当前位置:文档之家› 高压电源_高压电源厂家_高压电源设计_高压电源原理

高压电源_高压电源厂家_高压电源设计_高压电源原理

高压电源_高压电源厂家_高压电源设计_高压电源原理
高压电源_高压电源厂家_高压电源设计_高压电源原理

电除尘器高压电源

各类高压电源的性能对比

概述

在饱受雾霾之苦的今天。随着我国对环境保护的日益重视,燃煤电厂的污染排放受到人们的关注,国家和地方环保部门对燃煤电厂污染物的排放和总量有了较严格的控制,并且排放标准逐年升高。这就迫使企业对现有的电除尘器设备进行不断的升级和改造。在电除尘器改造的过程中,供电系统的选择直接影响着除尘器的性能。本文通过对电除尘器各类高压电源工作原理的比对来分析什么样的电源更有利于提高除尘器的除尘效率。

一、电除尘器电源发展的三个阶段:

第一阶段:工频电源

1、恒流源:单相交流380V输入,变压器分档调幅调压,高压硅堆整流输出。输

频率100Hz。

二次电压输出波形:纹波较大的直流(DC)电压波形。

2、单相可控硅电源:单相交流380V输入,可控硅调相调压,高压整流变压器输

出。输出频率100Hz。

二次电压输出波形:纹波较大的直流(DC)电压波形。

3、三相可控硅电源:三相交流380V输入,可控硅调相调压,高压整流变压器输

出。输出频率300Hz。

二次电压输出波形:纹波较小的直流(DC)电压波形。

第二阶段:高频电源

1、按输出频率可分为:10 kHz、20 kHz、50 kHz。

2、按调压方式可分为:调频高频电源、调幅高频电源。

三相交流380V输入,可控硅/二极管调相调压,IGBT全桥逆变经高压整流变压器输出。输出频率10 kHz、20 kHz、50kHz。

二次电压输出波形:基本上纯直流的(DC)电压波形。

万联芯城https://www.doczj.com/doc/b51186001.html,是国内优秀的电子元器件采购网,电子元器件供应商,万联芯城专业供应终端工厂企业原装现货电子元器件产品,所售电子元器件有IC集成电路,二三极管,电阻电容等多种类别主动及被动类元器件,可申请样片,长久合作可申请账期,万联芯城为客户提供方便快捷的一站式电子元器件配套服务,提交物料清单表,当天即可获得各种元件的优势报价,整单付款当天即可发货,物料供应全国,欢迎广大客户咨询,点击进入万联芯城

第三阶段:工频基波脉冲电源

工频基波脉冲电源:由两组独立电源组成即基波电源和脉冲电源。基波频率300Hz,脉冲频率100pps,脉冲宽度75μs;

第四阶段:高频基波脉冲电源:

由多组独立高频电源叠加组成。基波频率10~50 kHz,双脉冲频率1~10000 pps,脉冲宽度8μs;脉冲电源输入电压: 三相交流380V。

二次电压输出波形:直流(DC)电压波形叠加脉冲(PULSE)电压波形。即直流叠加脉冲(DC+PULSE)电压波形。

二、电除尘器电源工作原理简介:

1、三相可控硅电源工作原理:

三相可控硅电源主要由反并联可控硅调压电路、三相高压整流变压器及控制电路组成。三相可控硅电源原理如图2-1所示。

三相可控硅电源的基本工作原理是将三相380V低压交流电,经反并联可控硅在控制回路控制下将移相调压后的交流电压送至三相高压整流变压器一次侧,经三相高压整流变压器二次侧升压、高压硅堆整流后输出直流高压。图2-2是在电除尘器负载上得到纹波较小的直流(DC)电压波形图。控制器根据ESP负载的二次电压、电流反馈信号进行自动跟踪控制。

图2-1三相可控硅电源原理框图

图2-2 三相可控硅电源二次电压波形图

2、高频电源工作原理:

高频电源主要由三相整流滤波电路,IGBT全桥谐振逆变电路,高频高压整流变压器及控制电路组成。高频高压电源原理如图2-3所示。

图2-3 高频高压电源原理框图

高频电源的基本工作原理是将三相380V低压交流电,经三相桥式整流电路得到直流电压、LC滤波输出520V直流母线电压。直流电压经IGBT全桥逆变为高频脉冲电压。高频脉冲电压经高频变压器升压,高压硅堆整流后输出直流高压。图2-4是在电除尘器负载上得到基本上纯直流的(DC)电压波形图。控制器根据ESP负载的二次电压、电流反馈信号进行自动跟踪控制。

图2-4 高频电源二次电压波形图

3、工频基波脉冲电源工作原理:

工频基波脉冲电源:由两组独立电源并联耦合组成,即基波电源和脉冲电源。工频基波脉冲电源原理如图2-5所示。

图2-5 工频基波脉冲电源原理框图

工频基波脉冲电源工作原理:工频基波电源工作原理同三相可控硅电源工作原理,在此不再阐述。其作用是产生基波电压-Udc。

脉冲电源工作原理是将三相380V低压交流电,经反并联可控硅在控制回路控制下,将移相调压后的交流电压送至三相高压整流变压器一次侧,经三相高压整流变压器二次侧升压、高压硅堆整流后输出正高压直流母线电压+Ups,经高压IGBT全波逆变为高压脉冲电压。高压脉冲电压经电容Cs、脉冲变压器PT输出形成

脉冲电压-Upulse,再经耦合电容Cc与基波电压叠加产生ESP所需电压Uesp,即在电除尘器负载上得到Uesp=-(Udc+Upulse)的电压波形。其波形图如图2-6所示。控制器根据ESP负载的二次电压、电流反馈信号进行自动跟踪控制。

图2-6 工频基波脉冲电源二次电压波形图

4、高频基波脉冲电源工作原理:

高频基波脉冲电源是由N(N=2,3,4,5…)组独立IGBT全桥逆变电路、变压器整流电路串联组成如图2-7所示。若U2=80kV,当N=4时,其基波和脉冲波的幅值比为2:4、3:4(电压比为40:80kV、60:80kV)。

高频基波脉冲电源的工作原理是将三相380V、50Hz低压交流电,经三相桥式整流LC滤波输出520V直流母线电压,直流母线电压经多组IGBT全桥逆变为高频脉冲电压,对应各自高频变压器升压,由各自高压硅堆串联整流输出高压。在电除尘器负载上同时得到直流基波(DC)电压和脉冲波(PULSE)电压如图2-8所示。控制器根据ESP负载的二次电压、电流反馈信号进行自动跟踪控制。

图2-7 高频基波脉冲电源原理框图

图2-8 高频基波脉冲电源二次电压60:80kV波形图

三、电除尘器供电电源波形分析:

电除尘器供电电源分为直流(DC)电压波形供电,直流叠加脉冲(DC+PULSE)电压波形供电。

工频电源、高频电源属直流(DC)电压波形供电(如图2-2、如图2-4所示)。特征是相同幅值直流电压连续不断的向除尘器充电加压,使板线间始终维持在击穿电压点附近。当粉尘比电阻超过1011Ω·cm后,就会在气体电离—粉尘荷电—移动—捕集—脱尘的过程中出现问题。当高比电阻粉尘累积在阳极板上后,由于连续加压,使带电粉尘对阳极板的中和速度被更快的再充电,导致阳极板尘层加

厚,表面电位提高,造成对放电极的电位差相对减少,放电极电晕放电减弱,引起反电晕现象发生,除尘效率大幅下降。

脉冲电源属直流叠加脉冲(DC+PULSE)电压波形供电(如图2-6、如图2-8所示)。特征是在有效电晕电压,连续不断地向除尘器充电加压的同时,叠加脉冲电压。这种荷电方式,不仅提高了瞬间的荷电电压,又降低了平均荷电电压,即使是高比电阻粉尘,粉尘层中的电位也很容易在阳极板上得到中和,阳极板表面电位降低,不会产生与放电极相对电位的提高,抑制了反电晕现象的发生。脉冲波瞬间高电压更易使粉尘荷电,所以除尘效率大大提高。

四、电除尘器对供电电源输出波形频率的响应:

电除尘器的数学模型:

电除尘器的结构是由极板、极线平行交错排布而成,可视为容性负载。根据电除尘器的伏—安特性曲线,其不同阶段数学模型是不同的,电阻和电容串联组合,代表电除尘器伏—安特性曲线的0—起晕电压段。电阻和电容并联组合,代表电除尘器伏—安特性曲线的起晕电压—击穿电压段。如图4-1。

图4-1

Xr代表阻抗,是电除尘器极板极线间粉尘介质对气体电离的阻碍程度

Xc代表容抗,是电除尘极板极线间距离、面积对气体电离的阻碍程度,是频率的函数。

Xc=1/2πfC

当电阻和电容并联时:

I=U/Xr+Xc

当电阻和电容并联时:

I=U/Xr+U/Xc

由上述小结:当电压为定值时,容抗减小电流增加。

电除尘器是物理实体,提高其供电电源频率,对提高除尘效率是有效的。

五、脉冲电晕放电对粉尘荷电的影响

粒子在直流电晕荷电的过程中,随着颗粒带电量的增加从而在颗粒表面产生势垒能。荷电的发生是只有那些具有动能大于或足以克服荷电粒子表面势垒能的电子与粒子碰撞而产生. 低于荷电粒子表面势垒能的电子不能达到粒子表面进而不荷电.当荷电发生到一定阶段时,粉尘的荷电速度减小,从而影响粉尘的带电量,造成除尘效率底下。

在脉冲放电中,由于瞬间电位较高,电子从电场中获得的能量很大,产生高能电子,这些高能电子与中性气体分子碰撞裂解或激发中性分子进而产生更多的电子。此时,电场空间带电粒子主要是电子,电晕电流是电子传输形成的。飞灰粒子荷电是以电子荷电为主。

飞灰在脉冲放电电晕场中的电子荷电机理是以电子的电场荷电和动能扩散荷电为主,飞灰粒子的电子荷电不仅与电场强度有关,也与电子的热运动程度有关(即电子的动能)。

由于飞灰在直流电晕下的电场荷电很快达到饱和并在飞灰粒子表面形成势垒能,抑制飞灰的进一步荷电. 但在脉冲期间,单位空间内,被激发出的电子密度很大,能量很高,高能电子足以克服这势垒能而轰击飞灰粒子表面使粒子的荷电量超过饱和电场荷电的极限.从而获得更快的趋近速度,提高除尘效率。

六、电除尘器脉冲电源主要技术指标:

七、高频基波脉冲电源特点

大连蓝清自控设备有限公司研制的GGGAJ02-40kHz/□A*□kV电除尘器用高频高压脉冲电源(简称高频脉冲电源),是一种即能提供直流供电、间歇供电和脉冲供电的电除尘器供电电源。

1.绿色电源:三相供电、电网平衡、无谐波干扰、功率因数高、电源转换效率高。

2.多电压叠加技术:多组IGBT全桥逆变功率单元、变压器整流电路串联组合,实现2+1、3+1、4+1等高频脉冲电源的功率叠加和电压叠加。多电压叠加可组合任意电压波形形状,输出多种DC电压波形和DC+PULSE电压波形,实现对电除尘器

的纯直流供电、间歇供电和脉冲供电。电压峰值、有效值均可调,电场控制方式灵活。

3.高频率窄脉冲:输出频率范围2kHz-50kHz,电除尘器是容性负载,供电频率越高电场容抗越小,电源向电除尘器注入的能量就越大。脉冲宽度8μS更有利于瞬间高强电场的产生和气体电离过程中自由电子的激发。

4.智能控制:当DC+PULSE二次电压波形设定完成后,设备通过调整频率自动跟踪电场击穿电压的临界点。电场不易闪络,实现最佳功率输出。

5.闭环节能控制:根据除尘器排放浓度与电除尘器电源耗电量之间的闭环控制,实现节能减排。系统由上位机联网实现优化控制。

6.降压振打控制:具备反电晕检测功能,当反电晕发生时输出联动信号,及时降压、振打清灰。

7.微细粉尘的捕集:微细粉尘的排放量是影响电除尘器粉尘排放浓度的关键指标。高频双窄脉冲供电产生的瞬间高强电场电晕,大大提高了对PM2.5及以下颗粒物的捕集。

8.高比电阻粉尘的捕集:当采用DC+PULSE供电时,最大程度地抑制了反电晕现象的发生,大大提高了对高比电阻粉尘的捕集效果。

9.脱硫脱硝:高频窄脉冲供电产生的瞬间高强电场电晕,更有利于臭氧浓度的提高,提升脱硫、脱硝的效率。

10.节能减排:高频脉冲电源和常规单相工频电源比较,电除尘器除尘效率提高50%,节能30%。

11.整机结构与防护:高低压一体化组装,户外布置,节约了控制室土建面积。IGBT等功率器件散热采用箱式隔离风道,使功率器件、控制单元板与外界环境隔离。散热系统采用调速风机智能控制,提高高频脉冲电源在户外高温环境下的适应性。控制单元板采用三防工艺处理,提高绝缘及防腐能力。不锈钢壳体,防护等级IP54。

火花闪络、电场开路、电场短路、过载、欠压、IGBT温度、变压器油温、油位、设备故障及通讯故障等。

高频基波脉冲电源是电除尘器电源配套、电源改造、脱硫脱硝和取代进口同类产品的最佳选择。

±12V对称稳压电源设计

一、设计题目 题目:±12V 对称稳压电源 二、设计任务 设计任务和技术指标: 设计一个直流稳压线性电源,输入220V ,50Hz 的正弦交流信号,输出±12V 对称稳压直流电。输出最大电流为1A ,输出纹波电压小于5mV,稳压系数小于错误!未找到引用源。,输出内阻小于0.1?.并加输出保护电路。 三、原理电路和程序设计 电路原理方框图 1.直流稳压电源的基本原理 下面将就直流稳压电源各部分的作用作简单陈述。 ① 电源变压器T 的作用是将电网220V 的交流电压变换成整流滤波电路所需要的交流电压Ui 。变压器副边与原边的功率比为P2/ P1=η,式中η是变压器的效率。根据电路的需求,我们选择了±15V 10W 的变压器。 ② 整流滤波电路:整流电路将交流电压Ui 变换成脉动的直流电压。再经滤波电路滤除较大的纹波成分,输出纹波较小的直流电压U1。常用的整流滤波电路有全波整流滤波、桥式整流滤波等。我们选用了桥式整流滤波电路。 ③ 三端集成稳压器:常用的集成稳压器有固定式三端稳压器与可调式三端稳压器。其中固定式稳压器有7800和7900系列。7800输出正电压,7900 输出负电

压,根据本设计要求,我们选用7812和7912。 2.稳压电流的性能指标及测试方法 稳压电源的技术指标分为两种:一种是特性指标,包括允许输入电压、输出电压、输出、电流及输出电压调节范围等;另一种是质量指标,用来衡量输出直流电压的稳定程度,包括稳压系数(或电压调整率)、输出电阻(或电流调整率)、纹波电压(纹波系数)及温度系数。 ①测量稳压电源输出的稳压值及稳压范围 首先使调压器的输出为0V,通过示波器或万用表观测稳压电路的输出,然后调节调压器的输出,使输入到变压器的交流电压逐渐增加,当稳压电路输出的直流电压值不再随着调压器输出电压的增加而改变时,此时电路输出的直流电压值即为稳压电源的稳压值。使稳压器输出在稳压值上的输入电压范围为稳压电路的稳压范围。 ②测量稳压电源的稳压系数SU 稳压系数定义为:当负载保持不变时,输出电压相对变化量与输入电压相对变化量之比。稳压系数反映电网电压波动时对稳压电路的影响,越小越好。调节调压器的输出,使输入到变压器的交流电压分别为220V+10%和220V-10% ,测量稳压电源的输出电压,根据公式计算稳压电源的稳压系数SU。 ③测量稳压电路的输出电阻Ro 输出电阻Ro 定义为:当稳压电路输入电压保持不变时,由于负载变化而引起的输出电压变化量与输出电流变化量之比。输出电阻反映稳压电路受负载变化的影响,越小越好。可用输出换算法测量输出电阻Ro 。 ④测量稳压电源的纹波电压和纹波因数 纹波电压是指在额定负载条件下,稳压电源输出直流电压中所含的交流分量。在

高压强脉冲电源的设计

高压强脉冲电源的设计 摘要:本文提出了一种强脉冲发生器电源的设计方案,应用此方案设 计了高压电源、IGB T控制充电、可控硅控制放电,可以自动运行的 脉冲磁场发生设备。最大直流电压达到3KV且连续可调,放电脉冲电 流高达10000A。该设备由一片AT89C52单片机控制,可实现与计算 机的连接。 关键词:高压电源; IGBT ;可控硅 The Design of High Voltage Pulsed Power Supply Abstract: This paper presents a strong pulse generator power supply design, applications for this program designed high-voltage power supply, IGBT control the charging and SCR controlled discharge, can be run automatically pulse magnetic field equipment. Maximum DC voltage 3KV and continuously adjustable discharge pulse currents up to 10000A. The device is controlled by an AT89C52 microcontroller can be realized with the computer. Key words: high voltage power supply;IGBT;SCR, 引言:强脉冲磁场对工业装置及医疗的作用[1],强脉冲磁场对金属 形成时的影响[2]以及脉冲磁场刺激对生物体的效应等已经越来越 引起人们的关注。目前国内的脉冲磁场设备,一般电压较低,频率也 较低。特别是高压充电部分采用调压器调压[3],这样体积太大也显 笨重。要产生更高的磁场强度,可以改变脉冲磁场频率的自动运行的

高压直流输电原理与运行简答题

高压直流输电复习解答 1.列举直流输电的优点与适用场合: 优点: 1)输送相同功率时,线路的造价低 2)线路有功损耗小 3)适合海下输电 4)不受系统稳定极限的限制 5)直流联网对电网间的干扰小 6)直流输电的接入不会增加原有电力系统的短路电流容量 7)输送功率的大小和方向可以快速控制和调节,运行可靠 2.两端直流输电的运行接线方式. 主要分为单极线路方式、双极线路方式两大类,具体如下: 单极线路方式: 1)单极一线式:用一根空导线或者电缆,以大地或者海水作为返回线路组成的 直流输电系统 2)单极两线式:导线数不少于两根,所有导线同极性。 双极线路方式: 1)双极线路中性点两端接地方式 2)双极中性点单端接地方式 3)双极中性线方式 4)“背靠背”换流方式 3.延迟角为什么不能太大也不能太小? 整流工况下,a太小,欲导通的阀在有触发脉冲时承受的正向压降太小可能导致导通失败或者延时,a太小则会使功率因素太低。 逆变工况下,当直流电流一定,随着a的增加,换流器所需的无功功率将小。因此,从经济角度来说,提高换流器运行触发角会使得交流侧功率因素增大,因此输送相同直流功率时,所需的无功功率将减小。但a的增大,会导致换相角的增大,从而使熄弧角较小。为保证换流器的安全运行,a不能太大。 4.换相失败的原理是怎样的?换相失败的解决方法有哪些? 换相失败的原理: 当两个桥臂之间换相结束后,刚退出导通的阀在反向电压作用的一段时间内,如果未能恢复阻断能力,或者在反向电压期间换相过程一直未能进行完毕,这两种情况在阀电压变为正向时被换相的阀都将向原来预定退出导通的阀倒换相,称为换相失败。 解决方法: 1)利用无功补偿维持换相电压稳定 2)采用较大的平波电抗器 3)系统规划时选择短路电抗较小的换流变

连续可调直流稳压电源的设计与制作

目录 一、设计目的 (1) 二、设计任务及要求 (1) 三、设计步骤 (1) 四、总体设计思路 (2) 五、实验设备及元器件 (5) 六、测试要求 (5) 七、设计报告要求 (6) 八、注意事项 (6)

直流稳压电源的设计 一、设计目的 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.学会直流稳压电源的设计方法和性能指标测试方法。 3.培养实践技能,提高分析和解决实际问题的能力。 二、设计任务及要求 1.设计并制作一个连续可调直流稳压电源,主要技术指标要求: ①输出电压可调:U o=+3V~+9V ②最大输出电流:I omax=800mA ③输出电压变化量:ΔU o≤15mV ④稳压系数:S V≤0.003 2.设计电路结构,选择电路元件,计算确定元件参数,画出实用原理电路图。 3.自拟实验方法、步骤及数据表格,提出测试所需仪器及元器件的规格、数量,交指导教师审核。 4.批准后,进实验室进行组装、调试,并测试其主要性能参数。 三、设计步骤 1.电路图设计 (1)确定目标:设计整个系统是由那些模块组成,各个模块之间的信号传输,并画出直流稳压电源方框图。 (2)系统分析:根据系统功能,选择各模块所用电路形式。 (3)参数选择:根据系统指标的要求,确定各模块电路中元件的参数。 (4)总电路图:连接各模块电路。 2.电路安装、调试 (1)为提高学生的动手能力,学生自行设计印刷电路板,并焊接。 (2)在每个模块电路的输入端加一信号,测试输出端信号,以验证每个模块能否达到所规定的指标。 (3)重点测试稳压电路的稳压系数。 (4)将各模块电路连起来,整机调试,并测量该系统的各项指标。

高压大功率脉冲电源的设计

1绪论 1.1论文的研究背景 电源设备用以实现电能变换和功率传递,是一种技术含量高、知识面宽、更新换代快的产品。现今已广泛应用到工业、能源、交通、运输、信息、航空、航天、航运、国防、教育、文化等领域。在信息时代,上述各行各业都在迅猛地发展,发展的同时又对电源产业提出了更多更高的要求。显然,电源技术的发展将 带动相关技术的发展,而相关技术的发展反过来又推动了电源产业的发展。当前在电源产业,占主导地位的产品有各种线性稳压电源、通讯用的AC y DC开关电源、DC y DC开关电源、交流变频调速电源、电解电镀电源、高频逆变式整流焊接电源、中频感应加热电源、电力操作电源、正弦波逆变电源、大功率高频高压直流稳压电源、绿色照明电源、化学电源、UPS可靠高效低污染的光伏逆变电 源、风光互补型电源等。而与电源相关的技术有高频变换技术、功率转换技术、数字化控制技术、全谐振高频软开关变换技术、同步整流技术、高度智能化技术、电磁兼容技术、功率因数校正技术、保护技术、并联均流控制技术、脉宽调制技术、变频调速技术、智能监测技术、智能化充电技术、微机控制技术、集成化技术、网络技术、各种形式的驱动技术和先进的工艺技术。 1.2脉冲电源的特点及发展动态 脉冲电源是各种电源设备中比较特殊的一种,顾名思义,它的电压或电流波 形为脉冲状。按脉冲电源的输出特性分类,有高频、低频、单向、双向、高压、低压等不同的分类,具体选择怎样的输出电压、输出电流和开关频率,根据具体的应用场合而定。按脉冲波形分,有矩形波、三角波、梯形波、锯齿波等多种形式,如图1. 1所示。 图1 . 1各种脉冲波形 由于矩形波具有较好的可控性和易操作性,所以这种波形的应用居多。究其本质,

《高压直流输电原理与运行》复习提纲及答案

《高压直流输电原理与运行》复习提纲 第1章 (1)高压直流输电的概念和分类 概念:高压直流输电由将交流电变换为直流电的整流器、高压直流输电线路以及将直流电变换为交流电的逆变器三部分组成。 高压直流输电是交流-直流-交流形式的电力电子换流电路。 常规高压直流输电:半控型的晶闸管,采取电网换相。 VSC高压直流输电:全控型电力电子器件,采用器件换相。 分类:长距离直流输电(两端直流输电),背靠背(BTB)直流输电方式,交、直流并联输电方式,交、直流叠加输电方式,三级直流输电方式。 (2)直流系统的构成 1.直流单级输电:大地或海水回流方式,导体回流方式。 2.直流双极输电:中性点两端接地方式,中性点单端接地方式,中性线方式。 3.直流多回线输电:线路并联多回输电方式,换流器并联的多回线输电方式。 4.多端直流输电:并联多端直流输电方式,串联多端直流输电方式。 (3)高压直流输电的特点 优点:经济性:高压直流输电的合理性和适用性体现在远距离、大容量输电中。 互连性:可实现电网的非同步互连,可实现不同频率交流电网的互连。 控制性:具有潮流快速可控的特点 缺点: ①直流输电换流站的设备多、结构复杂、造价高、损耗大、运行费用高、可靠性也较差。 ②换流器工作时会产生大量的谐波,处理不当会对电网运行造成影响,必须通过设置大量、成组的滤波器消除这些谐波。 ③电网换相方式的常规直流输电在传送有功功率的同时,会吸收大量无功功率,可达有功功率的50%~60%,需要大量的无功功率补偿装置及相应的控制策略。 ④直流输电的接地极和直流断路器问题都存在一些没有很好解决的技术难点。 (4)目前已投运20个直流输电工程(详见p14) 2010年,我国已建成世界上第一条±800KV的最高直流电压等级的特高压直流输电工程。 五直:天-广工程(±500,2000年),三-广工程(2004年),贵-广I回工程(2004年),贵-广II回工程(2008年),云广特高压工程(±800KV) (5)轻型直流输电 特点: 1.电压源换流器为无源逆变,对受端系统没有要求,故可用于向小容量系统或不含旋转电机的负荷供电。 2.电压源换流器产生的谐波大为削弱,对无功功率的需要也大大减少,同时只需要在交流母线上安装一组高通滤波器即可满足谐波标准要求;无须安装直流

开关稳压电源设计

开关电源的设计 同组参与者:李方舟、周恒、张涛开关式直流稳压电源的控制方式可分为调宽式和 调频试两种,实际应用中,而调宽式应用的较多,在 目前开发和使用的开关电源集成电路中,绝大多数也 为脉宽调制(PWM)型。 开关稳压电源具有效率高,输出功率大,输入电 压变化范围宽,节约能耗等优点。 开关电源的工作原理就是通过改变开关器件的开 通时间和工作周期的比值即占空比来改变输出电压; 通常有三种方式:脉冲宽度调制(PWM),脉冲频率 调制(PFM)和混合调制。PWM调制是指开关周期 恒定,通过改变脉冲宽度来改变占空比的方式,因为 周期恒定,滤波电路的设计比较简单,也是应用能够 最广泛的调制方式。开关稳压电源的主要结构框架如 图1-1所示,有隔离变压器产生一个15-18V的交流电 压,在经过整流滤波电路,将交流电变成直流电,然 后再经过DC—DC变换,由PWM的驱动电路去控 制开关管的导通和截止,从而产生一个稳定的电压源, 如图1-1所示;

图1-1 一开关转换电路 1:滤波电路 输入滤波电路具有双向隔离作用,它可以抑制交流电网输入的干扰信号,同时也防止开关电源工作时产生的谐波和电磁干扰信号影响交流电网。如图1-2所示滤波电路中C1用以滤除直流份量中的交流成分,隔离电容应选用高频特性较好的碳膜电容,电阻R给电容提供放电回路,避免因电容上的电荷积累而影响滤波器的工作特性,C2、C3跨接在输出端,能有效地抑制共模干扰,为了减小漏电流C2、C3宜选用陶瓷电容器. 图1-2 2.电压保护电路 如图1-3所示为输出过压保护电路。稳压管VS的

击穿电压稍大于输出电压额定值,输出电压正常时,VS不导通,晶闸管VS的门极电压为零,不导通,当输出过压时,VS击穿,VS受触发导通,使光电耦合器输出三极管电流增大,通过UC3842控制开关管关断。 图1-3 输出过压保护电路 3.电压反馈电路 电压反馈电路如图1-4所示。输出电压通过集成稳压器TL431和光电耦合器反馈到的1脚,调节R1 R2的分压比可设定和调节输出电压,达到较高的稳压精度。如果输出电压U0升高,集成稳压器TL431的阴极到阳极的电流在增大,UC3842的输出脉宽相应变窄,输出电压U0变小,同样,如果输出电压U0减小,可通过反馈调节使之升高。

高压直流输电的优势

高压直流输电的优势和应用及其展望京江学院J电气0802 3081127059 陈鑫郁 简单的讲,直流输电是先将交流电通过换流器变成直流电,然后通过直流输电线路送出。在受电端再把直流电变成交流电,进入受端交流电网。直流输电系统由换流(逆变)站、接地极、接地极线路和直流送电线路构成。直流输电具有传输功率大,线路造价低,控制性能好等特点,是目前世界发达国家作为解决高电压、大容量、长距离送电和异步联网的重要手段。直流输电( HVDC)的发展历史到现在已有百余年了,在输电技术发展初期曾发挥作用,但到了20 世纪初,由于直流电机串接运行复杂,而高电压大容量直流电机存在换向困难等技术问题,使直流输电在技术和经济上都不能与交流输电相竞争,因此进展缓慢。20 世纪50 年代后,电力需求日益增长,远距离大容量输电线路不断增加,电网扩大,交流输电受到同步运行稳定性的限制,在一定条件下的技术经济比较结果表明,采用直流输电较为合理,且比交流电有较好的经济效益和优越的运行特性,因而直流电重新被人们所重视。 1 高压直流输电 高压直流输电基本原理 高压直流输电的定义:发电厂发出的交流电,经整流器变换成直流电输送至受电端,再用逆变器将直流电变换成交流电送到受端交流电网。直流输电的一次设备主要由换流站(整流站和逆变站)、直流线路、交流侧和直流侧的电力滤波器、无功补偿装置、换流变压器、直流电抗器以及保护、控制装置等构成。 高压直流输电的技术特点 (1)高压直流输电输送容量更大、送电距离更远。 (2)直流输送功率的大小和方向可以实现快速控制和调节。 (3)直流输电接入系统是不会增加原有电力系统的短路电流容量的,也并不受系统稳定极限的限制。 (4)直流输电是可以充分利用线路的走廊资源,线路的走廊宽度大致为交流输电线路的一半,并且送电容量相比前者更大。 (5)直流输电工程运行时,无论任一极发生故障时,另一极均能继续运行,并可以发挥过负荷能力,保持输送功率不变或最大限度的减少输送功率的损失。 (6)直流系统本身具有调制功能,可根据系统的要求做出快速响应,对机电振荡产生阻尼,阻尼能够产生低频振荡,从而提高了电力系统暂态稳定水平。 (7)能够通过换流站内配置的无功功率自动控制装置对系统交流电压进行自动调节。 (8)对于大电网而言,能够实现大电网之间通过直流输电互联供电的方式,同时2个电网之间也不会因为这种方式产生互相干扰和影响,并在必要时可以迅速进行功率交换。 2 高压交流输电 交流输电的基本原理 发电厂发出的电能以交流形式输送的方式送至受电端。交流电可以方便灵活地根据需要通过变压器升压和降压,使配送电能变得极为便利。 交流输电的特点 (1)高压交流输电在输电的过程中可以有中转点,可以组成强大的电力网络,根据电源点分布、负荷点的布点、传输电力和进行电力交换等实际需要而构成国家高压、特高压主体电网网架。因此高压交流电网的最大优势是:输送电能的能力比较强大、覆盖的范围很广、电网线损小、输电路径明显减少,能很灵活地适应电力市场运营的要求。 (2)采用高压交流输电能够实现如同网络般的功能,我们知道高压交流同步电网中线路两端的功角差是可以控制在20°及以下的。因此,交流同步电网的安全稳定性越高,同步

直流稳压电源设计报告multisim

西安文理学院机械与材料工程学院专业课程设计报告 专业班级测控技术与仪器一班 课程电子技术课程设计 题目直流稳压电源的设计 学号 学生姓名 指导教师 2017年3月

西安文理学院机械与材料工程学院 课程设计任务书 学生姓名 11 专业班级 15级测控技术与仪器1班学号2807150120 指导教师 22 职称讲师教研室测控 课程电子技术课程设计 题目 直流稳压电源的设计 任务与要求 使用Multisim仿真软件,设计一个采用220V,50Hz交流电网供电,固定输出的集 成稳压电源,其指标为U O =+12V; I O max=800mA。 设计要求: (1) 设计系统总体框架 (2) 设计电路 (3) 绘制电路图并仿真 (4) 撰写设计报告 开始日期 2017.3.10 完成日期 2017.3.24 2017年 2 月 24 日

直流稳压电源的设计 摘要 本设计是设计一个由220V,50Hz交流电源供电,输出为12V电压,限制电流800mA 的交流稳压电源。 首先使用电源变压器将220V的电网电压变成所需要的交流电压,经过由二极管组成的桥式整流电路,将正负交替的正弦交流电压变成单方向的脉动电压,再经过滤波电容使输出电压成为比较平滑的直流电压,在以三端固定式集成稳压器7812为核心构成的直流稳压电路,使输出的直流电压在电网电压或负载电流发生变化时保持稳定。这类稳压器有输入,输出和公共端三个端口,输出电压固定不变,所以输出稳定性极好。本设计就是应用上述原理实现了直流稳压电源的设计。 关键词:直流稳压电源;三端稳压器;变压器;滤波电容;整流二极管。

目录 第一章任务与要求 (1) 第二章总体布局与各部分电路分析 (1) 2.1 系统模块 (1) 2.2 总体设计 (1) 2.3 直流电源的组成及各部分的筛选与作用 (2) 2.3.1 变压电路 (2) 2.3.2 整流电路 (2) 2.3.3滤波电路 (6) 2.3.4稳压电路 (7) 第三章制作和调试 (8) 第四章实验心得体会及致谢 (9) 第五章参考文献 (10)

高压直流电源

基于SG3525的3KW逆变电源设计 作者姓名:潘传义电子信息工程一班 指导教师:王生德 本电路利用48V直流蓄电池,可为后端提供3KW,2000V的高压直流电源。本电路设计的初衷是为电子捕鱼器后端产生脉冲波提供2000V直流电压。 本文对开关电源常用的电力电子器件做了简单介绍,重点介绍了 SG3525芯片的内部结构及其特性和工作原理,介绍了开关管MOSFET 的工作原理和开关动态特性等。设计了一款基于SG3525的推挽式DC-DC开关电源,提供高达2000V的直流电压。给出了系统的电路设计方法以及主要电路模块的原理分析和参数计算,特别是对开关电源高频变压器的设计给出了详尽的原理分析和各个参数的详细计算。 本电路采用推挽式开关变换,利用SG3525作为主要的控制芯片,产生两路互补的PWM方波脉冲控制开关管的通断。为提高PWM脉冲的驱动能力,加入桥式功率放大电路。滤波整流电路则采用桥式整流,RC滤波电路。另外,开关管工作频率高达25kHz,为此设计了RCD缓冲电路。考虑到电路环境的复杂性以及元器件的误差,电路在设计时对部分参数留有较大余量。 本电路的不同之处在于:采用两组相同的推挽变换电路且输出串联的设计,对变压器和整流滤波电路进行了有效的分压。产生高电压的同时,并没有大幅提高元器件的耐压要求,从而降低了对各种电力电子器件参数的要求。因而也使得电路的稳定性和可靠性更高。

本电路实现了从直流48V电压逆变到2000V直流电压的DC-DC变换供后续电路使用。本电路技术指标为:1)输入电压:蓄电池提供直流48V;2)输出电压:额定直流2000V;3)输出功率:最大3000W;4)输出波纹:无特殊要求,因此无需稳压电路。该系统工作过程:第一阶段:48V直流输入电压Ui经推挽电路变换成高频交流方波电压; 第二阶段:产生的交流方波电压经整流滤波电路分别产生1000V 直流电压,串联后实现2000V直流输出。 实验结果表明,该电源具有效率高,输出有效电压满足设计要求且运行可靠等优点。

直流稳定电源设计

题目:直流稳定电源 院(系):电子与信息工程学院 学生姓名:罗哲(电子092) 王冬(电子092) 张嘉嵘(通信091)时间:2011年5月

目录 一、设计任务与要求 (2) 二、设计方案 (3) 三、设计参数及其计算 (4) 四、ewb仿真 (5) 五、设计总结 (6)

一、设计任务与要求 任务:设计并制作交流变换为直流的稳定电源。 要求: 基本要求: (1)稳压电源在输入电压220V、50Hz、电压变化范围+15%~-20%条件下: A·输出电压可调范围为+9V~+12V B·最大输出电流为1.5A C·电压调整率<= 0.2%(输入电压220V变化范围+15%~-20%下,空载到满载) D·负载调整率<= 1%(最低输入电压下,满载) F·效率>= 40%(输出电压9V、输入电压220V下,满载) G·具有过流及短路保护功能 (2)稳流电源在输入电压固定为+12V的条件下: A·输出电流:4~20mA 可调 B·负载调整率<=1% (输入电压+12V、负载电阻由200Ω~300Ω变化时,输出电流为20mA 时的相对变化率) (3)DC-DC变换器在输入电压为+9V~+12V条件下: A·输出电压为+100V。输出电流为100mA B·电压调整率<= 1% (输入电压变化范围+9V~+12V) C·负载调整率<= 1%(输入电压+12V下,空载到满载) D·纹波电压(峰-峰值)<= 100mV (输入电压+9V下,满载) 发挥部分: (1)扩充功能 A·排除短路故障后,自动恢复为正常状态 B·过热保护 C·防止开、关机时产生的“过冲” (2)提高稳压电源的技术指标 A·提高电压调整率和负载调整率 B·扩大输出电压调节范围和提高最大输出电流值 (3)改善DC-DC变换器 A·提高效率(在100V、100mA下) B·提高输出电压 (4)用数字显示输出电压和输出电流

恒流高压直流电源

§1 恒流高压直流电源 §1.1 恒流源供电的理论基础 对电除尘器采用恒流源供电,是八十年代中期开始的,虽然它采用了大量的无源元件:电抗器、电容组成L-C变换网络,但却改变了一种供电方式,采用电流源供电。 作为一个供电回路,一般由电源和负载组成,其表征参量为三个,电压、电流和阻抗,以电压作为电源的形式供电(电压源),则电流随负载变化;以电流作为电源的形式供电(电流源),则电压随负载变化。无论是较早的磁饱和放大器电源,还是现在的可控硅电源,均是电压源的特性,一种方式是改变回路的阻抗,进行限流,一种是改变输出电压的平均值(波形),虽然均可以做到“恒压” ,“恒流” 运行,但均是通过控制调整电压来达到的,其主变量,即能直接控制、调整的是电压μ,如图一所示:i=f(u)。而恒流源是一种电流源的概念,能直接控制、调整的是电流i,如图二所示:u=f(i),通过控制和调整电流i做到“恒压” ,“恒流” 、“最佳火花率”等工作状态下运行。 图1 电压源供电i=f(u) 图2 电流源供电u=f(i) 除尘器电场某一局部由电晕放电向火花击穿过渡是需要时间和功率,不论哪一种电源供电,电场处在电晕放电状态,电源所提供的电流则电晕电流,当电场处在火花放电状态,则电源所提供的电流为火花电流,因此在用恒流源供电时,由于电晕放电向火花放电过渡时,放电通道的等效电阻R随电离强度的增加而减小,这样注入到放电通道的功率P=I2(t)R减小,P也减小,抑制了放电的进一步发展,这相当于一个负反馈的物理过程,因此火花击穿的临界电压明显提高,

也就是说使除尘器的伏安特性的正阻区得到了大幅度的延伸,延伸的幅值取决于除尘器的状态和工况条件,一般含尘浓度大、电阻率高的烟尘,除尘器机械缺陷较大的,其伏安特性延伸幅值也大,而且延伸是在r=du/di→0附近,也就是说电压增加几千伏,电流成倍地增加。 从图一、图二的伏安特性可以看出,由于除尘器是具有气体放电特性的一个非线性特性,特别是曲线的后半段具有负阻特性,因此对于同一个电压值,电流可能是多值的,而对同一个电流值来说,电压是单值的,即在某一时刻,除尘器的工作电压是其电流的单值函数,因此,简单地从非线性电路平衡状态的稳定性来考虑,以恒流源来供电时,电压不会发生跳跃,可以稳定工作在r=du/di→0附近,即工作在高的电压和电流下,因为一个电流值,只有一个电压所对应,而电流值是由设备所决定的,因此这种稳定的工作状态不需要反馈控制回路来支撑,而且是本身回路所具有的。所以,用恒流源供电,可以使除尘器工作在较高的功率水平下

直流稳定电源设计制作人某某题目直流稳定电源地设计任务设计

直流稳定电源设计 制作人:某某 题目:直流稳定电源的设计 一、任务:设计并制作交流变换为直流的稳定电源。 二、要求:

1.基本要求 (1)稳压电源在输入电压220V、50Hz、电压变化范围+15%~-20%条件下: a.输出电压可调范围为+9V~+12V b.最大输出电流为1.5A c.电压调整率≤0.2%(输入电压220V变化范围+15%~-20%下,空载到满载) d.负载调整率≤1%(最低输入电压下,满载) e.纹波电压(峰-峰值)≤5mV(最低输入电压下,满载) f.效率≥40%(输出电压9V、输入电压220V下,满载)g.具有过流及短路保护功能 (2)稳流电源在输入电压固定为+12V的条件下:a.输出电流:4~20mA可调 b.负载调整率≤1%(输入电压+12V、负载电阻由200Ω~300Ω变化时,输出电流为20mA时的相对变化率)(3)DC-DC变换器在输入电压为+9V~+12V条件下:a.输出电压为+100V,输出电流为10mA b.电压调整率≤1%(输入电压变化范围+9V~+12V) c.负载调整率≤1%(输入电压+12V下,空载到满载)d.纹波电压(峰-峰值)≤100mV (输入电压+9V下,满载)

2.发挥部分 (1)扩充功能 a.排除短路故障后,自动恢复为正常状态 b.过热保护 c.防止开、关机时产生的“过冲” (2)提高稳压电源的技术指标 a.提高电压调整率和负载调整率 b.扩大输出电压调节范围和提高最大输出电流值 (3)改善DC-DC变换器 a.提高效率(在100V、100mA下) b.提高输出电压 (4)用数字显示输出电压和输出电流. 三,稳压电源的研究背景 本电源在市场上很有应用前景,可以作为收音机或掌机的外接电源,也可以用作手机电池的充电器,功率高点的还作为小型电视或其他家用电器的电源。 直流稳压电源是电子技术常用的仪器之一,它现在广泛的应用在学校教学,科学研究等领域,是电子设计人员进行实验操作和科学研究必不可少的电子仪器。在日常的电子电路中,供电电源常常要用到稳压直流电源。所以,稳压直流电源具有非常重要的研究意义。 在日常生活中,很多家用电器或者IT产品都要用到稳

高压直流电源系统

高压直流电源系统产品 产品介绍 CP DUM27—240/400型通信用高压直流开关电源系统概述 DUM27—240/400型通信用高压直流供电系统包含交流配电部分、高频开关整流模块、直流配电部分和监控单元组成的柜式直流电源系统。是集有源功率因数校正技术、高频脉宽调制技术、软开关技术、单片机控制技术于一体的高新技术产品。可广泛适用于原交流UPS的所有应用环境,且具有更可靠,更省电,更节省投资的优势。 性能特点 ●高功率密度,单供电柜容量可达120KW ●输入高功率因数,低谐波电流 ●优秀的环境适应能力,宽的电压适应范围 ●完善的监控功能及成熟的电池管理功能 ●扩容灵活,维护方便,模块可热插拔 系统组成 ● CP DPJ05-380/630型交流配电屏 ● CP DUM27-240/400 型高压直流开关电源系统 ● CP DPZ03-240/1000 型高压直流配电屏

● CP DMA10-240/40型高频开关整流器(安装入模块架) ● CP DKD12型监控器(安装入模块架) 主要技术指标 CP DMA10-240/40型高频开关整流器?? 工作环境温度?-5℃~+50℃???????????????????? 交流输入参数 电压:三相三线制?380V±20% 频率:45~65Hz 功率因数:≥0.93 开机浪涌电流:≤20A 输入电流谐波THD:≤9% 电磁干扰:符合GB 9254-1988 直流输出参数???????????? 额定电压:220V 电压范围:190V-286V 输出电流:额定值40A(输出电压286V时) 额定功率:10,000W (AC≥323V) 效率(满载测试):≥93% 限流选择范围:3-42A 均分负载不平衡度:≤±2.5% 电网调整率:≤±0.1% 负载调整率:≤±0.5% 稳压精度:≤±0.6% 温度系数:≤0.02%/℃ 纹波系数: ≤±0.2% 峰—峰杂音电压:≤200mV; 可闻噪声:≤50dB(A)。

高压直流电源技术的发展现状及应用通用版

安全管理编号:YTO-FS-PD451 高压直流电源技术的发展现状及应用 通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

高压直流电源技术的发展现状及应 用通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 高压直流电源的基本工作原理和应用 高压直流电源是将工频电网电能转变成特种形式的高压电源的一种电子仪器设备,高压直流电源按输出电压极性可分为正极性和负极性两种。高压直流电源已经广泛应用于各行各业,农业领域也有应用,例如农业环境静电除尘,静电喷雾杀虫,农业物料静电喷涂包裹,农产品加工中的静电植绒、农业生物静电效应研究、静电杀菌、农业种子静电处理等等。随着农业科学技术的不断发展进步,农业科学研究和农业工程应用实践对高压静电电源的需求逐年增多,对其精度、性能、规格、品种、类型、体积、智能化操作等方面都提出了许多新的要求,现有的高压直流电源已经不能满足农业领域中的许多需要,研究和开发适合农业领域要求的多种新型直流高压电源已经成为一种客观需求,而且其社会效益和经济效益都比较显著,市场前景比较光明。

高压电源的工作原理以及应用和设计原理

工作原理 高压直流电源产生的负高压,接入电晕极(阴极),它与沉淀极(阳极)之间产生电场,电场强度超过一定极限后在阴阳两极间即产生电晕放电。此时流经电场区的气体发生电离, 产生大量的离子和电子。周围可以听见强烈的电磁风声。光线暗时可见紫兰色电晕。通过电 场的煤气中的焦油、粉尘、水雾等粒子与离子或电子结合而荷电,在电场力的作用下向两极 运动。由于电子质量小,运动速度快,空间分布广,所以主要是荷负电的粒子向沉淀极运动。到达沉淀极板中和后,依靠残存的静电引力和分子间凝聚力首先吸附于沉淀极,而后靠自身 重力沿极板下落,通过焦油出口排出。 高压电源的应用 高压直流电源是将Ac220V电网电能转变成特种形式的高压电源,高压直流电源按输出电压 极性可分为正极性和负极性两种。高压直流电源已经广泛应用于各行各业,仪器仪表各种电 子设备,农业领域也有应用,例如农业环境静电除尘,静电喷雾杀虫,农业物料静电喷涂包裹,农产品加工中的静电植绒、农业生物静电效应研究、静电杀菌、农业种子静电处理等等。随着农业科学技术的不断发展进步,农业科学研究和农业工程应用实践对高压静电电源的需 求逐年增多,对其精度、性能、规格、品种、类型、体积、智能化操作等方面都提出了许多 新的要求,现有的高压直流电源已经不能满足农业领域中的许多需要,研究和开发适合农业 领域要求的多种新型直流高压电源已经成为一种客观需求,而且其社会效益和经济效益都比 较显著,市场前景比较光明。信息来源:武汉凯琛威电子科技有限公司 回顾高压直流电源发展历史,高压直流电源最初是将工频电压直接经高压变压器升压后整流 滤波,或升压后再倍压整流后得到高压的,其基本原理如图1所示。随着科学技术的发展, 后来高压直流电源才发展到了线性高压直流电源。早期的高压直流电源通常采用220 V工频 交流经变压器升压,整流滤波获得,电源的体积和重量很大,并且纹波较大,稳定性不高, 效率低。目前的高压电源主要采用开关电源技术,PWM波的产生芯片主要用SG3525(集成PWM控制芯片)或者UC3875(移相谐振全桥软开关控制器)做成高频高压电源,大大减小 了电源体积和重量,提高了电源的稳定性和效率。但SG3525功能单一、产生的PWM波形 也没有DSP产生的PWM波形稳定性好,并不能实现与上位机通讯及智能调压等功能。此处 设计以DSP为控制核心,DSP产生的死区可调的PWM波完全可代替SG3525或UC3875所 产生的PWM波,还可实现电源输出调压和过压过流保护等功能。 高压电源的重要特点就是快速可靠保护。例如过流保护、过压保护、击穿短路保护等,这里 在新型直流高压电源研制上尝试应用新的技术手段,提出新的设计思路来解决这些问题。 2 设计原理 高压电源的总体框图如图1所示,电路主要分为主电路和控制保护电路两部分。该系统的工 作原理:先将市电220 V/50 Hz通过全桥整流滤波后,变成300 V左右直流电压,将其通过PWM的Buck变换得到0~300 V可调直流电压。然后直流电经过DC/AC逆变成高频电压,经过谐振电路和高频变压器后电压变为10 kV左右,再经倍压整流得到所需的电压。DSP系 统为DC/DC提供电压输出幅值的给定信号,同时接收DC/DC环节来的反馈信号,并实时地做出反应,控制DC/DC环节输出电压的大小。对于DC/AC环节,DSP系统通过输出4 路脉宽可调的PWM信号控制逆变环节4个IGBT的通断,并且接收反馈动作信号,控制4 路PWM的脉宽来达到控制逆变环节输出电压的目的。DSP系统还可进行输出电压测量,并 且提供一个良好的人机接口,实时地显示各个参数值,并提供操作控制

高压直流输电课后习题答案

《高压直流输电技术》思考题及答案 一.高压直流输电发展三个阶段的特点? 答:1 1954年以前——试验阶段; 参数低;采用低参数汞弧阀;发展速度慢。 2 1954年~1972年——发展阶段; 技术提高很大;直流输电具有多方面的目的(如水下传输;系统互联;远距离、大容量传输)。 3 1972年~现在——大力发展阶段; 采用可控硅阀;几乎全是超高压;单回线路的输电能力比前一阶段有了很大的增加;发展速度快。 二.高压直流输电的基本原理是什么? 答:直流输电线路的基本原理图见图1.3所示。从交流系统I向系统X输电能时, 换流站CS1把送端系统送来的三相交流电流换成直流电流,通过直流输电线路把直流电流(功率)输送到换流站CS2,再由CS2把直流电流变换成三相交流电流 三.高压直流输电如何分类? 答:分两大类: 1 单极线路方式; A.单极线路方式; 采用一根导线或电缆线,以大地或海水作为返回线路组成的直流输电系统。 B.单极两线制线路方式; 将返回线路用一根导线代替的单极线路方式。 2 双极线路方式; A. 双极两线中性点两端接地方式; B. 双极两线中性点单端接地方式; C. 双极中性点线方式; D. “背靠背”(back- to- back)换流方式。 四.高压直流输电的优缺点有哪些? 答:优点:1 输送相同功率时,线路造价低; 2 线路有功损耗小; 3 适宜海下输电; 4 没有系统的稳定问题; 5 能限制系统的短路电流; 6 调节速度快,运行可靠 缺点:1 换流站的设备较昂贵; 2 换流装置要消耗大量的无功; 3 换流装置是一个谐波源,在运行中要产生谐波,影响系统运行,所以需在直 流系统的交流侧和直流侧分别装设交流滤波器和直流滤波器,从而使直流输 电的投资增大;

+-12V直流稳压电源设计

12V直流稳压电源设计 一、摘要 直流稳压电源是一种当电网电压波动或温度、负载改变时,能保持输出直流电压基本不变的电源。其电源电路包括电源变压器、整流电路、滤波电路和稳压电路四个环节。设计中要用的元件有变压器、稳压器、整流二极管、电解电容等。实测结果表明,该装置实现了题目要求的全部功能,实现了题目的基本要求。 关键词:直流、整流、稳压、滤波、电源 二、设计目的 1.学会选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源。 2.掌握直流稳压电源的调试及主要技术指标的测试方法。 3.培养实践技能,提高分析和解决实际问题的能力。 三、设计任务 设计一个直流稳压线性电源,输入220V,50Hz的正弦交流信号,输出±12V对称稳压直流电。 四、遇到问题 因为是模拟电路所以误差会比较大,电路的准确性往往取决于整个电路的线路连接及器件,一旦某条线路出现问题则整个电路无法正常工作,或者某个器件因为电压过大而烧坏则此电路失败。要注意输入电压的器件如稳压管,一旦输入过大电压那么它绝对会烧坏,只

能换新的来替代。 五、原理电路和程序设计电路原理方框图 1.直流稳压电源的基本原理 下面将就直流稳压电源各部分的作用作简单陈述。 (1)是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定。 (2)整流滤波电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电。可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。 (3)稳压电路:稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。 六、电路图和各部分波形图

直流高压发生器使用说明书

一、简介 HF系列直流高压发生器是根据中国行业标准ZBF 24003-90《便携式直流高压发生器通用技术条件》的要求,最新研究、设计、制造的,是新时代的科技产品——便携式直流高压发生器,是适用于电力部门、厂矿企业动力部门、科研单位、铁路、化工、发电厂等对氧化锌避雷器、磁吹避雷器、电力电缆、发电机、变压器、开关等设备进行直流高压试验,是新世纪最理想的换代产品。 HF系列直流高压发生器采用中频倍压电路,率先应用最新的PWM中频脉宽调制技术,闭环调整,采用了电压大反馈,使电压稳定度大幅度提高。使用性能卓越的大功率IGBT器件及其驱动技术,并根据电磁兼容性理论,采用特殊屏蔽、隔离和接地等措施。使直流高压发生器实现了高品质、便携式,并能承受额定电压放电而不损坏。 HF系列直流高压发生器仪器主要部件选用美国、德国、日本等国先进技术的元器件,使仪器更可靠、更稳定,倍压筒体积小,容量大,过载能力强,便于现场作业试验。我公司以质量和信誉为生命,不断提高科技水平,研制出尖端的优质产品,以满足用户的需要。 二、产品特点 1、体积更小、重量更轻、更美观、更可靠、操作简便、功能齐全,便于野外使用,是新世纪最理想的可靠产品。 2、采用先进技术、工艺制造,率先应用最新的PWM中频脉宽调制技术、脉冲串逻辑阵列调制,采用大功率IGBT器件和电压大反馈,从而使输出高压稳定度更高,波纹系数更小。 3、仪器主要部件均选用美、德、日等国进口先进技术的元器件,经久耐用,不怕连续对地直接短路放电。 4、精度高、测量准确。电压、电流表均为数字显示,电压分辨率为0.1kV,电流分辨率为1uA,控制箱上电压表直接显示加在负载试品上的电压值,使用时无需外加分压器,接线简单。仪器具有高、低压端测量泄漏电流,高压端采用圆形屏蔽数字表显示,不怕放电冲击,抗干扰性能好,适合现场使用。 5、电压调节稳定度高,全量程平滑调压,输出电压调节采用进口单个多圈电位器,升压过程平稳,调节精度高。 6、负极性输出、零启动、连续可调、有过电压、过电流、回零、接地保护、特有断线保护等各种保护功能。自动保护电路功能强,保护完善可靠,使操作安全,各种技术指标均优于行业标准。 7、增设了高精度75%VDC-1mA的功能,做氧化锌避雷器测量带来极大的方便。轻轻一按无须计算。本仪器控制箱上有75%的电压功能键,在做避雷器试验时,当电流升到1000uA 时、就打开0.75的按钮,这时电压表、电流表所显示的值就是75%的数据,做完后应立即将调压电位器回到零位上,并应立即按绿色按钮,切断高压并关闭电源开关。再做其它的试验。 8、方便的过电压整定设置功能,采用了数字拨盘开关,能将整定电压值直观显示,使你操作更随意,显示数值单位为kV。 9、倍压筒采用美国技术研制生产,中频变压器经有关专家特殊设计、体积小,容量大,过载能力强,便于现场作业试验。 10-1、底部设有三只内藏式支撑脚,增加了倍压筒的稳定性。(适用于200KV) 10-2、控制箱上盖可作为防风底座,可与倍压筒接插,增强倍压筒的稳定性。 三、工作原理框图 (此处为原理图) 四、HF系列产品规格及主要技术性能

相关主题
文本预览
相关文档 最新文档