当前位置:文档之家› 消声器设计及步骤

消声器设计及步骤

消声器设计及步骤
消声器设计及步骤

发动机排气系设计准则

1 范围

本标准规定客车产品发动机排气系统的设计、试验及评审规范;

本标准适用于客车产品发动机排气系统设计过程控制、试验标准的确定及设计效果的评审验收;

本标准不适用于非客车类产品的排气系统设计及应用规范。

2 规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 4759-1995 内燃机排气消声器测量方法

GB/T 4760-1995 声学消声器测量方法

QC/T 630-93 汽车排气消声器性能试验方法

QC/T 631-1999 汽车排气消声器技术条件

3 符号、代号、术语及其定义

3.1 排气消声器

排气消声器为具有吸声衬里或特殊形式的气流管道,可有效地降低气流噪声的装置。

3.2插入损失

消声器的插入损失为装置泊声器前后,通过排气口辐射声功率级之差。符号:D,单位;dB。3.3 功率损失比

消声器的功率损失比是内燃机在标定工况下,使用消声器前后的功率差值和没有使用消声器时功率值的百分比。符号γ。

3.4 诽气背压

按Qc/T 524设置排气背压测量点(离发动机排气管出口或祸轮增压器出口75mm处,在排气连接管里测量,测压头与管内壁干齐),当分50银消算器劝带空瞥时,测点处纳相对压力值之差。符号:AP,单位:kPa。

ΔP=Pex2- Pex1.

式中;ΔP——排气背压,kPa;

Pex1——带消声器时测点的相对压力,kPa;

Pex2——不带消声5E(印带空管)时测点的相对压力,kPa。

4 设计准则

4.1 应满足的安全、环保和其它法规要求及国际惯例

4.1.1 试验道路、条件及试验准备应满足GB/T 4759-1995(内燃机排气消声器测量方法)、QC/T 630-93 (汽车排气消声器性能试验方法)之规定;

4.1.2 消声器等部件的性能、使用要求应满足QC/T 631-1999(汽车排气消声器技术条件)。

4.2 应满足的功能要求

4.2.1 在保证发动机最佳性能的同时,把所有排气安全地运离发动机并安静、顺畅地排到大气中去。

4.2.2 排气系统必须把排气噪声削减到符合法令、标准或工业上公认的要求水平;

4.3 应达到的性能要求

4.3.1 需安装排气制动装置时,排气制动阀不超过发动机允许的最大背压;

4.3.2 排气系统应能够防止路面积水,雨水或者冲洗用水进入发动机或增压器;

4.3.3 满足发动机的使用条件,需要经受500~800℃高温排气;

4.3.4 选用部件的使用寿命必须满足国家及行业标准;

4.3.5 排气顺畅,在发动机额定负荷和转速工况下,排气系统产生的排气背压不得大于发动机技术参数表上规定的限值。

4.3.6 排气系不得出现漏气现象

4.4 设计输入、输出要求

总布置图纸评审完毕、设计任务分解后开始进行排气系总成的设计,在设计的过程中,需要不断根据其它总成的要求进行逐步完善。在底盘总布置、发动机安装位置及车架型式确定的基础上开始设计,设计服务于底盘、整车布置及性能设计。

4.5 设计过程的节点控制要求

本着先易后难、逐步深入的原则,发动机排气系设计节点按照如下方式:

整车总布置→底盘总布置→发动机排气系匹配计算→排气系匹配计算评审→消声器设计→排气管路设计→其它附件设计→各部件的连接及安装设计→各模块设计评审验收→试验检测→试验评审

5 布置要求

5.1 连接到发动机排气歧管或增压器上的附件不得由于重量、运动或热膨胀等原因而对排气歧管和增压器施加过大的应力,同时也不得限制弹性发动机悬置系统所要求的形变;

5.2 保证排气系统与客车操作区、乘客区的密封(可采用通风式隔热板),防止热辐射和噪声的干扰;

5.3 发动机产生的废气应合理地排出,不得污染发动机进气,不得影响冷却系的冷却能力,造成对发动机及其附件的额外损坏或引起冷却系统过载;

5.4 排气管和消声器等高温的外露零部件,要确保和周边零部件有足够的间隔,以避免引起火灾:5.4.1 与客车车身木质零部件的间隔应大于100mm;

5.4.2 与电线束的间隔应大于150mm;

5.4.3 与发动机悬置橡胶软垫、水箱悬量橡胶软垫、消声器悬置橡胶软垫等的间隔应大于100mm;5.4.4 与起动机、怠速提速装置、电动停油装置等电器设备的间隔应大于200mm;

5.4.5 与燃油、机油滤清器及管路的间隔应大于200mm;

5.4.6 如果受结构限制不能确保上述间隔的地方,应设置隔热板进行隔热,设置有效的隔热板后,与隔热板的间隔应大于35mm。

5.5 高压油泵、喷油器、燃油机油滤清器、燃油机油管件及接头、机油标尺管口、呼吸器管口的正下方不允许布置消声器和排气管等高温外露零部件,以免因燃油、机油滴漏引起火灾,如果因结构限制需要布置时,必须设置有效的挡板。

6 结构设计要求

6.1 模块化设计要求

6.1.1 消声器的选择

排气消声器是排气系统的主要部件,主要起到降噪作用,它既要满足车辆噪声的要求,又要满足排气阻力的要求,还要满足消耗功率尽可能少的要求。排气消声器的容积应根据发动机最大排气流量来确定。选择消声器需要注意的因素有:

6.1.1.1 结构允许的空间

在空间允许情况下消声器的体积及容量尽可能大。

6.1.1.2 消声的水平

发动机排气噪音消减得越低越好。至少应满足国家相关部门对客车产品噪声规定(主要是客车产品得等级评定标准)的最低要求。

6.1.1.3 排气背压水平

排气背压影响排气系工作时消耗的功率。在满足消减噪声的基础上,排气背压尽可能小。

6.1.1.4 消声器的种类

根据消声机理可以把它们分为六种主要的类型:阻性消声器、抗性消声器、阻抗复合式消声器、微穿孔板消声器、小孔消声器和有源消声器。客车产品根据目前情况应选用阻抗复合式消声器。

6.1.1.5 消声器的形状

根据消声器的形状可以分为:圆柱型、长方型、异型。由于圆柱型消声器具有比较明显的抑制振动的倾向、结构简单等特点。客车产品消声器应选用圆柱型(特殊情况也可选用椭圆截面的柱型)。

6.1.1.6 消声器的级数

为了加强消声效果,可将消声器从单级分为多级消声器。多级消声器即是用具有不同特点的消声器组合。目前我公司客车产品应选用单级消声器。

6.1.2 排气管路的设计

排气管路包括增压器出口与消声器之间的管路以及消声器之后的管路,其主要功用是将发动机产生的废气安全并顺畅地排至车外。排气管路设计时需要注意的因素主要有:

6.1.2.1 为减小排气阻力,排气管路应尽可能直,对于客车,总布置需要管路弯曲时,弯道的曲率半径也应尽可能大。增压器涡轮机出口应设计为一直的管件,圆锥形扩压角不大于10°;

6.1.2.2 排气管应远离进气口,否则无论是静止还是行驶状态,如果发动机排出的废气被吸入空滤器,空滤器将很快污染失效;

6.1.2.3 通常在进口管中的一段增加伸缩节式波纹管使整个排气系统呈挠性联接,从而起到减振降噪、方便安装和延长排气消声系统寿命的作用,伸缩节式波纹管,安装时不可出现弯曲和拉伸现象,设计时将其看成时刚性的;

6.1.2.4 管路的设计应该和流体管路相靠近。在管路的设计中。应尽可能的不使用突变管,应尽可能使用变径管,渐变管。在尾气排出通过的管路中不能出现管径变小的现象,防止排气回流的形成;

6.1.2.5 水进入增压器会损坏轴承和密封圈,如果进入了发动机气缸内,对发动机的损坏更大。为了防止路面积水、雨水以及冲洗用水进入,通常可在排气管路中设置一个位置最低的点,以便流水,水平放置的消声器也可以起到这个作用;

6.1.3 固定及连接部件设计

6.1.3.1 常用的连接方式有:法兰连接,插入式卡箍连接,止口连接。

止口式通常是用来连接增压器,插入式通常用在消声器的进出口连接,法兰式的连接使用比较广泛,可以用在真个管路的任何地方,而且连接的强度和可靠程度比其他两种连接都要高。插入式连接应该顺着气流方向,采用小管插入大管的方式,且管子内外径为等直径为宜,内外径之差不应大于1mm。法兰连接中两法兰之间必须使用密封垫来密封,另外法兰连接也可以做成活动式的。

同时由于排气系的工作温差大,紧固力易下降,所以初始轴向力的设定是重要的。排气管螺栓布置原则首先要保证密封性,另一方面要允许法兰面相对滑移。一般采用双螺母或锁片锁紧。

6.1.3.2 固定和支撑

排气制动必须具有附件支撑,且必须安装于柔性连接上端。增压器出口管必须具有和发动机连接的

支撑,如果发动机本身带有排气弯头,则没有必要再进行固定。

消声器的固定方法很多,常用的是卡箍式固定,这种固定方式简单、可靠、灵活。消声器和固定件的连接必须是柔性的,因为消声本身是高频振动的。

6.2 标准化结构、零部件

6.2.1 客车排气系管路中排气管尺寸

6.2.2 采用浮动支撑时,推荐采用13mm厚的橡胶软垫来缓解排气系统的变形量。

7 材料选用要求

7.1 直径小于等于90mm的管子推荐使用,Q235/1.2钢板卷焊管;

7.2 直径大于90mm的管子推荐使用Q235/1.5的钢板卷焊管;

7.3 管路中法兰连接时,密封垫应为耐高温石棉板或者多层耐热金属衬垫(推荐多层耐热金属衬垫);

8 设计计算

排气系统需要计算的环节较少,主要有消声器的计算和整个管路排气背压的计算两方面。消声器的计算主要包括消声量及其主要尺寸的计算和确定,管路的排气背压的计算主要包括消声器的排气阻力和管路部分的排气阻力。

8.1 消声器的计算:

8.1.1 消声量计算:

消声量首先要确定降低排气噪声的目标值,即由发动机排气噪声大小、频谱特性和消声器所匹配车辆的噪声标准限值之间的差值来决定消声器消声量的大小。假设声源特性属线性声源,声衰减量L为:

L=10lg(R2/R1)

式中:R1—消声器出口处噪声限值点到声源点距离;

R2—整车噪声限值测点到声源点距离;

以客车为例,车外加速噪声限值La=82或85dB(参见GB1495-2002),R1=0.5m(参见QC/T 630-93),R2=7.5m(参见GB1495-2002),

L=10lg(R2/R1)=10lg(7.5/0.5)=11.6(dB)

消声器出口噪声限值:

Lm=L+La=11.6+85=96.6(dB)

所装配发动机排气声压级为Le=120dB,故可得到消声器的消声量Ld为:

Ld≥Le-Lm=120-96.6=23.4(dB)

8.1.2 消声器容积的计算:

传统消声器容积计算公式一般是按照美国NELSON公司的标准:

式中:V---消声器容积;

n---发动机额定转速,r/min;

i---缸数;

τ--冲程数;

Vst--发动机排量,L;

Q---修正系数,一般取2~6(对消声效果要求越高,Q值越大)

从公式可见,消声器容积与与发动机的排量成正比,因此,也可以采用以下的经验公式:

V =(A1+A2+A3)×Vst

式中:A1----插入损失修正系数; A2----增压机型修正系数;

8.1.3 消声器进口直径:

选择消声器进口直径时要避免因进气直径过小而引起整个排气管的截面突变,同时,进气处气流流速不宜过大。估算进口直径Di 的公式为:

上式中:Q----进口处排气流量,L/s ;

Vmax---允许最大气流流速,m/s ;(通常取100m/s ) 进口处排气流量可以通过发动机进气流量Qi 公式估算:

Qi =0.03Vst ×n ×φc

式中:φc ----充量系数,一般取0.86

对我们目前常用的增压发动机而言,通常可应用以下公式进行计算:

上式中:φ----增压比; n -----额定转速 Vst ---发动机排量 排气流量计算公式:

Q =(Tb+273)φQi/(Ts+273)

上式中:Tb ----进口处排气温度;(发动机厂家提供) Ts ----进气温度;(发动机厂家提供) φ----取0.98 8.1.4 消声器直径: 首先确定扩张比M :

消声器截面积与消声器进口截面积之比称为扩张比(M )。对消声器插入损失要求越大,扩张比选择值max

3/1027.1V Q D i ??=120

/st i V n Q ??=φ

然后根据上面确定的消声器进口直径Di ,直接算出圆形消声器直径Dm :

8.1.5 消声器长度:

当消声器容积V 、消声器直径Dm 确定后,可直接计算长度L

L =1.27×1.06×V /Dm

另外,根据我公司设计消声器的经验来看,消声器的长度应满足如下关系:

3

8.1.6 消声器出口直径:

由于当排气气流速度超过一定限值,气流所产生的再生噪声将大大减小消声量。一般控制气流速度的原则是:消声器出口管径应不小于进气管直径。客车产品消声器进出口直径应保持一致。 8.2 排气背压的计算:

对排气背压的计算是为了保证排气系统的阻力不超过发动机参数表上所要求的阻力值。排气背压主要由两部分组成,一是消声器产生的阻力,其阻力性能只能由生产厂家提供;一是管路产生的阻力。由于排气过程中温度和压力均不是恒定的,所以要对此过程进行详细准确的计算是十分困难的,通常是根据经验公式或图表进行计算。下图为排气阻力计算的经验图表,可以用来进行设计初期的计算。

39 设计评审要求

9.1 评审的时机和方法

设计完成后,针对总成设计布置型式、匹配计算进行评审 9.2 评审的项目和依据

排气系统的评审标准是用于在产品开发初期,确定排气系统结构设计合理性的评价标准。 9.2.1 结构设计的评审:

消声器、排气管件与车架之间的固定方式是否为浮动连接 ;

排气管路与发动机排气口或增压器出口之间的连接是否为浮动连接 ;此段管路是否没有任何其他的支承而直接连在增压器出口上 ;

排气管路中是否有一个位置最低的点,以便流水 ;

排气管和消声器等高温的外露零部件,与周边的零部件是否有足够间隔空间 ;

高压油泵、喷油器、燃油机油滤清器、燃油机油管件及接头、机油标尺管口、呼吸器管口等部件是否在消声器和排气管等高温外露零部件的上方 ; 9.2.2 计算结果的评审:

排气系统消声量要求 dB (A ),消声器插入损失 dB (A ); 是否符合要求 。

消声器容积计算结果 ,实际选用消声器的容积 ; 是否符合要求 。

2

/1M D D i m ?=

消声器直径计算结果,实际选用消声器的直径;

是否符合要求。

消声器长度计算结果,实际选用消声器的长度;

是否符合要求。

9.2.3 试验结果的评审:

全负荷试验过程中,排气阻力kPa,发动机参数表所要求的排气阻力kPa;

是否符合要求。

全负荷试验过程中,排气温度℃,发动机参数表所要求的排气温度℃;

是否符合要求。

排气制动装置启动时的排气阻力kPa,发动机参数表所要求的排气阻力kPa;

是否符合要求。

10 装车质量特性

为了保证发动机的动力性和燃油经济性的充分发挥,排气系统应的排气背压和排气温度应达到所设计的要求。排气系统的阻力即使经过计算,最终也应用试验方法来验证。

10.1 试验设备与仪器:

10.1.1 用于对车辆加载的设备:

动力吸收车或底盘测功机,如果没有以上设备可以在10km以上的长坡上进行,如果没有足够的长坡则需将车加至满载,以最高车速行驶,并尽可能地开启车上的各种设备以加大发动机的负荷。

10.1.2 测试仪器:

10.1.2.1 转速计(用于测发动机的转速);

10.1.2.2 数字温度计(用于测环境温度和排气温度,量程应在200-1000℃);

10.1.2.3 气压计(用于测环境气压);

10.1.2.4 压力计(用于测排气阻力,应能耐高温,量程应在0-15kPa);

10.2 试验方法:

10.2.1 传感器的安装:

10.2.1.1 温度计和压力计的传感器应安装在排气歧管(自然吸气发动机)或增压器废气涡轮端(涡轮增压发动机)出口的法兰盘后50-75mm的直管处,在测点处钻两个Φ3孔(孔的直径应略大于热电偶的直径,以便热电偶可以插入管路中),为了保证测量精度,管路内部孔口处应光滑无毛刺,在孔外分别焊接两个带内螺纹短管,其长度约20mm以能保证密封,内螺纹应与热电偶用于连接的外螺纹相同。

10.2.1.2 数字温度计热电偶应为可密封的插入式的带螺纹接头,并将热电偶调整至排气管路的中心。

10.2.1.3 压力计不须插入管路内部,只须保证密封即可。

10.2.2 测试步骤:

10.2.2.1 预先测量试验时外部的气温和气压;

10.2.2.2 如果测试过程中,对增压器进气后的压力也进行测试,则可以根据此压力值来判断发动机是否达到全负荷,如果与发动机参数表中全负荷工况下的增压后进气压力值相差在0.75kPa之内,即可视为发动机在全负荷状态下运行。

10.2.2.3 维持整车全负荷运行10min以上,测量在全负荷状态下排气系统的排气阻力及排气温度,同时测量在发动机最高转速时,排气制动装置启动时的排气压力。

10.2.3 测试记录

外部的气温℃,外部大气压 Pa;

测试过程中增压后进气压力 kPa,发动机参数表要求的增压后进气压力 kPa;

全负荷运行10min后,排气阻力 kPa,排气温度℃,排气制动装置启动时的排气阻力kPa。

10.3 评价标准:

试验结果应与发动机技术参数表中的要求进行对比,如果达到要求,表明排气系统的结构设计合理。

11 设计输出图样和文件的明细

11.1 消声器安装图

11.2 排气管路布置图

11.3 其它零部件图

11.4

消声器设计说明书

J4.1SM0001 1/8 秦山核电二期扩建工程 消声器设计说明书 河南核净洁净技术有限公司

目录 1 总则 (3) 2 设计条件 (3) 2.1 依据文件 (3) 2.2 设计遵循规范、标准 (3) 3 设备设计主要技术参数 (3) 3.1 设备运行环境条件 (3) 3.2 设备主要技术参数 (3) 3.3 设备设计寿命 (4) 3.4 设备承受载荷 (4) 4 设备设计 (4) 4.1 设计原则 (4) 4.2 材料的选择 (4) 4.3 结构设计 (4)

1 总则 本设计说明书是根据秦山二期扩建工程DVD系统消声器设备订货合同及技术 协议书规定编写,适用于秦山核电二期扩建工程3、4 号机组DVD系统消声器设备的设计说明。 2 设计条件 2.1 依据文件 2.1.1 秦山核电二期扩建工程《DVD系统消声器设备订货合同》及技术协议书 2.1.2 秦山核电二期扩建工程《DVD系统消声器设备技术规格书》(核工业第二研究设计院编制,文件编号:0401G0008 A版)。 2.2 设计遵循规范、标准 RCC-M 压水堆核电厂核岛机械设备设计和制造规则 ANSI/ASME N509, Nuclear power plant Air Cleaning unit and Component. ANSI/ASME N510, Testing of nuclear air treatment system ANSI/ASME AG-1 Code on Nuclear Air and Gas Treatment ERDA-76-21 空气净化手册 HAF003 核电厂质量保证安全规定。 GB50243-2002 通风与空调工程施工质量验收规范 GB50019-2003 采暖通风与空气调节设计规范 GB/T 13384 机电产品包装通用技术条件 GB/T 191 包装储运图示标志 GB/T 13306 标牌 3 设备设计主要技术参数 3.1 设备运行环境条件 春季潮湿多雨,夏季炎热,多台风暴雨,秋冬季干燥。地处海边,空气中含盐份,腐蚀性强。室温控制范围:0℃~50℃,大气压力:1006.58~1025.25mbar,年平均相对湿度为81%, 年平均降雨量1494.5mm。 3.2 设备主要技术参数 设备主要技术参数见表1。

排气系统消声器设计技术规范标准

排气消声系统设计技术规范 目录 一、主题与适用范围 1、主题 2 、适用范围 二、排气消声系统的总称说明及功用 三、设计应用 1 、设计规则和输入 2 、设计参数的设定 2.1 尺寸及重量 2.2 排气背压 2.3 功率损失比

2.4 净化效率 2.5 加速行驶车外噪声 2.6 插入损失及传递函数 2.6.1 插入损失 2.6.2 传递函数 2.7 尾管噪声 2.8 定置噪声 2.9 振动 3 、系统及零部件的设计

3.1 系统布置 3.1.1 布置原则 3.1.2 间隙要求 3.1.3 吊钩位置的选取 3.1.4 氧传感器孔的布置 3.2 消声器的容积确定 3.3 排气管径的选取 3.4 消声器 3.4.1 消声器的截面形状 3.4.2 消声器内部结构 3.5 补偿器 3.5.1 波纹管 3.5.2 球形连接 3.6 橡胶吊环 3.7 隔热部件 3.8 材料选择 3.8.1 排气管、消声器内组件 3.8.2 消声器外壳体四、参考文献列表

一、主题与适用范围 1、主题: 本指南规定了与汽车发动机相匹配的排气消声系统的系统匹配,零部件设计。 2、适用范围: 本指南适用于装汽油M1 、N1 类车的排气消声系统设计。 二、排气消声系统的总成说明及功用 排气系统包括排气歧管、排气管、排气净化装置、排气消声装置、隔热部件、弹性吊块等。一般地,排气系统具有以下一些功用: (1) 引导发动机排气,使各缸废气顺畅的排出; (2) 由于排气门的开闭与活塞往复运动的影响,排气气流呈脉动形式,排气门打开时存在一定的压力,具有一定的能量,气体排出时会产生强烈的排气噪声,气体和声波在管道中摩擦也会产生噪声,因此在排气系统装有排气消声器来降低

QCC JT003-2008 汽车排气消声器技术条件

Q/CC 汽车排气消声器技术条件 Automotive exhaust muffler technology specification xx汽车股份有限公司发布

目次 前言................................................................................. II 1 范围 (1) 2 规范性引用文件 (1) 3 术语 (1) 4 技术要求 (2) 5 试验方法 (3) 6 检验规则 (6) 7 标志、包装、运输、贮存、质量保证 (7)

前言 本标准是对Q/CC JT003—2006《汽车排气消声器技术条件》的修订。 本标准修订过程中主要参考了QC/T 631-1999 《汽车排气消声器性能技术条件》和QC/T 630-1999 《汽车排气消声器性能试验方法》这两个行业标准,同时也参考了日本等主要汽车生产国的最新相关标准制定的。 本标准与Q/CC JT003—2006相比,主要变化如下: ----删除了“4 技术要求”中的抗回火性能、防火要求等项; ----删除了“4 技术要求”中的加速行驶试验; ----增加了“5 试验方法”中详细的试验步骤; ----增加了“5 试验方法”中有关填充纤维材料的消声系统或部件的附加技术条件; ----增加了“8 质量保证”。 本标准自实施之日起,代替Q/CC JT003—2006。 本标准的附录A是资料性附录。 本标准由xx汽车股份有限公司技术研究院提出。 本标准由xx汽车股份有限公司技术研究院标准化科归口。 本标准起草单位:xx汽车股份有限公司技术研究院开发中心、K平台部。 本标准主要起草人:曾雷、马立辉。

Hypermesh计算消声器模态

运用Hypermesh计算消声器模态 1 概述 目前许多CAE分析都采用HyperMesh进行网格划分,后期计算采用其它如Nastran,Ansys等分析软件,在多个软件之间的接口,需要设置不同的控制卡片,对于CAE分析来讲比较烦琐,过多的文件转换也容易造成信息遗漏。HyperWorks自带的求解器RADIOSS和后处理软件HyperView可以很好的解决这个问题。整个分析过程在同一个操作界面中可以实现。模态分析是汽车零部件常见的分析工况,本文通过对汽车消声器的计算实例,说明HyperWorks在模态计算方面的应用。 2 消声器结构分析 消声器是汽车上重要的降噪部件。目前消声气多注重声学方面的研究,针对其振动形式研究较少,缺少量化标准。对消声器支架以及消声器安装设计来讲,消声器的振动研究是必要的。本文通过对消声器进行数字化建模,计算其振动模态,并模拟在特定激励下消声器的响应,获取消声器的动力学参数。 2.1 消声器概况 利用CATIA V5R19软件中的钣金模块建立模型。消生器内部采用焊接的方式连接。中间的消声层采用高温耐热材料,将排气的声能转化为热能。为提高计算效率,对模型的一些细节进行了简化。去除焊接部位及边缘的折棱,取消外部的隔热板以及安装的支架。模型如图1所示。 图1 几何模型 2.2 网格的前处理 对将Catia装配模型导入HyperMesh10.0进行网格划分。消声器大部分是薄壁件,用Shell单元对消声器薄板进行划分。导入HyperMesh的零件模型为面元素,进行相应的几何清理,利用HyperMesh里面的midsuface面板进行中面抽取操作。对于体的部分也进行了抽取中面的操作。 分别在各个面上划分网格,为了控制网格的数量,进排气管上,以及共振腔壁面上的圆孔用小方孔近似替代见图2,内部的薄板是焊接在外层蒙皮上的,直接合并结点,将其连接为一体见图3。

柴油机消声器的设计原理及测试方法

第一部分:柴油机消声器设计原理 一、阻性消声器的原理 阻性消声器是利用吸声材料的吸声作用,使沿管道传播截面积的改变或旁接共振腔等在声传播过程引起声阻抗的改变,产生声能的反射与消耗,从而达到消声目的的消声装置。 其主要原理是利用多孔吸声材料来降低噪声。把吸声材料固定在气流通道的内壁上或按照一定方式在管道中排列,就构成了阻性消音器。当声波进入阻性消声器时,一部分声能在多孔材料的孔隙中摩擦而转化成热能耗散掉,使通过消声器的声波减弱。阻性消音器器就好像电学上的纯电阻电路,吸声材料类似于电阻。因此,人们就把这种消声器称为阻性消声器。阻性消声器对中高频消声效果奸、对低频消声效果较差。 阻性消声器形式种类很多,目前用在机房低噪声工程上的主要由直管式消声器和片式消声器两种。其消声性能主要与通道形式、长度及吸声材料的性能有关。直管式消声器是阻性消声器中最简单的一种。 二、阻性消声器设计技术要点: 2.1、正确合理选择阻性消声器的结构形式 对大风量大尺寸进排风要求场合宜选用片式消声器,对消声量要求较高,风压余量较大的进排风场合宜选用折板式或多室式消声器,对确少安装空间的场合可选用百页式消声器。 2.2、正确选用阻性吸声材料 选择阻性消声器内的多孔吸声材料除了应满足吸声性能要求之外,还应注意防潮、耐湿、耐气流冲刷及净化等工艺要求。通常采用离心玻璃棉和矿棉作为吸声材料,如有净化及防纤维吹出要求,则可采用阻燃聚氨脂声学泡沫塑料,对某些地下工程砖砌风道消声,则可选用膨胀珍珠岩吸声砖作为阻性吸声材料。 2.2.1 合理确定阻性消声器内吸声层的厚度及密度 对于一般阻性直管式及片式消声器的吸声片厚度宜为50~100mm,对于低频噪声成分较多的管道消声,则消声片厚度可取150~200mm,而靠消声器外壳的吸声层厚度一般可取消声片厚度的一半;为减少阻塞比,增加气流通道面积,也可将片式消声器的消声片设计成一半为厚片,一半为薄片。消声片内的离心玻璃棉或矿棉的密度通常应选24~48kg/m3,密度大一些对低频消声有利。而阻燃聚氨脂声学泡沫塑料的密度宜为30~40kg/m3。 2.2.2 合理确定阻性消声器内气流通道的断面尺寸 阻性消声器的断面尺寸对消声器的消声性能及空气动力性能均有直接关系。下表为阻性消声器通道断面尺寸控制值,超过该控制值,消声器将呈高频失效状态。

消声器的安装要求

安装给排水、采暖预算知识点 1、给排水管道界线划分 (1)给水管道的室内外界限:以建筑物外墙皮外为分界点,若入口外设有阀门的以阀门为分界点。给水管道与市政管道的界限:给水管道以计量表为界,无计量表的与市政管道碰头点为界 (2)排水管道的室内外界限:以排水管出户第一个检查井为分界点,检查井与检查井之间的管道为室外排水管道。排水管道与市政管道的界限:排水管道以室外排水管道最后一个检查井为界,无检查井的以与市政管道碰头点为界 (3)采暖管道的室内外界限:以建筑物外墙皮为分界点,若入口处设有阀门的以阀门为分界点。室外采暖管道与市政管网的界限:由市政管网统一供热的按各供热站为界,由室外管网至供热站外墙皮处的主管为市政工程。由供热站往外送热的管道以外墙皮处为分界,分界点以外的为采暖工程 2、记取有关费用的规定: (1)设置在管道间(指高层建筑中专为安装管线设置的竖向通道,也称“管道井”)、管廊(指借用宾馆或饭店内封闭的天棚安装管道)内的管道施工的增加费:设置在管道间或管廊内的管道、阀门、法兰、支架,其定额人工乘以系数。(2)高层建筑增加费:指高度在六层或20m以上的工业与民用建筑的增加费,按各册定额规定的系数计取费用 (3)超高增加费:定额中操作物高度均以为界限,如超过时(指至操作物高度),其超过部分的定额人工乘以下列系数 (4)安装与生产同时进行增加费:按人工费的10%计取,全部为人工费 (5)在有害身体健康环境中施工增加费:按人工费的10%计取,全部为人工费(6)采暖工程系统调整费:按采暖工程人工费的15%计算,其中人工工资占20%。采用工程量清单计价模式的工程项目,采暖工程系统调整在分部分项工程量清单中单独列项,单价可参考采暖工程系统调试费 (7)脚手架搭拆费:按分部分项工程人工费的5%计算,其中人工工资占25%。采用工程量清单计价模式的项目,脚手架应列入措施项目清单,单价可参照脚手架搭拆费 3、配水附件:指装在给水支管末端,供给各类卫生器具和用水设备的配水龙头和生产、消防等用水设备 控制阀门:指控制水流方向,调节水量、水压以及关断水流,便于管道、仪表和设备检修和各类阀门 4、识读给排水平面图必须掌握的内容: (1)查明卫生器具、用水设备及升压设备的类型、数量、安装位置、定位尺寸。(2)弄清楚给水引入管和污水排出管的平面位置、走向、定位尺寸、管径、坡度以及与室外管网的连接方式等 (3)查明给水排水干管、立管、支管的平面位置、走向、管径及立管编号 5、识读给排水系统图必须掌握的内容:

排气系统设计开发指南

1.1 主题 本指南制订了与汽车发动机相匹配的消声排气系统的开发流程及设计指南; 1.2 适用范围 本指南适用于汽车消声排气系统的设计开发

2. 参考标准和相关文件 QC/T 631—1999 汽车排气消声器技术条件 QC/T 630—1999 汽车排气消声器性能试验方法 QC/T 58—1993 汽车加速行驶车外噪声测量方法 QC/T 10125—1997 人造气氛腐蚀试验盐雾试验 3.定义 3.1 排气消声器 排气消声器是具有吸声衬里或特殊形式的气流管道,可有效的降低气流噪声的装置。 3.2 插入损失 消声器的插入损失为装消声器前后,通过排气口辐射的声功率级之差。 3.3 排气背压 按QC/T524设置排气背压测量点,当分别带消声器和带空管时,测点处的相对压力值之差。 3.4 功率损失比 消声器的功率损失比是指发动机在标定的工况下,使用消声器前后的功率差值和没有使用消声器时功率的百分比。 4.开发流程及设计指南 4.1 接受产品开发任务并做好开发前的准备工作 开发之初,需要了解如下信息,作为设计输入: 1、发动机的排量、额定功率、额定扭矩等相关参数; 2、整车底盘走向,空间布局; 3、发动机对排气背压、功率损失比的要求; 4、噪声标准的制定; (1)、插入损失大于35dB; (2)、整车车外加速噪声小于74 dB; 4.2 方案设计 1、消声器的容量设计计算 消声器的容量关系到发动机的功率和扭矩,因此容量的设计将决定整车的动力性。一般地,消声器的容量有如下的计算公式: Vm=k×P Vm=消声器的容量(L) K=0.14 P=输出功率(Ps) 2、消声器的位置确定

消音器设计计算书样本

消音器设计计算书 由于中国当前对消音器的设计, 还没有统一的标准规范能够遵照执行, 大多数厂家均根据自己的经验来设计制作, 且技术又相对保密的。因此本消音器的设计, 经查阅大量资料, 采用科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论, 采用节流降压与小孔消音的原理结合现场实际情况来设计解决环境噪声超标的难题。 消音器的工艺参数为: 蒸汽排放绝对压力: 40 kg/ cm2, 排汽温度: 390℃, 蒸汽比容ρ: 0.0721 m3/ kg, 排汽流量 Q: 8t/h; 噪声达到110dB以上, 要求消音器的噪声小于85dB 的环保要求。 一、设计原理。 复合式小孔喷注消音器是利用节流作用降低小孔喷注前的驻压, 预先消耗部分声能, 再dB与小孔降噪相结合, 达到较高的消声量; 其原理是利用节流降压与小孔喷注两种消声机理, 经过适当结构复合而成的。 1. 小孔喷注消音器 小孔喷注消音器的设计机理是根据科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论, 从发声机理上使它的干扰噪声减少, 由于喷注噪声峰值频率与喷口直径成反比, 若喷口直径变小, 喷口辐射的噪声能量将丛低频移向高频, 于是低频噪声被降低, 高频噪声反而增高, 当孔径小到一定值

( 达到mm级) , 实验表明, 当孔径≤4mm时具有移频作用, 喷注噪声将移到人耳不敏感的频率范围( 听觉最敏感的区域250~5000赫兹) ; 根据这一机理将一个大的喷口改为许多小孔来代替, 便能达到降低可听声的目的。从实用角度考虑, 孔径不能选得过小, 因为过小的孔径不但难于加工, 同时易于堵塞, 影响排汽。一般选用直径1~3mm的小孔为宜。 2.节流降压消音器 节流降压消音器是利用节流降压原理而制成的。根据排汽流量的大小, 适当设计通流截面, 使高压气体经过节流孔板时, 压力都能最大限度地降低到临界值。这样经过多级节流孔板串联, 就能把排空的一次压降分散到若干个小的压降。由于排汽噪声功率与压力降的高次方成正比例, 因此把压力突变排空改为压力在消音器内就逐渐降下来再排空, 这样能使消音器内流速控制在临界流速下, 不致产生激波噪声, 压力在最大限度地降到临界值, 使消音器获得较好的消声效果。同时节流降压后小孔喷注层的驻压大大变小, 小孔喷注层强度设计所需的壁厚也大为减薄, 这样给小孔喷注层的钻孔加工减小难度。 消音器入口处的压力一般是给定的, 当排放压力较高时, 为了取得所需的消声值, 经过几次节流降压, 使汽体进入小孔喷注前的压力由消音器入口处的压力P1按比例降低设计; 一般情况下, 节流降压消音器的各级压力选择为等比级数下降, 设节流孔板级数为n, 临界压力比为q (q<1) , 可得:

消声器选型计算

燃气发电机组消声器选型书 燃气发电机组配置465Q-1发动机,发动机相关参数如下: 型式:四冲程、水冷、自然吸气式 发动机排量:0.97L 额定转速:3000r/min 气缸数:4 一、消声器主要结构形式 1.抗性消声器:通常对低、中频带消声效果好,高频消声效果差。 2.阻性消声器:对中、高频消声效果好,通常与抗性消声器组合起来使用 3.阻抗性符合型消声器:对低、中、高频噪声都有很好的消声效果 二、消声器性能要求 1.插入损失 D=L1-L2 式中:D-插入损失,dB; L1-安装消声器前在某点测量的排气声压级,dB;取 111 dB; L2-安装消声器后在某点测量的排气声压级,dB;取91.5 dB; D= 19.5 Db 2.消声器功率损失 R=(P1-P2)/P1×100% 式中:R-发动机额定功率点的功率损失比,%; P1-不带消声器而带空管时的发动机功率,kW; P2-带消声器后发动机功率,kW; 我国汽车消声器行业对不同车型的功率损失要求为:重型汽车R≤3%;中型汽车R≤5%;轻型汽车R≤6%,轿车R≤8%。 功率损失<5% 三、消声器的消声量 首先要确定降低排气噪声的目标值,即由发动机排气噪声大小,频谱特性和消声器所匹配车辆的噪声标准限制来决定消声器消声量大小。根据整车噪声限制来计算消声器出口噪声限制,假设声源特性属线性声源,声衰减量L为: L=10lg(R2/R1) (dB)(A) 式中:R1-消声器出口处噪声限制点到声源点距离;取1m(按试验测试收归返要求); R2-整车噪声限制测点到声源点距离。取7m(按试验测试要求) L=8.45dB 消声量Lm按以下公式计算: Lm=L1-( La+Lb) 式中:La-整机噪声限制,取68bB; Lb-机柜降低的噪声,91.5-72=19.5,取19.5 dB; Lm=111-(68+19.5)=23.5 dB 国华配YH465Q:>25 dB ,可满足要求。 7m处噪声限定值为:

消声器设计

` 噪声污染控制工程设计说明 1.0原始资料 1.1 环境噪声的基本情况 某厂一大型离心风机位于工业厂场附近、距风机出口左侧100m 处有一座办公楼,右侧及前方为菜地。由于出气口噪声很高,影响工程技术人员及人们的工作效率;另外,风机房内噪声也很高,但操作者经常呆在隔声间内,故机壳和电机的噪声危害不大,可以不予考虑。鉴于上述情况,可对排气噪声采取控制措施。风机、办公楼的平面布置图如图1-0。 图1-0:风机、办公楼的平面布置图 在办公楼窗前1m 处测得的环境噪声如下表所示: 1.2 离心风机的基本情况 大型离心风机K2-73-02No32F 风机的性能参数:功率为2500 kw ,风量为9500 m 3 /h ,风机叶片数=12,转数n 为600 r/min 。出风口为直角扩散弯头,出口呈3 m × 3 m 的正方形。在风机排风口左侧45°方向1m 处,测得A 声级为109 dB ,其倍频带声压级如下表所示。 1.3 有关标准和设计规范说明

本设计重所参考的标准同设计规范均以《工业企业噪声设计规范》GBJ87-85、《城市区域环境噪声标准》GB3069-2008为基准。 1.4 设计任务 1)设计一消声器使得风机排风口左侧45°方向1m 处的A 声级降为75dB 。 2)根据环境标准的要求,检验在办公楼窗前1m 处,根据所采用的消声器能否满足该功能区的声环境要求。 ; 2.0 消声器的设计计算 2.1 消声器的选择 阻性消声器是利用气流管道内的不同结构形式的多孔吸声材料吸收声能来降低噪声的消声器。片式消声器适用风量大,结构简单,中高频消声性能优良,气流阻力也小。从本设计的风量Q=9500m 3 /h 、频率来看,可选定片式的阻性消声器。 2. 2 消声量的计算 根据ISO 提出的用A 声级作为噪声评价标准,当A 声级Lp 大于75dB (A )时: 5 575570Lp NR NR Lp dB =+=-=-=因为 所以 根据NR =70查NR 曲线,找各倍频处的声压级,将结果写于噪声设计表的第二行 / 2.3 消声器的面积与通道结构的确定 根据设计数据气流速度宜小于8m/s,所以本设计选取V=6m/s 消声器的总面积:m V Q S 44.06 36009500 =?== 设计选用3个通道,则单个气流通道面积S 1: m 147.03 44.0n S S 1=== 2 根据经验片式消声器的片距宜取100~200mm ,片厚宜取100~150mm,在本设计中设片距b 1=110mm 、片厚b 2=150mm 。计算气流通道的结构参数如下:

消音器设计计算书

消音器设计计算书 由于我国目前对消音器的设计,还没有统一的标准规范可以遵照执行,大多数厂家均根据自己的经验来设计制作,且技术又相对保密的。因此本消音器的设计,经查阅大量资料,采用科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论,采用节流降压与小孔消音的原理结合现场实际情况来设计解决环境噪声超标的难题。 消音器的工艺参数为:蒸汽排放绝对压力:40 kg/ cm2,排汽温度:390℃,蒸汽比容ρ:0.0721 m3/ kg,排汽流量Q:8t/h; 噪声达到110dB以上,要求消音器的噪声小于85dB的环保要求。 一、设计原理。 复合式小孔喷注消音器是利用节流作用降低小孔喷注前的驻压,预先消耗部分声能,再dB与小孔降噪相结合,达到较高的消声量;其原理是利用节流降压与小孔喷注两种消声机理,通过适当结构复合而成的。 1. 小孔喷注消音器 小孔喷注消音器的设计机理是根据科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论,从发声机理上使它的干扰噪声减少,由于喷注噪声峰值频率与喷口直径成反比,若喷口直径变小,喷口辐射的噪声能量将丛低频移向高频,于是低频噪声被降低,高频噪声反而增高,当孔径小到一定值(达到mm 级),实验表明,当孔径≤4mm时具有移频作用,喷注噪声将移

到人耳不敏感的频率范围(听觉最敏感的区域250~5000赫兹); 根据这一机理将一个大的喷口改为许多小孔来代替,便能达到降低可听声的目的。从实用角度考虑,孔径不能选得过小,因为过小的孔径不仅难于加工,同时易于堵塞,影响排汽。一般选用直径1~3mm的小孔为宜。 2.节流降压消音器 节流降压消音器是利用节流降压原理而制成的。根据排汽流量的大小,适当设计通流截面,使高压气体通过节流孔板时,压力都能最大限度地降低到临界值。这样通过多级节流孔板串联,就能把排空的一次压降分散到若干个小的压降。由于排汽噪声功率与压力降的高次方成正比例,所以把压力突变排空改为压力在消音器内就逐渐降下来再排空,这样能使消音器内流速控制在临界流速下,不致产生激波噪声,压力在最大限度地降到临界值,使消音器获得较好的消声效果。同时节流降压后小孔喷注层的驻压大大变小,小孔喷注层强度设计所需的壁厚也大为减薄,这样给小孔喷注层的钻孔加工减小难度。 消音器入口处的压力通常是给定的,当排放压力较高时,为了取得所需的消声值,经过几次节流降压,使汽体进入小孔喷注前的压力由消音器入口处的压力P1按比例降低设计;通常情况下,节流降压消音器的各级压力选择为等比级数下降,设节流孔板级数为n,临界压力比为q (q<1) ,可得: n g P P q (1)后前 根据气体状态方程、连续性方程和临界流速公式,由资料可

汽车消声器角板冲压模具设计开题报告(5)

毕业设计(论文)开题报告题目:汽车消声器角板冲压模具设计

过程,根据分析结果,设计人员可预测某一工艺方案成形的可行性及可能出现的质量问题,并通过在计算机上选择修改相关参数,可实现工艺及模具的优化设计。这样既节省了昂贵的试模费用,也缩短了制模具周期。 研究推广能提高生产率及产品质量、降低成本和扩大冲压工艺应用范围的各种压新工艺,也是冲压技术的发展方向之一。目前,国内外相继涌现出精密冲压工艺、软模成形工艺、高能高速成形工艺及无模多点成形工艺等精密、高效、经济的冲压新工艺[10]。 2. 本课题研究的主要内容和拟采用的研究方案、研究方法或措施 2.1本课题研究的主要内容 (1)对给定零件进行工艺分析并确定工艺方案; (2)模具总体结构设计及相关工艺计算; (3)进行模具零部件的设计; (4)绘制模具装配图和非标准件的零件图; (5)完成模具的proe三维造型; (6)编写设计说明书(论文); 消声器角板(如下图) (三维及二维) 图2.11二维图

图2.12三维图 2.2采用的研究方案、研究方法或措施 本次设计按照工艺分析——工艺方案确定——模具结构设计的思路进行。 (1) 方案对该工件包括落料、冲孔、弯曲三个基本工序,可有以下三个工艺方案:方案一:先落料,后冲孔,最后弯曲。采用单工序模生产;方案二:落料——冲孔复合模,弯曲单工序模。方案三:冲孔—切口—弯曲—落料,采用级进冲模[11]。 (2) 方案分析 方案一:结构简单,需要三道工序三幅模具,模具制作简单,易于生产,适合于小批量的生产[12];方案二:该方案经计算可落料冲孔复合和弯曲单工序模,只需要2幅模具,生产效率高,但是复合模具制造成本高,调整维修较麻烦[13]。方案三:生产效率高,但是模具设计和制造复杂[14]。 (3) 方案确定闰土机械外文翻译成品某宝dian 因为方案一使用的模具设计相对简单,适合刚学习冲压模具设计者,所以选择方案一。 3. 本课题研究的重点及难点,前期已开展工作 3.1本课题研究的重点及难点 (1)通过对消声器角板的工艺分析,确定工作的重点主要集中在模具工作部分零件的设计(比如:凸模、凹模、凸凹模),然后进行各种固定板的设计和相关尺寸计算和校核[15]。 (2)设计时前后工序的关联性以及模具的关联性,合理安排工序,尽量使模具的结构

汽车消声器及排气管的设计非常实用

汽车消声器及排气管的 设计非常实用 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

消声器及排气管的设计 消声器及排气管的设计 消声器的主要作用是降低发动机的排气噪声,并使高温废气能安全有效地排出。消声器作为排气管道的一部分,应保证其排气畅通、阻力小及足够强度。消声器要经受500~700。C高温排气,保证在汽车规定的行驶里程内,不损坏、不失去消声效果。 1、消声器的主要结构形式 汽车消声器按消声原理与结构可分为抗性消声器、阻性消声器和阻抗复合型消声器三类 1抗性消声器 抗性消声器是在内部通过管道、隔板等部件组成扩张室、共振室等各种消声单元时,声波在传播时发生反射和干涉,降低声能量达到消声目的。抗性消声器消声频带有限,通常对低、中频带消声效果好,高频消声效果差,货车多采用抗性消声器。 阻性消声器 是在内部排气通过的管道周围填充吸声材料来吸收声能量达到消声目的的消声器。对中、高频消声效果好,单纯用作汽车排气消声器较少,通常与抗性消声器组合起来使用。 阻抗复合型消声器 是分别用抗性消声单元和吸声材料组合构成的消声器,它具有抗性、阻性消声器的共同特点。对低、中、高频噪声都有很好的消声效果。 2、消声器的性能要求 消声量 大小以消声器的插入损失来评价。插入损失是指装消声器前后在消声器出口某固定点测量的排气声压级之差。 D=L1-L2 式中:D——插入损失,dB L1——安装消声器前在某点测量的排气声压级,dB L2——安装消声器后在某点测量的排气声压级,dB 在实际测量时先测量不装消声器的排气噪声。按插入损失定义,为保证测量点位置不变,用一根同消声器等长、管径与消声器进气管相同的空管代替消声器。再测量装消声器时的排气声压级。 2 消声器功率损失 评价发动机额定功率点的功率损失比R的计算公式为: R=(P1-P2)/P1×100% 式中:P1——不带消声器而带空气管时的发动机功率,KW P2——带消声器后发动机功率,KW 功率损失比要求为:重型车R≤3%;中型车R≤5%;轻型车R≤6%。 实际测量中,用直接测量消声器排气背压来评价消声器性能。货车柴油车一般为10Kpa。 3 结构强度 主要是指抗震性、密封性、抗回火性等。消声器台架试验中经20次试验后,消声器不出现咬口或焊接部位损坏。试验完毕后测量漏气量总和不超过200L/min,插入损失下降不大于3 dB,功率损失比增加不大于%。 3设计要点 1确定消声器的消声量 设计消声器时首先要确定降低排气噪声的目标值,即由发动机排气噪声大小,频谱特性和消声器所匹配车辆的噪声标准限值来决定消声器消声量大小。假设声源特性属线性声源,声衰减量L为: L=10Lg(R2/R1)

消声器设计

噪声污染控制工程设计说明 1.0原始资料 1.1 环境噪声的基本情况 某厂一大型离心风机位于工业厂场附近、距风机出口左侧100m 处有一座办公楼,右侧及前方为菜地。由于出气口噪声很高,影响工程技术人员及人们的工作效率;另外,风机房内噪声也很高,但操作者经常呆在隔声间内,故机壳和电机的噪声危害不大,可以不予考虑。鉴于上述情况,可对排气噪声采取控制措施。风机、办公楼的平面布置图如图1-0。 图1-0:风机、办公楼的平面布置图 在办公楼窗前1m 处测得的环境噪声如下表所示: 1 .2 离心风机的基本情况 大型离心风机K2-73-02No32F 风机的性能参数:功率为2500 kw ,风量为9500 m 3 /h ,风机叶片数=12,转数n 为600 r/min 。出风口为直角扩散弯头,出口呈3 m × 3 m 的正方形。在风机排风口左侧45°方向1m 处,测得A 声级为109 dB ,其倍频带声压级如下表所示。

1.3 有关标准和设计规范说明 本设计重所参考的标准同设计规范均以《工业企业噪声设计规范》GBJ87-85、《城市区域环境噪声标准》GB3069-2008为基准。 1.4 设计任务 1)设计一消声器使得风机排风口左侧45°方向1m 处的A 声级降为75dB 。 2)根据环境标准的要求,检验在办公楼窗前1m 处,根据所采用的消声器能否满足该功能区的声环境要求。 2.0 消声器的设计计算 2.1 消声器的选择 阻性消声器是利用气流管道内的不同结构形式的多孔吸声材料吸收声能来降低噪声的消声器。片式消声器适用风量大,结构简单,中高频消声性能优良,气流阻力也小。从本设计的风量Q=9500m 3 /h 、频率来看,可选定片式的阻性消声器。 2. 2 消声量的计算 根据ISO 提出的用A 声级作为噪声评价标准,当A 声级Lp 大于75dB (A )时: 5 575570Lp NR NR Lp dB =+=-=-=因为 所以 根据NR =70查NR 曲线,找各倍频处的声压级,将结果写于噪声设计表的第二行 2.3 消声器的面积与通道结构的确定 根据设计数据气流速度宜小于8m/s,所以本设计选取V=6m/s 消声器的总面积:m V Q S 44.06 36009500 =?== 设计选用3个通道,则单个气流通道面积S 1:

消音器计算说明书

消音器计算说明书 位号:HX-6465计算书 一、以知数据 以知设计参数 名称流量(kg/hr)温度(℃)压力(kg/cm2g) 蒸汽消声器41371170.1 以知声频率带功率级 二、设计计算结果 1、根据声率级表格数据可知;该噪音源八个倍频带总声压级为90dB(A)。根据相关环保卫士标准,我们需要将消声器后A声级降到85dB(A)以下。所需消音量如下: △LA=90-85=5dB(A);及消声器最低消音量不得小于5dB(A)。消声片长度我们设计为L=1.0m; 根据△LAo=ψ×a o×(P/S)×L △LAo=1.2×0.8×(1.33/0.085)×1=18.4dB(A)>5dB(A)。 消声后:△Lo=90-18.4=71.6dB(A) 故消音量满足设计要求。 2、消声器外筒钢板采用5mm厚的钢板;根据质量定理可以计算出隔音量为28dB(A);28dB(A)>5dB(A)满足消声器设计要求。 3、消声器上限频率:消声器通道宽度我们设计为0.15m,经计算消声器上限截止频率为3594H Z。倍频带为4000~8000的声功率为80dB(A)<85dB(A);故消声器宽度符合设计要求。 4、消声器下限频率:吸声片宽度我们设计为0.1m,经计算消声器下限截止频

率为78H Z。计算发现消声器对频率低于78H Z倍频带消音效果稍差;但是我们可以通过提高消声器的整体消音量(18.4dB(A))来满足低频消音量的要求。 5、气体流速对消声量影响:消声器总流通面积为0.17m2,计算流速为10.8m/s。 △Lo"=△Lo(1+M)-2 △Lo"=71.6(1+0..032)-2=72.8dB(A)。△Lo"<85dB(A) 故消声器满足设计要求。 位号:HX-6402计算书 一、以知数据 以知设计参数 名称流量(kg/hr)温度(℃)压力(kg/cm2g) 蒸汽消声器63406229.60.5 以知声频率带功率级 二、设计计算结果 1、根据声率级表格数据可知;该噪音源八个倍频带总声压级为90dB(A)。根据相关环保卫士标准,我们需要将消声器后A声级降到85dB(A)以下。所需消音量如下: △LA=90-85=5dB(A);及消声器最低消音量不得小于5dB(A)。消声片长度我们设计为L=1.3m; 根据△LAo=ψ×a o×(P/S)×L △LAo=1.2×0.8×(9.47/0.66)×1.3=17.9dB(A)>5dB(A)。 消声后:△Lo=90-17.9=72.1dB(A)

消声器设计计算

计算并设计一消声器,用于频率为100Hz的发动机排气消声器,消声量不小于30dB,需选定已知内壁管壁厚,开孔个数,每个孔直径,扩张室直径,排气管道直径为5cm,用三维软件画出设计图。 消声器类型消声原理主要应用 阻性消声器(中高频)多孔性吸声材料的吸收 风机、通风空调、燃气轮机 等设备的进、排气噪声 抗性消声器(低频好)管道阻抗变化所产生的声反 射和耗损 空压机的进气噪声、内燃 机、汽车的排气噪声等 阻抗复合型消声器联合阻性消声器和抗性消声 器的消声机理 采用阻性消声器、抗性消声 器的场所 扩散消声器改变喷注结构、降低喷口的压 力和流速 高温、高压、高速气流等高 声强噪音 噪声按声音的频率可分为:<400Hz的低频噪声、400~1000Hz的中频噪声及>1000Hz的高频噪声。根据设计要求及各种消声器的适用范围,选用抗性消声器进行设计改进。 抗性消声器 消声原理:通过控制声抗的大小来进行消声的。与阻性消声器不同,它不使用吸声材料而是在管道上接截面积突变的管段或旁接共振腔,声波在管道截面的突然扩张(或收缩),造成通道内声阻抗突变,使声波传播方向发生改变,某些频率的声波在声阻抗突变的界面发生反射、干涉等现象,从而在消声器的外测,达到了消声的目的。

消声的频率特性:具有中、低频消声性能。 适用范围:消除空压机、内燃机、汽车排气噪声(气体流速较高气速的情况) 抗性消声器具有的特点: (1)不需要使用多孔吸声材料 (2)耐高温、抗潮 (3)流速较大,洁净 (4)对低频、窄带噪声有较好的效果。 常用抗性消声器的类型: (1)扩张室式消声器 (2)共振腔消声器 (3)干涉式消声器 按共振腔消声器进行设计: (1)倍频带消声量不小于30dB,由式: K L+ 102 ? = lg 20 ) 1( 302 K + 10 = lg 20 ) 1( 查表 不同频带下的消声量△L 与K值的关系 频带 0.2 0.4 0.6 0.8 1.0 1.5 2 3 4 5 6 8 10 15 类别 倍频 1.1 1.2 2.4 3.6 4.8 7.5 9.5 12.8 1 5.2 17 18.6 20 23 27 带 1/3倍 2.5 6.2 9.0 11.2 1 3.0 16.4 19 22.6 25.1 27 28.5 31 33 36.5 频带 2 / 4

阻性消声器的设计与消声量计算方式

阻性消声器的设计 (1)确定消声量 根据法规、标准及声源确定消声器所需的消声量。在大多数情况下,消声量是以A计权声级计算。参照相应的NR曲线,确定各倍频带或1/3倍频带需要的消声量。 (2)选定消声器的结构形式 根据消声器的流量和允许的流速大小(一般情况下,流速控制决定于阻力要求和消声器消声量要求),确定所需要的通流面积,然后根据通流面积的大小来选定消声器的结构形式。按照一般的常规设计,通道的当量直径小于300mm 时,可选用单通道直管式;当通道当量直径大于300mm而小于500mm时,应在通道中加设吸声层或吸声芯,消声器的有效通流面积要扣除吸声层或吸声芯所占面积,以避免由于流速增加而引起的不良影响;当直径大于500mm时,当考虑采用片式、蜂窝式等其他形式的消声器。 (3)选用吸声材料 吸声材料声学性能的好坏是决定消声器声学性能的重要因素。除首先考虑其声学性能外,还需考虑消声器的实际使用条件。在高温、潮湿、有腐蚀气体等特殊环境中使用的消声器,应考虑吸声材料的耐热、防潮、抗腐蚀性能。 (4)决定消声器长度 在通道截面确定后,增加消声器的长度可以提高消声量。消声器的长度主要根据声源强度和具体的降噪要求决定,还应注意现场有限空间所允许的安装尺寸。 (5)选择吸声材料的护面结构 由于消声器中一般要通过具有一定流速的气流,所以必须采用护面结构固定

和保护吸声材料。 XW-Ⅲ型.Ⅳ型微穿孔板消声器 XW-Ⅲ型.Ⅳ型微穿孔板消声器为圆形。其中XW-Ⅲ型是单空腔结构,XW-Ⅳ型是双空腔结构。 XW-Ⅲ型消声量为 15-20dB(A), XW-Ⅳ型消声量为20-25dB(A)。XW-Ⅲ型.Ⅳ型消声器压力损失10-40Pa(风速5-15m/s)。有效长度L=2m,安装长度L1=2.16m。 XW-Ⅲ型微穿孔板消声器结构外形图 XW-Ⅳ型微穿孔板消声器结构外形图 2 150 350 450 540 3 200 400 500 890 4 250 450 550 1400 5 300 540 640 1850 6 350 620 720 2880 7 400 700 800 3590 8 450 750 850 4550 9 500 820 920 5620 10 550 870 970 7110 11 600 1000 1100 8100 12 650 1080 1180 9000

汽车消声器及排气管的设计

消声器及排气管的设计 消声器及排气管的设计 消声器的主要作用是降低发动机的排气噪声,并使高温废气能安全有效地排出。消声器作为排气管道的一部分,应保证其排气畅通、阻力小及足够强度。消声器要经受500~700。C高温排气,保证在汽车规定的行驶里程内,不损坏、不失去消声效果。 1、消声器的主要结构形式 汽车消声器按消声原理与结构可分为抗性消声器、阻性消声器和阻抗复合型消声器三类 1抗性消声器 抗性消声器是在内部通过管道、隔板等部件组成扩张室、共振室等各种消声单元时,声波在传播

时发生反射和干涉,降低声能量达到消声目的。抗性消声器消声频带有限,通常对低、中频带消声效果好,高频消声效果差,货车多采用抗性消声器。 阻性消声器 是在内部排气通过的管道周围填充吸声材料来吸收声能量达到消声目的的消声器。对中、高频消声效果好,单纯用作汽车排气消声器较少,通常与抗性消声器组合起来使用。 阻抗复合型消声器 是分别用抗性消声单元和吸声材料组合构成的消声器,它具有抗性、阻性消声器的共同特点。对低、中、高频噪声都有很好的消声效果。2、消声器的性能要求 消声量

大小以消声器的插入损失来评价。插入损失是指装消声器前后在消声器出口某固定点测量的排气声压级之差。 D=L1-L2 式中:D——插入损失,dB L1——安装消声器前在某点测量的排气声压级,dB L2——安装消声器后在某点测量的排气声压级,dB 在实际测量时先测量不装消声器的排气噪声。按插入损失定义,为保证测量点位置不变,用一根同消声器等长、管径与消声器进气管相同的空管代替消声器。再测量装消声器时的排气声压级。 2 消声器功率损失 评价发动机额定功率点的功率损失比R的计算

汽车排气消声器发展的研究

汽车排气消声器发展的研究 汽车噪声的来源主要是发动机噪声,而在发动机噪声中,排气噪声是主要的噪声来源,使用消声器是降低发动机排气噪声的有效途径。排气消声器随着科技的进步也在不断的发展,其设计方法也在不断的创新。 标签:消声器;汽车噪声;噪声控制 1 汽车噪声的来源 汽车噪声由多个声源产生,而其中影响较大的声源有,发动机自身噪声和其振动所致的噪声;汽车在行驶过程中,地面和汽车相互作用产生的噪声;汽车在速度较快时,空气所致的噪声。在发动机低转速运转时,发动机的噪声是在整车噪声中最主要的噪声,因此降低汽车噪声,首先要降低发动机噪声。 发动机噪声的声源并不是单一的,它们主要有机械部件运转产生的噪声,进、排气噪声,风扇运转产生的噪声,燃料燃烧时的噪声等。其中最主要的噪声来源为排气噪声,因此降低排气噪声,即可很好的降低发动机的噪声,这样一来,就可以有效的降低汽车噪声。目前,利用消声器降低排气噪声是降低发动机噪声的便利方法。 2 汽车排气消声器在国内外的发展状况 目前汽车上使用的消声器主要有无源消声器和有源消声两种类型。在无源消声器中,最常用的为抗性消声器,主要利用声音在共振室和扩展腔里反复衰减而降低噪声。此外,阻性消声器和阻抗复合型消声器也经常被使用在汽车上。阻性消声器的降噪原理与抗性消声器不同,阻性消声器主要是利。阻抗复合型消声器是将阻性消声器和抗性消声器合理组合,来实现消声的。 有源消声器利用声波干涉的原理来降低噪声,需要在原声场中引入次级声源,使其与原声源相互作用,而降低噪声,它是噪声主动控制的一种形式。 3 消声器的研究方法和设计方法 科技的进步带动了各行业的迅速发展,消声器的研究设计方法也一样,从最初的手工分析法,不断的发展为现在的计算机辅助设计。最初在二十世纪二十年代的早期,美国的Stewart首先提出了消声器的研究设计理论,这一理论被人们称为抗性声滤清器理论。在四十年代中期,消声器的设计中引入了数学方法,蔡超通过数学矩阵计算出了消声器的声学传递矩阵。在五十年代中期,Davis在截面突变处声压和体积振动速度的连续性和一维波动方程的理论基础上,分析计算得出了膨胀腔和侧支共振的特性。到了五十年代的后期,Igarashi在研究设计中引入了四端网络原理,他利用等效电路法,研究出消声器的传递特性,并利用四级参数矩阵的形式加以表示。经过十几年的不断研究、总结和创新,消声器的设

相关主题
文本预览
相关文档 最新文档