当前位置:文档之家› RIEGL三维扫描仪培训教程

RIEGL三维扫描仪培训教程

RIEGL三维扫描仪培训教程
RIEGL三维扫描仪培训教程

RIEGL

一.相机参数调整

1.点击project—new新建一个扫描工程实例:

cemara calibration (wirard):

3.在新的对话框中,可以选定客户仪器自配置相机型号、配置镜头型

号。点击OK。

点击next,得到下一步设置相机镜头型号:

点击next,得到下一步设置相机和镜头的序列号,可用x代替:

点击OK,此时会在左侧编辑框中的calibration-camera二级菜单中出

现新的相机参数图框:

4.右击左侧编辑框的mounting菜单,选择new mounting选项。这时,

会出现新的安装图标:

5.在左侧编辑框中右击scnas,建立新的扫描站和扫描工程:

.

在弹出的对话框中的instrument选项选择仪器型号;

右击扫描站,在弹出的新对话框中,选中distance 前面的方框(表示在10m的距离处的扫描点间隔),start

angle和stop angle设定起始角。

点击OK。此时将得到扫描数据视图:

6.点击左侧编辑框中的扫描数据图标,在出现的方框中选择find reflectors。在弹出的新对话框中threshold detection设定反射率。并且把delete existing tiepoints of tiepointlist

前面的方框选中。

此时将会出现以下界面:

7.双击扫描数据的图标,选择在出现的对话框中选择2D显示模式:

8.在新打开的二维视图中点击按钮,在下拉框中选择第一项,

show TPL SOCS:

此时,二维视图将出现仪器扫描点的坐标:

按住shift键,点鼠标选中,此点将变为红色:

同时,在TPL的列表中将出现对应的该点的属性:

此时,可直接点击按钮,删除该干扰点。

9.点击按钮,将选中TPL列表中的所有数据,再点击按钮,仪器将定位扫描TPL列表中的点位。如果出现扫描点定位和标靶位置偏差较大的情况,可采用8所说的步骤,删除偏差大的点位。需要注意的是:在TPL列表中删除相关点后,还要在左侧的编辑框中删除该点对应的照片的数据。

10.在scans中右击扫描数据的图标,在方框中选择image acquisition;第一次将会出现请你选择相机型号的提示,点击OK,并将在如下对话框中选择相机型号:

再采取相同的步骤,仪器将自动对准扫描目标的位置进行拍照。11.打开照片,选择按钮,在下拉框中选中show TPL POCS,照片中将出现扫描点的对应坐标:

12.在照片视图中选中反射片的中心,按住shift点击,之后右击,选择add point to TPL,在弹出的对话框中,reflector type下选择5cm 模式:

框选仪器扫描点和自定义反射片中心,点右键,选择link tiepoints together:

重复次步骤,直到所有的点都被选中。

13.当全部都选中后,右击左侧编辑框的calibration,选择calibrate

camera:

在弹出的新的对话框中选择,初始相机标定和初始安装校准都选择命名的50MM,扫描站选择你所选择进行上面各步骤操作的站点:

此时将弹出新的对话框:

一步步点击,到第四步即image acquisition时,点击对话框下面的start,仪器将解算相关位置差。

注:如果此时出现错误提示,将重复上诉步骤,进行重新参数设定。

14.选择calibration,点击start。将出现全新的对话框:

在新的对话框中figure of merit 选择least squares fitting(最小平方配合),点击Use all,选中所有的参数,再点击start,系统将解算位置参数。解算完成后,可在statistics中查看结果:

当一个平均像素距离为0.5以内,,可认为是正确的结果。否则,将重新进行解算。

二.外业数据扫描

1.建立新的扫描工程:

点击project,在弹出的对话框中选择new:

在新的对话框中输入要设定的工程名称:

相机参数的导入:

点击左侧编辑栏,选择calibrations前面的+,在二级树中右击camear

按钮,再选择new camear calibrations按钮:

在弹出的对话框中,选择import按钮,选择import from project:

双击选择的工程文件夹,点击RiSCAN图标:

点击打开—OK。

位置参数的导入:

点击左侧编辑栏,在打开的calibrations二级树中右击mounting按钮,

再选择new mounting按钮:

机参数的工程文件夹中的内容:

三维激光扫描仪使用说明

瑞士徕卡三维激光扫描仪 产品型号:ScanStation c10 徕卡测量系统股份有限公司HDS高清晰测量系统部门是三维激光扫描解决方案的供应商,她是全球范围内将三维激光扫描技术应用于改建工程、细部测量、工程设计与咨询以及地形测量项目的领导者。其先进的高清晰测量扫描仪、软件以及“交钥匙”系统是高精度、确保投资回报、容易使用以及手段灵活的完美结合。除了这些产品之外,徕卡也向客户提供最全 面的客户服务和支持,并把客户介绍给业内最大也是经验最丰富的服务商网络。 徕卡测量系统的HDS产品家族包括:基于时间测量的HDS3000和ScanStationc10测量系统,基于相位测量的超高速系统HDS6000.这样的产品组合再结合Cyclone软件和CAD 插件Cloudworx,我们为用户提供完整的工程解决方案,用户可以获得符合徕卡品质的测量成果、完整的CAD工具集成、高精度的可提交成果以及海量工扫描数据管理能力。 徕卡ScanStation 全球第一个带有全站仪功能的三维激光扫描仪 全方位视场角 360°×270°双轴补偿±5′ 全站仪级别的单点测量精度 有效的测距范围 300米 模型表面精度±2mm 全新四大特点: 1、全方位视角:360°×270° 徕卡ScanStation c10全站式扫描仪能够扫描建筑的天花板或顶棚、桥梁下底面、架空管道支撑架、高大物体的立面、柱状或塔式建筑物。全站仪的视场角没有限制,因此,测量员和其它专业人员在安置徕卡ScanStation 全站式扫描仪时,不需为视场角问题费心劳神。 2、高精度双轴(倾斜)补偿器:双轴补偿±5′分辨率1” 比全站仪更加灵活和自由,徕卡ScanStation c10全站式扫描仪可以根据测量控制点完成高精度的导线测量,因为它使用了和徕卡全站仪一样高精度的双轴(倾斜)补偿器。 3、测量级的点位精度:模型表面的精度±2mm 和有些扫描仪通过“多次测量取平均”的方法达到测量级的精度不同,徕卡ScanStation c10全站式扫描仪测量的单点精度也能达到测量级的精度。在远距离扫描时,徕卡ScanStation c10全站式扫描仪的超精细扫描保证了标靶扫描的精度以及扫描拼接的精度,用户会切身体会到其中的好处。

3D扫描仪使用方法自编

1、调整硬件 放板,把仪器垂直向下 2、调整工作距离 ●手动旋转升降手杆,抬升仪器,使工作板进入屏幕二四广角内。 ●放一张白纸,点菜单,投射十字线,调仪器上的旋钮使其清晰。 ●调镜头角度,使屏幕上两个红黑十字竖条重合拧紧。 ●翻到有字的一面,投射黑场,调镜头上先调亮,拧开小钮,再调清晰锁紧。 ●投射十字线,调镜头上方小钮,调成130。 3、软件校正 ●校正-------校正页面 ●校正------参数设置------选规格 ●按要求七步校正 ●点启动,点鼠标右键,按顺序设置左镜头、右镜头四个点推往校上角点。 ●最后点校正,出对话框,中间数字不超过0.15就能用。 ●点小按钮Sca扫描页面。 ●拿手校正扳放模型------喷涂料------贴点 ●投射十字线,手摇手柄使红黑十字线重合,点空格开始扫描。 1)顺次扫四个方向 2)调整镜头成45度,投射十字线重合,再扫四个方向,如果没有扫到五个,点鼠标右键数据管理取消本次数据补贴点,直到看到很完美。 保存suface.asc 去除杂质:打开Geomagic Studio 10. 打开文件右键着色 编辑-----选择-----体外弧点 敏感性改为100确定------删除 选择------非连接项------改为低------DEL 点-----减少噪音----滑块到中------确定 点-----封装------确定 模型管理器-----第三个显示-----多边形改为100 背景模式去掉 多边形------填充孔点第四个清理干净 填充孔:点边界 工具------特征-------创建特征-----选择平面-----在物体平向的地方点三个-------平面二------与第一个垂直 工具-----对齐----到全局 要想转方向 工具-----移动------精确位置-----旋转轴方向 安装过程 1、安装加密狗 2、打开3doe下Aluication下复制Stereo3D到D盘和3doe并列 3、打开Backconfig,,把4个全复制到Stereo3D里。

三维激光扫描仪工作流程

三维激光扫描仪应用于地形测量操作流程: 第一步、建立工程及数据下载 1.1 新建工程: 点击工具栏“project”命令-“New”-选择工程在计算机中存贮位置并为工程命名;1.2设备连接: 双击工程名在出现的对话框中点击“Instrument”命令并且在“Network”命令下设置IP 地址为“192.168.0.234”(对应扫描仪中IP地址)。 1.3 数据下载 点击工具栏“HELP”-“download and convert”-选取需要的数据进行下载。(可右键工程名称点”check all”全选所有数据) 第二步、选取反射片或公共点。 在新接触RIEGL扫描仪或无明显公共特征地物的情况下不建议运用选取公共点进行点云数据的拼接,最好是每站摆设3个反射片来进行粗拼和坐标系的转换。 选取反射片一般在2D视图下灰度模式中的点云数据中选取

且与选取的公共点区分开)

在2D视图中选取反射片后,可在3D视图中拖入标记的反射片来检查标记的反射片位置是否正确,若发现反射片偏离,可在TPL中删除改点,在3D视图中重新选择。 第三步、导入外业实测反射片坐标(反射片坐标是用RTK测得) 把外业RTK点(TXT格式或者CSV格式)导入TPL(GLCS)需要注意X6位Y7位;

如果我们是用选取公共点进行站站之间的粗拼,或用反射片进行粗拼,可以在TPL(GLCS)中选取所有点右键,复制到TPL(PRCS)。 注意:一般我们在野外作业时都是用磁罗盘进行定向配合GPS进行数据扫描,内业一般就可以不用进行粗拼,第四步可以跳过,所以我们不用将TPL(GLCS)中的点复制到TPL(PRCS)中。 第四步、粗拼 粗拼就是将站站之间的位置在一定的误差范围内重合。粗拼有三种方法 一、在野外作业时都是用磁罗盘进行定向配合GPS进行数据扫描,相对位置不会发生 太大的变化,我们可以理解为已经粗拼完成。某些个别站因为各种原因可能会发生相对位置变化很大的情况,我们可以通过改变某站扫描数据的X、Y、Z坐标进行粗拼。 例:假设第一站(①)的点云数据相对位置正确,我们将第二站(②)的点云数据与 ①的点云数据进行粗略拼接。 步骤为 将①②的点云数据放到一个视图窗口上,调整至较为清晰的公共部分

三维激光扫描分类及工作操作规范

三维激光扫描分类及工作 操作规范 Revised by Hanlin on 10 January 2021

一、地面激光扫描系统 1、概述 地面激光扫描仪系统类似于传统测量中的全站仪,它由一个激光扫描仪和一个内置或外置的数码相机,以及软件控制系统组成。二者的不同之处在于激光扫描仪采集的不是离散的单点三维坐标,而是一系列的“点云”数据。这些点云数据可以直接用来进行三维建模,而数码相机的功能就是提供对应模型的纹理信息。 2、工作原理 三维激光扫描仪发射器发出一个激光脉冲信号,经物体表面漫反射后,沿几乎相同的路径反向传回到接收器,可以计算日标点P与扫描仪距离S,控制编码器同步测量每个激光脉冲横向扫描角度观测值α和纵向扫描角度观测值β。三维激光扫描测量一般为仪器自定义坐标系。X轴在横向扫描面内,Y轴在横向扫描面内与X轴垂直,Z轴与横向扫描面垂直。获得P的坐标。进而转 换成绝对坐标系中的三维空间位置坐标或三维模型。 3、作业流程 整个系统由地面三维激光扫描仪、数码相机、后处理软件、电源以及附属设备构成,它采用非接触式高速激光测量方式,获取地形或者复杂物体的几何图形数据和影像数据。最终由后处理软件对采集的点云数据和影像数据进行处理转换成绝对坐标系中的空间位置坐标或模型,以多种不同的格式输出,满足空间信息数据库的数据源和不同应用的需要。(1)、数据获取 利用软件平台控制三维激光扫描仪对特定的实体和反射参照点进行扫描,尽可能多的获取实体相关信息。三维激光扫描仪最终获取的是空间实体的几何位置信息,点云的发射密度值,以及内置或外置相机获取的影像信息。这些原始数据一并存储在特定的工程文件

三维激光扫描仪的使用说明

甘肃启奥地理信息工程服务有限公司 三维激光扫描仪 使用规范 二零一二年十二月

三维激光扫描仪以其长距离,高精度,快速度数据扫描的特点,能在条件恶劣,人员无法抵达的环境里,完成了一系列高难度、高强度的测绘任务,发挥出了其独有的优势,给我们测绘带来前所未有的效益。在使用RIEGL VZ-1000近一年半的时间里,我们也总结了很多经验,我将此仪器的常规操作做一简要总结,作为基本的使用规范: 一、外业基础工作 1.配件及外业准备工作 三维激光扫描仪外业测绘所需配件有:RIEGL VZ-1000主机、充电器、电瓶、电瓶充电器、数据线、电源线、笔记本电脑(电池,鼠标等)。 辅助设备:RTK1+1模式、仪器箱、内六方扳手、背包(仪器保护小棉袄)、木质脚架,简易脚架、记录本、觇板、反射贴片,卷尺等。 2.充电 1)三维激光扫描仪自带电池直接可以充电,由于其自身的电池保护功能在电池电量没有完全用完的情况下,首先开机放电,让其正常耗电,电量小于10%以下,电量显示为红色,方可继续充电,否则无法充电。充电时间保持8小时以上。 2)电瓶充电时,必须严格按照正负极标注进行接线,严禁违规操作。接通电瓶充电器,绿灯亮后,在仪表盘上,电压设置12V,电流设置18A以上。充电时间保持10小时以上。 3)其余设备(RTK、笔记本电脑、对讲机等)按正常标准充电,

充分保证野外工作的顺利经行 3.外业数据采集 1)找到合适的仪器架设位置后,固定脚架,使其基本平整,将扫描仪固定到脚架上,拧紧连接螺旋。先连接数据线(注意卡口,切记野蛮连接),如果需用电瓶供电,再连接电源线缆。打开供电按钮,启动一起,同时启动电脑。在距离扫描仪15米左右视野开阔的地方,固定简易脚架,设置反射贴片位置,并记录反射贴片高度,反射贴片正对扫描仪。 2)扫描仪开机后,仪器下方出现激光束投射到地面上,找准激光位置,做好标记,量取仪器高并记录(激光投射地面点到脚架基座的高度,单位m)。 3)笔记本启动后,桌面上点击图标,启动软件,进入软件操作界面(见图1)。 图1 软件操作界面

三维激光扫描仪分类及原理

三维激光扫描仪分类及原 理 Prepared on 24 November 2020

三维激光扫描仪分类及原理 地面三维激光扫描技术的出现是以三维激光扫描仪的诞生为代表,有人称“三维激光扫描系统”是继GPS (Global Position System)技术以来测绘领域的又一次技术革命。三维激光扫描技术是一种先进的全自动高精度立体扫描技术,又称为“实景复制技术”,是继GPS空间定位技术后的又一项测绘技术革新,将使测绘数据的获取方法、服务能力与水平、数据处理方法等进入新的发展阶段。传统的大地测量方法,如三角测量方法,GPS测量都是基于点的测量,而三维激光扫描是基于面的数据采集方式。三维激光扫描获得的原始数据为点云数据。点云数据是大量扫描离散点的结合。三维激光扫描的主要特点是实时性、主动性、适应性好。三维激光扫描数据经过简单的处理就可以直接使用,无需复杂的费时费力的数据后处理;且无需和被测物体接触,可以在很多复杂环境下应用;并且可以和GPS等集合起来实现更强、更多的应用。三维激光扫描技术作为目前发展迅猛的新技术,必定会在诸多领域得到更深入和广泛的应用。 对空间信息进行可视化表达,即进行三维建模,通常有两类方法:基于图像的方法和基于几何的方法。基于图像的方法是通过照片或图片来建立模型,其数据来源是数码相机。而基于几何的方法是利用三维激光扫描仪获取深度数据来建立三维模型,这种方法含有被测场景比较精确的几何信息。 三维激光扫描仪的分类: 三维激光扫描仪按照扫描平台的不同可以分为:机载(或星载)激光扫描系统、地面型激光扫描系统、便携式激光扫描系统。

三维激光扫描仪作为现今时效性最强的三维数据获取工具可以划分为不同的类型。通常情况下按照三维激光扫描仪的有效扫描距离进行分类,可分为:(1)短距离激光扫描仪:其最长扫描距离不超过3m,一般最佳扫描距离为0. 6~1. 2 m,通常这类扫描仪适合用于小型模具的量测,不仅扫描速度快且精度较高,可以多达三十万个点精度至±0.018 mm。例如:美能达公司出品的VIVID 910高精度三维激光扫描仪,手持式三维数据扫描仪FastScan等等,都属于这类扫描仪。 (2)中距离激光扫描仪:最长扫描距离小于30 m的三维激光扫描仪属于中距离三维激光扫描仪,其多用于大型模具或室内空间的测量。 (3)长距离激光扫描仪:扫描距离大于30m的三维激光扫描仪属于长距离三维激光扫描仪,其主要应用于建筑物、矿山、大坝、大型土木工程等的测量。例如:奥地利Riegl公司出品的LMS Z420i三维激光扫描仪和加拿大Cyra 技术有限责任公司出品的Cyrax 2500激光扫描仪等,属于这类扫描仪。 (4)航空激光扫描仪:最长扫描距离通常大于1公里,并且需要配备精确的导航定位系统,其可用于大范围地形的扫描测量。 之所以这样进行分类,是因为激光测量的有效距离是三维激光扫描仪应用范围的重要条件,特别是针对大型地物或场景的观测,或是无法接近的地物等等,这些都必须考虑到扫描仪的实际测量距离。此外,被测物距离越远,地物观测的精度就相对较差。因此,要保证扫描数据的精度,就必须在相应类型扫描仪所规定的标准范围内使用。 三维激光扫描仪工作原理:

三维激光扫描仪

利用三维激光扫描仪提取塌陷裂缝 张飞跃 (西安科技大学,陕西西安 710600) 摘要:三维激光扫描技术作为一种新兴的测量技术,是一种先进的、自动化的、非接触式、高精度三维激光技术,是继GPS之后测量技术的又一次革新。由于地面沉降引起的地裂缝是一种日趋普遍且显著的地质问题,对矿区地表作物及生态产生重大影响。利用三维激光扫描仪并结合数字图像技术提取塌陷裂缝是对三维激光技术应用的又一次扩展。论文对三维激光扫描仪进行了详细的介绍说明并通过对矿区实地数据的处理和分析,探索三维激光扫描仪在地表变形监测领域的应用理论和方法。 关键词:三维激光扫描技术,点云数据处理,数字滤波,裂缝信息提取 Using three-dimensional laser scanner to extract Surface crack ZHANG Fei-Yue (xi’an university of science and technology) Abstract:As a new measurement technique,three-dimensional laser scanning technology is an advanced, automated, non-contact, high-precision three-dimensional laser technology, following another GPS measurement technology innovations. Due to cracks caused by ground subsidence is a common and increasingly significant geological problems, there has a significant impact on the mine surface crops and https://www.doczj.com/doc/af8483774.html,ing three-dimensional laser scanner and digital image technology to extract collapse crack is another expansion of three-dimensional laser technology .This paper has been illustrated and described in detail by mine field data processing and analysis for three-dimensional laser scanner,to explore the three-dimensional laser scanner application theory and methods in the field of surface deformation monitoring. Key words: Three-dimensional laser scanning technology,Point cloud data processing,Digital Filter,Cracks information extraction 0 引言 三维激光扫描系统是一种集高新科技于一身的空间数据获取系统。利用地面三维激光扫描技术,可以进行复杂地形地貌的地区或是管线设施密集的工厂进行扫描作业,并可以直接实现各种大型的、复杂的、不规则、标准或非标准的实体或实景三维数据完整的采集,进而快速重构出实体目标的三维模型及线、面、体、空间等各种制图数据。同时,还可对采集的三维激光点云数据进行各种后处理分析,如测绘、分析、模拟、展示、监测、虚拟现实等操作。 在矿山开采沉陷研究中,传统地表沉陷观测方法在地表变形盆地主断面上步设一定密度的监测点获取地表变形数据。监测点数量有限,并且在较长的观测周期中出现因监测点难以保护而造成点位丢失的现象,给之后的数据处理工作带来

三维扫描实验指导书一资料

三维扫描实验项目指导书(一) 自动化三维扫描

目录 1.实验目的 (1) 2.实验原理 (1) 3.实验内容及步骤 (1) 3.1开机 (1) 3.2系统标定 (2) 3.3转台手动操作 (10) 3.4路径规划 (10) 3.5修改自动化程序代码 (11) 3.6自动化运行 (12) 4.注意事项 (13) 4.1使用注意事项 (13) 4.2设备注意事项 (13) 4.3安全警告 (13) 5.撰写实验报告 (14)

1.实验目的: (1)学习自动化三维扫描仪的调试及使用方法,初步掌握空间曲面三维扫描的方法。 (2)具体了解点云数据处理流程,为逆向工程技术运用奠定基础。 2.实验原理: 扫描仪工作原理: 扫描时,光栅投影装置投影数副特定编码的结构光到待测物体,成一定夹角的两个摄像头同步采集相应的图像,然后对图像进行编码和相位计算,利用三角形扫描原理、匹配技术,算解出两个摄像头公共视区内像素点得到三维坐标。 自动化三维扫描与检测系统由于其自动化程度高,可针对不同外形的产品进行最优扫描路径规划,从而高效完成检测任务,整个过程无需人为干预。 本实验使用的是武汉惟景三维科技有限公司所生产的PowerScan-Auto系列自化扫描测量与检测系统,设备由以下工业级机械臂与PowerScan-Pro1.3M扫描仪组成。 PowerScan-Pro1.3M扫描仪具体参数如下: 3 .实验内容及步骤: 3.1、开机 打开机器人控制柜电源,打开电脑。打开PowerScan软件。打开TCPIP软件,软件界面如图1.1所示,在本地端口框中输入12548,连接端口框中输入5490,目标IP地址为192.168.125.5,协议选择为TCP Client,在最下面勾选十六进制接受框,点击连接按钮,将设备、机器人和软件连接起来。(注:在自动化未运行时,需手动连接设备、机器人和软件,防止软件一直检测是否连接而造成卡顿。自动化运行前需将连接断开,自动化运行时,自动化程序会自行连接设备、机器

三维激光扫描技术

三维激光扫描技术 三维激光扫描技术 三维激光扫描技术又被称为实景复制技术,作为20 世纪90 年代中期开始出现的一项高新技术,是测绘领域继GPS技术之后的又一次技术革命,通过高速激光扫描测量的方法,大面积、高分辨率地快速获取物体表面各个点的(x.y.z)坐标、反射率、(R.G.B)颜色等信息,由这些大量、密集的点信息可快速复建出1:1的真彩色三维点云模型,为后续的业处理、数据分析等工作提供准确依据。具有快速性,效益高、不接触性、穿透性、动态、主动性,高密度、高精度,数字化、自动化、实时性强等特点,很好的解决了目前空间信息技术发展实时性与准确性的颈瓶。它突破了传统的单点测量方法,具有高效率、高精度的独特优势。三维激光扫描技术能够提供扫描物体表面的三维点云数据,因此可以用于获取高精度高分辨率的数字地形模型,主要通过高速激光扫描测量的方法,大面积高分辨率地快速获取被测对象表面的三维坐标数据,大量的空间点位信息。是快速建立物体的三维影像模型的一种全新的技术手段。三维激光扫描技术使工程大数据的应用在众多行业成为可能。如工业测量的逆向工程、对比检测;建筑工程中的竣工验收、改扩建设计;测量工程中的位移监测、地形测绘;考古项目中的数据存档与修复工程等等。 三维激光扫描原理 三维激光扫描仪利用激光测距的原理,通过高速测量记录被测物体表面大量的密集的点的三维坐标、反射率和纹理等信息,可快速复建出被测目标的三维模型及线、面、体等各种图件数据。由于三维激光扫描系统可以密集地大量获取目标对象的数据点,因此相对于传统的单点测量,三维激光扫描技术也被称为从单点测量进化到面测量的革命性技术突破。 三维激光扫描技术引入建筑工程的意义 随着三维扫描技术的发展与成熟,它很快成为空间数据获取的一种重要技术手段,并在很多行业引起技术性变革的热潮。目前,国建筑行业处于变革的阶段,BIM在我们从事的行业中引爆,但是都处于一种建模,碰撞分析,检测等方面,但都没有深入衔接现实,忽略施工工地数据流与建筑信息模型间的流通转化,何谈运维,所以bim模型去哪了?并没有贯穿到bim 的全生命周期中去。三维激光扫描技术在BIM中的应用是最基础的一个重要环节,对现场实际数据的采

三维扫描仪使用方法及操作技巧

三维扫描仪使用方法及操作技巧 三维扫描仪大体分为接触式三维扫描仪和非接触式三维扫描仪。其中非接触式三维扫描仪又分为光栅三维扫描仪(也称拍照式三维描仪)和激光扫描仪。而光栅三维扫描又有白光扫描或蓝光扫描等,激光扫描仪又有点激光、线激光、面激光的区别。 三维扫描仪功能: 1:三维扫描仪的用途是创建物体几何表面的点云(point cloud),这些点可用来插补成物体的表面形状,越密集的点云可以创建更精确的模型(这个过程称做三维重建)。若扫描仪能够取得表面颜色,则可进一步在重建的表面上粘贴材质贴图,亦即所谓的材质映射(texture mapping)。 2:三维扫描仪可模拟为照相机,它们的视线范围都体现圆锥状,信息的搜集皆限定在一定的范围内。两者不同之处在于相机所抓取的是颜色信息,而三维扫描仪测量的是距离。手持式三维扫描仪 手持式三维扫描仪原理:线激光手持三维扫描仪,自带校准功能,采用635nm的红色线激光闪光灯,配有一部闪光灯和两个工业相机,工作时将激光线照射到物体上,两个相机来捕捉这一瞬间的三维扫描数据,由于物体表面的曲率不同,光线照射在物体上会发生反射和折射,然后这些信息会通过第三方软件转换为3D图像。在扫描仪移动的过程中,光线会不断变化,而软件会及时识别这些变化并加以处理。光线投射到扫描对象上的频率高达28,000points/s,所以在扫描过程中移动扫描仪,哪怕扫描时动作很快,也同样可以获得很好的扫描效果,手持式三维扫描仪工作时使用反光型角点标志贴,与扫描软件配合使用,支持摄影测量和自校准技术。 定位目标可以使操作员根据其需要的任何方式360移动物体。真正便携手持三维扫描仪,可装入手提箱,携带到作业现场或者工厂间转移十分方便。实现激光扫描技术的一些最高数据质量,保持较高解析度,同时在平面上保持较大三角形,从而生成较小的STL文件。设备的形状和重量分布有利于长时间使用,避免发生肌肉骨骼问题。功能多样并方便用户

三维激光扫描仪使用说明

三维激光扫描仪使用说明 1、三维激光扫描原理 Trimble GX200三维激光扫描系统由三维激光扫描仪、数码相机、扫描仪旋转平台、软件控制平台,数据处理平台及电源和其它附件设备共同构成,是一种集成了多种高新技术的新型空间信息数据获取手段。地面三维激光扫描系统的工作原理:首先由激光脉冲二极管发射出激光脉冲信号,经过旋转棱镜,射向目标,然后通过探测器,接收反射回来的激光脉冲信号,并由记录器记录,最后转换成能够直接识别处理的数据信息,经过软件处理实现实体建模输出。 2、三维激光扫描工作流程 应用三维激光测量技术采集数据的工作过程大致可以分为计划制定、外业数据采集和内业数据处理三部分。在具体工作展开之前首先需要制定详细的工作计划,做一些准备工作,主要包括:根据扫描对象的不同和精度的具体要求设计一条合适的扫描路线、确定恰当的采样密度、大致确定扫描仪至扫描物体的距离、设站数、大致的设站位置等等;外业工作主要是采集数据:主要包括数据采集、现场分析采集到的数据是否大致符合要求、进行初步的质量分析和控制等等;内业数据处理是最重要也是工作量最大的一环,主要包括:外业采集到的激光扫描原始数据的显示,数据的规则格网化,数据滤波、分类、分割,数据的压缩,图像处理,模式识别等等。 3、三维激光扫描仪用途 目前Trimble GX200三维激光扫描仪的主要用途为工程测量、地形测景、虚拟现实和模拟可视化、矿区土方开挖断面和体积测量、工业制造、变形测量、加工检测、施工控测、事故调查、历史古迹的调查与恢复,以及特殊动画效果的测量等。 4、本校对三维激光扫描仪主要用途说明 本校对Trimble GX200三维激光扫描的主要用途有如下三个方面: (1)本科生可以运用三维激光扫描仪进行相关的教学实验,用于建立简单的建筑物模型,了解外业操作和内业数据处理的基本方法,使自己掌握先进的测量仪器,拓宽自己知识面,为以后进一步的研究打下基础。 (2)硕士研究生可以结合本专业情况运用三维激光扫描仪进行各种实验项目,例如可以在变形监测方面运用仪器进行相关实验,获得测量数据进行相关的后续研究。 (3)博士研究生可以更深入对三维激光扫描系统进行理论研究。例如三维激光扫描仪工作原理的研究,相关数据处理软件的研究和开发,三维激光测量系统理论方法的研究等。

三维激光扫描仪的原理与其应用

三维激光扫描仪 2.1三维激光扫描仪研究背景 自上个世纪60年代激光技术已经开始出现,激光技术以其单一性和高聚积度在20世纪获得巨大发展。实现了从一维到二维直至今天广泛应用的三维测量的发展,实现了无合作目标的快速高精度测量。而且数字地球,数字城市等一系列概念的提出,我们可以看到:信息表达从二维到三维方向的转化,从静态到动态的过渡将是推动我国信息化建设和社会经资源环境可持续发展的重要武器。目前,各种各样的三维数据获取工具和手段不断地涌现,推动着三维空间数据获取向着实时化、集成化、数字化、动态化和智能化的方向不断地发展,三维建模和曲面重构的应用也越来越广泛[1]。传统的测绘技术主要是单点精确测量,难以满足建模中所需要的精度、数量以及速度的要求。而三维激光扫描技术采用的是现代高精度传感技术,它可以采用无接触方式,能够深入到复杂的现场环境及空间中进行扫描操作。可以直接获取各种实体或实景的三维数据,得到被测物体表面的采样点集合“点云”,具有快速、简便、准确的特点。基于点云模型的数据和距离影像数据可以快速重构出目标的三维模型,并能获得三维空间的线、面、体等各种实验数据,如测绘、计量、分析、仿真、模拟、展示、监测、虚拟现实等。 其中,地面三维激光扫描技术的研究,已经成为测绘领域中的一个新的研究热点。它采用非接触式高速激光测量的方式,能够获取复杂物体的几何图形数据和影像数据,最终由后处理数据的软件对采集的点云数据和影像数据进行处理,并转换成绝对坐标系中的空间位置坐标或模型,能以多种不同的格式输出,满足空间信息数据库的数据源和不同项目的需要。目前这项技术已经广泛应用到文物的保护、建筑物的变形监测、三维数字地球和城市的场景重建、堆积物的测定等多个方面。 2.2 三维激光扫描技术研究现状 2.2.1 主要的三维激光扫描仪介绍 随着三维激光扫描技术研究领域的不断扩大,生产扫描仪的商家也越来越多。主要的有瑞士Leica公司,美国的FARO公司和3D DIGITAL公司、奥地利的RIGEL公司、加拿大的OpTech公司、法国MENSI公司、中国的北京荣创兴业科技发展公司等。这些扫描仪在扫描距离、扫描精度、点间距和数量、光斑点的大小等指标有所不同[2]。主要的分类见图1-1和表1-1。

三维激光扫描

9.3三维激光扫描仪及其在地形测量中的应用 三维激光扫描仪是无合作目标激光测距仪与角度测量系统组合的自动化快速测量系统,在复杂的现场和空间对被测物体进行快速扫描测量,直接获得激光点所接触的物体表面的水平方向、天顶距、斜距、和反射强度,自动存储并计算,或得点云数据。最远测量距离可达数千米,最高扫描频率可达每秒几十万,纵向扫描角θ接近90o,横向可绕仪器竖轴进行360o全圆扫描,扫描数据可通过TCP/IP协议自动传输到计算机,外置数码相机拍摄的场景图像可通过USB数据线同时传输到电脑中。点云数据经过计算机处理后,结合CAD可快速重构出被测物体的三维模型及线、面、体、空间等各种制图数据。 目前,生产三维激光扫描仪的公司很多,典型的有瑞典的Leica公司、美国的3DDIGITAL公司和Polhemus公司、奥地利的RIGEL公司、加拿大的OpTech 公司等。它们各自产品的测距精度、测距范围、数据采样率、最小点间距、模型化点定位精度、激光点大小、扫描视场、激光等级、激光波长等指标会有所不同,可根据不同的情况如成本、模型的精度要求等因素进行综合考虑之后,选用不同的三维激光扫描扫描仪产品。图12-21是几种不同型号的地面三维激光扫描仪。 一、地面三维激光扫描仪测量原理 无论扫描仪的类型如何,三维激光扫描仪的构造原理都是相似的。三维激光扫描仪的主要构造是由一台高速精确的激光测距仪,配上一组可以引导激光并以均匀角速度扫描的反射棱镜组成。激光测距仪主动发射激光,同时接受由自然物表面反射的信号从而可以进行测距,针对每一个扫描点可测得测站至扫描点的斜距,再配合扫描的水平和垂直方向角,可以得到每一扫描点与测站的空间相对坐标。如果测站的空间坐标是已知的,则可以求得每一个扫描点的三维坐标。地面三维激光扫描仪测量原理图如图12-22所示。 地面三维激光扫描仪测量原理主要分为测距、扫描、测角和定向等4个方面。 1.测距原理 激光测距作为激光扫描技术的关键组成部分,对于激光扫描的定位、获取空间三维信息具有十分重要的作用。目前,测距方法主要有脉冲法和相位法。 脉冲测距法是通过测量发射和接收激光脉冲信号的时间差来间接获得被测目标的距离。激光发射器向目标发射一束脉冲信号,经目标反射后到达接收系统,

快速掌握三维扫描仪的操作方法

快速掌握三维扫描仪的操作方法 随着国内三维扫描仪技术的成熟及在各行各业的普及,三维扫描技术已成为生产制造中的一项重要技术支撑,起着不可或缺的作用,并逐渐形成一门新的科学。如何正确高效的操作三维扫描仪成为了众多企业关心的问题。使用同样一款三维扫描仪扫描同一物体时,不同的操作人员得到的数据结果度会有一定的差异,其原因便在于扫描人员在操作过程中所掌握的操作技巧。掌握三维扫描仪操作原理比较容易,但如果想成为“扫描专家”还需要一定的学习与反复操作。 三维光学扫描仪:主要包括三维激光扫描仪和拍照式三维扫描仪。本案例以精易迅的拍照式三维扫描仪为例,简单叙述如何快速掌握三维光学扫描仪的操作方法:第一,前期的准备工作(主要分三步) 步骤1:确保稳定的三维扫描环境 进行三维扫描首先须确保三维扫描仪是建立在一个稳定的环境中(包括光环境:避免强光和逆光对射;三维扫描仪的稳固性等),要最大限度地减少环境破坏,确保三维扫描结果不会受到外部因素的影响。 步骤2:三维扫描仪校准(需要学习) 在三维扫描前,对机器进行校准尤为关键的一步。三维扫描仪要知道自身在什么环境下进行扫描,才能扫描出准确的三维数据。在校准过程中,要根据三维扫描仪预先设置的扫描模式,计算出扫描设备相对于对扫描对象的位置。 校准扫描仪时,应根据扫描对象调整设备系统设置的三维扫描环境。正确的相机设置会影响扫描数据的准确性,因此必须确保曝光设置是正确的。严格按照制造商的说明进行校准工作,仔细校正不准确的三维数据。校准后,可通过用三维扫描仪扫描已知三维数据的测量物体来检查比对,如果发现扫描仪扫描的精度无法实现时,需要重新校准扫描仪。 步骤3 :对扫描物体表面进行处理 有些物体表面扫描是比较困难的。这些物体包括半透明材料(玻璃制品、玉石),有光泽,或颜色较暗的物体。对于这些物体需要使用哑光白色显像剂覆盖被扫描物体表面,对扫描物体喷上薄薄的一层显像剂,目的是是为了更好的扫描出物体的三维特征,数据会更精确。需要注意的是,显像剂喷洒过多,会造成物体厚度叠加,对扫描精度造成影响。注:显像剂不会对物体表面及人体造成损害,扫描完成后用清水洗掉即可。 第二,开始扫描工作 准备工作完成后便可以对物体进行扫描了。用三维扫描仪对扫描物体从不同的角度进行三维数据捕捉,更改物体摆放方式或调整三维扫描仪相机方向,对物体进行全方位的扫描。 第三,后期处理工作(主要分两步,比较简单) 步骤1:点云处理 目前市面上流行的三维扫描仪均为点云自动拼接方式,无需后期手动拼接,即对物体表面扫描完成后,系统会自动生成物体的三维点云图形。但需要操作人员对扫描得到的点云数据去除噪点(即多余的点云)以及对其进行平滑处理。 步骤2:数据转换 点云处理完后,要对数据进行转换,目前都是系统软件自动将点云数据直接转换成STL 文件的。生成的STL数据可以与市面上通用的3D软件对接。

三维激光扫描仪都有哪些种类

顾名思义,扫描仪就是用来对物体进行扫描的工具,通过扫描我们可以得到物体的成像。但是其他产品和工具一样,扫描仪的种类也是多样的,并且不同种类的扫描仪特点和优势也各不相同。今天我们就一起来了解一下在扫描领域比较先进的三维激光扫描仪。下面将从不同类型的三维激光扫描仪有哪些特点和优势给大家进行简单的介绍。 三维激光扫描仪按照扫描成像方式的不同,激光扫描仪可分为一维(单点)扫描仪、二维(线列)扫描仪和三维(面列)扫描仪。而按照不同工作原理来分类,可分为脉冲测距法(亦称时间差测量法)和三角测量法。 1、脉冲测距法:激光扫描仪由激光发射体向物体在时间t1发送一束激光,由于物体表面可以反射激光,所以扫描仪的接收器会在时间t2接收到反射激光。由光速c,时间t1,t2算出扫描仪与物体之间的距离d=(t2-t1)c/2。 脉冲测距式3D激光扫描仪,其测量精度受到扫描仪系统准确地量测时间的限制。当用该方式测量近距离物体的时候,由于时间太短,就会产生很大误差。所以该方法比较适合测量远距离物体,如地形扫描,但是不适合于近景扫描。

2、三角测距法:用一束激光以某一角度聚焦在被测物体表面,然后从另一角度对物体表面上的激光光斑进行成像,物体表面激光照射点的位置高度不同,所接受散射或反射光线的角度也不同,用CCD (图像传感器)光电探测器测出光斑像的位置,就可以计算出主光线的角度θ。然后结合己知激光光源与CCD 之间的基线长度d,经由三角形几何关系推求扫描仪与物体之间的距L≈dtanθ。 手持激光扫描仪通过上述的三角形测距法建构出3D图形:通过手持式设备,对待测物发射出激光光点或线性激光。以两个或两个以上的侦测器测量待测物的表面到手持激光产品的距离,通常还需要借助特定参考点-通常是具黏性、可反射的贴片-用来当作三维扫描仪在空间中定位及校准使用。这些扫描仪获得的数据,会被导入电脑中,并由软件转换成3D模型。 3、三角测量法的特点:结构简单、测量距离大、抗干扰、测量点小(几十微米)、测量准确度高。但是会受到学元件本身的精度、

浅谈三维激光扫描技术原理及应用

浅谈三维激光扫描技术原理及应用 摘要:三维激光扫描技术是—种新型的测绘技术,被称为“实景复制技术”。本文介绍了三维激光扫描仪的系统分类、基本原理、技术特点,探讨了三维激光扫描技术的应用。 关键词:三维激光扫描技术工作原理技术特点应用 1、引言 近年来,随着工程测量服务领域的不断拓宽以及三维设计制造对测量精度的要求,传统的测量仪器如全站仪、断面仪等已不能满足高精度的三维坐标采集和“逆向工程”的需要。相比这些传统的测量技术,三维激光扫描技术具有极大的技术优势,特别是在数据采集方面,具有高效、快捷、精确、简便等特点,被广泛的应用于各个领域。 2、三维激光扫描技术 随着三维激光扫描仪在工程领域的广泛应用,这项国际上近期发展的高新技术已经引起了广大科研人员的关注。这种技术采用非接触式高速激光测量方式,来获取地形或复杂物体的几何图形数据和影像数据,最终通过后处理软件对采集的点云数据和影像数据进行处理分析,转换成绝对坐标系中的三维空间位置坐标或者建立结构复杂、不规则场景的三维可视化模型,既省时又省力,同时点云还可输出多种不同的数据格式,做为空间数据库的数据源和满足不同应用的需要。 2.1 三维激光扫描系统组成 整个系统通常由以下四部分组成:1)三维激光扫描仪;2)数码相机;3)后处理软件;4)电源以及附属设备。如图1: 图1 地面激光扫描仪系统组成与坐标系 2.2 三维激光扫描仪的分类 三维激光扫描仪按照扫描平台可以分为:机载(或星载)激光扫描系统、地面型激光扫描系统、便携式激光扫描系统。 三维激光扫描仪作为现今时效性最强的三维数据获取工具,按照其有效扫描距离可进行如下分类: (1)短距离激光扫描仪:其最长扫描距离不超过3m,一般最佳扫描距离为

三维激光扫描仪分类及原理.

三维激光扫描仪分类及原理 地面三维激光扫描技术的出现是以三维激光扫描仪的诞生为代表,有人称“三维激光扫描系统”是继GPS (Global Position System)技术以来测绘领域的又一次技术革命。三维激光扫描技术是一种先进的全自动高精度立体扫描技术,又称为“实景复制技术”,是继GPS空间定位技术后的又一项测绘技术革新,将使测绘数据的获取方法、服务能力与水平、数据处理方法等进入新的发展阶段。传统的大地测量方法,如三角测量方法,GPS测量都是基于点的测量,而三维激光扫描是基于面的数据采集方式。三维激光扫描获得的原始数据为点云数据。点云数据是大量扫描离散点的结合。三维激光扫描的主要特点是实时性、主动性、适应性好。三维激光扫描数据经过简单的处理就可以直接使用,无需复杂的费时费力的数据后处理;且无需和被测物体接触,可以在很多复杂环境下应用;并且可以和GPS等集合起来实现更强、更多的应用。三维激光扫描技术作为目前发展迅猛的新技术,必定会在诸多领域得到更深入和广泛的应用。 对空间信息进行可视化表达,即进行三维建模,通常有两类方法:基于图像的方法和基于几何的方法。基于图像的方法是通过照片或图片来建立模型,其数据来源是数码相机。而基于几何的方法是利用三维激光扫描仪获取深度数据来建立三维模型,这种方法含有被测场景比较精确的几何信息。 三维激光扫描仪的分类: 三维激光扫描仪按照扫描平台的不同可以分为:机载(或星载)激光扫描系统、地面型激光扫描系统、便携式激光扫描系统。 三维激光扫描仪作为现今时效性最强的三维数据获取工具可以划分为不同的类型。通常情况下按照三维激光扫描仪的有效扫描距离进行分类,可分为:(1)短距离激光扫描仪:其最长扫描距离不超过3m,一般最佳扫描距离为0. 6~1. 2 m,通常这类扫描仪适合用于小型模具的量测,不仅扫描速度快且精度较高,可以多达三十万个点精度至±0.018 mm。例如:美能达公司出品的VIVID 910高精度三维激光扫描仪,手持式三维数据扫描仪FastScan等等,都属于这类扫描仪。 (2)中距离激光扫描仪:最长扫描距离小于30 m的三维激光扫描仪属于中距离三维激光扫描仪,其多用于大型模具或室内空间的测量。

三维扫描仪操作规程

三维扫描仪操作规程 (ISO9001-2015) 1.0适用范围 三维扫描仪广泛用于模具设计,逆向工程,实体扫描和数据分析。 2.0操作方法 2.1 三维扫描仪使用方法。 2.1.1 使用人员必须经过培训考核以后才能上岗作业。 2.12 扫描仪由专人负责管理。 2.2 检查扫描仪部件是否齐全。 2.2.1 3D扫描仪、扫描仪支架、扫描仪校准球、数据通讯电缆及C-TRACK扫描系统。 2.2.2 数度校准棒7)笔记本电脑8)电源适配器9)4个反射把10)高清拍照像机11)坐标系系统12)1943高速数据通讯卡。 2.3 扫描设备连接 2.3.1 将笔记本电脑连接好电源。 2.3.2 将C-TRACK与C-TRACK主机用数据通讯电缆连接好。 2.3.3 将笔记本电脑与C-TRACK扫描设备连接。 2.3.4 将C-TRACK连接电源,打开C-TRACK主机预热半小时。 2.4 校准棒与校准球校准 2.4.1 双击VXELEMENTS进入扫描软件,单击菜单栏“配置-C-TRACK-校准”选项,首先要确认好C-TRACK的校准范围,然后单击开始。 2.4.2 在此过程中,根据提示来确保校准棒的方向还有高度跟距离,整个过程

都根据电脑上显示的位置和方向做为引导,一定要确保校准棒白色点在红色点的范围之内,使之重合变绿,同样的方法来校准另外三个不同的方向,16个位置,然后单击“优化”,校准完成。 2.4.3 将校准球摆放在C-TRACK的正前方2m处,用高度在60mm的小平台摆放,确保校准球上面的5个点都在C-TRACK的接收范围之内。 2.4.4 单击菜单栏“配置-扫描仪-校准”选项,单击开始。 2.4.5 先来校准扫描仪与校准球之间的距离,方法是把扫描仪垂直于校准球,然后按住扫描仪上的开关,使十字激光在校准球的中心位置,缓慢垂直的移动接近校准球,直到电脑上全部显示为深绿色才完成第一步。 2.4.6 接下来会显示要校准角度,同样是要垂直于校准球,使十字激光在校准球的中心位置,但是距离校准球的位置要看电脑显示正好是在它的接受范围(左侧条状计量器说明扫描头与被扫描物距离的远近)显示为绿色之内才可以,等待球中心显示为深绿色以后,慢慢的转动扫描仪的角度,使球的45度位置也正好变为深绿色,同样有4个位置需要校准,完成后单击接收按钮。 2.4.7 确定校准在设备接受的精度范围之内。 2.5 扫描 2.5.1 静态扫描(小件扫描)。 2.5.2 需要扫描的工件摆放在C-TRACK能接收到的范围,最好是在C-TRACK正前方2m-3m处。 2.5.3 根据需要来调整扫描参数,单击应用。 2.5.4 单击菜单栏“扫描”,选择扫描面(点),要垂直于要扫描的面,(左侧条状计量器说明扫描头与被扫描物距离的远近)显示为绿色最好,完成后单击扫

三维激光扫描仪在古建筑测绘的应用

三维激光扫描仪在古建筑测绘的应用 引言 古建筑的艺术价值、文化价值及历史价值较高,是中国几千年来的文化沉淀和劳动人民智慧的结晶。随着社会经济的发展,人们对古文物建筑保护的重视度日益提升,在古建筑保护中,古建筑测绘是一项基本工作,具有深远的意义。随着科学技术的不断发展和计算机技术的发展,空间数据采集的手段和方法不断创新,三维激光扫描仪产生。作为空间数据获取的有效手段,它能够对事物的客观事实进行迅速的反映,对古建筑的测绘具有重要作用。 1三维激光扫描仪和古建筑测绘 1.1三维激光扫描仪的测量原理 三维激光扫描仪是新兴的测量技术,能够对大范围区域的信息进行高精度、直接、快速以及全天候的采集,它利用激光测距的原理,通过点云集密集的目标物表面的纹理信息、反射率和三维空间坐标对其空间进行三维记录。 1.2古建筑测绘

古建筑测绘是将测绘学直接应用于文化遗产保护领域,对建筑遗产进行记录、监测和保护。在古建筑保护中,对保护对象进行完整的测绘并存档,为日后的修复和重建提供参考依据是最基本的工作任务。传统的古建筑测绘所用到的测量工具是垂球、直尺和角尺等,最终获取的数据多用图纸和文字记录,对古建筑的现状和尺寸表达不准确,也容易出现遗漏,对后期的工作产生不利影响,造成资源的浪费。 2古建筑测绘中三维激光扫描仪应用的误区 2.1对三维激光扫描仪的精度认识存在误区 误差和错误不同,错误可以避免而误差是不可避免的。在多数情况下,物体的真实值无法知道,测量只是对某个量真值的描述,即使多次重复测量的平均值也只是接近真值。而精度和误差又是两个不同的概念,精度是在测量中误差分布的程度,即为概率;误差是测量值和真实值的差异。测量的精度高仅说明测量中误差分布的大小较为集中,并不是测量的误差值。在古建筑测绘中,数据的获取和二维线划图的精度,不仅受扫描仪精度的影响,点捕捉的误差、点云的厚度的因素也会对其造成影响。因此,在应用三维激光扫描仪进行古建筑测绘时,不能过分相信仪器的精度,应当对误差产生的来源进行细致的分析,从而确定结果的实际精度。

相关主题
文本预览
相关文档 最新文档