铁矿、硫铁矿等种类。 ⑴磁铁矿Magnetite:主要成份为Fe3O4,是Fe2O3和FeO的复合物,含Fe 72.4%,黑色,有磁性,氧化后变成赤铁矿。Fe被部分取代后又形成钛磁铁矿、钒磁铁矿、钒钛磁铁矿、铬磁铁矿、镁磁铁矿等矿物亚种; ⑵赤铁矿Hematite:主要成份为Fe2O3,暗红色,含Fe70%,因结构状况的不同又分成镜铁矿(金属光泽的玫瑰花状或片状)、云母赤铁矿(金属光泽的晶质细鳞状)、鲕状或肾状赤铁矿(湖北规模较大); ⑶褐铁矿Limonite:是含有氢氧根级不定量结晶水的铁矿石,最高含Fe62.9%,主要包含针铁矿(FMG主要是该类)和纤铁矿两类;

毕业设计---6000td磁铁矿选矿厂设计

摘要 按照毕业设计任务书的要求,进行了经山寺铁矿磁选6000t/d的选矿厂设计,产品为铁精矿。 经山寺铁矿位于河南省平顶山市境内,为舞钢重要的原料基地。在老师的帮助下,经过一段时间的资料收集,确定了其工艺流程:破碎采用三段一闭路流程,磨矿采用两段全闭路的流程,选别采用三段磁选一段扫选的流程,精矿采用直接过滤的脱水流程。 对设计工艺流程进行了工艺指标计算,包括破碎、筛分、磨矿、分级、磁选(包括矿浆流程)和脱水流程。对破碎、筛分、磨矿、分级、磁选及脱水设备进行了选择和计算以及辅助设备的选择和计算,确定了工艺所需的工艺设备。 进行了厂房总体布置,并进行了厂房内的设备配置。根据选矿厂的地形条件,进行等高线布置。其中,粗碎、中细碎(筛分)厂房分开布置,粗碎车间、中细碎(筛分)车间平行等高线配置。磨矿和磁选共厂房配置,其中磨矿采用纵向配置,磁选机也采用纵向配置。过滤机与精矿仓配置在精矿厂房内。完成了粗碎、中转站、中细碎(筛分)、磨矿分级磁选、脱水车间的三视图、数质量及矿浆流程图和设备联系图以及建筑物联系图共8张。 关键词:选矿厂设计铁矿磁选经山寺

Abstract According to the request of the intruction of plant design for undergraduated, the design of Jingshansi iron Mine magnetic separation with the capacity of 6000t/d, and the products is iron concentrate. The Jingshansi iron Mine is located in Pingdingshan City in Henan provience, an important raw material for the Wugang.With the help of the teachers and the collection of data, The work institutions of each workshop were determined, The process of crushing is three sections with one close circuit, the grinding process is two sections with all closed circuit, Sorting by three-stage magnetic separation process of a sweeping election,the concentrates is direct filtration dehydration process. Technological parameters of crushing ,screening, grinding , classificatio- n ,magnetic separation (include the circuit of pulp)and dewatering were computed, respectively. Then the technological parameters of equipments and the auxiliary equipments were compared ,and the optimal equipments were determined. The general arrangement of concentrator plant and the allocation of equipments in diferent workshop were presented. According to the topography of plant site, plants were arranged along the contour line . The workshops of coarse crushing, middle and fine crushing (screening) were aloted independent. Arrangment with parallel contour line of coarse crushing workshop、middle and fine crushing ( screening) workshops were used.Grinding and magnetic separation of plant configuration, the grinding used vertical configuration, magnetic separator is also used vertical configuration . Filter and concentrate storage configuration in the concentrate plant. Completed a coarse crushing, transit stations, the crushing (screening), grinding and classification, magnetic separation, dehydration plant three views, the number of flow charts and equipment quality and pulp contact map and construction contact map a total of eight maps . Keywords: concentrator design, iron ores,magnetic separation Jingshansi

相关主题
文本预览
相关文档 最新文档