当前位置:文档之家› 正确使用高斯公式计算曲面积分

正确使用高斯公式计算曲面积分

正确使用高斯公式计算曲面积分
正确使用高斯公式计算曲面积分

曲线积分与曲面积分(解题方法归纳)

第十一章解题方法归纳 一、曲线积分与曲面积分的计算方法 1.曲线积分与曲面积分的计算方法归纳如下: (1) 利用性质计算曲线积分和曲面积分. (2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则 1 (,)2(,)L L f x f x y ds f x y ds f x ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P x P x y dx P x y dy P x ??=?????对为奇函数 对为偶函数 1 0 (,)2(,)L L Q x Q x y dy Q x y dy Q x ??=?????对为偶函数 对为奇函数 其中1L 是L 在右半平面部分. 若积分曲线L 关于x 轴对称,则 1 (,)2(,)L L f y f x y ds f x y ds f y ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P y P x y dx P x y dy P y ??=?????对为偶函数 对为奇函数 1 0 (,)2(,)L L Q y Q x y dy Q x y dy Q y ??=?????对为奇函数 对为偶函数 其中1L 是L 在上半平面部分.

(2)若空间积分曲线L 关于平面=y x 对称,则 ()()=??L L f x ds f y ds . (3)若积分曲面∑关于xOy 面对称,则 1 0 (,,)2(,,)f z f x y z dS R x y z dS f z ∑ ∑?? =????? ??对为奇函数对为偶函数 1 0 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分. 若积分曲面∑关于yOz 面对称,则 1 0 (,,)2(,,)f x f x y z dS R x y z dS f x ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分. 若积分曲面∑关于zOx 面对称,则 1 0 (,,)2(,,)f y f x y z dS R x y z dS f y ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在zOx 面右方部分. (4)若曲线弧() :()()αβ=?≤≤?=? x x t L t y y t ,则 [ (,)(),()()β α αβ=

高斯定理在电磁学中的应用 毕业论文

第 19 页 ,共 20 页 目 录 1 高斯定理的表述 1.1数学上的高斯公式 1.2静电场的高斯定理 1.3磁场的高斯定理 2高斯定理的证明方法 2.1.1静电场的高斯定理 2.1.2磁场的高斯定理 2.2高斯定理的直接证明 2.3高斯定理的另一种证明 2.4对称性原理及其在电磁学中的应用 3理解和使用高斯定理应注意的若干问题的讨论与总结 (a) 定理中的 E 是指空间某处的总电场强度 (b) 注意ξ int ∑?= ?q dS E s 中 E 和 dS 的矢量性 (c) 正确理解定理中的∑int q (d) 不能只从数学的角度理解ξ int ∑?= ?q dS E s (e) 对高斯面的理解 4 高斯定理的应用? 4.1利用高斯定理求解无电介质时电场的强度 4.2利用高斯定理求解有电介质时电场的强度 5将高斯定理推广到万有引力场中 5.1静电场和万有引力场中有关量的类比 5.2万有引力场中的引力场强度矢量 5.3万有引力场中的高斯定理 6结束语 参考文献

高斯定理在电磁学中的应用 摘要:高斯定理是电磁学的一条重要定理,它不仅在静电场中有重要的应用,而且也是麦克斯韦电磁场理论中的一个重要方程。本文比较详细的介绍了高斯定理,并提供了数学法、直接证明法等方法证明它,总结出应用高斯定理应注意的几个问题,从中可以发现高斯定理在解决电磁学相关问题时的方便之处。最后把高斯定理推广到万有引力场中去。 关键词:高斯定理,应用,万有引力场 引言 高斯定理又叫散度定理,高斯定理在物理学研究方面,应用非常广泛,应用高斯定理求曲面积分、静电场、非静电场或磁场非常方便,特别是求电场强度或者磁感应强度。虽然有时候应用高斯定理求解电磁学问题很方便,但是它也存在一些局限性,所以要更好的运用高斯定理解决电磁学问题,我们首先应对高斯定理有一定的了解。 1 高斯定理的表述 1.1数学上的高斯公式 设空间区域V 由分片光滑的双侧封闭曲面S 所围成,若函数,,P Q R 在V 上连续,且有一阶 连续函数偏导数,则 S V P Q R dxdydz Pdydz Qdzdx Rdxdy x y z ?? ???++=++ ????? ?????? 1-1 其中S 的方向为外发向。1-1式称为高斯公式[1] 。 1.2静电场的高斯定理 一半径为r 的球面S 包围一位于球心的点电荷q ,在这个球面上,场强→ E 的方向处处垂直于球面,且→ E 的大小相等,都是2 04q E r πε= 。通过这个球面S 的电通量为 o o o o εππεπεπε φq r r q dS r q dS r q S d E s s s e = ?= = ?=?=??????→ → 22 2 2 4444 其中 S dS ?? 是球面积分,等于2 4r π。从此例中可以看出,通过球面S 的电通量只与其中的电量q 有关,与高斯面的半径r 无关。若将球面S 变为任意闭合曲面,由电场线的连续性可知,通过该闭合曲面的电通量认为0q ε。

数值分析 高斯—勒让德积分公式

高斯—勒让德积分公式 摘要: 高斯—勒让德积分公式可以用较少节点数得到高精度的计算结果,是现在现实生活中经常运用到的数值积分法。然而,当积分区间较大时,积分精度并不理想。 T he adva ntage of Gauss-Legendre integral formula is tend to get high-precision calculational result by using fewer Gauss-points, real life is now often applied numerical integration method. But the precision is not good when the length of integral interval is longer. 关键字: … 积分计算,积分公式,高斯—勒让德积分公式,MATLAB Keyword: Integral Calculation , Integral formula ,Gauss-Legendre integral formula, Matlab 引言: 众所周知,微积分的两大部分是微分与积分。微分实际上是求一函数的导数,而积分是已知一函数的导数,求这一函数。所以,微分与积分互为逆运算。 】 实际上,积分还可以分为两部分。第一种,是单纯的积分,也就是已知导数求原函数,称为不定积分。 相对而言,另一种就是定积分了,之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。 计算定积分的方法很多,而高斯—勒让德公式就是其中之一。 高斯积分法是精度最高的插值型数值积分,具有2n+1阶精度,并且高斯积分总是稳定。而高斯求积系数,可以由Lagrange多项式插值系数进行积分得到。 高斯—勒让德求积公式是构造高精度差值积分的最好方法之一。他是通过让节点和积分系数待定让函数f(x)以此取i=0,1,2....n次多项式使其尽可能多的能够精确成立来求出积分节点和积分系数。高斯积分的代数精度是2n-1,而且是最

第二型曲线积分与曲面积分的计算方法

第二型曲线积分与曲面积分的计算方法 摘 要: 本文主要利用化为参数的定积分法,格林公式,积分与路径无关的方法解答第二型曲线积分的题目;以及利用曲面积分的联系,分面投影法,合一投影法,高斯公式解答第二型曲面积分的题目. 关键词: 曲面积分;曲线积分 1 引 言 第二型曲线积分与曲面积分是数学分析中的重要知识章节,是整本教材的 重点和难点.掌握其基本的计算方法具有很大的难度,给不少学习者带来了困难.本文通过针对近年来考研试题中常见的第二型曲线积分与曲面积分的计算题目进行了认真分析,并结合具体实例以及教材总结出其特点,得出具体的计算方法.对广大学生学习第二型曲线积分与第二型曲面积分具有重要的指导意义. 2 第二型曲线积分 例1 求()()()sin cos x x I e y b x y dx e y ax dy =-++-?,其中a ,b 为正的常数,L 为从点A (2a ,0)沿曲线 o (0,0) 的弧. 方法一:利用格林公式法 L D Q P Pdx Qdy dxdy x y ?? ??+=- ????????,P(x ,y),Q (x ,y )以及它们的一阶偏导数在D 上连续,L 是域D 的边界曲线,L 是按正向取定的. 解:添加从点o (0,0)沿y=0到点A (2a,0)的有向直线段1L , ()()()()()()1 1 sin cos sin cos x x L L x x L I e y b x y dx e y ax dy e y b x y dx e y ax dy =-++---++-?? 记为12I I I =- , 则由格林公式得:()1cos cos x x D D Q P I dxdy e y a e y b dxdy x y ??????=-=---- ??????????? ()()22 D b a dxdy a b a π =-= -?? 其中D 为1L L 所围成的半圆域,直接计算2I ,因为在1L 时,0y =,所以dy =0

曲线积分与曲面积分习题及答案

第十章 曲线积分与曲面积分 (A) 1.计算()?+L dx y x ,其中L 为连接()0,1及()1,0两点的连直线段。 2.计算? +L ds y x 22,其中L 为圆周ax y x =+22。 3.计算()?+L ds y x 22,其中L 为曲线()t t t a x sin cos +=,()t t t a y cos sin -=, ()π20≤≤t 。 4.计算?+L y x ds e 2 2,其中L 为圆周222a y x =+,直线x y =及x 轴在第一 角限内所围成的扇形的整个边界。 5.计算???? ? ??+L ds y x 34 34,其中L 为内摆线t a x 3cos =,t a y 3sin =??? ??≤≤20πt 在第一象限内的一段弧。 6.计算 ? +L ds y x z 2 22 ,其中L 为螺线t a x c o s =,t a y sin =,at z =()π20≤≤t 。 7.计算?L xydx ,其中L 为抛物线x y =2上从点()1,1-A 到点()1,1B 的一段弧。 8.计算?-+L ydz x dy zy dx x 2233,其中L 是从点()1,2,3A 到点()0,0,0B 的直线 段AB 。 9.计算()?-+++L dz y x ydy xdx 1,其中L 是从点()1,1,1到点()4,3,2的一段直 线。 10.计算()()?---L dy y a dx y a 2,其中L 为摆线()t t a x sin -=,() t a y cos 1-=的一拱(对应于由t 从0变到π2的一段弧): 11.计算()()?-++L dy x y dx y x ,其中L 是: 1)抛物线x y =2上从点()1,1到点()2,4的一段弧; 2)曲线122++=t t x ,12+=t y 从点()1,1到()2,4的一段弧。

§3 高斯公式与斯托克斯公式 答案

§3 高斯公式与斯托克斯公式 1.应用高斯公式计算下列曲面积分; (1),S yzdydz zxdzdx xydxdy ++??ò其中S 是单位球面2221x y z ++=的外侧; (2)222,S x dydz y dzdx z dxdy ++??ò其中S 是立方体0,,x y z a ≤≤表面的外侧; (3)222,S x dydz y dzdx z dxdy ++??ò其中S 是锥面222x y z +=与平面z h =所围空间区域(0z h ≤≤)的表面,方向取外侧; (4)333,S x dydz y dzdx z dxdy ++??ò其中S 是单位球面2221x y z ++=的外侧; (5),S xdydz ydzdx zdxdy ++??ò其中S 是上半球面z =.

3.应用斯托克斯公式计算下列曲线积分: (1)222222()()(),L y z dx x z dy x y dz +++++??其中L 为1x y z ++=与三坐标面的交线,它的走向使所围平面区域上侧在曲线的左侧; (2)23,L x y dx dy zdz ++??其中L 为221,y z x y +==所交的椭圆的正向; (3)()()(),L z y dx x z dy y x dz -+-+-??其中L 为以(,0,0),(0,,0),(0,0,)A a B a C a 为 顶点的三角形沿ABCA 的. 4.求下列全微分的原函数: (1);yzdx xzdy xydz ++

(2)222(2)(2)(2).x yz dx y xz dy z xy dz -+-+- 5.验证下列线积分与路线无关,并计算其值: (1)(2,3,4)23(1,1,1);xdx y dy z dz -+-? (2)222 111(,,)(,,) x y z x y z ?其中()()111222,,,,x y z x y z 在球面2222x y z a ++=上.

第二类曲面积分的计算方法

第二类曲面积分的计算方法 赵海林 张纬纬 摘要 利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes 公式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词 第二类曲面积分 定义法 参数法 投影法 高斯公式 Stokes 公式 向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的应用. 2 预备知识 2.1第二型曲面积分的概念 2.1.1 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为 (,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++ , ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++ 则 cos .S v S v n θΦ==?? 若∑为曲面,流速v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积.

高斯定理

简析高斯定理在电场中的应用 高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。表达式为 01 () 1/n i i S E ds q φε==?=∑?? (1) 高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。典型情况有三种: 1) 球对称性, 如点电荷, 均匀带电球面或球体等; 2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面 3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。 根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。选取的原则是: ○ 1 待求场强的场点必须在高斯面上;○ 2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○ 3 与E 垂直的那部分高斯面上各点的场强应相等;○ 4 高斯面的形状应是最简单的几何面。 最后由高斯定理求出场强。高斯定理说明的是通过闭合曲面的电通量与闭合 曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。 步骤: 1.进行对称性分析,即由电荷分布的对称性,分析场强分布的对称性,判断能否用高斯定理来求电场强度的分布(常见的对称性有球对称性、轴对称性、面对称性等); 2.根据场强分布的特点,作适当的高斯面,要求:①待求场强的场点应在此高斯面上,②穿过 该高斯面的电通量容易计算。一般地,高斯面各面元的法线矢量n 与E 平行或垂直,n 与E 平行时, E 的大小要求处处相等,使得E 能提到积分号外面; 3.计算电通量???S d E 和高斯面内所包围的电荷的代数和,最后由高斯定理求出场强。 应该指出,在某些情况下(对称),应用高斯定理是比较简单的,但一般情况下,以点电荷场强公式和叠加原理以相互补充,还有其它的方法,应根据具体情况选用。 利用高斯定理,可简洁地求得具有对称性的带电体场源(如球型、圆柱形、无限长和无限大平板型等)的空间场强分布。计算的关键在于选取合适的闭合曲面——高斯面。 典型例题: 例题1、设一块均匀带正电无限大平面,电荷密度为σ=9.3×10-8C/m 2,放置在真空中,求空间任一点的场强. 解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在均匀带电无限大平面上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与平面垂直向外的方向上(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)在平行于带电平面的某一平面上各点的场强相等;(3) 带电面右半空间

高斯型积分公式

高斯型积分公式-CAL-FENGHAI.-(YICAI)-Company One1

2 Guass-Legendre 积分程序 1. 目的意义: 可以提高数值积分的代数精度 2. 数学公式: ) ()()(1k n k k b a x f A dx x f x ∑?=≈ρ 3. 程序: #include<> #include<> #define N 10 #define f(x) (cos(x)) int main() { int n=0; int k=0; int i=0; double x[N]={}; double A[N]={}; double s=; n=2; switch(n)

{ case 1: { x[1]=0; A[1]=2; break; } case 2: { x[1]=; x[2]=; A[1]=1; A[2]=1; break; } case 3: { x[1]=; x[2]=0; x[3]=; A[1]=; A[2]=; 3

A[3]=; break; } case 4: { x[1]=; x[2]=; x[3]=; x[4]=; A[1]=; A[2]=; A[3]=; A[4]=; break; } default: { printf("error! 请添加数据!\n"); return 0; } } 4

for(i=1;i<=n;i++) { s=s+A[i]*f(x[i]); } printf("由高斯-勒让德积分公式计算得I=%lf\n",s); return 0; } 4.运行结果: 5.参考文献: [1] 谭浩强. C语言程序设计[M]. 北京:清华大学出版社,2005. [2] 秦新强. 数值逼近, 西安,2010. 5

曲线积分与曲面积分总结

第十一章:曲线积分与曲面积分 一、对弧长的曲线积分 ?? +=L L y d x d y x f ds y x f 22),(),( 若 ?? ?==) () (:t y y t x x L βα≤≤t 则 原式= dt t y t x t y t x f ?'+'β α )()())(),((22 对弧长的曲线积分 (,,) ((),()L L f x y z ds f x t y t z t =? ?若 () :()()x x t L y y t z z t =?? =??=? βα≤≤t 则 原式= ((),(),(f x t y t z t β α ? 常见的参数方程为: 特别的: 22 222.2x y L L L e ds e ds e ds e π+===??? 22 =2(0)L x y y +≥为上半圆周

二、对坐标的曲线积分 ? +L dy y x q dx y x p ),(),( 计算方法一: 若 ?? ?==) () (:t y y t x x L 起点处α=t ,终点处β=t 则 原式= dt t y t y t x q dt t x t y t x p )())(),(()())(),(('+'?β α 对坐标的曲线积分 (,,)(,,)(,,)L P x y z d x Q x y z d y R x y z d z ++? () :()()x x t L y y t z z t =?? =??=? 起点处α=t ,终点处β=t 则 原式= ((),(),())()((),(),())()((),(),())()P x t y t z t x t dt Q x t y t z t y t dt R x t y t z t z t dt β α'''++? 计算方法二:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式,后者利用参数方程。 1 1 (,)(,)(,)(,)L L L p x y dx q x y dy p x y dx q x y dy ++-+? ? 1 ( )(,)(,)L D q p dxdy p x y dx q x y dy x y ??=±--+????? 如图: 三、格林公式 ??=??-??D dxdy y p x q )( ? +L dy y x q dx y x p ),(),( 其中L 为D 的正向边界 特别地:当 y p x q ??=??时,积分与路径无关, 且 ??? +=+2 1 21 2211),(),(),(),(21) ,() ,(y y x x y x y x dy y x q dx y x p dy y x q dx y x p (,)(,)(,P x y d x Q x y d y d U x y +=是某个函数的全微分Q P x y ??? =?? 注:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积

Gauss型积分公式

摘要 求函数在给定区间上的定积分,在微积分学中已给出了许多计算方法,但是,在实际问题计算中,往往仅给出函数在一些离散点的值,它的解析表达式没有明显的给出,或者,虽然给出解析表达式,但却很难求得其原函数。这时我们可以通过数值方法求出函数积分的近似值。 当然再用近似值代替真实值时,误差精度是我们需要考虑因素,但是除了误差精度以外,还可以用代数精度来判断其精度的高低。已知n+1点的Newton-Cotes型积分公式,当n为奇数时,其代数精度为n;当n为偶数时,其代数精度达到n+1。若对随机选取的n+1个节点作插值型积分公式也仅有n次代数精度。 如何选取适当的节点,能使代数精度提高?Gauss型积分公式可是实现这一点,但是Gauss型求积公式,需要被积函数满足的条件是正交,这一条件比较苛刻。因此本实验将针对三种常用的Gauss型积分公式进行讨论并编程实现。 关键词:Newton-Cotes型积分公式正交多项式代数精度

1、实验目的 1)通过本次实验体会并学习Gauss型积分公式,在解决如何取节点能提 高代数精度这一问题中的思想方法。 2)通过对Gauss型积分公式的三种常见类型进行编程实现,提高自己的 编程能力。 3)用实验报告的形式展现,提高自己在写论文方面的能力。 2、算法流程 下面介绍三种常见的Gauss型积分公式 1)高斯-勒让德(Gauss-Legendre)积分公式 勒让德(Legendre)多项式 如下定义的多项式 称作勒让德多项式。由于是次多项式,所以是n次多项式,其最高次幂的系数与多项式 的系数相同。也就是说n次勒让德多项式具有正交性即勒让德多项式 是在上带的n次正交多项式,而且 这时Gauss型积分公式的节点就取为上述多项式的零点,相应的Gauss型积分公式为 此积分公式即成为高斯-勒让德积分公式。 其中Gauss-Legendre求积公式的系数

曲面积分与高斯公式

曲面积分与高斯公式 1、第一类曲面积分 (1)问题得提出 设有一块光滑得金属曲面S 。它得密度就是不均匀得。在其点(x,y ,z)处密度为f(x,y,z),并设f在S上连续,则金属曲面S 得质量M 说明: 第一类曲面积分与曲面得方向(侧)无关 (2)第一类曲面积分得计算 (代入法)设S 就是一个光滑曲面, S 得方程就是Z=f(x,y) , 当 f1时可得空间曲面面积得计算公式,即 例1.I=,S 就是半球面()。 解:, , ??????-=--+=+πθ2002222222221R D s rdr r R r d R dxdy y x R R y x ds y x = 2、 第二类曲面积分 (1)问题得提出 磁通量问题。表示 说明:第二类曲面积分与方向(侧)有关,改变方向,积分变号 (2)计算(代入法) 用带入法计算时,一般应分成三个计算: ①(如果曲面积分取得上侧取号,如果曲面积分取得下侧取-号)、 类似有 ②(如果曲面积分取得前侧取号,如果曲面积分取得后侧取-号)。 ③(如果曲面积分取得右侧取号,如果曲面积分取得左侧取-号)、

例2:计算曲面积分,其中就是圆面下侧。 分析: 由于在上, ,所以 π22)2()2(2)(2??????-=-=-=-+++∑∑D dxdy dxdy z dxdy z xydzdx dydz x z 评论:本题展示得化简积分得方法就是非常重要得。 例3:计算曲面积分,其中就是旋转抛物面介于平面及之间得下侧 分析: 可直接代公式计算, 而需要分成前后两部分分别计算、 解:(略) (3)高斯公式 设 D 就是R内得一个有界闭区域,其边界由光滑曲面或逐片光滑曲面组成,方向就是外侧(相对于区域D而言)。又设函数P ,Q,R都在D 内关于 x,y,z 有连续偏导数,则下列高斯公式成立: 由Gau ss 公式可计算某些空间立体积分 V= 例4 计算, 式中S为球面得内侧 解 由高斯公式 知 = 例5:计算曲面积分 其中为曲面得上侧。 【分析】(补面法)本题曲面不封闭,可考虑先添加一平面域使其封闭,在封闭曲面所围成得区域内用高斯公式,而在添加得平面域上直接投影即可。 【详解】 补充曲面:,取下侧、 则 =

高斯公式的应用

1、高斯公式在普通物理中的应用 数学中的高斯公式是场论中的一个基本公式。它建立了空间某一区域v 上的体积分与其边界曲面S 上的面积分之间的关系,即 )(1?????++=???? ????+??+??s y Rdxdy Qdzdx pdydz dxdydz z R y Q x P 在物理学中,常用它的矢量形式:??????=s s d F dv F div v 式中k R j i ++=Q P F 在普通物理学中,应用高斯公式可以简洁明了地证明某些重要的结论。下面我们就用它来推证著名的阿基米德浮力定律和静电场中的高斯定理。 (1)高斯公式推证阿基米德浮力定律 在普通物理的教科书中,一般对阿基米德浮力定律都不作严格的数学证明,仅对它作一个说明。但是我们可以根据重力场中静止流体的压强分布,应用高斯公式给出一个证明。 一物体浮在液面上,液体表面的平面把浮体表面的封闭曲面S 分为两部分 1S 和2S ,也把整个浮体分为两部分。其中浮在液面上的那部分为1V ,浸没在液体中的那部分为2V 。建立坐标系,取液体表面为x o y 平面,Z 轴的方向取为竖直向下。作用在曲面1S 上的压强就是大气压0P ,而作用在曲面2S 上的压强则为 gz P P ρ+=0 式中P 为液体的密度,z 为曲面2S 上某点处位于液面下的深度。作用在物体上的浮力就是由于作用在物体下部的压强大于作用在物体上部的压强而产生的,我们来具体计算一下。 因为作用在物体表面上任一面元上的压力总是与面元的法向矢量n 方向相反,所以有: ( ) ???????????????????-?-?-=??-??-??-=?++?-=??-=-=s s s s s s s s s s d k p k s d j p j s d i p i ds P k ds P j ds P i ds k x j i P n ds P s Pd F )()()(cos cos cos cos cos cos γ βαγβα浮 式中αβγ为n 与三个坐标轴的夹角,应用在高斯公式,上式可化 为体积分:

高斯-勒让德积分公式

实习论文 题目高斯勒让德积分公式 专业信息与计算科学 班级计算092 学号3090811065 学生周吉瑞 指导教师秦新强 2011 年

高斯勒让德积分公式 专 业: 信息与计算科学 学 生: 周吉瑞 指导老师: 秦新强 摘要 关于数值积分公式0 ()()b n k k k a f x dx A f x =≈∑?,除了用误差来分析其精度以外,还可以 用代数精度来判断其代数精度的高低,已知n+1点Newton-Cotes 型积分公式,当n 为奇数时,其代数精度为n ,当n 为偶数时,其代数精度达到n+1。 n+1点的Newton-Cotes 型积分公式属于插值积分型积分公式,一般地,若对随机选取的n+1个节点作插值型积分公式也仅有n 次代数精度,但是,如果求积节点选取适当,就有可能提高数值积分的代数精度,高斯型积分公式就可以实现这一目标。 关 键 词:数值积分,代数精度,高斯型积分公式

一、目的意义 构造Gaoss 型求积公式除需要求出正交多项式外,还需要求出正交多项式的零点和求积系数,当3n ≥时,这些工作均很困难,因此给出高斯-勒让德积分公式的零点和系数。 二、公式 高斯-勒让德积分公式:1 1 1 ()()n k k k f x A f x -=≈∑?; 三、算法流程 Step1:输入所用的点数n ; Step2:对i=1,2,···,n 循环执行步3; Step3:I= I+ ()i i A f x ; Step4:输出I ;结束。

四、算法程序 #include #include double Leg(double x) { double z; z=8/(4+(1+x)*(1+x)); return z; } void main() { double x[9],A[9],I=0; int i,n; printf("请输入点数n:"); scanf("%d",&n); switch(n) { case 1: x[1]=0,A[1]=2;break; case 2: x[1]=0.5773502692,x[2]=-0.5773502692,A[1]=A[2]=1;break; case 3: x[1]=0.77459666920,x[2]=0,x[3]=-0.77459666920,A[1]=A[3]=0.5555555556, A[2]=0.8888888889;break; case 4: x[1]=0.8611363116,x[2]=0.3399810436,x[3]=-0.8611363116,x[4]=-0.339981 0436; A[1]=A[3]=0.3478548451,A[2]=A[4]=0.6521451549;break; case 5: x[1]=0.9061798459,x[2]=0.53845931010,x[3]=0,x[4]=-0.9061798459,x[5]=-0.53845931010; A[1]=A[4]=0.2369268851,A[3]=0.5688888889,A[2]=A[5]=0.4786286705;b reak; case 6: x[1]=0.9324695142,x[2]=0.6612093865,x[3]=0.2386191816,x[4]=-0.9324695 142,x[5]=-0.6612093865,x[6]=-0.2386191816; A[1]=A[4]=0.1713244924,A[2]=A[5]=0.3607615730,A[3]=A[6]=0.4679139 346;break; case 7: x[1]=0.9491079123,x[2]=0.7415311856,x[3]=0.40584515140,x[4]=0,x[5]=-0 .9491079123,x[6]=-0.7415311856,x[7]=-0.40584515140;

曲面积分精解

第一节 第一类曲面积分 内容要点 一、 第一类曲面积分的概念与性质 定义1 设曲面∑是光滑的, 函数),,(z y x f 在∑上有界, 把∑任意分成n 小块i S ?(i S ?同时也表示第i 小块曲面的面积),在i S ?上任取一点),,,(i i i ζηξ作乘积 ),,2,1(),,(n i S f i i i i =??ζηξ 并作和,),,(1 ∑=??n i i i i i S f ζηξ 如果当各小块曲面的直径的最大值0→λ时, 这和式的极限存在, 则称此极限值为),,(z y x f 在 ∑上第一类曲面积分或对面积的曲面积分,记为 ∑ ?? =→∑ ?=n i i i i i S f dS z y x f 1 ),,(lim ),,(ζηξλ (4.2) 其中),,(z y x f 称为被积函数,∑称为积分曲面. 二、对面积的曲面积分的计算法 .),(),(1)],(,,[),,(2 2?? ?? ++= ∑ xy D y x dxdy y x z y x z y x z y x f dS z y x f (4.3) 例题选讲 例1 计算曲面积分,?? ∑ z dS 其中∑ 是球面2222a z y x =++被平面)0(a h h z <<=截出的顶部. 解 ∑的方程为.222y x a z --= ∑在xOy 面上的投影区域:xy D {} .),(2 222h a y x y x -≤+ 又,12 2 2 2 2y x a a z z y x --= ++利用极坐标 故有???? -= ∑ xy D r a adxdy z dS 2 2 2 2 20 2 2 2 2r a rdr d a r a ardrd h a D xy -=-= ? ? ?? -θ θπ 2 20 22)(212h a r a In a -? ?????--=π .2h a aIn π= 例2(E01)计算,)(??∑ ++dS z y x 其中∑为平面5=+z y 被柱面252 2=+y x 所截得的部分. 解 积分曲面∑-=,5:y z 其投影域},25),({2 2≤+=y x y x D xy ,2)1(0112 2 2 dxdy dxdy dxdy z z dS y x = -++= ++= 故 ??????+= -++= ++∑ xy xy D D dxdy x dxdy y y x dS z y x )5(2)5(2)( .2125 )cos 5(25 20 πθθπ =+= ?? rdr r d 例3(E02)计算,??∑ xyzdS 其中∑是由平面0,0,0===z y x 及1=++z y x 所围四面体的整个边界曲面.

曲线积分与曲面积分备课教案

第十章曲线积分与曲面积分 一、教学目标及基本要求: 1、理解二类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。 2、会计算两类曲线积分 3、掌握(Green)公式,会使用平面曲线积分与路径无关的条件。 4、了解两类曲面积分的概念及高斯(Grass)公式和斯托克斯(Stokes)公式并会计算两类曲面积分。 5、了解通量,散度,旋度的概念及其计算方法。 6、会用曲线积分及曲面积分求一些几何量与物理量(如曲面面积、弧长、质量、重心、转动惯量、功、流量等)。 二、教学内容及学时分配: 第一节对弧长的曲线积分2学时 第二节对坐标的曲线积分2学时 第三节格林公式及其应用4学时 第四节对面积的曲面积分2学时 第五节对坐标的曲面积分2学时 第六节高斯公式通量与散度2学时 第七节斯托克斯公式环流量与旋度2学时 三、教学内容的重点及难点: 1、二类曲线积分的概念及其计算方法 2、二类曲面积分的概念及其计算方法 3、格林公式、高斯公式及斯托克斯公式 4、曲线积分及曲面积分的物理应用和几何应用也是本章重点。 5、两类曲线积分的关系和区别 6、两类曲面积分的关系和区别 7、曲线积分和曲面积分的物理应用及几何应用 五、思考题与习题 第一节习题10—1 131页:3(单数)、4、5 第二节习题10-2 141页:3(单数)、4、5、7(单数) 第三节习题10-3 153页:1、2、3、4(单数)、5(单数)6(单数)、7 第四节习题10-4 158页:4、5、6(单数)、7、8 第五节习题10-5 167页:3(单数)、4 第六节习题10-6 174页:1(单数)、2(单数)、3(单数) 第七节习题10-7 183页:1(单数)、2、3、4 第一节对弧长的曲线积分 一、内容要点 由例子引入对弧长的曲线积分的定义给出性质,然后介绍将对弧长的曲线积分化为定积分的计算方法。 1、引例:求曲线形构件的质量

Gauss型积分公式

Gauss型积分公式

摘要 求函数在给定区间上的定积分,在微积分学中已给出了许多计算方法,但是,在实际问题计算中,往往仅给出函数在一些离散点的值,它的解析表达式没有明显的给出,或者,虽然给出解析表达式,但却很难求得其原函数。这时我们可以通过数值方法求出函数积分的近似值。 当然再用近似值代替真实值时,误差精度是我们需要考虑因素,但是除了误差精度以外,还可以用代数精度来判断其精度的高低。已知n+1点的Newton-Cotes型积分公式,当n为奇数时,其代数精度为n;当n 为偶数时,其代数精度达到n+1。若对随机选取的n+1个节点作插值型积分公式也仅有n次代数精度。 如何选取适当的节点,能使代数精度提高?Gauss型积分公式可是实现这一点,但是Gauss型求积公式,需要被积函数满足的条件是正交,这一条件比较苛刻。因此本实验将针对三种常用的Gauss型积分公式进行讨论并编程实现。 关键词:Newton-Cotes型积分公式正交多项式代数精度

1、实验目的 1)通过本次实验体会并学习Gauss型积分公式,在解决如何取节点能提 高代数精度这一问题中的思想方法。 2)通过对Gauss型积分公式的三种常见类型进行编程实现,提高自己的 编程能力。 3)用实验报告的形式展现,提高自己在写论文方面的能力。 2、算法流程 下面介绍三种常见的Gauss型积分公式 1)高斯-勒让德(Gauss-Legendre)积分公式 勒让德(Legendre)多项式 如下定义的多项式 称作勒让德多项式。由于是次多项式,所以是n次多项式,其最高次幂的系数与多项式 的系数相同。也就是说n次勒让德多项式具有正交性即勒让德多项式是在上带的n次正交多项式,而且 这时Gauss型积分公式的节点就取为上述多项式的零点,相应的Gauss型积分公式为 此积分公式即成为高斯-勒让德积分公式。 其中Gauss-Legendre求积公式的系数 1

第二类曲面积分的计算方法

第二类曲面积分的计算方法 赵海林张纬纬 摘要利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes 公式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词第二类曲面积分定义法参数法投影法高斯公式 Stokes公式向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程中, 必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二 型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面广,掌 握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题 型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说 明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第 一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系, 让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的 应用. 2 预备知识 2.1第二型曲面积分的概念

2.1.1 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为 (,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++v v v v , ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++v v v v 则 若∑为曲面,流速v v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积. (2) 近似 (,,)i i i i i M S ξηζ?∈?,以点i M 处的流速()i i v v M =v v 和单位法向量i n v 分别代替 i S ?上其他各点处的流速和单位法向量,得到流过i S ?指定侧的流量的近似值: (3) 求和 (4) 取极限 2.1.2 定义

相关主题
文本预览
相关文档 最新文档