当前位置:文档之家› 压铸件的结构要素

压铸件的结构要素

压铸件的结构要素
压铸件的结构要素

压铸件的结构要素

3.1 壁厚

压铸件的合理壁厚取决于铸件的具体结构、合金性能和压铸工艺等许多因素,为了满足各方面的要求,以正常、均匀壁厚为佳。大面积的薄壁成型比较困难;壁厚过大或严重不均匀则易产生缩陷及裂纹。随着壁厚的增加,压铸件材料力学性能明显下降(图2-4)。推荐采用的正常壁厚及最小壁厚见表2-20。对大型铝合金压铸件,壁厚也不宜超过6mm 。

图2-4压铸件壁厚对抗拉强度的影响 表2-20压铸件的最小壁厚和正常壁厚

最小正常

最小正常最小正常

最小正常≤25

0.5 1.50.8 2.00.8 2.00.8 1.5>25~100 1.0 1.8 1.2 2.5 1.2 2.5 1.5 2.0>100~500 1.5 2.2 1.8 3.0 1.8 3.0 2.0 2.5>500

2.0

2.5

2.5

4.0 2.5

4.0

2.5

3.0

壁的单面面积a*b(cm2)壁厚h(mm)锌合金铝合金

镁合金

铜合金

3.2肋

设计肋来增加零件的强度和刚性,同进也改善了压铸的工艺性,使金属的流路顺畅,消除单纯依靠加大壁厚而过分聚焦引起的气孔、裂纹和收缩缺陷。一般采用的肋结构和铸件壁厚的关系,见表2-21.肋h1,斜度a 和肋顶端圆角半径r1的关系见表2-22。

说明

b =t -1.4h h 1≤5t h 1>0.8 a ≥3°

r1=a a h a b sin 1sin cos 5.0--

R2=31

(t+b)

b —肋的根部宽度 h —铸件壁厚 h1—肋的高度

H2—肋端距离壁端高度 a —斜度

r1—外圆角半径 r2—内圆角半径

h1/mm a r1/mm h1/mm a r1/mm h 1≤20 3° ≤0.527b-0.055h

30<h ≤40 2°

0.518b-0.036h 20<h ≤30

2°30′ ≤0.522b-0.046h

40<h ≤60 1°30′

0.513b-0.027h

注:h 为铸件壁厚,b 为肋的根部宽度。 3.3铸孔

压铸工艺的特点之一,是能直接铸出比较深的小孔。小孔直径、孔径与深度的关系见表2-23。选用表2-23应同时考虑孔径和孔距的关系,其范围如图2-5所示。当孔径与孔距不相适应时,可采取阻碍收缩的措施以减少收缩力(图2-6),或将型芯延伸到相对型壁的方法(图2-7),消除悬臂状受力。

表2-23铸孔最小孔径以及孔径与深度的关系

注:1.表内深度系指固定型芯而言,对于活动的单个型芯其深度还可能适当增加。 2.对于较大的孔径,精度要求不高时,孔的深度亦可超出上述范围。

d>5d<5d>5d<5锌合金 1.50.56d 4d 12d 8d 铝合金 2.5 2.04d 3d 8d 6d

镁合金 2.0 1.55d 4d 10d 8d

铜合金 4.0 2.53d 2d 5d 3d

合金最小孔径d/mm 深度为孔径d 的倍数不通孔通孔经济上合理的技术上可能的

孔的直径/mm

图2-5 在自由收缩条件下孔径与孔距的关系

图2-6将型芯延伸到相对型壁内消除悬臂状受力图2-7用阻碍收缩的措施减少收缩力

3.4铸件外侧边缘的最小壁厚

为了保证铸件良好的成型条件,铸件的外侧边缘应保持一定的壁厚,边缘壁厚s与深度h的关系,见表2-24。

3.5铸造圆角半径

铸造圆角半径可使金属液流畅,气体容易排出,并可避免因锐角而产生裂纹。铸造圆角半径的计算见表2-25。

表2-24边缘壁厚与深度的关系

厚 范 围(mm )

s ≥(31

41~)h

当h <4.5时,s ≥1.5

相连接两壁的厚度

图例 圆角半径

说明

相等壁厚

r 最小=Kh r 最大=h R=r+h

对锌合金铸年K=41; 铝、镁、铜合金铸件K=21 不同壁厚

r ≥3h h 1+

R=r+2h h 1+

3.6脱模斜度

脱模斜度大小与铸件几何开关如高度或深度、壁厚及型腔或型芯表面状态如粗糙度、加工纹路方向等有关。在允许范围内,宜采用圈套的脱模斜度,以减小所需要的推出力或抽芯力。推荐的脱模斜度见表2-26。

外表面α内表面β外表面α内表面β锌合金0°10′0°15′0°15′0°45′铝、镁合金0°15′0°15′0°30′1°铜合金

0°30′

0°30′

1°30′

合金配合面的最小脱模斜度非配合面的最小脱模斜度

注:1.由此斜度而引起的铸件尺寸的偏差,不计入尺寸公差值内。

2.表中数值仅适用于型腔深度或型芯高度≤50mm ,表面粗糙度在R a 0.1。但大端与小端尺寸的单面差的最小值为0.03mm 。当深度或高度>50mm ,或表面粗糙度超过R a 0.1时,则脱模斜度可适当减小。

3.7螺纹

压铸外螺纹时,由于铸件或模具结构的需要,采用两半分型的螺纹型环时,需考虑留有0.2~0.3mm 加工余量。

内螺纹虽可铸出,但需要螺纹型芯旋出装置,模具结构复杂,所以一般先铸出底孔,再由机械加工成内螺纹。

可压铸的螺纹尺寸见表2-27.

表2-27可压铸的螺纹尺寸

外螺纹内螺纹外螺纹内螺纹锌合金0.7561085铝合金 1.0102064镁合金 1.061464铜合金

1.5

12

-6

-

最小螺距合金最大螺纹长度(螺距的倍数)最小螺纹外径

注:压铸铝合金螺纹须留有0°30′的出模斜度,铜合金压铸件螺纹一般不铸出。 压铸出的螺纹牙应成平头或圆头,图2-8为平头螺纹牙形。 3.8齿轮

压铸齿轮最小模数可按表2-28选取,其出模斜度按表2-26中β值选取。对要求精度高的齿轮,齿面应留有0.2-0.3mm 的加工余量。

2-28压铸齿轮的最小模数

3.9凸纹与直纹

压铸凸纹或直纹,其纹路一般应平行于出模方向,并具有一定的出模斜度,其值按表2-26中β值选取.推荐的凸纹或直纹的结构尺寸见表2-29.

3.10槽隙

槽隙的结构见图2-9,其尺寸见表2-30.表中的厚度h 与深度H 是当宽度b 为最小极限时的值.当宽度b 大于表中数值时,深度与厚度可适当增加.

表2-29 凸纹与直纹结构尺寸

简图

零件直径D/mm

凸纹半径R/mm 凸纹节距/t 凸纹高度h/mm

<180.5~1.05~6R 18~500.8~0.45R

50~80 1.0~5.05R 80~120

2.0~6.0

4~5R

0.8R

а=90°~100°h=0.6~1.2

2-30槽隙尺寸( mm )

合 金 最小模数mm

锌 合 金 0.3 铝合金、镁合金 0.5 铜 合 金 1.5

3.11铆钉头

压铸件与其他零件铆接时,其铆钉头可在压铸时与压铸件同时铸出.压铸铆钉头的尺寸见表2-31.

表2

-31 铆钉头尺寸

注:d的尺寸精度按IT12级精度偏差之半选取,并加以“±”。

3.12网纹

对于较大面积平板状零件或其他开关零件,为减少或消除表面上的流痕或花班等缺陷,常在表

面上设置网纹或网点。网络的造型以有利于模具制造和铸件出模为原则,平板状零件的网纹结构和尺寸见图2-10.

3.13文字、标志和图案

在铸件上设计文字、标志和图案时,为了适应模具制造的特点,应采用凸纹。

文字大小一般不小于GB126-74规定的5号字,文字凸出高度大于0.3mm,一般取

0.5 mm,

线条最小宽度一般为凸出高度的 1.5倍,常取

0.8 mm,线条最小间隔距离大于0.3 mm,出模

斜度为10°~15°,线端应避免锐角。图案设计国求简单,美观大方。图2-10平板状零件的网纹结构和尺寸

3.14嵌件

铸件上采用嵌件的目的

1)使铸件局部具有某些特殊性能,如强度、硬度、耐蚀性、耐磨性、导磁性、导电性、绝缘性、焊接性等,以扩大压铸件的应用范围。

2)改善压铸件的工艺性,如消除局部热节、消除侧凹、细长孔、曲折腔道等阻碍抽芯或出模的部位。

3)以压铸件本身作为嵌件,可以代替部分装配工序或达到将复杂件转化为简单件的目的。

设计带嵌件的压铸件注意事项

1)为使嵌件可靠地与铸件相结合,防止径向或轴向移动,应在嵌件表面或端部滚花、开槽或采取其他相应措施。对于轴类嵌件的结构形式按表2-32选用,对于套类嵌件按表2-33选用。

形式螺头钉螺栓开槽凸台滚花十字销十字头

形式平槽凸缘削平六角环槽尖锥环槽滚花环槽

2)嵌件周围应包有一定的金属层,以提高铸件与嵌件的包紧力,并防止金属层产生裂纹,金属层厚度可按嵌件直径选取(表2-34)

嵌件直径d 周围金属层最小厚

周围金属层外径D

度s

1.0 1.0 3

3 1.5 6

5 2 9

8 2.5 13

11 2.5 16

13 3 19

16 3 22

18 3.5 25

3)设计铸件时要考虑到嵌件在模具中的定位,要保证嵌件在受到金属液冲击时不脱落、不偏

移。

4)嵌件应有倒角,以利安放并避免铸件裂纹。

5)除有特殊安放嵌件的措施外,一般在同一铸件上嵌件数不宜大多,以免压铸时因安放嵌件而降低生产率和影响正常工作循环。

6)带有嵌件的铸件一般应避免热处理和表面处理,以免嵌件在铸件中松动和产生腐蚀。

7)嵌件在压铸前最好能镀以防蚀性保护层,以防嵌件与铸件金属本身产生电化学腐蚀。

3.15加工余量

当铸件由于尺寸精度或形位公差达不到产品图的要求时,应首先考虑采用精整加工方法,如校正、拉光、

挤压、整形等。必须采用机械加工时应考虑选用较小的加工余量并尽量以不受分型面及活动成型影响的表

面为毛坯基准面。推荐采用的机械加工余量及其偏差值如表2-36中的偏差范围。当加工余量受脱模斜度影

响时,一般应尽可能控制大端和小端的余量值都符合表2-36中的偏差范围。过大的加工余量往往导致暴露

不够致密的内部组织。加工余量在毛坯图上的习惯画法,见图2-11,铰孔余量见表2-37.

3.16压铸件的表面质量

用新模具压铸可获得R

a

0.8um表面粗糙度的压铸件。在模具的正常使用寿命内,锌合金压铸件

能保持在R

a 1.6~3.2范围;铝合金压铸件能大致在R

a

3.2~6.3范围;铜合金压铸件表面最差,受

模具龟裂的影响很大。以表面粗糙度为依据的压铸件表面质量分级见表2-38.

对于允许的压铸件各类表面缺陷不同级别的要求如表2-39.压铸件经机械加工后,加工表上允许存在的缺陷如表2-40,加工后螺纹的表面质量要求见表2-41.

表2-38压铸件表面质量分级

表2-39各类压铸件的表面缺陷(JB2702-80)

注:对于1级及有特殊要求的面,只允许有经抛光或研磨能去除的缺陷。

表2-40机械加工后加工表面上允许孔穴缺陷的规定(JB2702-80)

表2-41机械加工后螺纹允许孔穴的规定(JB2702-80)

注:螺纹的最前面两扣上不允许缺陷。

零件结构的铸造工艺性分析

零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1.铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。 每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1)壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表1-1~表1-5

表1-1 砂型铸造时铸件最小允许壁厚(单位:㎜) 表1-2 熔模铸件的最小壁厚(单位:㎜)

表1-3 金属型铸件的最小壁厚(单位:㎜) 表1-4 压铸件的最小壁厚(单位:㎜) (2)铸件的临界壁厚 在铸件结构设计时,为了充分发挥金属的潜力,节约金属,必须考虑铸造合金的力学性能对铸件壁厚的敏感性。厚壁铸件容易产生缩孔、缩松、晶粒粗大、偏析和松软等缺陷,从而使铸件的力学性能下降。从这个方面考虑,各种铸造合金都存在一个临界壁厚。铸件的壁厚超过临界壁厚后,铸件的力学性能并不按比例地随着铸件壁厚的增加而增加,而是显著下降。因此,铸件的结构设计应科学

压铸件设计规范

?压铸件设计规范 ?一、壁厚 压铸件的壁厚对铸件质量有很大的影响。以铝合金为例,薄壁比厚壁具有更高的强度和良好的致密性。因此,在保证铸件有足够的强度和刚性的条件下,应尽可能减少其壁厚,并保持壁厚均匀一致。 铸件壁太薄时,使金属熔接不好,影响铸件的强度,同时给成型带来困难;壁厚过大或严重不均匀则易产生缩瘪及裂纹。随着壁厚的增加,铸件内部气孔、缩松等缺陷也随之增多,同样降低铸件的强度。 压铸件的壁厚一般以2.5~4mm为宜,壁厚超过6mm的零件不宜采用压铸。 推荐采用的最小壁厚和正常壁厚见表1。 表1 压铸件的最小壁厚和正常壁厚 我司现使用的绝大多数为铝压铸件,其壁厚一般控制在2.0~2.5mm。 二、铸造圆角和脱模斜度 1)铸造圆角 压铸件各部分相交应有圆角(分型面处除外),使金属填充时流动平稳,气体容易排出,并可避免因锐角而产生裂纹。对于需要进行电镀和涂饰的压铸件,圆角可以均匀镀层,防止尖角处涂料堆积。 压铸件的圆角半径R一般不宜小于1mm,最小圆角半径为0.5 mm,见表2。 铸造圆角半径的计算见表3。

表2 压铸件的最小圆角半径(mm) 我司现采用的圆角一般取R1.5。 表3 铸造圆角半径的计算(mm) 说明:①、对锌合金铸件,K=1/4;对铝、镁、合金铸件,K=1/2。 ②、计算后的最小圆角应符合表2的要求。 2) 脱模斜度 设计压铸件时,就应在结构上留有结构斜度,无结构斜度时,在需要之处,必须有脱模的工艺斜度。斜度的方向,必须与铸件的脱模方向一致。推荐的脱模斜度见表4。

表4 脱模斜度 说明:①、由此斜度而引起的铸件尺寸偏差,不计入尺寸公差值内。 ②、表中数值仅适用型腔深度或型芯高度≤50mm,表面粗糙度在Ra0.1,大端与小端尺寸的单面差的最小值为0.03mm。当深度或高度>50mm,或表面粗糙度超过Ra0.1时,则脱模斜度可适当增加。 我司现采用的脱模斜度一般取1.5°。 一般采用的加强筋的尺寸按图1选取: t1=2 t /3~t;t2=3 t /4~t; R≥t/2~t; h≤5t;r≤0.5mm (t—压铸件壁厚,最大不超过6~8mm)。 四、铸孔和孔到边缘的最小距离 1)铸孔 压铸件的孔径和孔深,对要求不高的孔可以直接压出,按表5。 表5 最小孔径和最大孔深

铸造工艺设计实例

轴承座铸造工艺设计说明书 一、工艺分析 1、审阅零件图 仔细审阅零件图,熟悉零件图,而且提供的零件图必须清晰无误,有完整的尺寸和各种标记。仔细查图样。注意零件图的结构是否符合铸造工艺性,有两个方面:(1)审查零件结构是否符合铸造艺的要求。 (2 )在既定的零件结构条件下,考虑铸造过程中可能出现的主要缺陷,在工艺设计中采取措施避零件名称:轴承座 零件材料:HT150 生产批量:大批量生产 2、零件技术要求 铸件重要的工作表面,在铸造是不允许有气孔、砂眼、渣孔等缺陷。 3、选材的合理性 铸件所选材料是否合理,一般可以结合零件的使用要求、车间设备情况、技术状况和经济成本等,考常 用铸造合金(如铸钢、灰铸铁、球墨铸铁、可锻铸铁、蠕墨铸铁、铸造铝合金、铸造铜合金等)的类、 牌号、性能、工艺特点、价格和应用等,进行综合分析,判断所选的合金是否合理。 4、审查铸件结构工艺性 铸件壁厚不小于最小壁厚5-6又在临界壁厚20-25以下。 二、工艺方案的确定 1、铸造方法的确定 铸造方法包括:造型方法、造芯方法、铸造方法及铸型种类的选择 (1)造型方法、造芯方法的选择 根据手工造型和机器造型的特点,选择手工造型 (2)铸造方法的选择 根据零件的各参数,对照表格中的项目比较,选择砂型铸造。 (3)铸型种类的选择

根据铸型的特点和应用情况选用自硬砂。 2、浇注位置的确定 根据浇注位置选择的4条主要规则,选择铸件最大截面,即底面处。 3、分型面的选择 本铸件采用两箱造型,根据分型面的选择原则,分型面取最大截面,即底面。 三、工艺参数查询 1、加工余量的确定 根据造型方法、材料类型进行查询。查得加工余量等级为11~13, 取加工余量等级为12。 根据零件基本尺寸、加工余量等级进行查询。查得铸件尺寸公差数值为10。 根据零件尺寸公差、公差等级进行查询。查得机械加工余量为5.5。 2、起模斜度的确定 根据所属的表面类型查得测量面高140,起模角度为0度25分(0.42°)。 3、铸造圆角的确定 根据铸造方法和材料,查得最小铸造圆角半径为3。 4、铸造收缩率的确定 根据铸件种类查得:阻碍收缩率为0.8~1.0,自由收缩率为0.9~1.1。 5、最小铸造孔的选择 根据孔的深度、铸件孔的壁厚查得最小铸孔的直径是80mm. 四、浇注系统设计 (一)、浇注位置的确定 根据内浇道的位置选择底注式, (二)、浇注系统类型选择 根据各浇注系统的特点及铸件的大小选用封闭式浇注系统。 (三)、浇注系统尺寸的确定 1、计算铸件质量:

铸造、压铸标准

铸造、压铸标准 技术标准是国际贸易中的准则,是作为设计、制造、验收产品的依据。广东省铸造学会、广东省压铸学会收录了部分标准:铸造和压铸的中国国家标准、行业标准,以及美、欧、日、澳、德、俄等国家的相应标准。 压铸标准包括:(一)通用标准;(二)压铸机标准;(三)压铸模标准;(四)合金及工艺标准,包括铝合金、镁合金、锌合金、铜合金、铅锡合金等。 铸造标准包括:(一)基础通用与铸造工艺技术标准;(二)铸钢标准;(三)铸铁标准;(四)铸造有色合金标准;(五)造型材料标准;(六)熔模铸造标准等。 压铸标准目录 一、通用标准 中国GB/T24001-1996 idt ISO 14001:1996 环境管理体系规范及使用指南GB/T19001-2000 idt ISO/FDIS9001:2000 质量管理体系––要求 GB/T5611-1998铸造术语 HB7578-1997铸件试制定型规范 GB/T8063-94 铸造有色金属及其合金牌号表示方法 GB/T13822-92 压铸有色合金试样 GB5678-85 铸造合金光谱分析取样方法 HB5343-94 铸造工艺质量控制 GB/T6414-1999 铸件尺寸公差及机械加工余量 GB/T15056-94 铸造表面粗糙度评定方法 二、压铸机标准 中国JB/T8083-1999 压铸机型式与基本参数 JB/T8084.1-1999 冷室压铸机精度 JB/T8084.2-1999 冷室压铸机技术条件 JB/T6039.2-92 热室压铸机精度 JB/T6039.3-92 热室压铸机技术条件 三、压铸模标准 中国GB8844-88 压铸模技术条件 GB8847-88 压力铸造模具术语 GB4678.1~15-84 压铸模零件

铸造工艺设计步骤

铸造工艺设计: 就是根据铸造零件的结构特点,技术要求,生产批量和生产条件等,确定铸造方案和工艺参数,绘制铸造工艺图,编制工艺卡等技术文件的过程.设计依据: 在进行铸造工艺设计前,设计者应掌握生产任务和要求,熟悉工厂和车间的生产条件,这些是铸造工艺设计的基本依据.设计内容: 铸造工艺设计内容的繁简程度,主要决定于批量的大小,生产要求和生产条件.一般包括下列内容: 铸造工艺图,铸件(毛坯)图,铸型装配图(合箱图),工艺卡及操作工艺规程.设计程序: 1零件的技术条件和结构工艺性分析;2选择铸造及造型方法;3确定浇注位置和分型面;4选用工艺参数;5设计浇冒口,冷铁和铸肋;6砂芯设计;7在完成铸造工艺图的基础上,画出铸件图;8通常在完成砂箱设计后画出;9综合整个设计内容.铸造工艺方案的内容: 造型,造芯方法和铸型种类的选择,浇注位置及分型面的确定等.铸件的浇注位置是指浇注时铸件在型内所处的状态和位置.分型面是指两半铸型相互接触的表面.确定砂芯形状及分盒面选择的基本原则,总的原则是: 使造芯到下芯的整个过程方便,铸件内腔尺寸精确,不至造成气孔等缺陷,使芯盒结构简单.1保证铸件内腔尺寸精度;2保证操作方便;3保证铸件壁厚均匀;4应尽量减少砂芯数目;5填砂面应宽敞,烘干支撑面是平面;6砂芯形状适应造型,制型方法.铸造工艺参数通常是指铸型工艺设计时需要确定的某些数据.1铸件尺寸公差: 是指铸件各部分尺寸允许的极限偏差,它取决于铸造工艺方法等多种因素.2主见重量公差定义为以占铸件公称质量的百分率为单位的铸件质量变动的允许值.3机械加工余量: 铸件为保证其加工面尺寸和零件精度,应有加工余量,即在铸件工艺设计时预先增加的,而后在机械加工时又被切去的金属层厚度,称为机械加工余量,简称加工余量.代号用MA,由精到粗分为ABCDEFGH和J9个等级。

压铸件的结构工艺性研讨

设计铸件时,从哪几方面考虑压铸件的结构工艺性 1.熟练掌握工程制图标准和表示方法。掌握公差配合的选用和标注。 2.熟悉常用金属材料的性能、试验方法及其选用。掌握钢的热处理原理,熟悉常用金属材料的热处理方法及其选用。了解常用工程塑料、特种陶瓷、光纤和纳米材料的种类及应用。 3.掌握机械产品设计的差不多知识与技能,能熟练进行零、部件的设计。熟悉机械产品的设计程序和差不多技术要素,能用电子计算机进行零件的辅助设计,熟悉有用设计方法,了解现代设计方法。 4.掌握制订工艺过程的差不多知识与技能,能熟练制订典型零件的加工工艺过程,并能分析解决现场出现的一般工艺问题。熟悉铸造、压力加工、焊接、切(磨)削加工、特种加工、表面涂盖处理、装配等机械制造工艺的差不多技术内容、方法和特点并掌握某些重点。熟悉工艺方案和工艺装备的设计知识。了解生产线设计和车间平面布置原则和知识。 5.熟悉与职业相关的安全法规、道德规范和法律知识。熟悉经济和治理的基础知识。了解治理创新的理念及应用。

6.熟悉质量治理和质量保证体系,掌握过程操纵的差不多工具与方法,了解有关质量检测技术。 7.熟悉计算机应用的差不多知识。熟悉计算机数控(CNC)系统的构成、作用和操纵程序的编制。了解计算机仿确实差不多概念和常用计算机软件的特点及应用。 8.了解机械制造自动化的有关知识。 Ⅱ.考试内容 一、工程制图与公差配合 1.工程制图的一般规定 (1)图框 (2)图线 (3)比例 (4)标题栏 (5)视图表示方法 (6)图面的布置 (7)剖面符号与画法 2.零、部件(系统)图样的规定画法 (1)机械系统零、部件图样的规定画法(螺纹及螺纹紧固件的画法齿轮、齿条、蜗杆、蜗轮及链轮的画法花键的画法及其尺

压铸件结构设计规范

压铸件结构设计 压铸件结构设计是压铸工作的第一步。设计的合理性和工艺适应性将会影响到后续工作的顺利进行,如分型面选择、内浇口开设、推出机构布置、模具结构及制造难易、合金凝固收缩规律、铸件精度保证、缺陷的种类等,都会以压铸件本身工艺性的优劣为前提。 1、压铸件零件设计的注意事项 ⑴、压铸件的设计涉及四个方面的内容: a、即压力铸造对零件形状结构的要求; b、压铸件的工艺性能; c、压铸件的尺寸精度及表面要求; d、压铸件分型面的确定;压铸件的零件设计是压铸生产技术中的重要部分,设计时必须考虑以下问题:模具分型面的选择、浇口的开设、顶杆位置的选择、铸件的收缩、铸件的尺寸精度保证、铸件内部缺陷的防范、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面; ⑵、压铸件的设计原则是: a、正确选择压铸件的材料; b、合理确定压铸件的尺寸精度; c、尽量使壁厚分布均匀; d、各转角处增加工艺园角,避免尖角。 ⑶、压铸件分类按使用要求可分为两大类,一类承受较大载荷的零件或有较高相对运动速度的零件,检查的项目有尺寸、表面质量、化学成分、力学性能(抗拉强度、伸长率、硬度);另一类为其它零件,检查的项目有尺寸、表面质量及化学成分。 在设计压铸件时,还应该注意零件应满足压铸的工艺要求。压铸的工艺性从分型面的位置、顶面推杆的位置、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面考虑。合理确定压铸面的分型面,不但能简化压铸型的结构,还能保证铸件的质量。 ⑷、压铸件结构的工艺性: 1)尽量消除铸件内部侧凹,使模具结构简单。 2)尽量使铸件壁厚均匀,可利用筋减少壁厚,减少铸件气孔、缩孔、变形等缺陷。 3)尽量消除铸件上深孔、深腔。因为细小型芯易弯曲、折断,深腔处充填和排气不良。 4)设计的铸件要便于脱模、抽芯。 5)肉厚的均一性是必要的。 6)避免尖角。 7)注意拔模角度。 8)注意产品之公差标注。 9)太厚太薄皆不宜。 10)避免死角倒角(能少则少)。 11)考虑后加工的难易度。 12)尽量减少产品内空洞。 13)避免有半岛式的局部太弱的形状。 14)太长的成形孔,或太长的成形柱皆不宜。 2、压铸件零件设计 ⑴、压铸件的形状结构 a、消除内部侧凹; b、避免或减少抽芯部位; c、避免型芯交叉;合理的压铸件结构不仅能简化压铸型的结构,降低制造成本,同时也改善铸件质量。 ⑵、壁厚 压铸件的壁厚对铸件质量有很大的影响。以铝合金为例,薄壁比厚壁具有更高的强度和良好的致密性。因此,在保证铸件有足够的强度和刚性的条件下,应尽可能减少其壁厚,并保持壁厚均匀一致。 铸件壁太薄时,使金属熔接不好,影响铸件的强度,同时给成型带来困难;壁厚过大或严重不均匀则易产生缩瘪及裂纹。随着壁厚的增加,铸件内部气孔、缩松等缺陷也随之增多,同样降低铸件的强度。 压铸件的壁厚一般以2.5 ~4mm为宜,壁厚超过6mm的零件不宜采用压铸。推荐采用的最小壁厚和正常壁厚见表1。

压铸件技术要求

压铸件技术要求 平面图上的未注尺寸按3D图做出。 1.0机械特性: 1.1本图上未标注的线性尺寸公差按下表(见图上的表格内的尺寸范围及选用公差),下表未 涵盖之处见标准NADCA S-4-1/2/3-94。 1.2中心线的误差为±0.12。 1.3除另有规定外,拔模斜度按1.5°±20′,壁厚小于1.5mm的侧壁的出模斜度见标准 NADCA S-4-4-94。 1.4图上显示为锐角的地方的倒角(包括倒直角、倒圆角)必须小于0.25mm。 1.5标识为“REF”的尺寸仅供参考。 1.6图上尺寸为喷涂、电镀前的尺寸。 2.0喷涂要求(不需喷涂的产品不适用) 2.1对指定的表面喷油,纹理结构(撒点处理)按客户的样板。 2.2 所有螺纹孔不可进油。 2.3 涂层厚度要符合规格要求。 2.4 对于有明确规定的要进行两次喷涂的表面上的螺纹孔必须用夹具保护住。 颜色:RAL 7012 纹理结构:精细的鹅卵石状(撒点处理) 3.0模具方面的要求 3.1在正式的模具设计之前,模具的水口及顶针位置必须与客户的机械工程部讨论决定,要 提供完整的模具图以备批复。 3.2模具至少要啤10万模次,所有表面抛光。 3.3新模及改模后要交样板(附全尺寸报告)给客户机械工程部批复。所有零件必须经得书面 批复后方可批量生产。 3.4如模具有多个模穴,则每模穴的样板都要经批复。 3.5内浇口残留量小于0.15mm。 3.6顶针痕凸起0.15mm以下,凹下0.4以下。 3.70.12mm以下可接受。 3.8 表示分模线。 3.9以下。 3.10在模上制作包含年、月的日期编码,日期编码外圆直径在8.0mm以下。 3.11若有需要,客户商标及模穴标记(多模穴的模具)必须铸出,字体清晰可见,字高3.5mm, 深0.2mm,字不可凸起于产品表面。 3.12模具及模具设计文件(包括图纸)归客户所有,虽然由供应商保养,但客户在有需要时, 可随时取回。 4.0品质控制及外观标准 4.1此产品为外观件,所有曲线及倒圆角处必须平滑过渡。 4.2外部(可视)表面不可有缩水、粘模、气孔、划伤及其它污渍。 4.3零件必须除净毛刺,不可有锐角及其它问题。 4.4标有“CPK”的尺寸为重要的设计参数,供应商要随机抽取5个计算CPK,CPK≥1.5 为合格。若不能满足,另外随机抽25个(总共30个)测验以确保CPK测定结果的有效性。每次交货时要提供打印好的CPK报告给客户的机械工程部。 4.5在零件上不可有供应商的商标及其它标识。 5.0包装要求 每件零件分开包装,避免搬运及运输过程中损坏。

压铸工艺流程图示

上海旭东压铸技术咨询培训资料 压铸工艺参数 一、压铸工艺流程图示 2,压铸模安装 17,终检验 5,涂料配制

上海旭东压铸技术咨询培训资料压铸工艺参数 二、压射压力 注:t1 金属液在压室中未承受压力的时间;P1为一级(慢速)t2 金属液于压室中在压射冲头的作用下,通过内浇口充填型腔的时间;P2为二级(快速) t3 充填刚刚结束时的舜间;P3为三级(增压) t4 最终静压力;P4为补充压实铸件 4P y P b= Лd2 式中:P b 比压(Mpa); Py 机器的压射力(N); (压射力=压射缸直径×蓄压器压射时间最小压力) d 压室(冲头)直径(MM) 选择比压考虑的的主要因素 上海旭东压铸技术咨询培训资料压铸工艺参数

比压 因素选择条件 高低 壁厚薄壁厚壁压铸件结构形状复杂简单 工艺性差些好些 结晶温度范围大小压铸合金特性流动性差好 密度大小 比强度大小 阻力大小浇注系统散热速度快慢 公布合理不太合理排溢系统截面积大小 内浇口速度快慢 温度合金与压铸模具温度大小 ●压铸各种合金常用比压表(Mpa) 铸件壁厚≤3(mm) 铸件壁厚>3(mm)合金结构简单结构复杂结构简单结构复杂 锌合金20-30 30-40 40-50 50-60 铝硅、铝铜合金25-35 35-45 45-60 60-70 铝、镁合金30-40 40-50 50-65 65-75 镁合金30-40 40-50 50-65 65-80 铜合金40-50 50-60 60-70 70-80 ●压力损失折算系数K 直浇道导入口截面F1, K值与内浇铸口截面F2之比>1 =1 <1 立式冷室压铸机 0.66-0.70 0.72-0.74 0.76-0.78 卧式冷室压铸机0.88

压铸件结构设计

压铸件结构创新设计(经验) 压铸件零件设计的注意事项 一、压铸件的设计涉及四个方面的内容:a、即压力铸造对零件形状结构的要求;b、压铸件的工艺性能;c、压铸件的尺寸精度及表面要求;d、压铸件分型面的确定; 压铸件的零件设计是压铸生产技术中的重要部分,设计时必须考虑以下问题:模具分型面的选择、浇口的开设、顶杆位置的选择、铸件的收缩、铸件的尺寸精度保证、铸件内部缺陷的防范、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面; 二、压铸件的设计原则是:a、正确选择压铸件的材料,b、合理确定压铸件的尺寸精度;c、尽量使壁厚分布均匀;d、各转角处增加工艺园角,避免尖角。 三、压铸件按使用要求可分为两大类,一类承受较大载荷的零件或有较高相对运动速度的零件,检查的项目有尺寸、表面质量、化学成分、力学性能(抗拉强度、伸长率、硬度);另一类为其它零件,检查的项目有尺寸、表面质量及化学成分。 在设计压铸件时,还应该注意零件应满足压铸的工艺要求。压铸的工艺性从分型面的位置、顶面推杆的位置、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面考虑。合理确定压铸面的分型面,不但能简化压铸型的结构,还能保证铸件的质量。 压铸件零件设计的要求 一、压铸件的形状结构要求:a、消除内部侧凹;b、避免或减少抽芯部位;c、避免型芯交叉; 合理的压铸件结构不仅能简化压铸型的结构,降低制造成本,同时也改善铸件质量, 二、铸件设计的壁厚要求:压铸件壁厚度(通常称壁厚)是压铸工艺中一个具有特殊意义的因素,壁厚与整个工艺规范有着密切关系,如填充时间的计算、内浇口速度的选择、凝固时间的计算、模具温度梯度的分析、压力(最终比压)的作用、留模时间的长短、铸件顶出温度的高低及操作效率; a、零件壁厚偏厚会使压铸件的力学性能明显下降,薄壁铸件致密性好,相对提高了铸件强度及耐压性; b、铸件壁厚不能太薄,太薄会造成铝液填充不良,成型困难,使铝合金熔接不好,铸件表面易产生冷隔等缺陷,并给压铸工艺带来困难; 压铸件随壁厚的增加,其内部气孔、缩孔等缺陷增加,故在保证铸件有足够强度和刚度的前提下,应尽量减小铸件壁厚并保持截面的厚薄均匀一致,为了避免缩松等缺陷,对铸件的厚壁处应减厚(减料),增加筋;对于大面积的平板类厚壁铸件,设置筋以减少铸件壁厚; 根据压铸件的表面积,铝合金压铸件的合理壁厚如下: 压铸件表面积/mm2 壁厚S/mm ≤25 1.0~3.0 >25~100 1.5~4.5 >100~400 2.5~5.0

铝合金压铸工艺

压铸产品基本工艺流程 压铸工艺是将压铸机、压铸模和合金三大要素有机地组合而加以综合运用 的过程。而压铸时金属按填充型腔的过程,是将压力、速度、温度以及时间等工艺因素得到统一的过程。模具结构设计、热处理工艺、模具制造及模具装配对铝合金压铸模寿命的影响。 压铸工艺流程图示

1.11压铸工艺原理 压铸工艺原理是利用高压将金属液高速压入一精密金属模具型腔内,金属液在压力作用下冷却凝固而形成铸件。冷、热室压铸是压铸工艺的两种基本方式,其原理如图1-1所示。冷室压铸中金属液由手工或自动浇注装置浇入压室内,然后压射冲头前进,将金属液压入型腔。在热室压铸工艺中,压室垂直于坩埚内,金属液通过压室上的进料口自动流入压室。压射冲头向下运动,推动金属液通过鹅颈管进入型腔。金属液凝固后,压铸模具打开,取出铸件,完成一个压铸循环。 1.12压铸工艺的特点 优点 (1)可以制造形状复杂、轮廓清晰、薄壁深腔的金属零件。。压铸件的尺寸精度较高,表面粗糙度达Ra0.8—3.2um,互换性好。 (2)材料利用率高。由于压铸件的精度较高,只需经过少量机械加工即可装配使用,有的压铸件可直接装配使用。生产效率高。由于高速充型,充型时间短,金属业凝固迅速,压铸作业循环速度快。方便使用镶嵌件。 (3)缺点 (1)由于高速填充,快速冷却,型腔中气体来不及排出,致使压铸件常有气孔及氧化夹杂物存在,从而降低了压铸件质量。不能进行热处理。 (2)压铸机和压铸模费用昂贵,不适合小批量生产。 (3)压铸件尺寸受到限制。压铸合金种类受到限制。主要用来压铸锌合金、铝合金、镁合金及铜合金。 1.13压铸工艺的应用范围 压铸生产效率高,能压铸形状复杂、尺寸精确、轮廓清晰、表面质量及强度、硬度都较高的压铸件,故应用较广,发展较快。目前,铝合金压铸件产量较多,其次为锌合金压铸件。 第二章压铸合金

铸造工艺设计基础

铸造工艺设计基础 铸造生产周期较长,工艺复杂繁多。为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的前提下,尽可能地降低生产成本和改善生产劳动条件。本章主要介绍铸造工艺设计的基础知识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。 §1-1 零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1.铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。 每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1)壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表7-1~表7-5 合金种类铸件最大轮廓尺寸为下列值时/㎜ ﹤200200-400400-800800-12501250-2000﹥ 2000 碳素铸钢 低合金钢 高锰钢 不锈钢、耐热钢灰铸铁 孕育铸铁 (HT300以上)球墨铸铁8 8-9 8-9 8-11 3-4 5-6 3-4 9 9-10 10 10-12 4-5 6-8 4-8 11 12 12 12-16 5-6 8-10 8-10 14 16 16 16-20 6-8 10-12 10-12 16~18 20 20 20-25 8-10 12-16 12-14 20 25 25 - 10-12 16-20 14-16铸件最大轮廓为下列值时mm

压铸件的结构工艺性

压铸件的结构工艺性 1.熟练掌握工程制图标准和表示方法。掌握公差配合的选用和标注。 2.熟悉常用金属材料的性能、试验方法及其选用。掌握钢的热处理原理,熟悉常用金属材料的热处理方法及其选用。了解常用工程塑料、特种陶瓷、光纤和纳米材料的种类及应用。 3.掌握机械产品设计的基本知识与技能,能熟练进行零、部件的设计。熟悉机械产品的设计程序和基本技术要素,能用电子计算机进行零件的辅助设计,熟悉实用设计方法,了解现代设计方法。 4.掌握制订工艺过程的基本知识与技能,能熟练制订典型零件的加工工艺过程,并能分析解决现场出现的一般工艺问题。熟悉铸造、压力加工、焊接、切(磨)削加工、特种加工、表面涂盖处理、装配等机械制造工艺的基本技术内容、方法和特点并掌握某些重点。熟悉工艺方案和工艺装备的设计知识。了解生产线设计和车间平面布置原则和知识。 5.熟悉与职业相关的安全法规、道德规范和法律知识。熟悉经济和管理的基础知识。了解管理创新的理念及应用。 6.熟悉质量管理和质量保证体系,掌握过程控制的基本工具与方法,了解有关质量检测技术。 7.熟悉计算机应用的基本知识。熟悉计算机数控(CNC)系统的构成、作用和控制程序的编制。了解计算机仿真的基本概念和常用计算机软件的特点及应用。 8.了解机械制造自动化的有关知识。 Ⅱ.考试内容 一、工程制图与公差配合 1.工程制图的一般规定 (1)图框 (2)图线 (3)比例 (4)标题栏 (5)视图表示方法 (6)图面的布置 (7)剖面符号与画法 2.零、部件(系统)图样的规定画法 (1)机械系统零、部件图样的规定画法(螺纹及螺纹紧固件的画法齿轮、齿条、蜗杆、蜗轮及链轮的画法花键的画法及其尺寸标注弹簧的画法) (2)机械、液压、气动系统图的示意画法(机械零、部件的简化画法和符号管路、接口和接头简化画法及符号常用液压元件简化画法及符号) 3.原理图 (1)机械系统原理图的画法 (2)液压系统原理图的画法 (3)气动系统原理图的画法 4.示意图 5.尺寸、公差、配合与形位公差标注 (1)尺寸标注 (2)公差与配合标注(基本概念公差与配合的标注方法) (3)形位公差标注 6.表面质量描述和标注 (1)表面粗糙度的评定参数 (2)表面质量的标注符号及代号

铸造工艺方法确定

第一章铸造工艺方案确定 1.夹具的生产条件,结构,技术要求 ●产品生产性质——大批量生产 ●零件材质——35Cr ●夹具的零件图如图所示,夹具的外形轮廓尺寸为285mm*120mm*140mm,主要壁厚40mm,为一小型铸件;铸件除满足几何尺寸精度及材质方面的要求外,无其他特殊技术要求。零件图如下图所示: 2.夹具结构的铸造工艺性 零件结构的铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸件工艺过程和降 低成本。审查、分析应考虑如下几个方面: 1.铸件应有合适的壁厚,为了避免浇不到、冷隔等缺陷,铸件不应太薄。 2.铸件结构不应造成严重的收缩阻碍,注意薄壁过渡和圆角铸件薄厚壁的相接拐弯等厚度的壁与壁的各种交接, 都应采取逐渐过渡和转变的形式,并应使用较大的圆角相连接,避免因应力集中导致裂纹缺陷。 3.铸件内壁应薄于外壁铸件的内壁和肋等,散热条件较差,应薄于外壁,以使内、外壁能均匀地冷却,减轻 内应力和防止裂纹。 4.壁厚力求均匀,减少肥厚部分,防止形成热节。 5.利于补缩和实现顺序凝固。 6.防止铸件翘曲变形。 7.避免浇注位置上有水平的大平面结构。 3.造型,造芯方法的选择 支座的轮廓尺寸为285mm*140mm*120mm,铸件尺寸较小,属于中小型零件且要大批量生产。采用湿型粘土砂造型灵活性大,生产率高,生产周期短,便于组织流水生产,易于实现机械化和自动化,材料成本低,节省烘干设备、燃料、电力等,还可延长砂箱使用寿命。因此,采用湿型粘土砂机器造型,模样采用金属模是合理的。 在造芯用料及方法选择中,如用粘土砂制作砂芯原料成本较低,但是烘干后容易产生裂纹,容易变形。在大批量生产的条件下,由于需要提高造芯效率,且常要求砂芯具有高的尺寸精度,此工艺所需的砂芯采用热芯盒法生产砂芯,以增加其强度及保证铸件质量。选择使用射芯工艺生产砂芯。 4.浇注位置的确定

(新)压铸件零件设计的注意事项_

压铸件零件设计的注意事项 一、压铸件的设计涉及四个方面的内容:a、 即压力铸造对零件形状结构的要求;b、压铸件的工艺性能;c、压铸件的尺寸精度及表面要求;d、压铸件分型面的确定; 压铸件的零件设计是压铸生产技术中的重要部分,设计时必须考虑以下问题:模具分型面的选择、浇口的开设、顶杆位置的选择、铸件的收缩、铸件的尺寸精度保证、铸件内部缺陷的防范、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面; 二、压铸件的设计原则是:a、正确选择压 铸件的材料,b、合理确定压铸件的尺寸精度;c、尽量使壁厚分布均匀;d、各转角处增加工艺园角,避免尖角。 三、压铸件按使用要求可分为两大类,一类 承受较大载荷的零件或有较高相对运动速度的零件,检查的项目有尺寸、表面质量、化学成分、力学性能(抗拉强度、伸长率、硬度);另一类为其它零件,检查的项目有尺寸、表面质量及化学成分。在设计压铸件时,还应该注意零件应满足压铸的工艺要求。压铸的工艺性从分型面的位置、顶面推杆的位

置、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面考虑。合理确定压铸面的分型面,不但能简化压铸型的结构,还能保证铸件的质量。 压铸件零件设计的要求 一、压铸件的形状结构要求:a、消除内部侧凹; b、避免或减少抽芯部位; c、避免型芯交叉; 合理的压铸件结构不仅能简化压铸型的结构,降低制造成本,同时也改善铸件质量, 二、铸件设计的壁厚要求:压铸件壁厚度(通常称壁厚)是压铸工艺中一个具有特殊意义的因素,壁厚与整个工艺规范有着密切关系,如填充时间的计算、内浇口速度的选择、凝固时间的计算、模具温度梯度的分析、压力(最终比压)的作用、留模时间的长短、铸件顶出温度的高低及操作效率; a、零件壁厚偏厚会使压铸件的力学性能明显下降,薄壁铸件致密性好,相对提高了铸件强度及耐压性; b、铸件壁厚不能太薄,太薄会造成铝液填充不良,成型困难,使铝合金熔接不好,铸件表面易产生

铸造工艺结构

铸造工艺结构 (1)拔模斜度 在铸造造型时,为了便于把模型从砂型中取出,通常在铸件沿拔模方向的内、外壁上均制有约 1:20的斜度,叫拔模斜度,如图9b所示。拔模斜度通常较小,木模常为l°~3°;金属模为°~2°。所以拔模斜度一般不画出,但不标注,如图9a所示。 图9 铸造件上的拔模斜度 (2}铸造圆角 在浇铸铸件时,为了避免在铁水冷却时产生裂纹,同时也为了防止在取模时损坏砂型,在铸件各表面相交处均以圆角过渡,这种圆角就叫铸造圆角,如图10所示。在零件图上,铸造圆角必须画出。铸造圆角的半径应与铸件的壁厚相适应,其半径值一般取为3~5毫米。铸造圆角也可在技术要求中作统一说明。 在相交两平面中,任问一个表面加工后;圆角就被切去,此时该处就应画成尖角,如 图10所示。 (3)铸件壁厚 为了保证铸件的制造质量,铸件各部分的壁厚应保持均匀一致,特别要避免突然改变壁厚和局部肥大的现象。这样可以防止铸件在浇铸时,由于各部分冷却速度不一致,而在壁较厚外形成缩孔,或在较厚壁与较薄壁的交界处产生裂纹,如图11所示。 (4)、过渡线 由于铸造工艺上的要求,铸件两表面相交处存在铸造圆角。这时零件表面的交线就不明显;但为了增强图形的直观性,在相交处仍然要画出原有的交线;称为过渡线。 过渡线的画法与原有相贯线或截交线的画法相同。但由于存在有铸造圆角,因此交线的两端不再与零件的轮廓线相接触、如图12所示,为内圆柱相交时,内、外表面上过渡线的画法。具体画图时,首先应按没有圆角的情况画出相贯钱,然后再在轮廓线处画出小圆角。 图13所示,为零件上常见的圆柱和肋板相交,且相交处有圆角过渡时的画法。很明显,过渡线的形状与肋板和圆柱是相交还是相切,以及肋板本身的断面形状有关。

钣金件-压铸件-挤压件-塑胶件结构工艺设计指南

结构设计工艺手册

前言 公司现有零件中,不仅在打样过程中经常会有一些加工工艺性的问题,也有很多归档转产的零件存在加工困难的情况,不仅影响生产进度和交货,也影响结构件的质量。如钣金零件的折弯,经常会发生折弯碰刀的情况;落料的外圆角、半圆凸台、异型孔的规格太多,以及一些不合理的形状设计,导致加工厂要多开很多不必要的落料模,大大增加模具的加工和管理成本;插箱的钣金导轨、拉伸凸台等设计,品种越来越多,需要统一、规范;喷漆和丝印,也经常出现喷涂选择不合理导致废品率较高、无法丝印等问题;有些钣金零件的点焊完全可以适当增加定位,不增加成本也不影响美观,实际上大部分设计是靠生产的工装定位,不仅麻烦、效率低,精度也不好;很多可以避免焊接的钣金零件,往往设计成角焊的结构形式,焊接和打磨都非常麻烦,不仅效率较低,而且外观质量也经常得不到保证,等等。长期以来,这些相同的问题不断地重复发生,无论对产品质量还是产品的生产和进度,都会产生不良的影响。 编写这本《结构设计工艺手册》目的,就是为了方便工程师在结构设计时查阅一些常用的、关键的数据,更好地保证工程师设计出的零件有较好的加工工艺性,统一结构要素,减少不必要的开模,加快加工进度,降低加工成本,提高产品质量。编写这本手册的同时,对《钣金模具手册》标准进行了彻底的改编,对一些典型的结构形状进行了优化和系列化,减少了品种,并在intralink库里对相关的模具建模,不仅方便设计人员进行结构设计,对模具的统一,也会起到较好的效果。 手册中一些典型的数据主要来源于参考资料,一些工艺上的极限尺寸,主要来源于加工厂家提供的数据,是我们应尽可能遵照的。有些正在生产的零件,一些尺寸超出了手册中给出的极限尺寸,但并不能就能说明这些设计是有良好的工艺性,原则上是在满足产品性能的条件下,尽可能达到最好的加工工艺性。 由于时间和实际经验有限,手册中错误在所难免,恳请大家批评指正,希望经过一定时间的实践检验,经过将来补充、修订、完善之后,能够成为一部非常实用的参考书,对我们的设计工作起到很好的指导作用。考虑手册的篇幅和实用性,以及我们的设计主要是钣金零件设计,因此,本手册主要以钣金件为主。 手册编写得到中兴新的吉海青、胡兴胜、李道清、杜坚、巴新安等大力帮助,在此表示感谢! 顾问:张晖马庆魁何朝来何剑波冯力 编写人员:彭诗林:第一章:钣金零件设计工艺 颜斌鲁:第二章:金属切削件设计工艺 严冬:第三章: 压铸件设计工艺 杨涛:第四章:铝型材零件设计工艺 郑宁生:第五章金属的焊接设计工艺 尚玉其:第六章:塑料件设计工艺 刘彦明:第七章表面处理工艺 温存善、封智:第八章:结构图纸零部件的分级和代码申请 曹水春、陈进云、张向峰、刘肖:《结构设计工艺手册》修改、编辑、汇总

最新铸造工艺结构

铸造工艺结构 1 2 (1)拔模斜度 3 在铸造造型时,为了便于把模型从砂型中取出,通常在铸件沿拔模方向的内、4 外壁上均制有约 1:20的斜度,叫拔模斜度,如图9b所示。拔模斜度通常较小,5 木模常为 l°~3°;金属模为0.5°~2°。所以拔模斜度一般不画出,但不标6 注,如图9a所示。 7 8 9 10 图9 铸造件上的拔模斜度 11 (2}铸造圆角 12 在浇铸铸件时,为了避免在铁水冷却时产生裂纹,同时也为了防止在取13 模时损坏砂型,在铸件各表面相交处均以圆角过渡,这种圆角就叫铸造圆角,14 如图10所示。在零件图上,铸造圆角必须画出。铸造圆角的半径应与铸件的壁15 厚相适应,其半径值一般取为3~5毫米。铸造圆角也可在技术要求中作统一说16 明。 17 在相交两平面中,任问一个表面加工后;圆角就被切去,此时该处就应18 画成尖角,如

图10所示。 19 20 21 22 (3)铸件壁厚 23 24 为了保证铸件的制造质量,铸件各部分的壁厚应保持均匀一致,特别要避免25 突然改变壁厚和局部肥大的现象。这样可以防止铸件在浇铸时,由于各部分26 冷却速度不一致,而在壁较厚外形成缩孔,或在较厚壁与较薄壁的交界处产27 生裂纹,如图11所示。 28 29 30 (4)、过渡线

由于铸造工艺上的要求,铸件两表面相交处存在铸造圆角。这时零件表 31 32 面的交线就不明显;但为了增强图形的直观性,在相交处仍然要画出原有的交33 线;称为过渡线。 过渡线的画法与原有相贯线或截交线的画法相同。但由于存在有铸造圆角, 34 35 因此交线的两端不再与零件的轮廓线相接触、如图12所示,为内圆柱相交时,36 内、外表面上过渡线的画法。具体画图时,首先应按没有圆角的情况画出相贯37 钱,然后再在轮廓线处画出小圆角。 38 39 40 41 图13所示,为零件上常见的圆柱和肋板相交,且相交处有圆角过渡时的画法。很明显,过渡线的形状与肋板和圆柱是相交还是相切,以及肋板本身的断 42 43 面形状有关。 44

压铸件设计规范

压铸件设计规范相关知识 压铸件设计规范相关知识 一、壁厚 压铸件的壁厚对铸件质量有很大的影响。以铝合金为例,薄壁比厚壁具有更高的强度和良好的致密性。因此,在保证铸件有足够的强度和刚性的条件下,应尽可能减少其壁厚,并保持壁厚均匀一致。 铸件壁太薄时,使金属熔接不好,影响铸件的强度,同时给成型带来困难;壁厚过大或严重不均匀则易产生缩瘪及裂纹。随着壁厚的增加,铸件内部气孔、缩松等缺陷也随之增多,同样降低铸件的强度。 压铸件的壁厚一般以2.5~4mm为宜,壁厚超过6mm的零件不宜采用压铸。推荐采用的最小壁厚和正常壁厚见表1。 表1 压铸件的最小壁厚和正常壁厚 二、铸造圆角和脱模斜度 1)铸造圆角 压铸件各部分相交应有圆角(分型面处除外),使金属填充时流动平稳,气体容易排出,并可避免因锐角而产生裂纹。对于需要进行电镀和涂饰的压铸件,圆角可以均匀镀层,防止尖角处涂料堆积。 压铸件的圆角半径R一般不宜小于1mm,最小圆角半径为0.5 mm,见表2。铸造圆角半径的计算见表3。 表2 压铸件的最小圆角半径(mm)

我司现采用的圆角一般取R1.5。 表3 铸造圆角半径的计算(mm) 说明:①、对锌合金铸件,K=1/4;对铝、镁、合金铸件,K=1/2。 ②、计算后的最小圆角应符合表2的要求。 2) 脱模斜度 设计压铸件时,就应在结构上留有结构斜度,无结构斜度时,在需要之处,必须有脱模的工艺斜度。斜度的方向,必须与铸件的脱模方向一致。推荐的脱模斜度见表4。 表4 脱模斜度 说明:①、由此斜度而引起的铸件尺寸偏差,不计入尺寸公差值内。 ②、表中数值仅适用型腔深度或型芯高度≤50mm,表面粗糙度在Ra0.1,大端与小端尺寸的单面差的最小值为0.03mm。当深度或高度>50mm,或表面粗糙度超过Ra0.1时,则脱模斜度可适当增加。

铸造工艺结构

(1)拔模斜度 在铸造造型时,为了便于把模型从砂型中取出,通常在铸件沿拔模方向的内、外壁上均制有约 1:20的斜度,叫拔模斜度,如图9b所示。拔模斜度通常较小,木模常为 l°~3°;金属模为°~2°。所以拔模斜度一般不画出,但不标注,如图9a所示。 图9 铸造件上的拔模斜度 (2}铸造圆角 在浇铸铸件时,为了避免在铁水冷却时产生裂纹,同时也为了防止在取模时损坏砂型,在铸件各表面相交处均以圆角过渡,这种圆角就叫铸造圆角,如图10所示。在零件图上,铸造圆角必须画出。铸造圆角的半径应与铸件的壁厚相适应,其半径值一般取为3~5毫米。铸造圆角也可在技术要求中作统一说明。 在相交两平面中,任问一个表面加工后;圆角就被切去,此时该处就应画成尖角,如 图10所示。 (3)铸件壁厚

为了保证铸件的制造质量,铸件各部分的壁厚应保持均匀一致,特别要避免突然改变壁厚和局部肥大的现象。这样可以防止铸件在浇铸时,由于各部分冷却速度不一致,而在壁较厚外形成缩孔,或在较厚壁与较薄壁的交界处产生裂纹,如图11所示。 (4)、过渡线 由于铸造工艺上的要求,铸件两表面相交处存在铸造圆角。这时零件表面的交线就不明显;但为了增强图形的直观性,在相交处仍然要画出原有的交线;称为过渡线。 过渡线的画法与原有相贯线或截交线的画法相同。但由于存在有铸造圆角,因此交线的两端不再与零件的轮廓线相接触、如图12所示,为内圆柱相交时,内、外表面上过渡线的画法。具体画图时,首先应按没有圆角的情况画出相贯钱,然后再在轮廓线处画出小圆角。 图13所示,为零件上常见的圆柱和肋板相交,且相交处有圆角过渡时的画法。很明显,过渡线的形状与肋板和圆柱是相交还是相切,以及肋板本身的断面形状有关。

相关主题
文本预览
相关文档 最新文档