当前位置:文档之家› 生物接触氧化池设计实例.

生物接触氧化池设计实例.

生物接触氧化池设计实例.
生物接触氧化池设计实例.

生物接触氧化池设计实

例.

https://www.doczj.com/doc/af7635542.html,work Information Technology Company.2020YEAR

环境工程专业

《污水处理课程设计》

说明书

姓名及学号:

班级:

指导教师:

设计时间:

前言

在我国,随着经济飞速发展,人民生活水平的提高,对生态环境的要求日益提高,要求越来越多的污水处理后达标排放。在全国乃至世界范围内,正在兴建及待建的污水厂也日益增多。在校期间,我们学习了水污染控制工程这门课程,为了检验学习的内容和自主设计能力,老师安排了此次课程设计。根据日处理污水量将污水处理厂分为大、中、小三种规模:日处理量大于10万m3为大型处理厂,1-10m3万为中型污水处理厂,小于1万m3的为小型污水处理厂。本文是中型污水处理厂,处理流量

20000m3/d,无论何种规模的处理厂,在确定污水处理工艺时,除了保证处理效果这一基本条件外,主要目的是降低基建投资,节省日常的运行费用,以求在保证达标排放的前提下,使经营成本最小。要做到这一点,首先应根据实际情况,选择合适的处理工艺。小型污水厂处理厂往往具有这样的特点:

(1)由于负担的排水面积小,污水量较小,一天内水量水质变化较大,频率较高;

(2)一般在城镇小区或企业内修建,由于所在地区一般不大,而且厂外污水输送管道也不会太长。所以,其占地往往受到限制,处理单元应当尽量布置紧凑。

(3)一般要求自动化程度较高,以减少工作人员配置,降低经营成本。

(4)污水厂往往位于小区或工业企业内,平面布置可能会受实际情况限制,有时可能靠近居民区或地面起伏不平等,平面布置应因地置宜,变蔽为利。

(5)由于规模较小,一般不设污泥消化,应采用低负荷,延时曝气工艺,尽量减少污泥量同时使污泥部分好氧稳定。

由此,本设计选择生物接触氧化工艺。生物接触氧化法是以附着在载体(俗称填料)上的生物膜为主,净化有机废水的一种高效水处理工艺。具有活性污泥法特点的生物膜法,兼有活性污泥法和生物膜法的优点。在可生化条件下,不论应用于工业废水还是养殖污水、生活污水的处理,都取得了良好的经济效益。该工艺因具有高效节能、占地面积小、耐冲击负荷、运行管理方便等特点而被广泛应用于各行各业的污水处理系统。

本设计包扩工艺处理流程、主要构筑物的剖面结构、污水厂初步平面布置和主要设备的说明。本工艺理论上运行可靠,操作简便,出水各项污染指标均达到了国家规定排放标准。

目录

第一章总论 (1)

第一节设计任务和内容 (1)

第二节基础资料 (2)

第二章污水处理工艺流程说明 (3)

第三章处理构筑物设计计算 (3)

第一节格栅间和泵房 (3)

第二节初沉池 (6)

第三节生物接触氧化池 (9)

第四节二沉池 (10)

第四章主要设备说明(设备一览表) (12)

第五章污水厂总体布置 (13)

第一节主要构(建)筑物与附属建筑物 (13)

第二节污水厂平面布置 (13)

第六章设计依据 (13)

结束语 (14)

致谢 (14)

第一章总论

第一节设计任务书

一、设计任务

根据所给的其它原始资料,设计污水处理厂,具体内容包括:

1、确定污水处理厂的工艺流程。

2、选择处理构筑物并通过计算确定其尺寸(附必要的草图)。

3、按照标准,画出污水厂的工艺平面布置图,内容包括表示出处理厂的范围,全部处

理构筑物及辅助建筑物、主要管线的布置、主干道及处理构筑物发展的可能性。

4、按照标准,画出污水处理厂主要构筑物剖面图一张。

5、编写设计说明说、计算书。

二、设计题目

苏州某小区生活污水处理厂工艺初步设计

第二节 基础资料

一、设计资本资料

1、污水水量、水质及处理要求

污水处理厂处理规模(即现状污水量)为:200003m ,水量变化系数z k 为1.02。

原污水水质为:

COD=350mg L ,5BOD =220mg L , SS=230mg L ,

H NH -3=30mg L ,TP=4mg L

处理出水执行国家《城镇污水处理厂污染物排放标准》GB18918-2002二级标准,出水水质应达到如下要求:

COD ≤60mg L ,5BOD ≤20mg L ,SS ≤20mg L ,TP ≤1mg L ,H NH -3=8mg L 2、厂址及场地现状

污水处理厂拟用场地较为平整。假定平整后厂区的地面标高为0.00m ±,原污水将通过管网输送到污水厂,来水管管底标高为 1.5m -,充满度为0.5m 。 3、苏州地区气候概况

苏州位于北亚热带湿润季风气候区,温暖潮湿多雨,季风明显,四季分明,冬夏季长,春秋季短。无霜期年平均长达233天。境内因地形、纬度等差异,形成各种独特的小气候。太阳辐射、日照及气温以太湖为高中心,沿江地区为低值区。降水量分布也具有同样规律。这种小区域气候差异将全市作物种类分成太湖林果气候区、南部双、三熟制气候区、中部稻麦二熟和三熟并存气候区、沿江棉、粮轮作气候区。

4、污水排水接纳河流资料

该污水厂的出水直接排入厂区外部河流,其最高洪水位为 2.0m

-,常水位为-

-,枯水位为 4.0m

3.0m

第二章污水处理工艺流程说明

第三章 处理构筑物设计计算

第一节 格栅的设计计算

一、格栅的计算

(1)城市排水量为200003/m d ,Kz=1.02。

(2)平整后厂区的地面标高为0.00m ±,原污水将通过管网输送到污水厂,来水管管底标高为 1.5m -,充满度为0.5m 。

d m Q /2040002.1200003max =?=

m ax Q =20400?1000/24?3600=236L/s

根据最大设计流量,选取型号为100YW110-10的水泵,选两台污水泵(一用一备)。

1、栅槽宽度

m ax Q =20400?1000/24?3600=236L/s=0.24d m /3

设栅前水深h=0.4m,过栅流速v=0.9m/s,栅条净距b=0.021m ,格栅倾角060α=

n=m ax Q ??0.4?0.9=22(个) 栅条宽度0.01s =m

B=s(n-1)+bn=0.01?(22-1)+0.021?22=0.67 m 式中 B ——栅槽宽度,m ; S ——格条宽度,m ;

b ——栅条净间距,粗格栅b=50~100mm,中格栅b=10~40mm,细格栅b=3~10mm ;

n ——格栅间隙数;

max Q ——最大设计流量,3/m s ;

α——格栅倾角,度;一般采用045~075。 h ——栅前水深,m ;

v ——过栅流速,/m s ,过栅流速一般采用0.6~1.0/m s ,最大设计流量时

为0.8~1.0/m s ,平均设计流量时为0.3 /m s 。

2、通过格栅的水头损失

2

010sin 2v h g

h h k

ξα

=??= 式中 1h ——设计水头损失,m ; 0h ——计算水头损失,m ; g ——重力加速度,29.81/m s ;

k ——系数,格栅受污物堵塞时水头增大倍数,一般采用3;

ξ——阻力系数,其值与栅条断面形状有关,4/3()s

b

ξβ=?,当为锐边矩形,

2.42β=

0h =0.097m

1h =0h k=0.097?3=0.29m

3、栅槽高度

12H h h h =++

12H h h h =++=0.29+0.3+0.4=1m

式中,H ——栅槽总高度,m ; h ——为栅前水深,m ;

2h ——栅前渠道超高,一般采用0.3m 4、栅槽总长度

120.40.30.7H h h m =+=+=

式中:1H ——栅前渠道深,m ; 设1B =0.5m

m 23.020

tan 25

.0-67.0tan 2111==-=

αB B l 2l =

2

1

l =0.12m m H l l l 53.220

tan 7

.05.112.023.0tan 15.0121=+++=+

+++=

α 式中:L ——栅槽总长度,m ;

1l ——进水渠道渐宽部分的长度,m ; 1B ——进水渠宽,m ;

1α——进水渠道渐宽部分的展开角度,一般可采用020; 2l ——栅槽与出水渠道连接处渐窄部分长度,m ; 1H ——栅前渠道深,m ; 每日栅渣量计算:max 186400

1000

z Q W W K ??=

?

42.102

.1100007

.024.086400W =???=

>30.2m d

式中,W ——每日栅渣量,3/m d ;

1W ——栅渣量(333/10m m 污水),取大于0.1的值,粗格栅用小值,细格栅用

大值,中格栅用中值

z K ——生活污水流量总变化系数 宜采用机械清渣

根据格栅的宽度B 选取型号为XWB-III-0.8-2的格栅

第二节 初沉池的设计计算

1、池子的总表面积

/

3600Q A q ?=

m ax Q =20400?1000/24?3600=236L/s=0.23m 3/s

2m 7.4162

3600

23.0A =?=

式中:Q ——日平均流量,

3m s /q ——表面负荷,32()m m h ?,一般为1.5~

32

3.0()m m h ?,这里取/q 322.0()m m h =?。

2、沉淀部分有效水深

/2h q t

=?

t ——沉淀时间

m h 42.421.222=?=

3、沉淀部分有效容积

/2

V A h =?

184242.47.416`V =?=3m 4、池长

3.6L vt =?

m 7.47621.26.3=??=L

式中:v ——水平流速,设水平流速为6m/s 5、池子的总宽度

A B L =

m 8.87

.477.416==B

6、校核长宽比、长深比 长宽比:39.58

.87.47==B L >4(符合要求) 长深比:

9.153

7.47h 2==L >8(符合要求) 池子的长深比不小于8,以8~12为宜。 7、污泥部分需要的容积

120()86400100(100)Q C C T V γρ-??=

-

()(95-10012

10000002.0-00023.020000V ????=

=1683m

式中:T ——两次清除污泥间隔时间,d 。设T=2d 1

C ——进水悬浮物浓度,3

t m ,SS=230mg L

2

C ——出水悬浮物浓度,3t m ,SS ≤20mg L

γ——污水密度,3

t m ,其值约为1。

0ρ——污泥含水率,%。设污泥含水率为95% 8、污泥斗容积

为避免污泥过深,设置四个污泥斗 则 V1=

4

V

=423m 设污泥斗高度为//4h ,挡板距离出口为0.5m 。(挡板距出口0.25~0.5m )

//04(4.50.5)

tan 60 3.462h m -=

?=

//

4121(3V h f f =++ 1

3.46(0.2520.253V =??++

3

20.26m = 式中: 1f ——斗上口面积,2

m

2

f ——斗下口面积,2

m

//

4h ——泥斗高度,m

设斗底宽为0.5m

2

10.50.50.25f m =?= 2

2 4.5 4.520.25f m =?=

9、污泥斗以上梯形部分污泥容积

/1224()2l l

V h b

+=?? 01.0)5.45.07.47(`4?--=h

=0.43m m l 7.471=

2 4.5l m

=

5.505.443.02

5

.47.47V 2=??+=)(

3m 式中:1l 、2l

——梯形上下底边长,m

/4h ——梯形的高度,m

10、污泥斗和梯形部分污泥容积

12

V V V =+

7026.205.50=+=3m ﹥423m 11、池子的总高度

1234

H h h h h =+++

式中:1h ——超高,池子的超高至少采用0.3m ,取10.3h m

=。

3

h ——缓冲层高度,沉淀池的缓冲层高度,一般采用0.3~0.5m ,取30.5h m

=。

4

h ——污泥部分高度,m 。

=+=444```h h h 3.46+0.43=3.89m

H=0.3+3+0.5+3.89=7.69m

第三节 生物接触氧化池的计算

1有效容积V V=

V e o L S S Q )(-=4

)

20220(20400-?=10203m Lv 一般取2-5[ kgBOD 5/(m3*d)],此处取Lv=4[ kgBOD 5/(m3*d)] 2总面积A 池数N

A=V/h0=1020/3=3403m 取h0=3m 取N=8 8

340

A A 1==

N =42.5,则每格接触氧化池的尺寸为7m ?6m 3校核接触时间t t=

18.124

204003428N 1=÷??=Q H A h

4池深H

取h1=0.6m, h2=0.5m, h3=0.3m, h4=1.5m 填料层数m=3 则H=h0+h1+h2+(m-1)h3+h4=3+0.6+0.5+(3-1)0.3+1.5=6.2m 5污水实际停留时间t` t`=

h 21.22420400

)

6.02.6(42824)h (N 11=?-??=?-Q H A

6填料总体积v`

选用φ25玻璃钢蜂窝填料,则 v`=N 1A 0h =8?42?3=10083m 7曝气需氧量D

采用多孔管鼓风曝气供氧,取气水比D 0=15,则所需总空气量 D=D 0Q=20400?15=3060003m /d=212.53m /min

1D =D/N=382503m /d=26.63m /min

根据曝气器的服务面积,选择微孔曝气器,型号为HWB-3,每格56个。

第四节 二沉池的设计计算

二沉池应采用竖流式沉淀池

射中心管内流速0V =0.03m/s ,池数n=6 1、中心管面积

Q`max=Qmax/n=0.24/6=0.043m A=

m ax

`V Q =0.04/0.03=1.32m 2、中心管直径 d=

π

A

4=

14

.33

.14?=1.3m 3、中心管喇叭口与反射板之间的间隙高度 设1V =0.02m/s 1d =1,35d=2.16 m h3=max `Q /1V 1d π=

π

??16.202.004

.0=0.29m

4、沉淀部分有效断面 设表面负荷q`=33m /(2m ·h ) V=3m/h=0.00083m/s

A`=max `Q /V=0.04/0.00083=483m 5、沉淀池直径 D=

9.748

22`A A 4=+=+π

π)(m<8m 符合尺寸要求

6、沉淀部分有效水深 设沉淀时间t=1.5h ,有效水深 h2=3600vt=3600*0.00083*1.5=4.48m 径深比D/h2=7.9/4.48=1.76<3(符合要求)

7、设城市人口为6000人,每人每日污泥量s=0.5L (人·天),清除污泥的时间间隔t`=2d ,

污泥部分所需容积 V=

26010002

60005.01000`m sNt =??= 每格沉淀池污泥体积V1=n

V

=60/6=10m 2

8、圆截锥部分容积

设圆截锥部分半径r=0.2m ,侧壁倾角55o

则圆截锥部分的高度h5=(R-r )tan α=(7.9/2-0.2)tan55o =5.36m 圆截锥部分容积V 2=3

π

)r +Rr +(R h 225=92.2m 3>15m 3 9、池子的总高度

设超高h1=0.3m , 缓冲层h4=0.3m ,则池子总高 H=54213h h h h h ++++=0.3+4.48+0.29+0.3+5.36=10.7m

第四章 主要设备说明(设备一览表)

269.9/Q l s =18H m =

第五章 污水厂总体布置

第一节 主要构筑物与附属建筑物

主要构筑物:格栅,泵房,初沉池,生物接触氧化池,二沉池,鼓风机房,变电所,消毒间

附属建筑物:门卫室,办公综合楼,职工食堂,职工宿舍楼,篮球场

第二节 污水厂平面布置

生物接触氧化设备设计

生物接触氧化设备设计集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

第1章设计任务书 一、设计题目 150m3/h某小区生活污水中生物接触氧化设备的设计 二、原始资料 =300mg/L,CODcr=500mg/L,出水 Q=150m3/h,进水 BOD 5 BOD =20mg/L,CODcr=60mg/L,容积负荷3.0kg/m3.d。 5 三、设计内容 1.方案确定与工艺说明 按照原始资料数据进行处理方案的确定,拟定处理工艺流程,选择设备和构筑物,说明选择理由,工艺说明包括原理、结构特点、设计原则等,论述其优缺点,编写设计说明书。 2.设计计算 (1)计算需氧量、空气量, (2)计算生物接触氧化池有效容积、尺寸 (3)计算穿孔布气空气管道 (4)计算剩余污泥量 3.制图 (1). 生物接触氧化池曝气及空气管道平面、剖面图(A2) (2)进水布水器平面、剖面布置图。(A2) (3)填料支架及填料安装图(A2) (4)生物接触氧化池平面、剖面布置图(A2) 4.编写设计说明书、计算书

四、设计成果 (1). 生物接触氧化池曝气及空气管道平面、剖面图(A2) (2)进水布水器平面、剖面布置图。(A2) (3)填料支架及填料安装图(A2) (4)生物接触氧化池平面、剖面布置图(A2) (5)设计说明书、计算书 五、时间分配表(第19周) 七、成绩考核办法 根据设计说明书、设计图纸的质量及平常考核情况由指导教师按优、良、中、及格、不及格评定成绩。 指导教师:CCC、AAAA

化学与生物工程学院环境工程教研室 2011年11月 第2章方案确定与工艺说明 2.1确定方案 污水处理中对小区的概念外延加以拓宽,泛指居民住宅区、疗养院、商业中心、机关学校等由一种或多种功能构成的相对独立的区域,而该区域的排水系统通常不在城市市政管网的覆盖范围内。根据环境要求,需建造独立的污水处理系统。小区污水水量较小,水质水量变化较大,由于土地昂贵等原因对环境质量提出的要求较高(如气味、噪声、建筑风格等)。因此污水处理工艺力求简单实用,管理方便,操作可靠,维护工作量小,并尽可能地采用高效、节能的污水处理技术。 小区污水的处理工艺依据其尾水排放水体的功能不同而异,常用处理方法有化粪池、一级处理(初次沉淀池)、生物二级处理及二级处理后再经消毒回用等。在国外,小区污水的处理基本上采用二级生化、人工湿地或土地处理系统以及亚表层砂滤床处理等方法。其中二级生化处理大多数都采用氧化沟法、生物滤池法(包括滴滤池)。人工湿地、地表漫流和亚表层砂滤床法近20 a来发展较快。一些经济发达国家为了防止水体的富营养化,在传统二级处理的基础上,增加了三级处理单元,使污水得到深度净化,达到回用水水质标准,但基建投资和运行成本都比较高 J。小区污水处理工艺的选择在满足小区污水处理特点的前提下,应

生物接触氧化设备设计

第1章设计任务书 一、设计题目 150m3/h某小区生活污水中生物接触氧化设备的设计 二、原始资料 Q=150m3/h,进水BOD5=300mg/L,CODcr=500mg/L,出水BOD5=20mg/L,CODcr=60mg/L,容积负荷3.0kg/m3.d。 三、设计内容 1.方案确定与工艺说明 按照原始资料数据进行处理方案的确定,拟定处理工艺流程,选择设备和构筑物,说明选择理由,工艺说明包括原理、结构特点、设计原则等,论述其优缺点,编写设计说明书。 2.设计计算 (1)计算需氧量、空气量, (2)计算生物接触氧化池有效容积、尺寸 (3)计算穿孔布气空气管道 (4)计算剩余污泥量 3.制图 (1). 生物接触氧化池曝气及空气管道平面、剖面图(A2) (2)进水布水器平面、剖面布置图。(A2) (3)填料支架及填料安装图(A2) (4)生物接触氧化池平面、剖面布置图(A2) 4.编写设计说明书、计算书

四、设计成果 (1). 生物接触氧化池曝气及空气管道平面、剖面图(A2) (2)进水布水器平面、剖面布置图。(A2) (3)填料支架及填料安装图(A2) (4)生物接触氧化池平面、剖面布置图(A2) (5)设计说明书、计算书 五、时间分配表(第19周) 七、成绩考核办法 根据设计说明书、设计图纸的质量及平常考核情况由指导教师按优、良、中、及格、不及格评定成绩。

指导教师:CCC、AAAA 化学与生物工程学院环境工程教研室 2011年11月 第2章方案确定与工艺说明 2.1确定方案 污水处理中对小区的概念外延加以拓宽,泛指居民住宅区、疗养院、商业中心、机关学校等由一种或多种功能构成的相对独立的区域,而该区域的排水系统通常不在城市市政管网的覆盖范围内。根据环境要求,需建造独立的污水处理系统。小区污水水量较小,水质水量变化较大,由于土地昂贵等原因对环境质量提

接触氧化池设计计算

3. 5生物接触氧化池 设计参数 进水 COD 浓度 La =650mg/L (300) 出水 COD 浓度 Le =250mg/L (120) 取一级生物接触氧化池的COD 容积负荷必为1. 5kgC0D/ (m 3 d) 3. 5. 1生物接触氧化池填料容积 Q La Le 6000 650 250 M 1. 5 1000 式中W ——填料的总有效容积,m 3; Q ----- 日平均污水量,m 3; La ——进水 COD 浓度,mg/L ; Le ------ 出水COD 浓度,mg/L; M —— COD 容积负荷率,gCOD/ (m 3 d)。 3. 5. 2生物接触氧化池总面积 A W 1600 2 A 533. 3m (60) H 3 式中A ——接触氧化池总面积,m 2; H ——填料层高度,m,取3m 3.5.3设一座接触氧化池,分3格,每格接触氧化池面积 3 每格池的尺寸LXB 二30X6二180 m 2 每格接触氧化池在其端部与邻接触氧化池的隔墙上设 lmXlni 的溢流孔洞 3.5.4污水与填料接触时间 6. 5h 6000 式中t ------- 污水在填料层内的接触时间,h 1600 m 3( 180) 533. 3 178m 2

3. 5. 5接触氧化池总高度 Ho=H+hi+h2+ (m-1) h3+h4 =3. 0+0. 5+0. 5+(1-1) 0. 2+0. 5=4. 5m

式中Ho ——接触氧化池的总高度,m ; H —-填料层高度,m,取3. Om ; hi ----- 池体超高,m,取0. 5m ; h2——填料上部的稳定水层深,m,取0. 5m ; h3——填料层间隙高度,m,取0. 2m ; m ----- 填料层数,取为1层; h4 ---- 配水区高度,m,取0. 5m o 生物接触氧化池选用组合纤维填料,其主要技术参数见表 7 表7组合纤维填料主要技 术参数 3.5.6需气量 按每去除IkgCOD 消耗lkg 氧气计算,生物接触氧化池的需氧量Q 】为: Qi =6000 ><650-250)/1000 二 2400 kgQ/d (270) 池每天所需的空气量Gs 为: 53280m 3/d 0. 62 m 3/s 21% 1.43 0. 15 (5994/0. 07) 式中Gs —- 需气量,m 空气/d ; E A — 氧转移效率,%; 匚%_ 氧在空气中所占百分 l-k- 1. 43-- 氧的谷重,kg/m 3o 表8微孔曝气器的主要性能参数 生物接触氧化池采用微孔曝气器曝气,其充氧效率 E A 取15%,则接触氧化 Qi 21% 1.43 E 曝气装置选用HWB- 1型微孔曝气器, 其主要性能参数见表8

生物接触氧化工艺设计方案及计算

1 前言 随着我国社会和经济的高速发展环境问题日益突出,尤其是城市水环境的恶化加剧了水资源的短缺,影响着人民群众的身心健康已经成为城市可持续发展的严重制约因素。近年来国家和地方政府非常重视污水处理事业工程的建设,而决定城市污水处理厂投资和运行成本的很重要因素是污水处理工艺的选择。一座城市污水厂处理工艺的选择虽然应由污水水质、水量、排放标准来确定但是忽略污水处理厂投资和运行成本过分强调污水处理工艺的先进是不足取的。生物膜法是与活性污泥法并列的一种污水生物处理技术,而生物接触氧化工艺便是其中一种。 通过生物接触氧化工艺的课程设计,来巩固水污染学习成果,加深对《水污染控制工程》的认识与理解,规范、手册与文献资料的使用,进一步掌握设计原则、方法等。锻炼独立工作能力,对污水厂的主体构筑物、辅助设施、计量设备及污水厂总体规划、管道系统做到一般的技术设计深度,培养和提高计算能力、设计和CAD绘图水平,锻炼和提高分析及解决工程问题的能力。 2生物接触氧化法在水处理中的作用 生物接触氧化工艺(Biological Contact Oxidation)又称“淹没式生物滤池”、“接触曝气法”、“固着式活性污泥法”,是一种于20世纪70年代初开创的污水处理技术,其技术实质是在生物反应池内充填填料,已经充氧的污水浸没全部填料,并以一定的流速流经填料。在填料上布满生物膜,污水与生物膜广泛接触,在生物膜上微生物的新陈代谢的作用下,污水中有机污染物得到去除,污水得到净化。 生物接触氧化法是一种浸没生物膜法,是生物滤池和曝气池的综合体,兼有活性污泥法和生物膜法的特点,在水处理过程中有很好的效果。其特点有如下几点:第一,由于填料的比表面积大,池内的充氧条件良好。生物接触氧化池内单位容积的生物固体含量高于活性污泥法曝气池及生物滤池,所以生物接触氧化法 有较高的容积负荷,对冲击负荷有较强的适应能力;第二,生物接触氧化法不需要污泥回流,不存在污泥膨胀问题,污泥生成量少,且污泥颗粒较大,易于沉淀,运行管理简便,操作简单,易于维护管理,设备一体化程度高,耗电少。第三,由于生物固体量多,水流又属于完全混合型,因此生物接触氧化池对水质水量的骤变有较强的适应能力。第四,生物接触氧化池有机容积负荷较高时,其F/M 保持在较低水平,污泥产率较低。第五,具有活性污泥法的优点,并且机械设备供氧,生物活性高,泥龄短,净化效果好,处理效率高,处理时间短,出水水质好而稳定,池容小,占地面积少。第六,能分解其它生物处理难分解的物质,具有脱氧除磷的作用,可作为三级处理技术。因此,生物接触氧化污水处理技术是一种适应范围广、处理效率高、运行操作简单的水处理技术。而工业污废水水量

生物接触氧化池的调试

生物接触氧化池的调试 一般来说间歇进水也只要保持均衡进水的原则就行,时间上要分配好.接触氧化池 进水经UASB自流进入接触氧化池进行好氧生物处理。 1接触氧化原理 接触氧化技术是一种好氧生物膜法工艺。接触氧化池内设有填料,部分微生物以生物膜的形式固着生长于填料表面,部分则是絮状悬浮生长于水中。因此它兼有活性污泥法与生物滤池二者的特点。 大量实验证明,立体弹性填料的比表面积大,挂膜速度快,对空气有切割作用,能提高曝气器的氧转移效率,对于接触氧化工艺来讲,是最为理想的填料。本工程选用立体弹性填料。接触氧化工艺中微生物所需的氧通常通过机械曝气供给。生物膜生长至一定厚度后,近填料壁的微生物将由于缺氧而进行厌氧代谢,产生的气体及曝气形成的冲刷作用会造成生物膜的脱落,并促进新生膜的生长,形成生物膜的新陈代谢。 2接触氧化的技术评价 ★由于填料的比表面积大,池内的充氧条件良好,生物接触氧化池内单位容积的生物固体量都高于活性污泥法曝气池及生物滤池,因此生物接触氧化池具有较高的容积负荷; ★由于相当一部分微生物固着在填料表面,生物接触氧化法不需要设污泥回流系统,也不存在污泥膨胀问题,运行管理简便; ★由于生物接触氧化池内生物固体量多,水流属完全混合型,因此生物接触氧化池对水质水量的骤变有较强的适应能力; ★由于生物接触氧化池内生物固体量多,当有机容积负荷较高时,其F/M比可以保持在一定水平,因此污泥产量可相当于或低于活性污泥法。 当接触氧化池体积较大时,很难实现完全混合的水力流态,因此需要在池型结构上进行考虑,为此我们提出一级两段接触氧化池的概念(如上图所示)。 通过对池型布局的改变,可以克服诸如短流、水和填料接触不佳等缺点,从而达到了相应的处理效果。 总结起来,这种布置有以下几个方面的优势: ★避免单级单段式的短流现象,保证了水和填料的充分混合; ★每段渐次有一个COD浓度梯度,最大程度地保证了有机物向微生物细胞的传递,从动力学角度保证了去除效果; ★每段的生物相均不相同,从而最大程度保证各自不同的生存环境在一个最佳的位置上。 3接触氧化池的管理要点 污水处理站对好氧处理设施的运行管理中,可通过对系统中“泥、水、气”的调节,通过排泥和回流维持系统中合适的微生物数量;改善污泥的沉降性能,通过人工曝气控制曝气池中合适的溶解氧、使废水均衡地进入系统并具有合适的营养比例,以使系统长期稳定地达标运行。4气——维持曝气池合适的溶解氧 ★供氧的目的 污水进入天然水体,通过物理的、化学的、生物的作用逐渐得到净化。在净化初期,由于生物在氧化分解有机物时的耗氧作用,水体中溶氧水平不断下降。但水中的藻类可利用有机物分解后生成的N、P等无机盐进行光合作用,放出氧气;加上水面的复氧作用,使水体溶氧水平逐渐恢复。若有机物污染负荷过高,耗氧过多,微生物分解有机物的耗氧作用会使水体溶氧降到零,这时自净作用即行中断。因此水体的自净作用是受水体溶氧水平制约的。 ★废水生物处理就是根据水体自净作用的原理,在曝气池中设置供氧设施,以保证处理装置的活性污泥中,比天然水体中多出成千上万倍的微生物,能在好氧条件下将污水中的有机物

生物接触氧化设计方案

50m3/d中水回用工程 50m3/d污水一体化设备 设计方案

目录 1项目背景 (3) 2 设计依据 (3) 3 水质水量及处理要求 (3) 3.1 进水水质水量的确定 (3) 3.2 处理要求 (4) 4 工艺方案的选择 (4) 4.1 工艺简介 (4) 4.2 本生物接触氧化法主要特征 (5) 4.3 工艺流程 (5) 4.4 主要构筑物和设备 (5) 4.5 主要构筑物尺寸和设备型号一览表 (8) 5 经济性分析 (9) 5.1 工程投资估算 (9) 5.3 吨水生产成本估算....................................... 错误!未定义书签。 5.3 社会效益分析 (10)

1项目背景 本项目为农村优质杂排水处理及回用工程,原水包括楼内盥洗、洗浴及洗衣等优质杂排水,经处理后达到生活杂用水水质标准,回用于绿化、冲厕和洗车等。 2 设计依据 (1)甲方提供的水及水质类型等相关资料 (2)《建筑给水排水设计规范》(GBJ15-88)2003年版 (3)《建筑中水设计规范》(GB50336-2002) (4)《城市污水再生利用城市杂用水水质标准》(GB/T18920-2002) (5)《城市污水再生利用景观环境用水水质标准》(GB/T18921-2002) (6)《污水再生利用工程设计规范》(GB50335-2002) (7)《城市居民生活用水量标准》(GB/T50331-2002) 3 水质水量及处理要求 3.1 进水水质水量的确定 本工程的水源为小区各住户的优质杂排水,设计处理水量为50m3/d。依据《建筑中水设计规范》中建筑分项给水百分率及各种排水污染物浓度统计数据及经验值,确定进水主要水质指标如下: BOD =130mg/L 5 COD=227mg/L SS=72.6 mg/L

生物接触氧化池设计实例.

环境工程专业 《污水处理课程设计》 说明书 姓名及学号: 班级: 指导教师: 设计时间:

前言 在我国,随着经济飞速发展,人民生活水平的提高,对生态环境的要求日益提高,要求越来越多的污水处理后达标排放。在全国乃至世界范围内,正在兴建及待建的污水厂也日益增多。在校期间,我们学习了水污染控制工程这门课程,为了检验学习的内容和自主设计能力,老师安排了此次课程设计。根据日处理污水量将污水处理厂分为大、中、小三种规模:日处理量大于10万m3为大型处理厂,1-10m3万为中型污水处理厂,小于1万m3的为小型污水处理厂。本文是中型污水处理厂,处理流量20000m3/d,无论何种规模的处理厂,在确定污水处理工艺时,除了保证处理效果这一基本条件外,主要目的是降低基建投资,节省日常的运行费用,以求在保证达标排放的前提下,使经营成本最小。要做到这一点,首先应根据实际情况,选择合适的处理工艺。小型污水厂处理厂往往具有这样的特点:(1)由于负担的排水面积小,污水量较小,一天内水量水质变化较大,频率较高; (2)一般在城镇小区或企业内修建,由于所在地区一般不大,而且厂外污水输送管道也不会太长。所以,其占地往往受到限制,处理单元应当尽量布置紧凑。 (3)一般要求自动化程度较高,以减少工作人员配置,降低经营成本。 (4)污水厂往往位于小区或工业企业内,平面布置可能会受实际情况限制,有时可能靠近居民区或地面起伏不平等,平面布置应因地置宜,变蔽为利。 (5)由于规模较小,一般不设污泥消化,应采用低负荷,延时曝气工

艺,尽量减少污泥量同时使污泥部分好氧稳定。 由此,本设计选择生物接触氧化工艺。生物接触氧化法是以附着在载体(俗称填料)上的生物膜为主,净化有机废水的一种高效水处理工艺。具有活性污泥法特点的生物膜法,兼有活性污泥法和生物膜法的优点。在可生化条件下,不论应用于工业废水还是养殖污水、生活污水的处理,都取得了良好的经济效益。该工艺因具有高效节能、占地面积小、耐冲击负荷、运行管理方便等特点而被广泛应用于各行各业的污水处理系统。 本设计包扩工艺处理流程、主要构筑物的剖面结构、污水厂初步平面布置和主要设备的说明。本工艺理论上运行可靠,操作简便,出水各项污染指标均达到了国家规定排放标准。

污水处理生物膜法生物接触氧化池

污水处理生物膜法-生物接触氧化池 一、概述 生物接触氧化处理技术的实质之一是在池内充填填料,已充氧的污水将填料浸没全部,并以一定的流速流经填料。而填料上布满生物膜,污水与生物膜通过接触,在生物膜上微生物的新陈代谢功能的作用下,污水中有机污染物得到去除,污水得到净化,因此,生物接触氧化处理技术又称为淹没式曝气生物滤池。 二、生物接触氧化池的构造 接触氧化池是由池体、填料及支架、曝气装置、进出水装置以及排泥管道等部件所组成。生物接触氧化池的构造示意图见图 生物接触氧化池的构造示意图 (一)池体 池体的作用除了进行净化污水外,还要考虑填料,布水、布气等设施的安装。当池体容积较小时可采用圆形钢结构,池体容积较大时可采用矩形钢筋混凝土结构。池体的平面尺寸以满足布水、布气均匀,填料安装、维护管理方便为准。池体的底壁须有支承填料的框架和进水进气管的支座。池体厚度根据池的结构强度要求来计算。高度则由填料、布水布气层、稳定水层以及超高的高度来计算。同时,还必须考虑到充氧设备的供气压力或提升高度。各部位的尺寸一般为:池内填料高度为3.0~3.5m;底部布气层高为 0.6~0.7m;顶部稳定水层0.5~0.6m,总高度约为4.5~5.0m。 (二)填料 1.填料的要求 填料是生物膜的载体,所以也称之为载体。填料是接触氧化处理工艺的关键部位,它直接影响处理效果,同时,它的费用在接触氧化系统的建设费用中占的比重较大,约占55%~60%;同时载体填料直接关系到接触氧化法的经济效果,所以选定适宜的填料是具有经济和技术意义的。接触氧化处理工艺对填料的要求如下: (1)在水力特性方面,比表面积大、空隙率高、水流通畅、阻力小、流速均一; (2)要求形状规则、尺寸均一,表面粗糙度较大;填料表面电位高,附着性强; (3)化学与生物稳定性较强,经久耐用,不溶出有害物质,不导致产生二次污染; (4)在经济方面要考虑货源、价格,也要考虑便于运输与安装等。 2. 填料类型 填料可分为悬挂式填料、悬浮式填料和固形块状填料三种类型。 (1)悬挂式填料 悬挂式填料有四个品种,分别为半软性填料、组合填料、软性填料和弹性立体填料; (2)悬浮式填料 常用的有空心柱状、空心球状、外形呈笼架、内装丝形或条形编织物以及海绵块状的软性悬浮式填料; (3)固形块状填料 固形块状填料主要有蜂窝直管形块状填料和立体波纹块状填料两种。目前常采用的填料是聚氯乙烯塑料、聚丙烯塑料、环氧玻璃钢等做成的蜂窝状和波纹板状填料。近年来国内外都进行纤维状填料的研究,纤维状填料是用尼龙、维纶、晴纶、涤沦等化学纤维编结成束,呈绳状连接。为安装检修方便,填料常以料框组装,带框放入池中。当需要清洗检修时,可逐框轮替取出,池子无需停止工作。 3. 填料的性能 目前国内常用的填料有:整体型、悬浮型和悬挂型,其技术性能见下表。

AO生物接触氧化污水处理工艺介绍

A/O生物接触氧化污水处理工艺介绍 A/O生物接触氧化工艺,操作简单,运转费用低,处理效果好,运行稳定,是目前较为成熟的生活污水处理工艺,能有效地确保污水达标排放。 1、工艺流程 见下图: 2、工艺说明 污水由排水系统收集后,进入污水处理站的格栅井,去除颗粒杂物后,进入调节池,进行均质均量,调节池中设置预曝气系统,再经液位控制仪传递信号,由提升泵送至初沉池沉淀,废水自流至A级生物接触氧化池,进行酸化水解和硝化反硝化,降低有机物浓度,去除部分氨氮,然后入流O级生物接触氧化池进行好氧生化反应,在此绝大部分有机污染物通过生物氧化、吸附得以降解,出水自流至二沉池进行固液分离后,沉淀池上清液流入消毒池,经投加氯片接触溶解,杀灭水中有害菌种后达标外排。 由格栅截留下的杂物定期装入小车倾倒至垃圾场,二沉池中的污泥部分回流至A级生物处理池,另一部分污泥至污泥池进行污泥消化后定期抽吸外运,污泥池上清液回流至调节池再处理。 3、工艺设施 (1)格栅井 设置目的: 在生活污水进入调节池前设置一道格栅,用以去除生活污水中的软性缠绕物、较大固颗粒杂物及飘浮物,从而保护后续工作水泵使用寿命并降低系统处理工作负荷。 设置特点: 格栅井设置钢筋砼结构,格栅采用手动机械框式。 (2)调节池 设置目的: 生活污水经格栅处理后进入调节池进行水量、水质的调节均化,保证后续生化处理系统水量、水质的均衡、稳定,并设置预曝气系统,用于充氧搅拌,以防止污水中悬浮颗粒沉淀而发臭,又对污水中有机物起到一定的降解功效,提高整个系统的抗冲击性能和处理效果。

调节池设计为钢筋砼结构。 (3)调节池提升水泵 设置目的: 调节池内设置潜污泵,经均量,均质的污水提升至后级处理。 设计特点: 潜污泵设置二台,液位控制,水泵采用无堵塞撕裂杂物泵。 (4)沉淀池 设置目的: 进行固液分离去除生化池中剥落下来的生物膜和悬浮污泥,使污水真正净化。 设计特点: 设计为竖流式沉淀池,其污泥降解效果好。 采用三角堰出水,使出水效果稳定。 污泥采用气提法定时排泥至污泥池,并设污泥气提回流装置,部分污泥回流至A级生物处理池进行硝化和反硝化,也减少了污泥的生成,也利于污水中氨氮的去除。 该池设计为A3钢结构。 (5)A级生物处理池(缺氧池) 设置目的: 将污水进一步混合,充分利用池内高效生物弹性填料作为细菌载体,靠兼氧微生物将污水中难溶解有机物转化为可溶解性有机物,将大分子有机物水解成小分子有机物,以利于后道O级生物处理池进一步氧化分解,同时通过回流的硝炭氮在硝化菌的作用下,可进行部分硝化和反硝化,去除氨氮。 设计特点: 内置高效生物弹性填料,又具有水解酸化功能,同时可调节成为O级生物氧化池,以增加生化停留时间,提高处理效率。 该池设计为A3钢结构。 (6)O级生物处理池(生物接触氧化池) 设置目的: 该池为本污水处理的核心部分,分二段,前一段在较高的有机负荷下,通过附着于填料上的大量不同种属的微生物群落共同参与下的生化降解和吸附作用,去除污水中的各种有机物质,使污水中的有机物含量大幅度降低。后段在有机负荷较低的情况下,通过硝化菌的作用,在氧量充足的条件下降解污水中的氨氮,同时也使污水中的COD值降低到更低的水平,使污水得以净化。 设计特点: 该池由池体、填料、布水装置和充氧曝气系统等部分组成。 该池以生物膜法为主,兼有活性污泥法的特点。 池中填料采用弹性立体组合填料,该填料具有比表面积大,使用寿命长,易挂膜耐腐蚀不结团堵塞。填料在水中自由舒展,对水中气泡作多层次切割,更相对增加了曝气效果,填料成笼式安装,拆卸、检修方便。 该池分二级,使水质降解成梯度,达到良好的处理效果,同时设计采用相应导流紊流措施,使整体设计更趋合理化。 池中曝气管路选用优质ABS管,耐腐蚀。不堵塞,氧利用率高。 该池设计为A3钢结构。 (7)沉淀池 设置目的: 进行固液分离去除生化池中剥落下来的生物膜和悬浮污泥,使污水真正净化。

生物接触氧化池的设计计算资料

生物接触氧化池的一般规定 ● 生物接触氧化池由池体、填料、及支架、布水系统和曝气装置等部分组成; ● 通常,氧化池填料高度为3.0~3.5m ,底部布气厚度为0.6~0.7m ,顶部稳定 水层为0.5~0.6m ,池的总高约为4.5~5.0m ,排泥所需的静水头不应小于1.2米; ● 生物接触氧化池的个数或分格数应不小于2个,并按同时工作设计; ● 池长一般不大于10m ,长宽比为1:2~1:1; ● 构造层为0.6~1.2m ,填料层为2.5~3.5m ,稳水层为0.4~0.5m ,超高不小于 0.5m ,有效水深3~5m ; ● 进水导流槽宽度不小于0.8m ,用导流墙分隔,其下缘至填料底部距离 0.3~0.5m ,至池底距离不小于0.4m ; ● 进水BOD 浓度应控制在150~300mg/L ,当进水BOD 为120~150mg/L 时,总气 水比为5:1~6:1; ● 通过填料后,出水中溶解氧浓度为2~3mg/L ; ● 可生化性较低的废水,BOD 负荷为0.8~1.2kgBOD5/m3·d ; ● 为保证布水布气均匀,接触氧化池的单格面积一般不大于25m 4.2设计参数 进水BOD 浓度L a =180.5mg/L 出水BOD 浓度L e =90mg/L 取一级生物接触氧化池的BOD 容积负荷M 为2kgCOD/(m 3·d) 4.3.1生物接触氧化池填料容积 5432 1000)905.180(12000)(=?-?=-=M L L Q W e a 式中 W ——填料的总有效容积,m 3; Q ——日平均污水量,m 3; L a ——进水BOD 浓度,mg/L ; L e ——出水BOD 浓度,mg/L ; M ——BOD 容积负荷率,gCOD/(m 3 ·d)。 4.3.2生物接触氧化池总面积 1813 543===H W A 式中 A ——接触氧化池总面积,m 2;

生物接触氧化池设计、剩余污泥量计算

生物接触氧化池设计、剩余污泥量计算 接触氧化池主要由池体、填料床、曝气装置及进出水装置等构成,具体结构如图所示。 图3-3 生物接触氧化池的构造示意图 生物接触氧化池设计要点: (1)生物接触氧化池一般不应少于2 座; (2)设计时采用的BOD5负荷最好通过实际确定。也可以采用经验数据,一般处理城市污水可用1.0~1.8kgBOD5/(m3·d),处理BOD5≤500mg/L的污水时可用1.0~3.0 kgBOD5/(m3·d); (3)污水在池中的停留时间不应小于1~2h(按有效容积计); (4)进水BOD5浓度过高时,应考虑设出水回流系统; (5)填料层高度一般大于3.0 m,当采用蜂窝填料时,应分层装填,每层高度为1 m,蜂窝孔径不小于25 mm;当采用小孔径填料时,应加大曝气强度,增加生物膜脱落速度; (6)每单元接触氧化池面积不宜大于25m2,以保证布水、布气均匀; (7)气水比控制在(10~15):1。 因废水的有机物浓度较高,本次设计采用二段式接触氧化法。设计一氧 池填料高取3.5m,二氧池填料高取3m 。 3.5.1 填料容积负荷 Nv=0.2881Se0.7246=0.2881*200.7246=1.443[ kgBOD5/(m3*d)]

式中 N v —接触氧化的容积负荷, kgBOD 5/(m3*d); S e —出水BOD 5值,mg/l 3.5.2 污水与填料总接触时间 t=24*S 0/(1000* Nv)=24*231/(1000*1.443)=3.842(h) 式中S 0 ——进水BOD 5值,mg/L 。 设计一氧池接触氧化时间占总接触时间的60%: t 1=0.6t=0.6*3.842=2.305(h) 设计二氧池接触氧化时间占总接触时间的40%: t 2=0.4t=0.4*3.842=1.537(h) 3.5.3接触氧化池尺寸设计 一氧池填料体积V 1 V 1=Q t 1=1500*2.305/24=144m 3 一氧池总面积A 1-总: A 1-总=V 1/h 1-3=144/3.5=41.2(m 2)>25 m 2 一氧池格数n 取2格, 设计一氧池宽B 1取4米,则池长L 1: L 1=144/(3.5*4)=10.3m 剩余污泥量:在《生物接触氧化池设计规程》中推荐该工艺系统污泥产率为0.3~0.4 kgDS/kgBOD 5,含水率96%~98%。 本设计中,污泥产率以Y =0.4kgDS/kgBOD 5,含水率97%。则干污泥量 用下式计算: W DS =YQ(S 0-S e )+(X 0-X h -X e )Q 式中 W DS ——污泥干重,kg/d ; Y ——活性污泥产率,kgDS/kgBOD 5; Q ——污水量,m 3/d ; S 0 ——进水BOD 5值,kg/m 3; S e ——出水BOD 5值,kg/m 3; X 0——进水总SS 浓度值,kg/m 3; X h ——进水中SS 活性部分量,kg/m 3; X e ——出水SS 浓度值,kg/m 3;。 设该污水SS 中60%可为生物降解活性物质,泥龄SRT 取5d , 则一氧池污泥干重: W DS =0.4*1500*5*(0.231-0.0462)+(0.126-0.126*0.6-0.027)*1500×5 =648.9(kg/5d ) 污泥体积: Q S = W DS /(1-97%)=648.9/(1000*0.03)=21.62m 3 泥斗容积计算公式 Vs=(1/3)*h(A ’+A ’’+sqr(A ’*A ’’) 式中 Vs ——泥斗容积,m 3; h ——泥斗高,m ; A ’——泥斗上口面积,m 2; A ’’——泥斗下口面积,m 2;

生物接触氧化法设计参数

生物接触氧化法设计参数: 生物接触氧化法又称浸没式曝气池,它是一种兼有活性污泥法和生物膜法特点的废水处理构筑物。在曝气池中填充填料,使填料表面长满生物膜,当废水流经填料层时,废水在曝气条件下和生物膜接触,使废水中 有机物氧化分解而得到净化。 生物接触氧化池具有如下特征: 1、 目前所使用的填料多是蜂窝式或列管式填料以及软性填料,上下贯通,废水流动的水利条件好,能很好地向固着在填料上的生物膜供应营养及氧。生物膜的生物相很丰富,除细菌外,还有球衣菌类的丝状菌、多种种属的原生动物和后生动物,形成一个稳定的生态系。 2、 填料表面全为生物膜所布满,具有很高的生物量,据实验资料,每平方米填料表面上的生物膜可达125g,相当于MLSS13g/L,有利于提高净化 效率。 3、 生物接触氧化法对冲击负荷有较强的适应能力,污泥生成量少,无污泥膨胀的危害,无需污泥回流,易于维护管理。 4、 生物接触氧化法的主要缺点是填料易于堵塞,布气、布水不均匀。填料是生物膜的载体,是接触氧化池的核心部位,直接影响生物接触氧化处理的效率。对填料的要求是:有一定的生物附着力,比表面极大;空隙率高;水流阻力小;强度高;化学和生物稳定性强;不溶出有害物质,不导致产生二次污染,形状规则,尺寸均一,在填料间能形成均一 的流速;便于运输和安装。 目前在我国使用的填料有硬、软两种类型。硬填料主要制成蜂窝状,简称蜂窝填料,所用材料有聚氯乙烯塑料、聚丙烯塑料、环氧玻璃钢和环 氧纸蜂窝等。 软填料是近几年出现的新型填料,一般用尼龙、维纶、填料涤纶、晴纶等化学纤维编结成束,成绳状连接,因此又称为纤维填料。特点:质轻、高强,物理和化学性能稳定;纤维束呈立体结构,比表面积大,生物膜附着能力强,污水与生物膜接触效率高;纤维束随水漂动,不宜为 生物膜所堵塞。 纤维填料近年来已广泛用于化纤、印染、绢纺等工业废水处理中,实践

生物接触氧化池设计计算.

生物接触氧化池设计 、接触氧化池主要由池体、填料床、曝气装置及进出水装置等构 成,具体结构如图所示 图3-3生物接触氧化池的构造示意图 生物接触氧化池设计要点: (1 )生物接触氧化池一般不应少于 2座; (2)设计时采用的B0D5负荷最好通过实际确定。也可以采用经验数据,一般处理城市污水可用1.0?1.8kgBOD5/(m3 ?,处理B0D5 W500mg/L 的污水时可用 1.0 ?3.0 kgBOD5/(m3 d ; (3)污水在池中的停留时间不应小于 1?2h (按有效容积计); ( 4)进水 BOD5 浓度过高时,应考虑设出水回流系统;

(5)填料层高度一般大于 3.0 m ,当采用蜂窝填料时,应分层装填,每层高度为 1 m ,蜂窝孔径不小于 25 mm ;当采用小孔径填料时,应加大曝气强度,增加生物膜脱落速度; ( 6)每单元接触氧化池面积不宜大于 25m2 ,以保证布水、布气均匀; (7)气水比控制在(10?15 : 1。 因废水的有机物浓度较高,本次设计采用二段式接触氧化法。设计一氧 池填料高取 3.5m ,二氧池填料高取 3m 。 3.5.1填料容积负荷 Nv=0.2881Se 0.7246 =0.2881*9.24 0.7246 =1.443[ kgBOD5/(m3*d] 式中 Nv —接触氧化的容积负荷 , kgBOD5/(m3*d; Se—出水 B0D5 值,mg/l 3.5.2污水与填料总接触时间 t=24*S0/(1000* Nv=24*231/(1000*1.443=3.842(h 式中 S0 ——进水 B0D5 值, mg/L 。

生物接触氧化法和曝气生物氧化池的异同点以和应用

生物接触氧化法与曝气生物氧化池的异同点以及应用 1.生物接触氧化法特点 生物接触氧化法是一种兼有活性污泥法和生物膜法特点的一种新的废水生化处理法。这种方法的主要设备是生物接触氧化滤地。在不透气的曝气地中装有焦炭、砾石、塑料蜂窝等填料,填料被水浸没,用鼓风机在填料底部曝气充氧;空气能自下而上,夹带待处理的废水,自由通过滤料部分到达地面,空气逸走后,废水则在滤料间格自上向下返回池底。活性污泥附在填料表面,不随水流动,因生物膜直接受到上升气流的强烈搅动,不断更新,从而提高了净化效果。生物接触氧化法具有处理时间短、体积小、净化效果好、出水水质好而稳定、污泥不需回流也不膨胀、耗电小等优点。 1、进水采用进水堰的方式,进水与进气逆向,增加水与生物膜的接触面积。具有活性污泥法的优点,辅以机械设备供氧,生物活性高,泥龄短; 2、载体生物填料采用新式生物浮球,球内能固定和包藏生物膜。不用填料固定支架,可以解决修理更换的困难。采用新式罗茨鼓风机供气,充氧设备采用微孔曝气器。 3、由于填料比表面积大,池内充氧条件良好,池内单位容积的生物固体量较高,因此,生物接触氧化池具有较高的容积负荷,耐冲击负荷能力强; 4、由于生物接触氧化池内生物固体量多,水流完全混合,故对水质水量的骤变有较强的适应能力,能分解其它生物处理难分解的物质; 5、剩余污泥量少,不存在污泥膨胀问题,运行管理简便。 6。生物膜只能自行脱落,剩余污泥不易排走,滞留在滤料之间易引起水质恶化,影响处理效果。

2.1 生物接触氧化池 接触氧化池由池体、填料、支架、曝气装置、布水装置及排泥管道等部件所组成。池体为矩形钢结构,JW-Ⅰ填料均匀分层装填,下部中心进水、PPR穿孔管布气,水、气同向流动。污水处理设备运行15~20d后,填料微孔发生堵塞造成接触氧化池涌水,加大曝气量,定期进行反冲洗。接触氧化池构造示意见图1。 图1 接触氧化池构造示意图 2.2生物过滤沉淀池 该过滤沉淀池的结构下部为沉淀区,为减小设备整体占地面积并增加沉淀体积,沉淀区设计为矩形结构,下部设置排泥管,将沉淀区污泥排出。在滤池上部装填一定量粒径较小的JW-Ⅰ滤料,滤料表面生长着高活性的生物膜,使滤池系

接触氧化池曝气量计算

6 接触氧化池 流量83.33m /h ,一般取停留时间13h,故其有效容积为83.3?13=1082.93m 前面的气浮水解去除BOD 为20%,则到接触氧化池时BOD 含量为450?80%=360 接触氧化池中BOD 去除率为80%,则去除BOD 含量为360?0.8= 288mg/l 其BOD 负荷33e 32000m /d 288mg/l 0.53kg /m d 1083m W Q S N V ??===? 有效水深取6m,其中填料到水面高1m,填料下安装曝气装置预留1.5m.填料高3.5米. 还有超高0.5m.. 采用折回布水,水流从池的一头进入,通过多设挡墙,增加污水与挂膜的接触时间, 曝气量的计算: 11b r Q a QS VX =+ 1a 微生物氧化分解有机物过程中的需氧率,即微生物每代谢1kgBOD 所需氧量的kg 数. 1b 1kg 的活性污泥(MLVSS)每天自身氧化所需氧的kg 数,即污泥自身氧化的需氧率,1d - N(MLSS)=4000mg/l,f=0.75,则V(MLVSS)=3000mg/l Q=0.6?20003m /d ?288mg/l+0.0?3m ?0mg/l =573.03kg/d 2)计算曝气池内平均溶解氧饱和度,公式: sb 5( )2.0261042 b t s P O C C =+? 计算,为此,确定式中各参数值: 1)求定空气扩散装置出口处的绝对压力b P 值: b P =1.013?53109.8 4.510+??=1.552a P 2)求定气泡离开池表面时,氧的百分比t O 值: 21(1)100%7921(1) A t A E O E -=+- A E -------空气扩散装置的氧的转移效率,一般在6%-12%之间, 这里取10%, 得t O =19.3% 3)确定计算水温20,25条件下的氧的饱和度,查附录1,得: 0(20)9.17/S C mg l =

生物接触氧化池计算

生物接触氧化池计算 摘要:生物接触氧化法作为给水生物预处理工艺,近年来得到了日益广泛的工程实际应用。本文对给水生物接触氧化法预处理工程中常用的两种曝气系统(微孔曝气器曝气和穿孔管曝气),作了充氧性能、系统造价、运行成本及运行管理等方面的比较研究。研究表明,在实际工程应用中,采用微孔曝气器的曝气系统优于采用穿孔管的曝气系统。 关键词:微孔曝气器生物接触氧化池穿孔管充氧性能运行成本 近些年来,随着工农业的迅速发展,城市化建设加快,城市人口膨胀,引起了城市工业与生活用水大量增加;同时,相应的污染排放量也在逐年增加,导致了饮用水水源普遍受到污染,饮用水水质恶化。在给水处理领域中引入生物预处理,已成为微污染水源水处理的技术发展方向和有效手段之一。在我国,给水工程实践中常用生物接触氧化法作为生物预处理工艺。在该方法中,曝气系统的选择直接关系着整个生物预处理工艺的充氧性能、处理效果、运行成本和管理操作。本文结合中试试验和工程实践对这两种不同曝气系统作了多方面的比较与分析。 1 生物接触氧化池的两种曝气系统 为提高氧的利用率,生物接触氧化池宜采用气水逆向流设计。一般用鼓风机鼓风曝气,曝气设备分布于池底;气流自下向上流经填料区,水流自上向下流经填料区。曝气系统一般采用微孔曝气系统或穿孔曝气系统。 微孔曝气系统一般采用膜片式微孔曝气器作为曝气设备,池中填料一般采用弹性填料,设计气水比一般取0.7左右。 穿孔曝气系统采用穿孔管作为曝气设备,池中填料可采用颗粒填料或弹性填料,设计气水比一般取1左右。 2 充氧性能比较 通过对中试装置的清水充氧试验,对两种不同曝气方式的标准状态充氧性能作了测试,并对以下几项充氧性能评定指标作了比较与分析。 (1) 标准状态下的氧总转移系数K Las(h-1)——曝气器在标准状态(水温20℃、1atm大气压强)的测试条件下,在单位传质推动力作用时,单位时间向单位体积水中传递氧的数量; K Las=K La(T)·1.024(20-T)(1)

生物接触氧化池设计计算.

生物接触氧化池设计 一、接触氧化池主要由池体、填料床、曝气装置及进出水装置等构成,具体结构如图所示。 图3-3 生物接触氧化池的构造示意图 生物接触氧化池设计要点: (1)生物接触氧化池一般不应少于2 座; (2)设计时采用的BOD5负荷最好通过实际确定。也可以采用经验数据,一般处理城市污水可用1.0~1.8kgBOD5/(m3·d,处理BOD5≤500mg/L的污水时可用1.0~3.0 kgBOD5/(m3·d; (3)污水在池中的停留时间不应小于1~2h(按有效容积计); (4)进水BOD5浓度过高时,应考虑设出水回流系统;

(5)填料层高度一般大于3.0 m,当采用蜂窝填料时,应分层装填,每层高度为1 m,蜂窝孔径不小于25 mm;当采用小孔径填料时,应加大曝气强度,增加生物膜 脱落速度; (6)每单元接触氧化池面积不宜大于25m2,以保证布水、布气均匀; (7)气水比控制在(10~15:1。 因废水的有机物浓度较高,本次设计采用二段式接触氧化法。设计一氧 池填料高取3.5m,二氧池填料高取3m 。 3.5.1 填料容积负荷 Nv=0.2881Se0.7246=0.2881*9.240.7246=1.443[ kgBOD5/(m3*d] 式中 Nv—接触氧化的容积负荷, kgBOD5/(m3*d; Se—出水BOD5值,mg/l 3.5.2 污水与填料总接触时间 t=24*S0/(1000* Nv=24*231/(1000*1.443=3.842(h 式中S0 ——进水BOD5值,mg/L。 设计一氧池接触氧化时间占总接触时间的60%: t1=0.6t=0.6*3.842=2.305(h 设计二氧池接触氧化时间占总接触时间的40%: t2=0.4t=0.4*3.842=1.537(h

接触氧化池设计参数

各种工艺设计参数 一、接触氧化池 1、容积负荷 表1 各种处理方法的比较 2、生物膜重量 氧化池中生物膜重量一般为6200~14000 mg/l,呈悬浮状微生物的(活性污泥)一般只有200~300 mg/l,因此可以粗略的以生物膜重量表示生物接触氧化法的微生物数量。城市污水中生物膜重量为12000~14000 mg/l。 3、填料 (1)填料特性比较 表2 填料特性比较

(2)填料容积V有效 V有效=Q(C0-C1) /I·1000 式中Q——处理水量(m3/d) C0——进水BOD浓度(mg/L) C1——出水BOD浓度(mg/L) I——BOD容积负荷(m3) 4、停留时间 (1)弗鲁因德利希吸附式 Q(C0-C1)/V=2.44C11.98 式中Q——处理水量(m3/d) C0——进水BOD浓度(mg/L) C1——出水BOD浓度(mg/L) V——填料容积(m3) (2)停留时间 T=24V/Q=24 (C0-C1)/ 2.44C11.98 5、池体高度 一般的氧化池填料高度为3m,底部的布水布气层高度为0.6~0.7m,顶部的稳定水层高度为0.5~0.6m,所以总池高度一般为4.5~ 5.0m。 6、供气量 (1)需氧量(R):生物膜的需氧量(R)包括合成用氧量和内源呼吸用氧量两部分。即:

R=a'·△BOD+ b'·P 式中R——生物膜的需氧量(kg/h) △BOD——单位时间内去除的BOD量(kg/h) P——活性生物膜数量(kg) a'、b'——系数 从等当量的化学反应来看,每去除1kg BOD需要1kg O2。但实际是随着负荷的变化而变化的。例如,在普通生物滤池法中,污泥负荷低,泥龄长,氧化反应进行的比较彻底,去除1kg BOD的需氧量可大于1kg,系数a'通常为1.46左右;在生物接触氧化法中,污泥负荷高,生物膜更新快,泥龄较短,有一部分BOD物质未被氧化就排出系统,因此去除1kg BOD的需氧量往往低于1kg,系数a'通常小于1。根据实验测定,用于生物膜内源呼吸的氧量为0.3mg/m2·h左右,按照填料的比表面积和生物膜的干重(kg/ m3)可推算系数b',在普通生物滤池中b'=0.18。 (2)供氧量(Q s):供氧量Q s取决于需氧量(R)和曝气装置氧的总转移系数K L0,当缺乏K L0资料时,建议按下式计算Q s:Q s=R·K/αβγ 式中K为需氧量不均匀系数。在实际运转系统中水量与水质是变化的,这样也就形成了需氧量的不均匀性,水量与水质高负荷时的需氧量往往比平均负荷时要高出很多。在确定供气系统时必须按最大需氧量考虑才能取得预期效果。K值按排水制度、工艺生产等实测确定。

相关主题
文本预览
相关文档 最新文档