当前位置:文档之家› 最大熵图像复原

最大熵图像复原

最大熵图像复原
最大熵图像复原

最大熵复原

由于反向滤波的病态性,复原出得图像经常具有灰度变换较大的不均匀区域。下面介绍一种通过最大化某种反应图像平滑性的准则函数来作为约束条件,以解决图像复原中的病态的方法

首先我们假定图像函数具有非负值

其中B为最小的噪声绝对值,可以利用图像熵和噪声熵来刻划图像的平滑性或均匀性

如何在满足式5-85和图像退化模型的约束条件下使复原后的图像熵和噪声熵最大。引入如下的拉格朗日函数

式中?mn和?是拉格朗日乘子,是加权因子,用于强调Hf和Hn之间的相互作用关系、

使用迭代方法在一定條件下总能得到上述方程的解,从而获得复原后的图像,这种方法称为最大熵复原方法,利用定义不同形式的熵可获得不同的复原方法。

最大熵复原方法隐含了正值约束条件,使复原后的图像比较平滑,这种复原方法的效果比较理想,但缺点是计算量太大。

最大熵是基于“熵最大的图像是最概然的恢复解”的认识来进行理论操作的

薛国良最大熵法恢复图像时信息熵表达式的修正

复参数最大熵图像重建的剑桥算法

运动模糊图像复原算法实现及应用

任务书 1、课程设计目的: 1)提高分析问题、解决问题的能力,进一步巩固数字图像处理系统中的基本原理与方法。 2)熟悉掌握一门计算机语言,可以进行数字图像应用处理的开发设计。 2、课程设计的题目:运动模糊图像复原算法实现及应用 1)创建一个仿真运动模糊PSF来模糊一幅图像(图像选择原理)。 2)针对退化设计出复原滤波器,对退化图像进行复原(复原的方法自定)。 3)对退化图像进行复原,显示复原前后图像,对复原结果进行分析,并评价复原算法。 3、课程设计方案制定: 1)程序运行环境是Windows 平台。 2)开发工具选用matlab、VC++、VB、C#等,建议选用matlab作为编程开发工具,可以达到事半功倍的效果、并降低编程难度。 3)以组件化的思想构建整个软件系统,具体的功能模块根据选定的不同题目做合理的划分。 4、课程设计的一般步骤: 1)选题与搜集资料:选择课题,进行系统调查,搜集资料。 2)分析与设计:根据搜集的资料,进行功能分析,并对系统功能与模块划分等设计。 3)程序设计:掌握的语言,编写程序,实现所设计的功能。 4)调试与测试:自行调试程序,同学之间交叉测试程序,并记录测试情况。 5)验收与评分:指导教师对每个成员开发对的程序进行综合验收,综合设计报告,根据课程设计成绩的判定方法,评出成绩。 5、要求

1)理解各种图像处理方法确切意义。 2)独立进行方案的制定,系统结构设计合理。 3)程序开发时,则必须清楚主要实现函数的目的和作用,需要在程序书写时做适当的注释。 目录 摘要 (2) 一、概述 (3) 1.1选题背景 (3) 1.2课程设计目的 (4) 1.3设计内容 (5) 二、图像退化与复原 (6) 2.1图像退化与复原的定义 (6) 2.2图像退化模型 (7) 2.3运动模糊图像复原的方法 (7) 2.3.1逆滤波复原法 (8) 2.3.2维纳滤波的原理 (9) 三、运动模糊图象复原的matlab实现 (10) 3.1维纳滤波复原 (10) 3.2约束最小二乘滤波复原 (10) 3.3 运动模糊图像复原实例 (11) 四、课程设计总结与体会 (14)

数字图像复原技术中运动模糊图像相关问题研究

数字图像复原技术中运动模糊图像相关问题研究【摘要】随数字图像复原处理技术是当前数字图像处理领域的重要研究课题之一,运动模糊图像的复原是数字图像复原处理技术中较常见也是较难解决的一类问题。本论文的研究工作正是围绕运动模糊图像复原技术展开。分析运动模糊图像的成因以及成像过程;建立运动模糊退化模型;用维纳滤波复原方法对模糊图像进行复原;根据维纳滤波运动模糊图像复原方法中的不足之处,引入介绍了一种新的方法,降低了原有算法的复杂度,改进了维纳滤波。本文主要研究了维纳滤波复原方法并对其进行了改进,其他复原方法有待我们进一步研究。 【关键词】数字图像复原处理技术;运动模糊图像复原;维纳滤波复原;改进维纳滤波复原 图像成像的过程中存在很多的退化源,数字图像在获取、传输和存储过程中受各种原因的影响,会造成图像质量的退化,典型的表现有图像模糊、失真、有噪声等。运动模糊图像是由于相机和被拍摄对象之间的相对运动而造成的模糊现象,这一现象在日常生活中经常遇到,因此运动模糊图像复原技术便成为目前图像复原技术的研究热点之一,运动模糊图像复原是数字图像处理中的一个重要课题。它研究的主要目的是改善给定的图像质量并尽可能复原图像。图像复原的目的就是尽可能恢复被退化图像的本来面目。 运动模糊图像的复原方法研究非常具有现实意义。无论在日常生

活还是在国防军工领域,运动造成图像模糊现象普遍存在,这给人们生活和航空侦察等造成很多不便,所以很有必要对运动模糊图像的恢复做深入研究。在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦查和日常生活中常常由于摄像设备的光学系统的失真、调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。通过对于运动模糊图像的复原,使图像变的清晰,便于更好地提取相应信息。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 一、图像复原的基本概念 图像复原技术,也称为图像去卷积技术,它是按着图像模糊的反过程进行,其目的是获取清晰的,未被污染的图像的近似值,从而我们可以使用相关信息来正确解读图像所包含的有效信息。要想复原图像,其中必须要知道的是模糊是空域不变的还是空域变化的:空域不变意味着模糊和位置无关。也就是说,一个模糊的物体无论从图像的那个位置看都是一样的。空域变化意味着模糊和位置有关。也就是说,模糊图像中的物体因位置变化而看起来有所不同。 二、维纳滤波图像复原 从噪声中提取信号波形的各种估计方法中,维纳滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号,而不只是它的几个参量。 设维纳滤波器的输入为含噪声的随机信号。期望输出与实际输出

数字图像处理中的边缘检测技术

课程设计报告 设计题目:数字图像处理中的边缘检测技术学院: 专业: 班级:学号: 学生姓名: 电子邮件: 时间:年月 成绩: 指导教师:

数字图像处理中的边缘检测技术课程设计报告I 目录 1 前言:查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 (1) 1.1理论背景 (1) 1.2图像边缘检测技术研究的目的和意义 (1) 1.3国内外研究现状分析 (2) 1.4常用边缘检测方法的基本原理 (3) 2 小波变换和小波包的边缘检测、基于数学形态学的边缘检测法算法原理 (7) 2.1 小波边缘检测的原理 (7) 2.2 数学形态学的边缘检测方法的原理 (7) 3 算法实现部分:程序设计的流程图及其描述 (9) 3.1 小波变换的多尺度边缘检测程序设计算法流程图 (9) 3.2 数学形态学的边缘检测方法程序设计算法描述 (10) 4实验部分:对所给的原始图像进行对比实验,给出相应的实验数据和处理结果 (11) 5分析及结论:对实验结果进行分析比较,最后得出相应的结论 (15) 参考文献 (17) 附录:代码 (18)

1前言 查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 1.1 理论背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 图像处理在遥感技术,医学领域,安全领域,工业生产中有着广泛的应用,其中在医学应用中的超声、核磁共振和CT等技术,安全领域的模式识别技术,工业中的无损检测技术尤其引人注目。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。 (2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2 图像边缘检测技术研究的目的和意义 数字图像处理是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像处理也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像处理和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像处理中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速

维纳维纳滤波实现模糊图像恢复

维纳滤波实现模糊图像恢复 摘要 维纳滤波器是最小均方差准则下的最佳线性滤波器,它在图像处理中有着重要的应用。本文主要通过介绍维纳滤波的结构原理,以及应用此方法通过MA TLAB 函数来完成图像的复原。 关键词:维纳函数、图像复原 一、引言 在人们的日常生活中,常常会接触很多的图像画面,而在景物成像的过程中有可能出现模糊,失真,混入噪声等现象,最终导致图像的质量下降,我们现在把它还原成本来的面目,这就叫做图像还原。引起图像的模糊的原因有很多,举例来说有运动引起的,高斯噪声引起的,斑点噪声引起的,椒盐噪声引起的等等,而图像的复原也有很多,常见的例如逆滤波复原法,维纳滤波复原法,约束最小二乘滤波复原法等等。它们算法的基本原理是,在一定的准则下,采用数学最优化的方法从退化的图像去推测图像的估计问题。因此在不同的准则下及不同的数学最优方法下便形成了各种各样的算法。而我接下来要介绍的算法是一种很典型的算法,维纳滤波复原法。它假定输入信号为有用信号与噪声信号的合成,并且它们都是广义平稳过程和它们的二阶统计特性都已知。维纳根据最小均方准则,求得了最佳线性滤波器的的参数,这种滤波器被称为维纳滤波。 二、维纳滤波器的结构 维纳滤波自身为一个FIR 或IIR 滤波器,对于一个线性系统,如果其冲击响应为()n h ,则当输入某个随机信号)(n x 时, Y(n)=∑-n )()(m n x m h 式(1) 这里的输入 )()()(n v n s n x += 式(2) 式中s(n)代表信号,v(n)代表噪声。我们希望这种线性系统的输出是尽可能地逼近s(n)的某种估计,并用s^(n)表示,即 )(?)(y n s n = 式(3) 因而该系统实际上也就是s(n)的一种估计器。这种估计器的主要功能是利用当前的观测值x(n)以及一系列过去的观测值x(n-1),x(n-2),……来完成对当前信号值的某种估计。维纳滤波属于一种最佳线性滤波或线性最优估计,是一最小均方误差作为计算准则的一种滤波。设信 号的真值与其估计值分别为s(n)和)(?n s ,而它们之间的误差 )(?)()(e n s n s n -= 式(4) 则称为估计误差。估计误差e(n)为可正可负的随机变量,用它的均方值描述误差的大小显然

【精选】运动模糊图像复原

数字图象处理实验报告 2011年5月5日 目录 1 绪论 (3) 2、图像退化与复原 (4) 2.1 图像降质的数学模型 (4) 2.2匀速直线运动模糊的退化模型 (5) 2.3点扩散函数的确定 (7)

2.3.1典型的点扩散函数 (7) 2.3.2运动模糊点扩散函数的离散化 (8) 3、运动模糊图象的复原方法及原理 (9) 3.1逆滤波复原原理 (9) 3.2维纳滤波复原原理 (10) 3.3 有约束最小二乘复原原理 (11) 4、运动模糊图像复原的实现 (12) 4.1 运动模糊图像复原的MATLAB实现 (13) 4.2 复原结果比较 (16) 实验小结 (16) 参考文献 (17) 前言 在图象成像的过程中,图象系统中存在着许多退化源。一些退化因素只影响一幅图象中某些个别点的灰度;而另外一些退化因素则可以使一幅图象中的一个空间区域变得模糊起来。前者称为点退化,后者称为空间退化。图象复原的过程无论是理论分析或是数值计算都有特定的困难。但由于图象复原技术在许多领域的广泛应用,因而己经成为迅速兴起的研究热点。 图象复原就是研究如何从所得的变质图象中复原出真实图象,或说是研究如何从获得的信息中反演出有关真实目标的信息。造成图象变质或者说使图象模糊的原因很多,如果是因为在摄像时相机和被摄景物之间有相对运动

而造成的图象模糊则称为运动模糊。所得到图象中的景物往往会模糊不清,我们称之为运动模糊图象。运动模糊图象在日常生活中普遍存在,给人们的实际生活带来了很多不便。作为一个实用的图象复原系统,就得提供多种复原算法,使用户可以根据情况来选择最适当的算法以得到最好的复原效果。 图象复原关键是要知道图象退化的过程,即要知道图象退化模型,并据此采取相反的过程以求得原始(清晰)象。由于图象中往往伴随着噪声,噪声的存在不仅使图象质量下降,而且也会影响了图象的复原效果。从上面论述可以知道,运动造成图象的退化是非常普遍的现象,所以对于退化后的图象进行复原处理非常具有现实意义。图象复原的目的就是根据图象退化的先验知识,找到一种相应的反过程方法来处理图象,从而尽量得到原来图象的质量,以满足人类视觉系统的要求,以便观赏、识别或者其他应用的需要。 1、绪论 数字图象处理研究有很大部分是在图象恢复方面进行的,包括对算法的研究和针对特定问题的图象处理程序的编写。数字图象处理中很多值得注意的成就就是在这个方面取得的。 在图象成像的过程中,图象系统中存在着许多退化源。一些退化因素只影响一幅图象中某些个别点的灰度;而另外一些退化因素则可以使一幅图象中的一个空间区域变得模糊起来。前者称为点退化,后者称为空间退化。此外还有数字化、显示器、时间、彩色,以及化学作用引起的退化。总之,使图象发生退化的原因很多,但这些退化现象都可用卷积来描述,图象的复原过程就可以看成是一个反卷积的问题。反卷积属于数学物理问题中的一类“反问题”,反问题的一个共同的重要属性是其病态,即其方程的解不是连续地依赖于观测数据,换句话说,观测数据的微小变动就可能导致解的很大变动。因此,由于采集图象受噪声的影响,最后对于图象的复原结果可能偏离真实图象非常远。由于以上的这些特性,图象复原的过程无论是理论分析或是数值计算都有特定的困难。但由于图象复原技术在许多领域的广泛应用,因而己经成为迅速兴起的研究热点。 本次实验主要在PSF对图像进行运动模糊退化处理的基础上,采用逆滤波、维纳滤波和最小二乘滤波来实现图像的复原。

模糊图像处理解决方案。。。

造成图像模糊的原因有很多,且不同原因导致的模糊图像需要不同的方法来进行处理。从技术方面来讲,模糊图像处理方法主要分为三大类,分别是图像增强、图像复原和超分辨率重构。本文将从这三方面切入剖析。 智能化设备管理技术是利用系统管理平台软件的设备管理服务,对所有的监控设备包括摄像机、云台、编码器和系统服务器进行不间断的实时监测,当发现故障时能及时通过各种方式告警,提示维护人员及时处置。一个系统可以按照网络拓扑结构部署多台设备管理服务器,分区域对设备进行实时的巡检,这样可以大大提高系统的维护效率,尽可能做到在设备 发生故障时,在不超过10分钟的时间内被监测到并告警。 建设目标 本方案拟应用先进的机器学习和计算机视觉技术,仿真人类的视觉系统,针对某市公共安全图像资源前端摄像头出现的雪花、滚屏、模糊、偏色、画面冻结、增益失衡和云台失控等常见摄像头故障以及恶意遮挡和破坏监控设备的不法行为做出准确判断,并自动记录所有的检测结果,生成报表。以便用户轻松维护市公共安全图像资源系统。 技术路线 将视频故障分成视频信号缺失、视频清晰度异常、视频亮度异常、视频噪声、视频雪花、视频偏色、画面冻结、PTZ运动失控八种类型。其中视频信号缺失、随着“平安城市”的 广泛建设,各大城市已经建有大量的视频监控系统,虽然监控系统己经广泛地存在于银行、商场、车站和交通路口等公共场所,但是在公安工作中,由于设备或者其他条件的限制,案情发生后的图像回放都存在图像不清晰,数据不完整的问题,无法为案件的及时侦破提供有效线索。经常出现嫌疑人面部特征不清晰、难以辨认、嫌疑车辆车牌模糊无法辨认等问题,这给公安部门破案、法院的取证都带来了极大的麻烦。随着平安城市的推广、各地各类监控系统建设的进一步推进,此类问题将会越来越凸显。 模糊图像产生的原因 造成图像模糊的原因很多,聚焦不准、光学系统的像差、成像过程中的相对运动、大气湍流效应、低光照、环境随机噪声等都会导致图像模糊。另外图像的编解码、传输过程都可能导致图像的进一步模糊。总体来说,造成图像模糊的主要原因如下: ·镜头聚焦不当、摄像机故障等; ·传输太远、视频线老化、环境电磁干扰等; ·摄像机护罩视窗或镜头受脏污、受遮挡等;

matlab模糊图像恢复数字图像处理

实验六 模糊图像恢复 一、实验目的 本实验是一个综合性实验,要求学生巩固学习多个知识点和内容,主要有: 1、理解掌握运动图像的退化模型; 2、掌握维纳滤波法的原理和实现方法; 3、在不同的噪声和点扩散函数参数下进行恢复,并比较结果; 4、通过分析和实验得出相应的结论。 二、实验准备 1、运动模糊退化模型:运动模糊是图像退化的一种,可以用数学表达式刻画出来。对线性移(空)不变系统,退化模型可表示为:g(x,y)=h(x,y)*f(x,y)+n(x,y)。对匀速直线运动而言,退化图像为: ()()()[]?--=T dt t y y t x x f y x g 000,, 其中x 0(t)和y 0(t)分别表示x 和y 方向的运动分量。并假设退化系统是线性移不变的,光学成像过程是完善的,快门开关是瞬间完成的。 对上式进行傅立叶变换,则得频域表达式为 ()()()[]()()[]()[]()()()[]{}) ,(),(2exp ,2exp ,2exp ,,000000v u H v u F dt t vy t ux j v u F dt dxdy vy ux j t y y t x x f dxdy vy ux j y x g v u G T T =+-=???? ????+---=+-=??????+∞∞-+∞∞-+∞∞-+∞ ∞-πππ 其中 ()()()[]{}dt t vy t ux j v u H T ?+-=0002exp ,π 假设景物只在x 方向匀速运动,在T 时间内共移动距离是a ,即x 0(t)=at/T ,y 0(t)=0,则 ()()[]ua j ua ua T dt T at u j v u H T ππππ-=?? ???? -=?exp sin 2exp ,0 在Matlab 中可用滤波器卷积的方法仿真出运动模糊图像。

基于MATLAB的运动模糊图像处理

基于 MATLAB 的运动模糊图像处理 提醒: 我参考了文献里的书目和网上的一些代码而完成的,所以误差会比较大,目前对于从网上下载的模糊图片的处理效果很不好,这是我第一次上传自己完成的实验的文档,希望能帮到一些人吧。 研究目的 在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦察和日常生活中常常由于摄像设备的光学系统的失真、 调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。但是相对于散焦模糊,运动模糊图像的复原在日常生活中更为普遍,比如高速运动的违规车辆的车牌辨识,快速运动的人群中识别出嫌疑人、公安刑事影像资料中提 取证明或进行技术鉴定等等,这些日常生活中的重要应用都需要通过运动模糊 图像复原技术来尽可能地去除失真,恢复图像的原来面目。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 图像复原原理 本文探讨了在无噪声的情况下任意方向的匀速直线运动模糊图像的复原问题, 并在此基础上讨论了复原过程中对点扩散函数 (PSF)的参数估计从而依据自动鉴别 出的模糊方向和长度构造出最为近似的点扩散函数,构造相应的复原模 型,实现运动模糊图像的复原;在模糊图像自动复原的基础上,根据恢复效果图的纹理特征和自动鉴别出的模糊长度和角度,人工调整模糊方向和长度参 数,使得复原效果达到最佳。 实验过程 模糊方向的估计: 对图 1(a)所示的原始图像‘车牌’图像做方向= 30,长度 L=20像素的匀速直线运动模糊,得到退化图像如图1(b)

1(a)1(b) j=imread('车牌 1.jpg');len=20; theta=30; figure(1),imshow(j);psf=fspecial('motion',len,theta); title(' 原图像');j1=imfilter(j,psf,'circular','conv'); figure,imshow(j1); title('PSF模糊图像'); 图 1(c)和 1(d)分别为原图像和模糊图像的二次傅里叶变化

(完整word版)运动模糊图像复原开题报告

数字图像处理大作业 - 运动模糊图像复原 开题报告 小组成员:张博文、范桂峰、笪腾飞 一、研究意义 相机对物体成像时 ,由于平台的颤振,在曝光时间内成像器件与物体之间往往存在着相对运动 ,在像面上产生像移 ,因此拍出来的图像是被运动模糊后的图像。这种图像质量较差 ,对比度和分辨率均降低 ,需要进行恢复。 二、研究现状 如果这种相对运动属于平动,则可以把模糊过程看作一个线性位移不变的系统。因此 ,如果知道了系统的冲激响应 ,在这里是点扩展函数 ( PSF) ,就可以用来恢复图像。但是 ,模糊过程的点扩展函数往往是不知道的,因此图像恢复的关键就变成了如何推导点扩展函数。如 Marius Tico 从图像序列入手 ,通过一帧快速曝光未被运动模糊,但却因曝光不足而信噪比很低的图像,以及一帧曝光充足但被运动模糊了的图像来计算点扩展函数,然后恢复。但更多的研究还是集中在如何从单帧被模糊了的图像中找出点扩展函数,主要有2类 ,一类从空域直接入手,利用差分、相关等等各种方法计算,另一种则是通过图像变换后的频谱域中的零值点来计算,这些方法往往只能计算特殊运动形式的点扩展函数 ,主要是匀速直线运动,而且受噪声影响精度比较低。相机的振动通常比较复杂 ,这些方法的适用性受到限制,因此 ,需要找到一种能够不受运动形式和运动方向限制的计算模糊过程点扩展函数的方法。 一种方法是利用了利用经阈值化处理的Radon 变换估计模糊方法,通过微分自相关法估计模糊长度,最后应用带最优窗的维纳滤波进行图像复原,该算法能够较为精确地估算出运动模糊图像的模糊参数并取得了较好的恢复效果,提升了图像恢复的抗噪性能,具有实际参考价值。这是属于第一种空域处理方法。 另一种方法是运动模糊图像经傅立叶变换后在频域有频谱零点进行参数估计,通过霍夫变换初步求得运动模糊图像的点扩展函数,当估计出运动模糊图像的点扩展函数的参数后,用神经网络方法进行恢复。这种恢复模型可以对任意角

图像退化-图像复原

4记录和整理实验报告。图像降质的数学模型 图像复原处理的关键问题在于建立退化模型。输入图像f(x, y)经过某个退化系统后输出的是一幅退化的图像。为了讨论方便, 把噪声引起的退化即噪声对图像的影响一般作为加性噪声 考虑, 这也与许多实际应用情况一致,如图像数字化时的量化 噪声、 随机噪声等就可以作为加性噪声,即使不是加性噪声而 是乘性噪声, 也可以用对数方式将其转化为相加形式。 原始图像f(x, y) 经过一个退化算子或退化系统H(x, y) 的作 用, 再和噪声n(x,y)进行叠加,形成退化后的图像g(x, y)。图2-1表示退化过程的输入和输出的关系,其中H(x, y)概括了退化系统的物理过程,就是所要寻找的退化数学模型。 图2-1 图像的退化模型 数字图像的图像恢复问题可看作是: 根据退化图像g(x , y)和退化算子H(x , y)的形式,沿着反向过程去求解原始图像f(x , y), 或者说是逆向地寻找原始 图像的最佳近似估计。图像退化的过程可以用数学表达式写成如下的形式: g(x, y)=H [f(x, y)]+n(x, y) (2-1) 在这里,n(x, y)是一种统计性质的信息。在实际应用中, 往往假设噪声是白噪声,即它的频谱密度为常数,并且与图像不相关。 在图像复原处理中, 尽管非线性、 时变和空间变化的系统模型更具有普遍性和准确性,更与复杂的退化环境相接近,但它给实际处理工作带来了巨大的困难, 常常找不到解或者很难用计算机来处理。因此,在图像复原处理中, 往往用线性系统和空间不变系统模型来加以近似。这种近似的优点使得线性系统中的许多理论可直接用于解决图像复原问题,同时又不失可用性。 H (x , y )f (x , y )g (x , y ) n (x , y )

基于MATLAB的运动模糊图像恢复技术

基于MATLAB的运动模糊图像恢复技术 王洪珏 (温州医学院,浙江,温州) 摘要:MATLAB是当今流行的科学计算软件,它具有很强的数据处理能力。在其图像处理工具箱中有四个图像复原函数,本文就这些函数的算法原理、运用和恢复处理效果结合实力效果作简要对比讨论。 0前言 图像复原时图像处理中一个重要的研究课题。图像在形成、传输和记录的过程中,由于传感器的噪声、摄像机未对好焦、摄像机与物体相对运动、系统误差、畸变、噪声等因素的影响,使图像往往不是真实景物的完善影像。这种图像在形成、传输和记录过程中,由于成像系统、传输介质和设备的不完善,使图像质量下降的过程称为图像的退化。图像复原就是通过计算机处理,对质量下降的图像加以重建或恢复的过程。 图像复原过程一般为:找退化原因→建立退化模型→反向推演→图像复原 1算法产生概述 开发算法时,首先要创建图像退化的线性数学模型,接着选择准则函数,并以适当的数学形式表达,然后进行数学推演。推演过程中通常要进行表达形式(即空域形式、频域形式、矩阵-矢量形式或变换域形式)的相互转换,最后得到图像复原算式。 退化数学模型的空域、频域、矢量-矩阵表达形式分别是: g(x,y)=d(x,y)*f(x,y)+n(x,y) G(u,v)=D(u,v)〃F(u,v)+N(u,v) g=HF+n 其中:g(x,y)、d(x,y)、f(x,y)、n(x,y)分别为观测的退化图像、模糊函数、原图像、加性噪声,*为卷积运算符,(x=0,1,2,…,M-1),(y=0,1,2,…,N-1)。 2运动模糊的产生 景物与相机之间的相对运动通常会使相机所成的像存在运动模糊。对于线性移不变模糊,退化图像u0可以写成,u0=h*u+n,其中h为模糊核,*表示卷积,n为加性噪声。 由du/dt=0,文献[5]将这种运动模糊过程描述为波动方程:

实验五 图像复原

信息工程学院实验报告 课程名称:数字图像处理Array 实验项目名称:实验五图像复原实验时间: 班级:姓名:学号: 一、实验目的 1.了解图像退化/复原处理的模型; 2. 掌握图像复原的原理及实现方法; 3. 通过本实验掌握利用MATLAB编程实现图像的恢复。 4. 掌握matlab代码的调试方法,熟悉常见代码错误及改正方法。 二、实验步骤及结果分析 MATLAB图像处理工具箱包含四个图像复原函数,请参照教材第126页例6.8编程实现图像复原。 1.用点扩散(PSF)函数创建运动模糊图像,修改参数改变模糊程度。 a) 无噪声运动模糊图像 b) 有噪声运动模糊图像 程序代码: I=imread('cameraman.tif'); %读取图像 subplot(1,3,1); imshow(I,[]);%显示图像 title('原始图像'); PSF=fspecial('motion',25,11); %运动模糊函数,运动位移是25像素,角度是11 Blurred=imfilter(I,PSF,'conv','circular'); %对图像运动模糊处理 subplot(1,3,2); imshow(Blurred,[]);title('无噪声运动模糊图像'); %显示无噪声运动模糊图像 Noise=0.05*randn(size(I)); %正态分布的随机噪声 BlurredNoisy=imadd(Blurred,im2uint8(Noise));%对退化后的图像附加噪声 subplot(1,3,3); imshow(BlurredNoisy,[]);title('有噪声运动模糊图像'); %显示运动模糊且加噪声后图像 执行结果:

基于MATLAB的运动模糊图像处理

基于MATLAB的运动模糊图像处理 提醒: 我参考了文献里的书目和网上的一些代码而完成的,所以误差会比较大,目前对于从网上下载的模糊图片的处理效果很不好,这是我第一次上传自己完成的实验的文档,希望能帮到一些人吧。 研究目的 在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦察和日常生活中常常由于摄像设备的光学系统的失真、调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。但是相对于散焦模糊,运动模糊图像的复原在日常生活中更为普遍,比如高速运动的违规车辆的车牌辨识,快速运动的人群中识别出嫌疑人、公安刑事影像资料中提取证明或进行技术鉴定等等,这些日常生活中的重要应用都需要通过运动模糊图像复原技术来尽可能地去除失真,恢复图像的原来面目。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 图像复原原理 本文探讨了在无噪声的情况下任意方向的匀速直线运动模糊图像的复原问题,并在此基础上讨论了复原过程中对点扩散函数(PSF)的参数估计从而依据自动鉴别出的模糊方向和长度构造出最为近似的点扩散函数,构造相应的复原模型,实现运动模糊图像的复原;在模糊图像自动复原的基础上,根据恢复效果图的纹理特征和自动鉴别出的模糊长度和角度,人工调整模糊方向和长度参数,使得复原效果达到最佳。 实验过程 模糊方向的估计: 对图1(a)所示的原始图像‘车牌’图像做方向θ=30?,长度L=20像素的匀速直线运动模糊,得到退化图像如图1(b)

1(a) 1(b) j=imread('车牌1.jpg'); figure(1),imshow(j); title('原图像'); len=20; theta=30; psf=fspecial('motion',len,theta); j1=imfilter(j,psf,'circular','conv'); figure,imshow(j1); title('PSF 模糊图像'); 图1(c)和1(d)分别为原图像和模糊图像的二次傅里叶变化

图像处理中的模糊算法及实现(一)

图像处理中的模糊算法及实现(一) 摘要:图像处理技术是用计算机对图像进行分析,以达到所需结果的技术,又称影像处理。图像处理一般指数字图像处理,数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。而目前,我国图像处理水平远远落后于世界先进水平,技术的发展需求迫在眉睫。基于以上原因,本文研究了以模糊信息处理技术为基础的图像处理算法及其实现,用一个简单的程序实践图像处理算法。 关键词:图像处理;模糊技术;模糊算法;面向对象;类库函数 信息是自然界物质运动总体的一个重要方面,人们认识世界和改造世界就是要获得各种各样的信息。图像信息是人类获得外界信息的主要来源,因为大约有70%的信息是通过人眼获得的,而人眼获得的都是图像信息。在近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题。例如:由于空间技术的发展,人造卫星拍摄了大量的地面和空间的照片,人们可以利用照片获得地球资源、全球气象和污染情况等;在医学上,医生可以通过X射线层析照像,观察到人体各部位的断层图像;在工厂,技术人员可以利用电视图像管理生产,由此可见图像信息的重要性。获得图像信息非常重要,但目的不仅仅是为了获得图像,而更重要的是将图像信息进行处理,在大量复杂的图像中找出我们所需要的信息。因此图像信息处理在某种意义上讲,比获得图

像更为重要,尤其是在当今科学技术迅速发展的时代,对图像信息处理提出了更高的要求,以便更加快速、准确、可靠地获得有用信息。 一、图像是指景物在某种成像介质上再现的视觉信息 图像是具有特定信息的某种集合体,本质上可认为图像是数据的集合。为了研究和分析图像,需对图像进行必要的处理,常用的图像处理方法可分为下列几种: (一)电学模拟处理把光强度信号转换成电信号,然后用电子学的方法,对信号进行加、减、乘、除、进行浓度分割、反差放大、彩色合成、光谱对比等。电视视频信号中常用它。近期发展较快的CCD模拟处理方法,是根据CCD的特性,有三种处理功能;①模拟延迟,改变时钟脉冲频率就能实现模拟;②多路调制把并列输入的信号转换成串行的时序信号,或者建立它的反变换,可实现数据信息的重新排列:③它能作各响应的滤波器,而滤波器就是一个信号处理装置。CCD模数处理在设备、成本方面都有很大的优越性,在滤波技术方面较计算机更易于实现。 (二)光学一计算机混合处理混合处理一是先用光学办法对图像作预处理,再用数字方法做精处理。因而兼备了二者的优点,在某些场合得到应用。 二、图像处理技术基础 (一)图像处理技术。 图像处理技术是用计算机对图像进行分析,以达到所需结果的技术,

数字图像运动模糊处理

目录 一:数字图像处理简介 (2) 二:图像模糊绪论 (4) 三:匀速直线运动模糊的退化模型 (5) 四:维纳滤波简介 (7) 维纳滤波MATLAB实现 (8) 五:有约束最小二乘复原原理 (9) 最小二乘方图像复原MATLAB实现 (10) 六:Lucy-Richardson图像复原MATLAB实现 (11) 七:盲去卷积图像复原MATLAB实现 (13) 八:程序 (14) 九:图像处理结果 (14) 原图像 (15) PSF模糊图像 (16) 维纳处理结果 (17) 最小二乘方处理结果 (18) Lucy-richardson处理结果 (19) 盲去卷积处理结果 (20) 十:复原结果比较 (21) 十一:实验小结 (21) 第一章

一:数字图像处理简介 数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。 数字图像处理(DigitalImageProcessing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。 数字图像处理主要研究的内容有以下几个方面:1)图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。2)图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是

模糊图像复原技术在刑事侦查中的应用

龙源期刊网 https://www.doczj.com/doc/b511466963.html, 模糊图像复原技术在刑事侦查中的应用 作者:刘飞飞 来源:《科技与创新》2016年第11期 摘要:随着科学技术应用的飞速发展,图像处理的数字化水平不断提高,各种图像显示 设备的升级更加快速,因此人们在应用图像处理或者图像显示的过程中能够深刻感受到技术带来的新体验以及信息化应用水平的提高。这也给人们的生活带来的极大的便利。这些图像处理技术不仅应用与人们的日常生活,也被广泛应用于军事、交通等各个领域。通过详细介绍模糊图像复原技术在刑事侦查中的应用,揭示了图像处理系统的提升对于刑事侦查工作的影响。 关键词:模糊图像;复原技术;矫正;刑事侦查 中图分类号:DF793.2 文献标识码:A DOI:10.15913/https://www.doczj.com/doc/b511466963.html,ki.kjycx.2016.11.153 文章编号:2095-6835(2016)11-0153-02 众所周知,图像应用技术给人们的生活带来了各种便利。不管是日常生活,还是文化艺术体验,图像给人们以直观、真实的感受。通过对光学图像的获取,经过几个程序显示在镜头、底片、储存介质上,帮助我们记录生活、记录思想。但是,光学传输过程受到各种介质的影响,成像系统的千差万别,都会对图像产生不同的影响。因此,我们经常会遇到图像像素重叠、失焦、对比度较差等问题,这些问题会导致成像图片的质量较差。而图像复原技术就是对退化图像进行。因此,从图像模糊的成因、图像复原技术以及其应用三个方面进行说明。 1 模糊图像的成因 一般来说,模糊图像的成因分为两个方面:①外部原因。例如在光学图像的获取过程中,外界天气不佳、目标与成像系统的运动、目标在场景中景深不一致等因素造成捕获图像过于模糊。②自身因素。由于自身摄影技术水平有限,使得记录中的图像退化,产生模糊图像。这对于刑事侦查过程中的目标识别、追踪所产生的影响不言而喻。 这样的图像对比度较低——虽然能看得到,但却看不清,给具体的监控工作带来了不小的困难。因此,我们需要具体分析模糊图像产生的因素,减少模糊图像出现的概率。我们可以从以上两个成因中看出,外界因素对于模糊图像的影响最为直接。曝光不足、曝光过度、恶劣天气、噪声干扰都会使得图像的质量下降,并且由于储存设备本身在对图像进行压缩之后,也会在一定程度上压缩图像的相关细节。因此,在这些情况下,我们就需要对模糊图像进行复原。 2 模糊图像复原技术及其应用

运动模糊图像的复原

摘要 运动模糊图像的复原是图像复原中较常见也是较难的一类,在智能交通系统中有着广泛的应用。本文面向车牌识别应用,对运动模糊图像的复原技术进行了系统的研究与实现。 匀速直线运动模糊图像复原的关键在于运动模糊方向和长度的自动鉴别两个方面。将原图像视为各向同性的一阶马尔科夫过程,通过用双线性插值来进行方向微分,实现了运动模糊方向的自动鉴别算法;根据分析模糊图像的频谱图出现黑色条带的原因、条件以及它的精确位置,实现了运动模糊长度自动鉴别算法。 针对复杂成像情况下的运动模糊图像复原工作,着重解决了含噪运动模糊图像和局部运动模糊图像的复原问题;综合应用椒盐噪声检测器和基于带可变正则化参数的径向基神经网络(I也FN)方法,实现了组合滤波器去噪算法,采用改进的局部运动模糊对象提取算法实现局部运动模糊图像的复原。 开发了车牌模糊图像复原系统。该系统对模糊长度和模糊角度均具有较高的鉴别精度,对于含有噪声的运动模糊图像和局部模糊图像进行相应的去噪处理和对局部模糊对象进行提取,并提供参数调整机制以获得最佳的复原效果。自动实现各种类型的运动模糊车牌图像的清晰恢复,复原的效果图可直接应用于后续的车牌识别等工作。 关键词:图像复原,运动模糊,模糊方向,模糊长度,噪声,局部模糊,车牌识别 ABSTRACT The restoration of motion-blurred images is a familiar and also difficult type in image restoration,thus the study of the motion-blurred image restoration is of very extensive operation significance.Towards the license plate recognition application,we systemically study and implement the technology of motion-blurred image restoration. The key problem of restoring constant-speed straight-line motion-blurred images lies in the estimation of motion-blurred direction and motion-blurred length.The original image obeys isotropy Markov process with rank one,Can efficiently identify it with high precision via on directional derivation using bilinear interpolation;realizes automatic estimation of motion-blurred length;according to the reason and condition of black strips in the spectrum images of motion-blurred images and specified the exact positions of black strips,a method to accurately estimate the blurring length of uniform linear motion blurred images is implemented.For the restoration of motion-blurred images in complex imaging environment,this paper emphasizes on the restoration of noisy motion-blurred images and partial motion-blurred images,realizes a combined filter using both the salt-and-pepper noise detector and radial basis function network approaches,and devises the picking estimation for partial motion-blurred images.we develop a system of motion.blurred license plate images restoration.The system results in precise discrimination for blurred length and blurred direction,to the noisy motion-blurred image and partial blurred image,the system can implement the process of wiping out noises and picking up the partial blurred objects,and realizes the perfect

图像复原处理技术

实验五图像复原处理技术 实验目的 1 了解图像降质退化的原因,并建立降质模型。 2 理解反向滤波图像复原的原理 3 理解维纳滤波图像复原的原理实验原理图像复原处理一定是建立在图像退化的数学模型基础上的,这个退化数学模型应该能够 反映图像退化的原因。图像降质过程的模型如图5-1所示,其表达式为 g(x,y)=h (x,y)*f (x,y) +n (xy) (5.1) 图5-1图像降质模型 1、 滤波图像复原 逆滤波法是最简单的图像恢复方法。对5.1式两边作二维傅立叶变换,得到 G (u , v ) =H (u ,v) F (u ,v) + N (u ,v) H (u ,v) 为成像系统的转移函数。估算得到的恢复图像的傅立叶变换F ? (u ,v) 为 ()()()()()() ,,?,,,,G u v N u v F u v F u v H u v H u v ==+ (5.2) 若知道转移函数H (),u v ,5.2式经反变换即可得到恢复图像,其退化和恢复的全过程用图5-2表示。 图5-2频域图像降质及恢复过程

逆滤波恢复法会出现病态性,若H (),u v ,而噪声N(u,v) ≠0,则()(),,N u v H u v 比F (x,y)大很多,使恢复出来()?,f x y 与(),f x y 相差很大,甚至面目全非。一种改进的方法是在H (u , v ) =0 的频谱点及其附近,人为仔细设置()1,H u v -的值,使得在这些频 谱点附近,()(),,N u v H u v 不会对()?,F u v 产生太大影响。二种方法是考虑到降质系统的转移函数(),H u v 的带宽比噪声要窄的多,其频率特性也具有低通性质,因此可令逆滤波的转移函数()1,H u v 为 ()()()()1 222 11 2220 1,,0H u v u v D H u v u v D ?+≤?=??+>? (2)维纳滤波复原 逆滤波简单,但可能带来噪声的放大,而维纳滤波对逆滤波的噪声放大有抑制作用。 维纳滤波是寻找一个滤波器,使得复原后图像()?,f x y 与原始图像(),f x y 的方差最小,即 ()(){ }2 ?min ,,E f x y f x y ??=-?? 如果图像(),f x y 和噪声(),n x y 不相关,且(),h x y 有零均值,则可导出维纳滤波器的传递函数为 ()() () () ()() 2 2 ,1 ,,,,,w n f H u v H u v P u v H u v H u v P u v = ? + 式中(),n P u v 和(),f P u v 分别为噪声和原始图像的功率谱。实际上(),n P u v 和(),f P u v n 往往是未知的,这时常用常数K 来近似() () ,,n f P u v P u v 。 【实验】产生一模糊图像,采用维纳滤波图像复原的方法对图像进行处理。 clear; %清除变量 d=15 %设定长度

相关主题
文本预览
相关文档 最新文档