当前位置:文档之家› 集成运算放大器的组成及典型结构

集成运算放大器的组成及典型结构

集成运算放大器的组成及典型结构
集成运算放大器的组成及典型结构

集成运算放大器的组成及典型结构

来源:21ic作者:

集成运算放大器是一种具有很高放大倍数的多级直接耦合放大电路。特点:高增益、高可靠性、低成本、小尺寸

集成运放内部结构(举例)

集成运放的主要技术指标

1、开环差模电压增益 Auo

无反馈时的差模电压放大倍数。一般Auo在100~120dB左右,高增益运放可达140dB以上。

2、输入电阻 Rid

差模输入时,运算放大器在开环条件下两个输入端的动态电阻。集成运放的Rid 低的可为几十千欧,高质量的可达几兆欧。通常在10K~3M之间。

3.开环输出电阻Rod

运放无外加反馈回路时的输出电阻。Rod愈小,带负载能力愈强,一般在20—200Ω之间。

4、共模抑制比

其典型值在80dB以上,性能好的高达180dB。

5、最大差模输入电压

运放两输入端能承受的最大差模输入电压,超过此电压时,差分管将出现反向击穿现象。

6、最大共模输入电压

运放共模输入电压的允许范围。超过此值时,差分对管将出现饱和现象,失去共模抑制能力。

7、最大输出电压

能使输出和输入保持不失真关系的最大输出电压。

集成运算放大器应用实验

《电路与电子学基础》实验报告 实验名称集成运算放大器应用 班级2013211XXX 学号2013211XXX 姓名XXX

实验7.1 反相比例放大器 一、实验目的 1.测量反相比例运算放大器的电压增益,并比较测量值与计算值。 2.测定反响比例放大器输出与输入电压波形之间的相位差。 3.根据运放的输入失调电压计算直流输出失调电压,并比较测量值与计算值。 4.测定不同电平的输入信号对直流输出失调电压的影响。 二、实验器材 LM 741 运算放大器 1个 信号发生器 1台 示波器 1台 电阻:1kΩ 2个,10kΩ 1个,100kΩ 2个 三、实验步骤 1.在EWB平台上建立如图7-1所示的实验电路,仪器按图设置。 单击仿真开关运行动态分析,记录输入峰值电压 V和输出峰值电压 ip V,并记录直流输出失调电压of V及输出与输入正弦电压波形之间的op 相位差。

Vip=4.9791mV Vop=498.9686mV Vof=99.37mV 相位差π 2.根据步骤1的电压测量值,计算放大器的闭环电压增益Av。 Av=-100.2 3.根据电路元件值,计算反相比例运算放大器的闭环电压增益。 Av=-100 4.根据运放的输入失调电压 V和电压增益Av,计算反相比例运放 if 的直流输出失调电压 V。 of Vof=100mV 四、思考与分析 1.步骤3中电压增益的计算值与步骤1,2中的测量值比较,情况如何? 计算值为-100,测量值为-100.2,基本相等,略有误差

2.输出与输入正弦电压波形之间的相位差怎样? 相位差为π 3.步骤1中直流输出失调电压的测量值与步骤4中的计算值比较,情况如何? 测量值为99.37mV,计算值为100mV,基本相等,略有误差 4.步骤1中峰值输出电压占直流输出失调电压的百分之几? 500% 5.反馈电阻 R的变化对放大器的闭环电压增益有何影响? f 在R1一定的条件下,Rf越大,闭环电压增益越大 实验7.2 加法电路 一、实验目的 1.学习运放加法电路的工作原理。 2.分析直流输入加法器。 3.分析交直流输入加法器。 4.分析交流输入加法器。 二、实验器材 LM741 运算放大器 1个直流电源 2个 0~2mA毫安表 4个万用表 1个 信号发生器 1台

集成运放组成的运算电路 习题解答

第7章 集成运放组成的运算电路 本章教学基本要求 本章介绍了集成运放的比例、加减、积分、微分、对数、指数和乘法等模拟运算电路及其应用电路以及集成运放在实际应用中的几个问题。表为本章的教学基本要求。 表 第7章教学内容与要求 学完本章后应能运用虚短和虚断概念分析各种运算电路,掌握比例、求和、积分电路的工作原理和输出与输入的函数关系,理解微分电路、对数运算电路、模拟乘法器的工作原理和输出与输入的函数关系,并能根据需要合理选择上述有关电路。 本章主要知识点 1. 集成运放线性应用和非线性应用的特点 由于实际集成运放与理想集成运放比较接近,因此在分析、计算应用电路时,用理想集成运放代替实际集成运放所带来的误差并不严重,在一般工程计算中是允许的。本章中凡未特别说明,均将集成运放视为理想集成运放。 集成运放的应用划分为两大类:线性应用和非线性应用。 (1) 线性应用及其特点 集成运放工作在线性区必须引入深度负反馈或是兼有正反馈而以负反馈为主,此时其输出量与净输入量成线性关系,但是整个应用电路的输出和输入也可能是非线性关系。 集成运放工作在线性区时,它的输出信号o U 和输入信号(同相输入端+U 和反相输入端-U 之差)满足式(7-1) )(od o -+-=U U A U (7-1) 在理想情况下,集成运放工作于线性区满足虚短和虚断。虚短:是指运放两个输入端之间的电压几乎等于零;虚断:是指运放两个输入端的电流几乎等于零。即 虚短:0≈-+-U U 或 +-≈U U 虚断:0≈=+-I I

(2) 非线性应用及其特点 非线性应用中集成运放工作在非线性区,电路为开环或正反馈状态,集成运放的输出量与净输入量成非线性关系)(od o +--≠U U A U 。输入端有很微小的变化量时,输出电压为正饱和电压或负饱和电压值(饱和电压接近正、负电源电压),+-=U U 为两种状态的转折点。即 当+->U U 时,OL o U U = 当+-

运放内部电路结构涉及知识点讲解

运放内部电路结构涉及知识点讲解 专栏介绍本课程为运放专题讲解,重点讲解了运放的内部电路结构,帮助深入理解运放的工作原理。运放是设计使用非常频繁且非常重要器件,通常在信号放大,电流采样电路里常见,对于初学者经常感到困惑,所以掌握好能够帮助你很好的分析电路,使你在处理信号电路设计时得心应手,本课程会通过空气净化器项目来带领大家一起学习,让大家快速的成长为一名有经验的能够独立做项目的研发工程师或高级工程师 涉及知识点: 1、什么叫推挽电路?什么叫射极输出?推挽电路为什么能实现电压跟随,电流放大?为什么推挽电路不会出现串红现象? 2、什么叫运算放大器?为什么说运放在电路设计中有着极其重要的作用。 3、详细讲解运算放大器内部三大结构。 4、详细讲解三极管放大电路,什么叫三极管的Q点,以及Q点如何设置,以及由此引出的直流偏置电路,什么叫交流耦合,交流信号如何传递耦合,输出极性如何? 5、什么叫差分输入?为什么要引入差分输入,如何提高差分信号的放大能力? 6、什么叫共模干扰?如何抑制共模干扰? 7、什么叫反馈,负反馈,反馈的重要作用,详细讲解运放为什么引入深度负反馈才能工作在放大区。为什么说运放的反馈网络是工作稳定的? 8、详细讲解运放的四种构成形态,电压串联,电压并联,电流串联,电流并联,以及如何判断? 9、详细讲解为什么引入深度负反馈后的运放有着“虚短”和“虚断”的两个重要特征。 10、如何设计运放放大电路,如何根据“虚短”和“虚断”计算放大倍数。 受众群体有哪些? 1、如果你还是学生,正厌倦于枯燥的课堂理论课程,想得到电子技术研发的实战经验; 2、如果你即将毕业或已经毕业,想积累一些设计研发经验凭此在激烈竞争的就业大军中脱颖而出,找到一份属于自己理想的高薪工作;

集成运算放大器及其应用

第九章集成运算放大器及其应用(易映萍) 9.1 差分放大电路 9.2互补功率放大电路 9.3 集成运算放大电路 9.4 理想集成运放的线性运用电路 9.5 理想集成运放的非线性运用电路 习题 第九章集成运算放大器及其应用 9.1 差分放大电路 9.1.1 直接耦合多级放大电路的零点漂移现象 工业控制中的很多物理量均为模拟量,如温度、流量、压力、液面和长度等,它们通过不同的传感器转化成的电量也均为变化缓慢的非周期性连续信号,这些信号具有以下两个特点: 1.信号比较微弱,只有通过多级放大才能驱动负载; 2.信号变化缓慢,一般采用直接耦合多级放大电路将其放大。 u=0)时,人们在试验中发现,在直接耦合的多级放大电路中,即使将输入端短路(即 i u≠0),这种现象称为零点漂移(简称为零漂),如图输出端还会产生缓慢变化的电压(即 o 9.1所示。 (a)测试电路(b)输出电压u o的漂移 图9.1 零点漂移现象 9.1.2 零漂产生的主要原因 在放大电路中,任何参数的变化,如电源电压的波动、元件的老化以及半导体元器件参数随温度变化而产生的变化,都将产生输出电压的漂移,在阻容耦合放大电路中,耦合电容对这种缓慢变化的漂移电压相当于开路,所以漂移电压将不会传递到下一级电路进一步放

大。但是,在直接耦合的多级放大电路中,前一级产生的漂移电压会和有用的信号(即要求放大的输入信号)一起被送到下一级进一步放大,当漂移电压的大小可以和有用信号相当时,在负载上就无法分辨是有效信号电压还是漂移电压,严重时漂移电压甚至把有效信号电压淹没了,使放大电路无法正常工作。 采用高质量的稳压电源和使用经过老化实验的元件就可以大大减小由此而产生的漂移,所以由温度变化所引起的半导体器件参数的变化是产生零点漂移现象的主要原因,因而也称零点漂移为温度漂移,简称温漂,从某种意义上讲零点漂移就是静态工作点Q点随温度的漂移。 9.1.3抑制温漂的方法 对于直接耦合多级放大电路,如果不采取措施来抑制温度漂移,其它方面的性能再优良,也不能成为实用电路。抑制温漂的方法主要由以下几种: (1)采用稳定静态工作的分压式偏置放大电路中Re的负反馈作用; (2)采用温度补偿的方法,利用热敏元件来抵消放大管的变化; (3)采用特性完全相同的三极管构成“差分放大电路”; 9.1.4 差分放大电路 差分放大电路是构成多级直接耦合放大电路的基本单元电路。直接耦合的多级放大电路的组成框图如图9.2所示。 图9.2 多级放大的组成框图 A倍后传送到负载上,对电路造从上图可知输入级一旦产生了温漂,会经中间级放大 u2 A≈1,对电路造成的成严重的影响,而中间级产生的温漂,由于直接到达功放级而功放的 u 影响跟输入级相比少得多,所以,我们主要应设法抑制输入级产生的温漂,故在直接耦合的多级放大电路中只有输入级常采用差分放大电路的形式来抑制温漂。 9.1.4.1 差分放大电路的组成及结构特点 一.电路组成 差分放大电路如图9.3所示。

集成运放的基本组成部分

集成运放的基本组成部分 偏置电路 偏置电路的作用是向各放大级提供合适的偏置电流,确定各级静态工作点。各个放大级对偏置电流的要求各不相同。对于输入级,通常要求提供一个比较小(一般为微安级)的偏置电流,而且应该非常稳定,以便提高集成运放的输入电阻,降低输入偏置电流、输入失调 电流及其温漂等等。 在集成运放中,常用的偏置电路有以下几种: 镜像电流源也称为电流镜(Current Mirror),在集成运放中应用十分广泛,它的电路如下图所示。 电源VCC通过电阻R和VT1,产生一个基准电流IREF,由图可 得 然后在VT2的集电极得到相应的IC2,作为提供给某个放大级的偏置电流。由于UBE1=UBE2,而VT1和VT2是做在同一硅片上两个相邻的三极管,它们的工艺、结构和参数都比较一致,因此可以认 为 由于输出恒流IC2和基准电流IREF相等,它们之间如同是镜像的关系,所以这种恒流源电路称为镜像电流源。

镜像电流源的优点是结构简单,而且具有一定的温度补偿作用。 二、比例电流源 在镜像电流源的基础上,在VT1、VT2的发射极分别入两个电阻R1和R2,即可组成比例电流源,如下图所示。 由于VT1、VT2是做在同一硅片上的两个相邻的三极管,因此可 以认为UBE1≈IE2R2,则 IE1R1≈IE2R2 如果两管的基极电流可以忽略,由上式可得可见两个三极管的集电极电流之比近似与发射极电阻的阻值成 反比,故称为比例电流源。 以上两种电流源的共同缺点是,当直流电源VCC变化时,输出电流IC2几乎按同样的规律活动,因此不适用于直流电源在大范围内变化的集成运放。此外,若输入级要求微安级的偏置电流,则所有电阻将达兆欧级,在集成电路中无法实现。 差分放大输入级 集成运放的输入对于它的许多指标诸如电阻、共模输入电压、差模输入电压和共模抑制比等等,起着决定性的作用,因此是提高集成 运放质量的关键。

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

新型拓扑结构跨导反馈放大器

新型拓扑结构跨导反馈放大器 摘要:本文将提出一种新的拓扑结构的跨导反馈放大器(TFA)。这种拓扑结构提供的优点在于,它能够实现负的是标准的反相增益表达式。也就是,增益形式为:。我们也将表明,它可以实现标准的反相和同相增益,而同时在每个配置保持接近恒定带宽增益变化。第一个特征是使人们希望的拓扑结构滤波器有广泛的应用,因为TFA可以充当一个积分环节,从而使该放大器实现正面和负面的无损集成。不像以前的TFA配置,这种放大器还可以产生在第一和第四象限内的对数输入。通过实验证实这种放大器具有配置不同的增益,集成和对数的能力,设计的这种芯片采用台积电0.18umCMOS工艺的1.8 V单端电源。该芯片占用面积752.6um*581.2um的新的拓扑结构跨导反馈放大器和常规TFA作组成。这种新型TFA在单位增益配置是有15 MHz的频率带宽。 索引项:电流反馈放大器(CFA),运算放大器,跨导反馈放大器(TFA) 1、引言 在最近已经提出了跨导反馈放大器(TFA)是一个有吸引力的恒定带宽类放大器,如电流反馈放大器(CFAS)[1] - [6]。威尔逊的研究[1],[2]TFA可以认为由一个高增益环节,一个跨导环节和在两者间施加反馈回路组成。跨导级的输出端处的电压缓冲很像一个CFA,如图1(a)所示。需要注意的是有这种缓冲的存在,要确保有分压器作为负载的跨导元件,它产生的反馈电压成正比于跨导元件的输出电流。通过对电流反馈放大器(CFA)的非常规设计证明,即使不采用缓冲结构[7],[8],也等解决在CFA中的低电压问题。练习的重点是证明CFA不能通过常规设计实现。然而,在TFA和CFA之间存在若干不同之处。CFA结构如图1(b)所示。首先,在CFA的恒定带宽的设定是通过调节R2到某个优值实现的,而TFA的恒定带宽是通过调整R1实现的。在这两种情况下,改变R1和R2,TFA和CFA 的增益会分别变化。这两种放大器如图1,配置同相增益。其次,在CFA的闭环增益(LG)定义为[10],而在TFA中,闭环增益定义为[1],其中,,拓扑结构图如图1(a)所示。在图1(b)中,Z是由高输出阻抗的电流控制电流源和节点寄生电

运算放大器的工作原理

运算放大器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括 一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正回

集成运放线性应用

实训九 集成运放的线性应用 内容一 集成运放的反相、同相比例运算电路 一、实训目的 1.掌握集成运算放大器的使用方法。 2.了解集成运放构成反相比例、同相比例运算电路的工作原理。 3.掌握集成运放反相比例、同相比例运算电路的测试方法。 二、实训测试原理 1. 反相放大电路 电路如图(1)所示。输入信号U i 通过电阻R 1加到集成运放的反相输入端,输出信号通过反馈电阻R f 反送到运放的反相输入端,构成电压并联负反馈。 根据“虚断”概念,即i N =i p ,由于R 2接地, 所以同相端电位U p =0。又根据“虚短”概念可知,U N =U p ,则U N =U p =0,反相端电位也为零。但反相端又不是接地点,所以N 点又称“虚地”。则有 f 1i i =,1i = 1i R U ,f i =-f 0R U 则0U =-1 f R R i U 。 运放的同相输入端经电阻R 2接地,R 2叫平衡电阻,其大小为R 2=R 1∥R f 。 图(1) 反相放大电路 图(2) 同相放大电路 图(3) 电压跟随器 2. 同相放大电路 电路如图(2)所示。输入信号U i 通过平衡电阻R 2加到集成运放的同相输入端,输出信号通过反馈电阻R f 反送到运放的反相输入端,构成电压串联负反馈。根据“虚断”与“虚短”的概念,有N P i U U U ==,i N =i P =0;则得i 1f 0)1(U R U +=若1R =∞,0f =R ,则i 0U U =即为电压跟随器,如图(3)。

三、实训仪器设备 1.直流稳压电源 2.万用表 3.示波器 四、实训器材 1. 集成块μA741(HA17741) 2. 电阻10KΩ×2 100KΩ×2 2 KΩ×2 3. 电位器1KΩ×1 五、实训电路 图(3)反相比例运算实训电路 图(4)同相比例运算实训电路 六、测试步骤及内容 1. 反相比例运算实训

集成运算放大器 习题参考答案

第8章集成运算放大器习题参考答案 一、填空题: 1. 理想运放同相输入端和反相输入端的“虚短”指的是同相输入端与反相输入端两点电位相等,在没有短接的情况下出现相当于短接时的现象。 2. 将放大器输出信号的全部或部分通过某种方式回送到输入端,这部分信号叫做反馈信号。使放大器净输入信号减小,放大倍数也减小的反馈,称为负反馈;使放大器净输入信号增加,放大倍数也增加的反馈,称为正反馈。放大电路中常用的负反馈类型有并联电压负反馈、串联电压负反馈、并联电流负反馈和串联电流负反馈。 3. 若要集成运放工作在线性区,则必须在电路中引入负反馈;若要集成运放工作在非线性区,则必须在电路中引入开环或者正反馈。集成运放工作在线性区的特点是输入电流等于零和输出电阻等于零;工作在非线性区的特点:一是输出电压只具有高电平、低电平两种稳定状态和净输入电流等于零;在运算放大器电路中,集成运放工作在线性区,电压比较器集成运放工作在非线性区。 4. 集成运放有两个输入端,称为同相输入端和反相输入端,相应有同相输入、反相输入和双端输入三种输入方式。 5. 放大电路为稳定静态工作点,应该引入直流负反馈;为提高电路的输入电阻,应该引入串联负反馈;为了稳定输出电压,应该引入电压负反馈。 6. 理想运算放大器工作在线性区时有两个重要特点:一是差模输入电压相同,称为“虚短”;二是输入电流为零,称为“虚断”。 二、判断题: 1. 放大电路一般采用的反馈形式为负反馈。(对) 5. 电压比较器的输出电压只有两种数值。(对) 6. 集成运放未接反馈电路时的电压放大倍数称为开环电压放大倍数。(对) 7. “虚短”就是两点并不真正短接,但具有相等的电位。(对) 8. “虚地”是指该点与接地点等电位。(对) 三、选择题:(每小题2分,共16分) 1. 理想运算放大器的开环放大倍数A U0为(A),输入电阻为(A),输出电阻为(B)。 A、∞; B、0; C、不定。 2. 集成运算放大器能处理(C)。 A、直流信号; B、交流信号; C、交流信号和直流信号。 3. 为使电路输入电阻高、输出电阻低,应引入(A)。 A、电压串联负反馈; B、电压并联负反馈; C、电流串联负反馈; D电流并联负反馈。 4. 在由运放组成的电路中,运放工作在非线性状态的电路是(D)。 A、反相放大器; B、差值放大器; C、有源滤波器; D、电压比较器。

基于跨导运算放大器的基本网络综合方法

基于跨导运算放大器的基本网络综合方法 以常规电压运算放大器作为有源器件的有源RC滤波器存在以下缺点:工作频率不高,包含大量的无源RC网络,难以单片形成;性能参数一旦确定,不能再利用外部电信号进行调节。采用跨导运算放大器作为有源器件的滤波器则电路简单,可以不含电阻,只包含跨导运算放大器和电容,便于单片集成,高频性能好,可以工作在数十兆至百兆级领域;滤波器参数和跨导运算放大器的增益成线性关系,可以通过外部电信号进行调节。 一跨导运放的基本概念及应用原理 1.1 概述 从网络角度看,电子放大器是一种线性受控源,按照控制量、被控制量是电压还是电流进行划分,存在四种受控源,即人们熟知的电压控制电压源(VCVS),电压控制电流源(VCCS)、电流控制电流源(CCCS)和电流控制电压源(CCVS),与之对应的电子放大器也应该有四种类型,即电压型、跨导型、电流型和跨阻型。这四种放大器的关系是各有所长,各有所用,互相补充,形成一个完整的电子放大器家族。 跨导运算放大器(Operational Transconductance Amplifier,简称OTA)是一种电压输入、电流输出的电子放大器,增益称为跨导(gm)。其符号如图1所示。其中VI+、VI-分别为同向与反向输入电压,输入级的MOS晶体管工作在饱和区,为偏置输入电压,为输出电流: 其中。 图1

为跨导运算放大器跨导增益因子,其值由运算放大器的电路结构、CMOS管的几何尺寸和工艺参数决定。理想跨导放大器的条件是输入和输出电阻无穷大。现在已经有跨导放大器的产品,例如CA3060和 LM13600等等。由于跨导放大器内部只有电压-电流变换级和电流传输级,没有电压增益级,因此没有大幅度电压信号和米勒电容增倍效应,高频性能好,大信号下的转换速率也高,同时电路结构简单,电源电压和功率都比较低,这些高性能特点表明,在跨导放大器的电路中,电流模式部分起关键的作用。 跨导运算放大器的本质是线性电压控制电流源,具有下列特点:(1)输入电压控制输出电流,开环增益是跨导,输入级采 用外偏置方式,改变外偏置电流可以实现增益连续调 节。 (2)外偏置端如果加入数字信号可以起选通作用,实现对 主信号通道的开、关状态。 (3)电路结构简单、频率宽、高频性能好,而且可以灵活 的设计多端输入、多端输出电路。这种元件特别适合 于实现全集成连续时间滤波器。 跨导运算放大器分为双极型和MOS型两种,相对于双极型跨导运算放大器而言,CMOS跨导运算放大器的增益值较低,增益可调范围较小,但它的输入阻抗高、功耗低,容易与其他电路结合实现全CMOS集成系统。 跨导运算放大器的应用非常广泛,主要用途可以分为两方面:一方面,在多种线性和非线性模拟电路和系统中进行信号运算和处理;另一方面,在电压信号变量和电流模式信号处理系统之间作为接口电路,将待处理的电压信号变换为电流信号,再送入电流模式系统进行处理。 1.2 CMOS跨导运算放大器 (一)基本型CMOS跨导运算放大器 图2为基本CMOS跨导运算放大器。其中,M1,M2组成基本源耦差分跨导输入级,完成电压-电流变换;M3、M4是基本的电流镜,传输比为1,将外加偏置电流输送到差动输入级作尾电流,并控制其增益值;M5和M6、M7和M8、M9和M10组成3个基本电流镜,对输入级的差动输出电流移位和导向,以便提供推挽式单端输出电流。

三运放组成的仪表放大器电路分析

三运放组成的仪表放大器电路分析 仪表放大器与运算放大器的区别是什么? 仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益单元。大多数情况下,仪表放大器的两个输入端阻抗平衡并且阻值很高,典型值≥109 ?。其输入偏置电流也应很低,典型值为 1 nA至 50 nA。与运算放大器一样,其输出阻抗很低, 在低频段通常仅有几毫欧(m?)。运算放大器的闭环增益是由其反向输入端和输 出端之间连接的外部电阻决定。与放大器不同的是,仪表放大器使用一个内部反馈电阻网络,它与其信号输入端隔离。对仪表放大器的两个差分输入端施 加输入信号,其增益既可由内部预置,也可由用户通过引脚连接一个内部或者外部增益电阻器设置,该增益电阻器也与信号输入端隔离。 专用的仪表放大器价格通常比较贵,于是我们就想能否用普通的运放组成仪表放大器?答案是肯定的。 使用三个普通运放就可以组成一个仪用放大器。电路如下图所示: 输出电压表达式如图中所示。 看到这里大家可能会问上述表达式是如何导出的?为何上述电路可以实现仪表放大器?下面我们就将探讨这些问题。在此之前,我们先来看如下我们很熟悉的差分电路: 如果R1 = R3,R2 = R4,则VOUT = (VIN2—VIN1)(R2/R1) 这一电路提供了仪表放大器功能,即放大差分信号的同时抑制共模信号,但它也有些缺陷。首先,同相输入端和反相输入端阻抗相当低而且不相等。在这一例子中VIN1反相输入阻抗等于 100 k?,而VIN2同相输入阻抗等于反相输入阻抗的两倍,即200 k?。因此,当电压施加到一个输入端而另一端接

地时,差分电流将会根据输入端接收的施加电压而流入。(这种源阻抗的不平衡会降低电路的CMRR。)另外,这一电路要求电阻对R1 /R2和R3 /R4的比值匹配得非常精密,否则,每个输入端的增益会有差异,直接影响共模抑制。例如,当增益等于 1 时,所有电阻值必须相等,在这些电阻器中只要有一只电阻值有 0.1% 失配,其CMR便下降到 66 dB(2000:1)。同样,如果源阻抗有 100 ?的不平衡将使CMR下降 6 dB。 为解决上述问题,我们在运放的正负输入端都加上电压跟随器以提高输入阻抗。如下图所示: 以上前置的两个运放作为电压跟随器使用,我们现在改为同相放大器,电路如下所示: 输出电压表达式如上图所示。上图所示的电路增加增益(A1 和 A2)时, 它对差分信号增加相同的增益,也对共模信号增加相同的增益。也就是说,上述电路相对于原电路共模抑制比并没有增加。 下面,要开始最巧妙的变化了!看电路先:

集成运算放大器电路分析及应用(完整电子教案)

集成运算放大器电路分析及应用(完整电子教案) 3.1 集成运算放大器认识与基本应用 在太阳能充放电保护电路中要利用集成运算放大器LM317实现电路电压检测,并通过三极管开关电路实现电路的控制。首先来看下集成运算放大器的工作原理。 【项目任务】 测试如下图所示,分别测量该电路的输出情况,并分析电压放大倍数。 R1 15kΩ R3 15kΩ R4 10kΩ V2 4 V XFG1 1 VCC 5V U1A LM358AD 3 2 4 8 1 VCC 3 5 2 4 R1 15kΩR2 15kΩ R3 15kΩ R4 10kΩ V2 4 V XFG1 1 VCC 5V U1A LM358AD 3 2 4 8 1 VCC 3 5 2 4 函数信号发生器函数信号发生器 (a)无反馈电阻(b)有反馈电阻 图3.1集成运算符放大器LM358测试电路(multisim) 【信息单】 集成运放的实物如图3.2 所示。 图3.2 集成运算放大 1.集成运放的组成及其符号 各种集成运算放大器的基本结构相似,主要都是由输入级、中间级和输出级以及偏置电路组成,如图3.3所示。输入级一般由可以抑制零点漂移的差动放大电路组成;中间级的作用是获得较大的电压放大倍数,可以由共射极电路承担;输出级要求有较强的带负载能力,一般采用射极跟随器;偏置电路的作用是为各级电路供给合理的偏置电流。

图3.3集成运算放大电路的结构组成 集成运放的图形和文字符号如图 3.4 所示。 图3.4 集成运放的图形和文字符号 其中“-”称为反相输入端,即当信号在该端进入时, 输出相位与输入相位相反; 而“+”称为同相输入端,输出相位与输入信号相位相同。 2.集成运放的基本技术指标 集成运放的基本技术指标如下。 ⑴输入失调电压 U OS 实际的集成运放难以做到差动输入级完全对称,当输入电压为零时,输出电压并不为零。规定在室温(25℃)及标准电源电压下,为了使输出电压为零,需在集成运放的两输入端额外附加补偿电压,称之为输入失调电压U OS ,U OS 越小越好,一般约为 0.5~5mV 。 ⑵开环差模电压放大倍数 A od 集成运放在开环时(无外加反馈时),输出电压与输入差模信号的电压之比称为开环差模电压放大倍数A od 。它是决定运放运算精度的重要因素,常用分贝(dB)表示,目前最高值可达 140dB(即开环电压放大倍数达 107 )。 ⑶共模抑制比 K CMRR K CMRR 是差模电压放大倍数与共模电压放大倍数之比,即od CMRR oc A K =A ,其含义与差动放大器中所定义的 K CMRR 相同,高质量的运放 K CMRR 可达160d B 。 ⑷差模输入电阻 r id r id 是集成运放在开环时输入电压变化量与由它引起的输入电流的变化量之比,即从输入端看进去的动态电阻,一般为M Ω数量级,以场效应晶体管为输入级的r id 可达104M Ω。分析集成运放应用电路时,把集成运放看成理想运算放大器可以使分析简化。实际集成运 放绝大部分接近理想运放。对于理想运放,A od 、K CMRR 、r id 均趋于无穷大。 ⑸开环输出电阻 r o r o 是集成运放开环时从输出端向里看进去的等效电阻。其值越小,说明运放的带负载能力越强。理想集成运放r o 趋于零。 其他参数包括输入失调电流I OS 、输入偏置电流 I B 、输入失调电压温漂 d UOS /d T 和输入失调电流温漂 d IOS /d T 、最大共模输入电压 U Icmax 、最大差模输入电压 U Idmax 等,可通过器件

运算放大器构造及原理

万联芯城销售TI,ADI,ST等原装品牌运算放大器IC。全现货库存,提供一站式配套服务,万联芯城,三十年电子元器件销售经验,是您的BOM配单专家,为您节省采购成本。点击进入万联芯城 点击进入万联芯城

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同,运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等

集成运算放大器的基本应用

实验名称 集成运算放大器的基本应用 一.实验目的 1.掌握集成运算放大器的正确使用方法。 2.掌握用集成运算放大器构成各种基本运算电路的方法。 3.学习正确使用示波器交流输入方式和直流输入方式观察波形的方法,重点掌握积分输入,输出波形的测量和描绘方法。 二.实验元器件 集成运算放大器 LM324 1片 电位器 1k Ω 1只 电阻 100k Ω 2只;10k Ω 3只;5.1k Ω 1只;9k Ω 1只 电容 0.01μf 1只 三、预习要求 1.复习由运算放大器组成的反相比例、反相加法、减法、比例积分运算电路的工作原理。 2.写出上述四种运算电路的vi 、vo 关系表达式。 3.实验前计算好实验内容中得有关理论值,以便与实验测量结果作比较。 4.自拟实验数据表格。 四.实验原理及参考电路 本实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。 1. 反向比例运算 反向比例运算电路如图1所示,设组件LM324为理想器件,则 11 0υυR R f -=

R f 100k R 1 10k A 10k R L v o v 1 R 9k 图1 其输入电阻1R R if ≈,图中1//R R R f ='。 由上式可知,改变电阻f R 和1R 的比值,就改变了运算放大器的闭环增益vf A 。 在选择电路参数是应考虑: ○ 1根据增益,确定f R 与1R 的比值,因为 1 R R A f vf - = 所以,在具体确定f R 和1R 的比值时应考虑;若f R 太大,则1R 亦大,这样容易引起较大的失调温漂;若f R 太小,则1R 亦小,输入电阻if R 也小,可能满足不了高输入阻抗的要求,故一般取f R 为几十千欧至几百千欧。 若对放大器输入电阻有要求,则可根据1R R i =先确定1R ,再求f R 。 ○ 2运算放大器同相输入端外接电阻R '是直流补偿电阻,可减小运算放大器偏执电流产生的不良影响,一般取1//R R R f =',由于反向比例运算电路属于电压并联负反馈,其输入、输出阻抗均较低。 本次试验中所选用电阻在电路图中已给出。 2. 反向比例加法运算 反向比例加法运算电路如图2所示,当运算放大器开环增益足够大时,其输入端为“虚地”,11v 和12v 均可通过1R 、2R 转换成电流,实现代数相加,其输出电压 ??? ??+-=122111 v R R v R R v f f o 当R R R ==21时 ()1211v v R R v f o +- = 为保证运算精度,除尽量选用精度高的集成运算放大器外,还应精心挑选精度高、稳定性好的电阻。f R 与R 的取值范围可参照反比例运算电路的选取范围。 同理,图中的21////R R R R f ='。

折叠式共源-共栅运算跨导放大器的设计

《IC课程设计》报告 折叠式共源-共栅运算跨导放大器的设计 姓名:王志伟 学号:U200713959 班级:0707 院系:控制系 专业:自动化 同组人姓名:田绍宇胡月

目录 1设计目标 (1) 2相关背景知识 (2) 3设计过程 (2) 3.1 电路结构设计 (2) 3.2 主要电路参数的手工推导 (2) 3.2.1直流工作点分析 (2) 3.2.2带宽分析及原件参数计算 (3) 3.2.3直流增益的小信号模型分析 (4) 3.3 计算参数验证 (5) 4电路仿真 (5) 4.1交流特性仿真 (7) 4.2最大输出摆幅仿真 (9) 4.3共模输出的仿真验证 (11) 5讨论 (12) 6收获和建议 (13) 7参考文献 (14)

摘要:折叠式共源共栅结构的运算放大器不仅能提高增益、增加电源电压噪声抑制比、而且在输出端允许自补偿。 1设计目标 设计一款折叠式共源-共栅跨导运算放大器(Design a Folded Cascode OTA),其设计指标见表1,参考电路原理图如下图所示,用0.35um coms工艺。 图:折叠式共源-共栅跨导运算放大器 设计步骤与要点: 1.直流工作点的分析与设计(DC operation point design and analysis) 1) 假设所有的MOS管均工作在饱和区,VGS-VT=200mV,VDD=3V, VSS= 0V,计算OTA的最大输出摆幅。 2) 基于0.35 um CMOS工艺,计算和设计MOS管的尺寸,使OTA电路满 足最大输出摆幅的要求。 3) 以下数据可供设计参考 L1,2,3,4 = Lmin; Lmin= 1μm。 2.在HSpice电路仿真软件,对所设计的电路进行模拟仿真与设计

常用运算放大器电路 (全集)

常用运算放大器电路(全集) 下面是[常用运算放大器电路(全集)]的电路图 常用OP电路类型如下: 1. Inverter Amp. 反相位放大电路: 放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。R3 = R4 提供1 / 2 电源偏压 C3 为电源去耦合滤波 C1, C2 输入及输出端隔直流 此时输出端信号相位与输入端相反 2. Non-inverter Amp. 同相位放大电路: 放大倍数为Av=R2 / R1 R3 = R4提供1 / 2电源偏压 C1, C2, C3 为隔直流

此时输出端信号相位与输入端相同 3. Voltage follower 缓冲放大电路: O/P输出端电位与I/P输入端电位相同 单双电源皆可工作 4. Comparator比较器电路: I/P 电压高于Ref时O/P输出端为Logic低电位 I/P 电压低于Ref时O/P输出端为Logic高电位 R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M) 单双电源皆可工作 5. Square-wave oscillator 方块波震荡电路: R2 = R3 = R4 = 100 K R1 = 100 K, C1 = 0.01 uF

Freq = 1 /(2π* R1 * C1) 6. Pulse generator脉波产生器电路: R2 = R3 = R4 = 100 K R1 = 30 K, C1 = 0.01 uF, R5 = 150 K O/P输出端On Cycle = 1 /(2π* R5 * C1) O/P输出端Off Cycle =1 /(2π* R1 * C1) 7. Active low-pass filter 主动低通滤波器电路: R1 = R2 = 16 K R3 = R4 = 100 K C1 = C2 = 0.01 uF 放大倍数Av = R4 / (R3+R4) Freq = 1 KHz 8. Active band-pass filter 主动带通滤波器电路:

跨导运算放大器及其Spice电路模型的构建

2.1 CMOS模拟集成电路基本单元 2.1.1 MOS场效应管的基本结构 绝缘栅场效应管又叫作MOS场效应管,意为金属-氧化物-半导体场效应管。图2.1为MOS场效应管的结构和电路符号。图中的N型硅衬底是杂质浓度低的N型硅薄片。在它上面再制作两个相距很近的P区,分别引为漏极和源极,而由金属铝构成的栅极则是通过二氧化硅绝缘层与N型衬底及P型区隔离。这也是绝缘栅MOS场效应管名称的由来。因为栅极与其它电极隔离,所以栅极是利用感应电荷的多少来改变导电沟道去控制漏源电流的。MOS场效应管的导电沟道由半导体表面场效应形成。栅极加有负电压,而N型衬底加有正电压。由于铝栅极和N型衬底间电场的作用,使绝缘层下面的N型衬底表面的电子被排斥,而带正电的空穴被吸引到表面上来。于是在N型衬底的表面薄层形成空穴型号的P型层,称为反型层,它把漏源两极的P区连接起来,构成漏源间的导电沟道。沟道的宽窄由电场强弱控制。MOS场效应管的栅极与源极绝缘,基本不存在栅极电流,输入电阻非常高。[20,21] 图2.1MOS场效应管的结构和电路符号 Fig.2.1 Structure and circuit symbol that MOS Field-Effect Transistor 场效应管有P型和N型之分。这里的P型或N型,指的是导电沟道是P型还是N 型,即导电沟道中是空穴导电还是电子导电。因为场效应管中只有一种载流子参加导电,所以又常称为“单极型晶体管”。P型沟道和N型沟道的MOS场效应管又各分为“耗尽型”和“增强型”两种。耗尽型指栅极电压为零时,就存在导电沟道,漏源中间有一定电流。增强型MOS场效应管,则只有在栅极电压大于零的情况下,才存在导电沟道。 2.1.2 MOS场效应管的模型化 MOS管的大信号(直流)特性可以用它的电流方程来描述。以N沟道增强型MOS

相关主题
文本预览
相关文档 最新文档