当前位置:文档之家› 因子分析法基本原理之欧阳光明创编

因子分析法基本原理之欧阳光明创编

因子分析法基本原理之欧阳光明创编
因子分析法基本原理之欧阳光明创编

1.因子分析法基本原理

欧阳光明(2021.03.07)

在对某一个问题进行论证分析时,采集大量多变量的数据能为我们的研究分析提供更为丰富的信息和增加分析的精确度。然而,这种方法不仅需要巨大的工作量,并且可能会因为变量之间存在相关性而增加了我们研究问题的复杂性。因子分析法就是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。这样我们就可以对原始的数据进行分类归并,将相关比较密切的变量分别归类,归出多个综合指标,这些综合指标互不相关,即它们所综合的信息互相不重叠。这些综合指标就称为因子或公共因子。

因子分析法的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。这样,就能相对容易地以较少的几个因子反映原资料的大部分信息,从而达到浓缩数据,以小见大,抓住问题本质和核心的目的。

因子分析法的核心是对若干综合指标进行因子分析并提取公共因子,再以每个因子的方差贡献率作为权数与该因子的得分乘数之和构造得分函数。因子分析法的数学表示为矩阵:B AF X +=,即:

?????????++++=++++=++++=++++=p k pk p p p p k k k k k k f f f f x f f f f x f f f f x f f f f x βααααβααααβααααβαααα 332211333332321313223232221212113132121111 (k ≤p)………………(1式)

模型中,向量X ()p x x x x ,,,,321 是可观测随机向量,即原始观测变

量。F ()k f f f f ,,,,321 是X ()p x x x x ,,,,321 的公共因子,即各个原观测变

量的表达式中共同出现的因子,是相互独立的不可观测的理论变量。公共因子的具体含义必须结合实际研究问题来界定。A ()

ij α是公共因子F ()k f f f f ,,,,321 的系数,称为因子载荷矩阵,ij α(i=1,2,.....,p;j=1,2,....,k)称为因子载荷,是第i 个原有变量在第j 个因子上的负荷,或可将ij α看作第i 个变量在第j 公共因子上的权重。ij α是x i 与f j 的协方差,也是x i 与f j 的相关系数,表示x i 对f j 的依赖程度或相关程度。ij α的绝对值越大,表明公共因子f j 对于x i 的载荷量越大。B ()p ββββ,,,,321 是X ()p x x x x ,,,,321 的特殊因子,是不能被前k 个公共因子包含的部分,这种因子也是不可观测的。各特殊因子之间以及特殊因子与所有公共因子之间都是相互独立的。

2.模型的统计意义

因子载荷矩阵A 中有两个统计量对因子分析结果的经济解释十分重要,即变量共同度和公共因子的方差贡献。

(1)变量共同度的统计意义

变量共同度是因子载荷矩阵A 的第i 行的元素的平方和。记为:

∑==k j ij i

h 122α(其中:i=1,2,...,p )。

它衡量全部公共因子对x i 的方差所做出的贡献,反映全部公共

因子对变量

x i

的影响。2i h 越大,表明X 对于F 每一分量的依赖程度大。 对1式两边取方差,得:

∑∑==+=++++=k j p i i ij

i k ik i i i Var f Var f Var f Var x Var 11222222121)()()()()(βαβααα (2

式)

如果∑==k j ij i

h 122α的结果接近)(i x Var ,且2i β非常小,则因子分析的

效果就比较好,从原变量空间到公共因子空间的转化性质就好。

(2)公共因子的方差贡献的统计意义

因子载荷矩阵中各列元素的平方和记为:

∑==p i ij j g 122

α(其中:j=1,2,...,k )。

2

j g 称为公共因子F ()k f f f f ,,,,321 对X ()p x x x x ,,,,321 的方差贡献,表示第j 个公共因子f i 对于x 的每一个分量x i (i=1,2,...,p)所提供的方差的总和,是衡量公共因子相对重要性的指标。

对2式进行变换,得:

2

j g 越大,表明公共因子F ()k f f f f ,,,,321 对X ()p x x x x ,,,,321 的贡献越大,

或者说对X ()p x x x x ,,,,321 的影响和作用就越大。如果将因子载荷矩阵A 的所有2

j g (j=1,2,?,k)都计算出来,使其按照大小排序,就可

以依此提炼出最有影响力的公共因子。

实验2层次分析法

项目六矩阵的特征值与特征向量 实验2 层次分析法 实验目的 通过应用层次分析法解决一个实际问题,学习层次分析法的基本原理与方法;掌握用层次 分析法建立数学模型的基本步骤;学会用Mathematica解决层次分析法中的数学问题. 基本原理 层次分析法是系统分析的重要工具之一,其基本思想是把问题层次化、数量化, 并用数学 方法为分析、决策、预报或控制提供定量依据. 它特别适用于难以完全量化, 又相互关联、相互制约的众多因素构成的复杂问题. 它把人的思维过程层次化、数量化,是系统分析的一中 新型的数学方法. 运用层次分析法建立数学模型, 一般可按如下四个基本步骤进行. 1.建立层次结构 首先对所面临的问题要掌握足够的信息, 搞清楚问题的范围、因素、各因素之间的相互关系,及所要解决问题的目标. 把问题条理化、层次化, 构造出一个有层次的结构模型. 在这 个模型下,复杂问题被分解为元素的组成部分. 这些元素又按其属性及关系形成若干层次.层 次结构一般分三层: 第一层为最高层, 它是分析问题的预定目标和结果, 也称目标层; 第二层为中间层, 它是为了实现目标所涉及的中间环节, 如: 准则、子准则, 也称准则层; 第三层为最底层, 它包括了为实现目标可供选择的各种措施、决策方案等, 也称方案层.

图2-1 决策目标 准则1准则2准则n 方案1方案2方案m …… …… 注:上述层次结构具有以下特点:(1) 从上到下顺序地存在支配关系, 并用直线段表示;(2) 整个层次结构中层次数不受限制. 2.构造判断矩阵 构造判断矩阵是建立层次分析模型的关键. 假定以上一层的某元素y 为准则,它所支配 的下一层次的元素为n x x x ,,,21 ,这n 个元素对上一层次的元素y 有影响,要确定它们在y 中的比重. 采用成对比较法. 即每次取两个元素i x 和j x , 用ij a 表示i x 与j x 对y 的影响之比, 全部比较的结果可用矩阵A 表示,即 .,,2,1,,)(n j i a A n n ij ==? 称矩阵A 为判断矩阵. 根据上述定义,易见判断矩阵的元素ij a 满足下列性质: )(,1),(1 j i a j i a a ii ij ji ==≠= 当0>ij a 时,我们称判断矩阵A 为正互反矩阵. 怎样确定判断矩阵A 的元素ij a 的取值呢? 当某层的元素n x x x ,,,21 对于上一层某元素 y 的影响可直接定量表示时, i x 与j x 对y 的影响之比可以直接确定, ij a 的值也可直接确定. 但对于大多数社会经济问题, 特别是比较 复杂的问题, 元素i x 与j x 对y 的重要性不容易直接获得, 需要通过适当的量化方法来解决. 通常取数字1~9及其倒数作为ij a 的取值范围. 这是因为在进行定性的成对比较时, 通常采用 5级制(表1),在每两个等级之间各有一个中间状态, 共1~9个尺度, 另外心理学家认为进行成 对比较的因素太多, 将超出人们的判断比较能力, 降低精确. 实践证明, 成对比较的尺度以 27±为宜, 故ij a 的取值范围是9,,2,1 及其倒数.

层次分析法步骤.doc

层次分析法实例与步骤 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措

数学建模期末作业谈层次分析法在就业中的应用讲课稿

数学建模期末作业谈层次分析法在就业中 的应用

谈层次分析法在就业中的应用 摘要 近年高校毕业生数量急剧膨胀就业的难题似乎变得更加严峻和突出——全国就业工作座谈会传来消息,2010年应届毕业生规模是本世纪初的6倍,2011年高校毕业生人数为660万人,“十二五”时期应届毕业生年平均规模将达到近700万人。许多大学生处于就业十字路口,茫然不知所措。这种心态下的种种决策难免造成失误,所以需要一种可靠的定量的容易操作的,并且具体的有说服力的方法来帮助做出决策。本文提出了定性和定量相结合的层次分析法步骤,构成了工作满意度的评价指标体系,通过各因素重要程度比较与计算,最终确定出了6个具体指标在该体系下的权重并排序,这样在分析某种工作的满意程度时就可以按此权重进行衡量。为此我们建立了层次结构模型,做成对比较矩阵: 正互反矩阵为?????????? ????? ? ??? ?=wn wn w wn w wn wn w w w w w w w wn w w w w w w w A /...... 2/1//2........3/22/21/2/1........3/12/11/1M M M M 通过Matlab 等数学工具,得到特征向量 T w )083.0,201.0,139.0,154.0,076.0,347.0(1=,且∑==508.6)(max i i nw Aw λ,通过一致 性指标得出1016.0) 1() (max =--= n n CI λ,1.0082.024 .11016 .0<=== RI CI CR , 如果有CI 偏差,那偏差是否在满意的一致性范围,引进平均随机一致性指标RI 。 平均随机一致性指标RI 数值

因素分析法

因素分析法(Factor Analysis Approach),又称指数因素分析法,是利用统计指数体系分析现象总变动中各个因素影响程度的一种统计分析方法,包括连环替代法、差额分析法、指标分解法、定基替代法。因素分析法是现代统计学中一种重要而实用的方法,它是多元统计分析的一个分支。使用这种方法能够使研究者把一组反映事物性质、状态、特点等的变量简化为少数几个能够反映出事物内在联系的、固有的、决定事物本质特征的因素。 因素分析法的最大功用,就是运用数学方法对可观测的事物在发展中所表现出的外部特征和联系进行由表及里、由此及彼、去粗取精、去伪存真的处理,从而得出客观事物普遍本质的概括。其次,使用因素分析法可以使复杂的研究课题大为简化,并保持其基本的信息量。 2应用编辑 是通过分析期货商品的供求状况及其影响因素,来解释和预测期货价格变化趋势的方法。期货交易是以现货交易为基础的。期货价格与现货价格之间有着十分紧密的联系。商品供求状况及影响其供求的众多因素对现货市场商品价格产生重要影响,因而也必然会对期货价格重要影响。所以,通过分析商品供求状况及其影响因素的变化,可以帮助期货交易者预测和把握商品期货价格变化的基本趋势。在现实市场中,期货价格不仅受商品供求状况的影响,而且还受其他许多非供求因素的影响。这些非供求因素包括:金融货币因素,政治因素、政策因素、投机因素、心理预期等。因此,期货价格走势基本因素分析需要综合地考虑这些因素的影响。 商品供求状况对商品期货价格具有重要的影响。基本因素分析法主要分析的就是供求关系。商品供求状况的变化与价格的变动是互相影响、互相制约的。商品价格与供给成反比,供给增加,价格下降;供给减少,价格上升。商品价格与需求成正比,需求增加,价格上升;需求减少,价格下降。在其他因素不变的条件下,供给和需求的任何变化,都可能影响商品价格变化,一方面,商品价格的变化受供给和需求变动的影响;另一方面,商品价格的变化又反过来对供给和需求产生影响:价格上升,供给增加,需求减少;价格下降,供给减少,需求增加。这种供求与价格互相影响、互为因果的关系,使商品供求分析更加复杂化,即不仅要考虑供求变动对价格的影响,还要考虑价格变化对供求的反作用。 连环替代法 它是将分析指标分解为各个可以计量的因素,并根据各个因素之间的依存关系,顺次用各因素的比较值(通常即实际值)替代基准值(通常为标准值或计划值),据以测定各因素对分析指标的影响。 例如,设某一分析指标M是由相互联系的A、B、C三个因素相乘得到,报告期(实际)指标和基期(计划)指标为: 报告期(实际)指标M1=A1 * B1 * C1 基期(计划)指标 M0=A0 * B0 * C0 在测定各因素变动指标对指标R影响程度时可按顺序进行: 基期(计划)指标M0=A0 * B0 * C0 (1)

因素分析法

因素分析法的相关知识 一、概念:因素分析法也称因素替代法。它是对某个综合财务指标或经济指标的变动原因按其内在的影响因素,计算和确定各个因素对这一综合指标发生变动的影响程度的一种分析方法 二、适用范围:适用于多种因素构成的综合指标的分析,如:成本、利润、资金收益率等指标。 三、前提条件:当有若干因素对分析对象发生影响作用时,假定其他各个因素都无变化,顺序确定每一因素单独变化所产生的影响,是在具有乘积关系的指数体系中进行 四、一般程序: 1. 要根据经济指标形成的过程,找出该项经济指标受哪些因素变动的影响; 2. 要根据经济指标与各影响因素的内在关系,建立起分析计算公式; 3. 按照一定顺序依次进行因素替换,以计算各因素变动对经济指标的影响程度。计算某一因素变动对经济指标影响程度时,假定其他因素不变,通过每次替代后计算的结果与上一次替代后计算的结果相比较,以逐次确定各个因素的影响程度。 4. 验证各因素影响程度计算的正确性。各因素影响程度的代数和应等于指标变动总差异。 五、主要作用:因素分析是从数量方面研究现象动态变动中受各种因素变动的影响程度,它主要借助于指数体系来分析社会经济现象变动中各种因素变动发生作用的影响程度。 六、方法:因素分析法有连环替代法和差额计算法两种。连环替代法是将影响某项经济指标的各个因素列成算式,按照一定顺序替代各个因素,以确定各个因素变动对该项经济指标变动的影响程度的一种分析方法。分析计算时以计划指标为基础,用各个因素的实际数依次替代计划数,每次替代后实际数就被保留下来,直到所有的因素都变为实际数。差额分析法是根据各个因素实际数同计划数的差异,分别确定各该因素的变动对某项经济指标的影响程度的一种分析方法。分析计算时也要按一定顺序逐项以实际数与计划数进行对比。差额分析法实际上是连环替代法的另一种形式,即直接用实际数与计划数之间的差额来计算各因素变动对指标的影响程度。这一方法较连环替代法更为简便。 差额分析法在发电企业燃煤成本分析中的Excel应用的具体操作实例 众所周知,在目前,电价由国家控制的情况下燃煤成本的管理好坏决定着发电企业的存亡问题,发电企业的燃煤成本占发电总成本的比例不低于60%,在当前煤价持续长涨的趋势下,这个比例将会更高,因此必须加大对燃煤成本的分析力度,从内部挖潜,加强管理,才是企业生存之本。而影响燃煤成本的因素是多方面的,各方面又相互关联,完全依靠手工相对因难,而各相关因素看起来也不直观,借助于Excel,可以实现自动化分析。下面通过具体的实例来说明Excel在燃煤成本分析中的具体应用。有关资料数据如下表所示。 M电厂2009年1月原煤成本分析表 A B C D 1 项目计划实际差异

基于Matlab的层次分析法及其运用浅析

基于Matlab的层次分析法及其运用浅析 本文通过使用Matlab软件进行编程,在满足同一层次中各指标对所有的下级指标均产生影响的假定条件下,实现了层次分析法的分析运算。本程序允许用户自由设定指标层次结构内的层次数以及各层次内的指标数,通过程序的循环,用户只需输入判断矩阵的部分数据,程序可依据层次分析法的计算流程进行计算并作出判断。本程序可以方便地处理层次分析法下较大的运算量,解决层次分析法的效率问题,提高计算机辅助决策的时效性。 标签:Matlab层次分析法判断矩阵决策 在当前信息化、全球化的大背景下,传统的手工计算已不能满足人们高效率、高准确度的决策需求。因此计算机辅助决策当仁不让地成为了管理决策的新工具、新方法。基于此,本文在充分发挥计算机强大运算功能的基础上,选用美国MathWorks公司的集成数学建模環境Matlab R2009a作为开发平台,使用M语言进行编程,对计算机辅助决策在层次分析法中的运用进行讨论。试图通过程序实现层次分析法在计算机系统上的运用,为管理决策探索出新的道路。 1 层次分析法的计算流程 根据层次分析法的相关理论,层次分析法的基本思想是将复杂的决策问题进行分解,得到若干个下层指标,再对下层指标进行分解,得到若干个再下层指标,如此建立层次结构模型,然后根据结构模型构造判断矩阵,进行单排序,最后,求出各指标对应的权重系数,进行层次总排序。 1.1 构造层次结构模型在进行层次分析法的分析时,最主要的步骤是建立指标的层次结构模型,根据结构模型构造判断矩阵,只有判断矩阵通过了一致性检验后,方可进行分析和计算。其中,结构模型可以设计成三个层次,最高层为目标层,是决策的目的和要解决的问题,中间层为决策需考虑的因素,是决策的准则,最低层则是决策时的备选方案。一般来讲,准则层中各个指标的下级指标数没有限制,但在本文中设计的程序尚且只能在各指标具有相同数量的下级指标的假定下,完成层次分析法的分析,故本文后文选取的案例也满足这一假定。 1.2 建立判断矩阵判断矩阵是表示本层所有因素针对上一层某一个因素的相对重要性的比较给判断矩阵的要素赋值时,常采用九级标度法(即用数字1到9及其倒数表示指标间的相对重要程度),具体标度方法如表1所示。 1.3 检验判断矩阵的一致性由于多阶判断的复杂性,往往使得判断矩阵中某些数值具有前后矛盾的可能性,即各判断矩阵并不能保证完全协调一致。当判断矩阵不能保证具有完全一致性时,相应判断矩阵的特征根也将发生变化,于是就可以用判断矩阵特征根的变化来检验判断的一致性程度。在层次分析法中,令判断矩阵最大的特征值为λmax,阶数为n,则判断矩阵的一致性检验的指标记为:

单因素方差分析的计算步骤

单因素方差分析的计算 步骤 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

一、 单因素方差分析的计算步骤 假定实验或观察中只有一个因素(因子)A ,且A 有m 个水平,分别记为,,,21m A A A 在每一种水平下,做n 次实验,在每一次试验后可得一实验值,记做ij x 表示在第j 个水平下的第i 个试验值()m j n i ,2,1;,2,1==。结果如下表: m A A A ,,21看成是m 个正态总体,而()m j n i x ij ,2,1;,2,1==看成是取自第j 总体的第i 个样品,因此,可设() m j n i a N x j ij ,2,1;,2,1,,~2==σ。 可以认为j j j a εεμ,+=是因素A 的第j 个水平j A 所引起的差异。因此检验因素A 的各水平之间是否有显着的差异,就相当于检验: μ====m a a a H 210:或者 具体的分析检验步骤是: (一)计算水平均值 令j x 表示第j 种水平的样本均值, 式中,ij x 是第j 种水平下的第i 个观察值,j n 表示第j 种水平的观察值次数 (二)计算离差平方和 在单因素方差分析中,离差平方和有三个,它们分别是总离差平方和,组内离差平方和以及组间平方和。 首先,总离差平方和,用SST 代表,则, 其中,n x x ij ∑∑=它反映了离差平方和的总体情况。 其次,组内离差平方和,用SSE 表示,其计算公式为: 其中j x 反映的是水平内部或组内观察值的离散状况,即反映了随机因素带来的影响。 最后,组间平方和,用SSA 表示,SSA 的计算公式为:

AHP层次分析法计算原理

AHP层次分析法计算原理 一般地,可以选用三层结构对发展战略作出整体评价。 第一层为目标层,它是企业要实现的战略目标,第二层是评价因素层,它包括战略目标实现进行评价的所考虑的各种因素以及各因素之间的相对比值,并求出各要素实现总体目标所占的权重。第三层是指标层,即个评价因素需考虑的具体指标。 首先,根据总目标确定各要素之间的相对重要关系,构建两两比较判断矩阵,其基本形式为: 其中,a j表示对于C来说,A对A相对重要性的数值体现,通常a j可取1、2、3……、9以及它们的倒数作为标度。其中, 1――表示两个元素相比,具有同样的重要性; 3――表示两个元素相比,一个元素比另一个元素稍微重要; 5――表示两个元素相比,一个元素比另一个元素明显重要; 7――表示两个元素相比,一个元素比另一个元素强烈重要; 9――表示两个元素相比,一个元素比另一个元素极端重要。 2、4、6、8为上述相邻判断的中值。 矩阵中的元素具有以下特征:①a j >0,②a j二丄,③a H=1o a ji 然后,根据判断矩阵计算相对于战略目标各评价元素的相对重要 性次序的权重,首先计算判断矩阵A的最大特征根入max和其对应的经归一化后的特征向量W=[W i, W2 , W3, , W n ]T,计算的公式为:(8 - 1)

归一化后的特征向量W=[W i, W2, W3, , W n]T即为各评价因素对于总目标的权重。 (8 - 2)W i - n W i i J 其 1 n 中,W = a j (8 - 3) 入max为判断矩阵A的最大特征根,计算公式为: (8 - 4) 其中,(AW)i表示AW的第i个元素。 最后,对矩阵A进行一致性检验。当a q二空时,称判断矩阵为a jk 致性矩阵。判断一致性的指标为C.R.的取值。 C.R.嚅 (8 - 5) (8 - 6) R丄为随机一致性指标,其值是通过多次重复进行随机判断矩阵特征值的计算后得到的。随机一致性指标R丄的取值见表8-2。 表8-2随机一致性指标R.I?的取值表 维数12 345 6 7 8 9 10 J (AW)i i吕nw

层次分析法土木工程中的应用

层次分析法在土木工程中的应用 [摘要]:系统工程是以大型复杂系统为研究对象,按一定目的进行设计、开发、管理与控制,以期达到总体效果最优的理论与方法,它已广泛应用到工业、农业、国防、科学技术和社会经济的各个方面。它包含很多个方面,其评价方法有单项评价法论文、层次分析法和多元统计分析方法及理论。层次分析法是一种定性分析与定量分析相结合的多目标决策分析方法。对于结构复杂的多准则、多目标决策问题,是一种有效的决策分析工具。其基本思想,是根据问题的性质和要达到的目标,将问题按层次分析成各个组成因素,再按支配关系分组成有序的递阶层次结构。 [关键词]:系统工程、层次分析法、市政工程项目建设 系统工程是当代正在迅速发展的很有影响的一门综合性基础学科,它已广泛应用到工业、农业、国防、科学技术和社会经济的各个方面。从国家的经济发展战略与规划到工业企业的管理与决策,包括大规模生产、重大科学技术和社会经济结构等,都应用了系统工程的基本理论与方法。系统工程是一门跨学科的工程技术,它从系统的观点出发,立足整体,统筹全局,把自然科学和社会科学中的一些思想、理论和方法等根据系统总体协调的需要,有机地结合起来,采用定量与定性相结合的方法,为现代科学技术的发展提供了新思路和新方法。系统工程方法对于解决组织管理的问题应该说是极为有效的,因为任何管理都可视为一个系统的管理。只有对管理对象——系统的普遍规律充分了解掌握后,才能运筹帷幄,得心应手,实现管理最佳化。目前,管理正处于由艺术向科学迈进的征途中,系统学与系统工程作为管理哲学,将对管理科学的发展起到指导和促进作用。系统工程的评价方法:单项评价法论文、层次分析法(AHP)和多元统计分析方法及理论。 层次分析法(Analytic Hierarcy Process,简称AHP)是一种定性分析与定量分析相结合的多目标决策分析方法。对于结构复杂的多准则、多目标决策问题,是一种有效的决策分析工具。其基本思想,是根据问题的性质和要达到的目标,将问题按层次分析成各个组成因素,再按支配关系分组成有序的递阶层次结构。对同一层次内的因素,通过两两比较的方式确定诸因素之间的相对重要性权重。下一层次的因素的重要性,既要考虑本层次,又要考虑到上一层次的权重因子逐层计算,直至最后一层一般是要比较的各个方案权重大小。运用进行决策时,大体上应分为四个步骤进行:(1)分析系统中各因素之间的关系,建立系统的递阶层次结构;

层次分析法的应用

层次分析法的一个应用 摘要 关键词: Abstract Keywords: 前言 1层次分析法理论概述 1.2层次分析法的概念 层次分析法是由美国运筹学家匹兹堡大学的 T.L.saaty教授于20世纪70年代提出的一种决策方法。它是将评价对象或问题视为一个系统,根据问题的性质和想要达到的总目标将问题分解成不同的组成要素,并按照要素间的相互关联度及隶属关系将要素按不同层次聚集组合,从而形成一个多层次的分析结构系统,把问题条理化、层次化。 层次分析法的结构符合人们思维的基本特征分解、判断、综合,把复杂的问题分解为各组成要素,再将这些要素按支配关系分组,从而形成有序的递阶层次结构,通过两两比较判断的方式确定每一层次中要素的相对重要性,然后在递阶层次结构内进行合成得到相对于目标的重要程度的总排序。因此,层次分析法从出现开始就受到了理论界广泛的支持和认可,并得到了不断的改进和完善。

1.3 AHP法下优点 (1)AHP对于解决多层次、多指标的递阶结构问题行之有效。保险公司绩效评价各指标之间相互作用,相互制约,且绩效受到多种因素的影响,可以分解成不同的子指标,例如我们从财务维度可将保险公司的绩效分解为增加盈利能力、偿付能力和发展能力三个层面,而各个层面又可以从多个角度来衡量,从而构成关联保险公司绩效评价指标体系的递阶结构体系。这样,我国上市保险公司绩效评价指标体系的递阶结构为层次分析法提供了“结构”基础。 (2)把定性分析和定量分析有机地结合起来,避免了单纯定性分析的主观臆断性和单纯利用定量分析时对数据资料的严格要求。 (3)层次分析法思路简单明了,将人们的思维数字化、系统化,便于接受并容易计算;同时,层次分析法是一种相对比较成熟的理论,有大量的是实践经验可以借鉴,这就避免了在保险公司绩效评价指标权重的确定过程中由于缺乏经验而产生的不足。 当然层次分析法也存在着缺陷:首先,其结论是建立在判断矩阵是一致性矩阵的基础上的,而在实际应用中所建立的判断矩阵,由于各方面的原因,往往不能一次性得到具有一致性的判断矩阵,而需要对其一致性进行检验,并进行多次的修改。因此,判断矩阵的建立过程比较复杂,且存在较大的主观性;其次是特征值的计算量较大;再次,许多专家认为层次分析法中采用的1-9标度法不能准确地反映专家和决策者的真实感觉和判断。采用层次分析法来确定两个指标的相对重要性时,当人们认为A1比A2重要(记为a),B1比B2明显重要(记为b),C1比C2强烈重要(记为c)时,则(c-b)比(b-a)要大得多,因而标度不应该的线性的,而是随着重要程度的增加差距越来越大。而1-9标度是等距的,所以Saaty 提出的线性评判标度与人们头脑中的实际标度并非一致。因此,这些问题都需要进行改进,但整体上不影响本文采用层次分析法确定评价指标权重。 1.4 AHP的基本步骤 用层次分析法作系统分析,首先需要把问题层次化,根据问题的性质和总目标把问题分解成为不同的因素,并且根据这些因素间的相互影响及隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型,并最终系统分析归结为最底层(供决策的方案、措施等)相对于最高层(总目标)的相对重要性权重的确

主成分分析、因子分析步骤

主成分分析、因子分析步骤不同 点 主成分分析因子分析 概念具有相关关系的p 个变量,经过线性 组合后成为k个不 相关的新变量将原数据中多个可能相关的变量综合成少数几个不相关的可反映原始变量的绝大多数信息的综合变量 主要目标减少变量个数,以 较少的主成分来解 释原有变量间的大 部分变异,适合于 数据简化 找寻变量间的内部相关性 及潜在的共同因素,适合做 数据结构检测 强调重点强调的是解释数据 变异的能力,以方 差为导向,使方差 达到最大 强调的是变量之间的相关 性,以协方差为导向,关心 每个变量与其他变量共同 享有部分的大小 最终结果应用形成一个或数个总 指标变量 反映变量间潜在或观察不 到的因素 变异解释程度它将所有的变量的 变异都考虑在内, 因而没有误差项 只考虑每一题与其他题目 共同享有的变异,因而有误 差项,叫独特因素

是否需要旋转主成分分析作综合 指标用, 不需要旋转 因子分析需要经过旋转才 能对因子作命名与解释 是否有假设 只是对数据作变 换,故不需要假设 因子分析对资料要求需符 合许多假设,如果假设条件 不符,则因子分析的结果将 受到质疑 因子分析 1【分析】→【降维】→【因子分析】(1)描述性统计量(Descriptives)对话框设置 KMO和Bartlett的球形度检验(检验多变量正态性和原始变量是 否适合作因子分析)。 (2)因子抽取(Extraction)对话框设置 方法:默认主成分法。主成分分析一定要选主成分法 分析:主成分分析:相关性矩阵。 输出:为旋转的因子图 抽取:默认选1. 最大收敛性迭代次数:默认25. (3)因子旋转(Rotation)对话框设置因子旋转的方法,常选择“最大方差法”。“输出”框中的“旋 转解”。 (4)因子得分(Scores)对话框设置

方法:因子分析法

因子分析基础理论知识 1 概念 因子分析(Factor analysis ):就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子来反映原资料的大部分信息的统计学分析方法。从数学角度来看,主成分分析是一种化繁为简的降维处理技术。 主成分分析(Principal component analysis ):是因子分析的一个特例,是使用最多的因子提取方法。它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相关的变量。选取前面几个方差最大的主成分,这样达到了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大部分的信息。 两者关系:主成分分析(PCA )和因子分析(FA )是两种把变量维数降低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子分析的一个特例。 2 特点 (1)因子变量的数量远少于原有的指标变量的数量,因而对因子变量的分析能够减少分析中的工作量。 (2)因子变量不是对原始变量的取舍,而是根据原始变量的信息进行重新组构,它能够反映原有变量大部分的信息。 (3)因子变量之间不存在显着的线性相关关系,对变量的分析比较方便,但原始部分变量之间多存在较显着的相关关系。 (4)因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。 在保证数据信息丢失最少的原则下,对高维变量空间进行降维处理(即通过因子分析或主成分分析)。显然,在一个低维空间解释系统要比在高维系统容易的多。 3 类型 根据研究对象的不同,把因子分析分为R 型和Q 型两种。 当研究对象是变量时,属于R 型因子分析; 当研究对象是样品时,属于Q 型因子分析。 但有的因子分析方法兼有R 型和Q 型因子分析的一些特点,如因子分析中的对应分析方法,有的学者称之为双重型因子分析,以示与其他两类的区别。 4分析原理 假定:有n 个地理样本,每个样本共有p 个变量,构成一个n ×p 阶的地理数据矩阵 : ?????? ????? ???=np n n p p x x x x x x x x x X ΛM M M M ΛΛ212222111211

层次分析法的计算步骤

层次分析法的计算步骤

8.3.2 层次分析法的计算步骤 一、建立层次结构模型 运用AHP进行系统分析,首先要将所包含的因素分组,每一组作为一个层次,把问题条理化、层次化,构造层次分析的结构模型。这些层次大体上可分为3类 1、最高层:在这一层次中只有一个元素,一般是分析问题的预定目标或理想结果,因此又称目标层; 2、中间层:这一层次包括了为实现目标所涉及的中间环节,它可由若干个层次组成,包括所需要考虑的准则,子准则,因此又称为准则层; 3、最底层:表示为实现目标可供选择的各种措施、决策、方案等,因此又称为措施层或方案层。 层次分析结构中各项称为此结构模型中的元素,这里要注意,层次之间的支配关系不一定是完全的,即可以有元素(非底层元素)并不支配下一层次的所有元素而只支配其中部分元素。这种自上而下的支配关系所形成的层次结构,我们称之为递阶层次结构。 递阶层次结构中的层次数与问题的复杂程度及分析的详尽程度有关,一般可不受限制。为了避免由于支配的元素过多而给两两比较判断带来困难,每层次中各元素所支配的元素一般地不要超过9个,若多于9个时,可将该层次再划分为若干子层。 例如,大学毕业的选择问题,毕业生需要从收入、社会地位及发展机会方面考虑是否留校工作、读研究生、到某公司或当公务员,这些关系可以将其划分为如图8.1所示的层次结构模型。

图8.1 再如,国家综合实力比较的层次结构模型如图6 .2: 图6 .2 图中,最高层表示解决问题的目的,即应用AHP 所要达到的目标;中间层表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等;最低层表示解决问题的措施或政策(即方案)。 然后,用连线表明上一层因素与下一层的联系。如果某个因素与下一层所有因素均有联系,那么称这个因素与下一层存在完全层次关系。有时存在不完全层次关系,即某个因素只与下一层次的部分因素有联系。层次之间可以建立子层次。子层次从属于主层次的某个因素。它的因素与下一层次的因素有联系,但不形成独立层次,层次结构模型往往有结构模型表示。 二、构造判断矩阵 任何系统分析都以一定的信息为基础。AHP的信息基础主要是人们对每一层次各因素的相对重要性给出的判断,这些判断用数值表示出来,写成矩阵形式就是判

层次分析法的基本步骤和要点

层次分析法的基本步骤和要点 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。很明显,这两个方案于所有准则都相关。 将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。同时,为了方便后面的定量表示,一般从上到下用A、B、C、D。。。代表不同层次,同一层次从左到右用1、2、3、4。。。代表不同因素。这样构成的递阶层次结构如下图。

层次分析法excel

层次分析法(AnalytioHieacrrhyProcess,AHP),是一种定性与定量相结合的多目标决策方法,在许多工程领域都有应用。利用层次分析法进行风险识别的基本思路是:把复杂的风险问题分解为各个组成因素,将这些因素按支配关系分组形成有序的递阶层次结构,通过两两比较判断的方式确定每一层次中各因素相对于上一层或最高层总目标的相对重要性,并加以排序,从而判断出系统主要风险模式和风险因素。AHP体现了人们的决策思维的基本特征,即分解、判断、综合。 对于AHP的进一步定义、优缺点就不多说了,网上有很多的介绍。今天主要探讨一下如何用Excel来进行层次分析法的核心步骤——判断矩阵特征值与特征向量的计算。 首先,来看一下计算方法。这种计算方法来自同济大学巩春领博士的学位论文《大跨度斜拉桥施工风险分析与对策研究》。 数据分析你最喜欢的软件是哪个?可以说我最喜欢的是是Excel么~好多事情都可以用这个随处可以找到的方便快捷的工具完成,还可以与更多的人分享源文件,简直是人生一大快事。

AHP有很多计算工具,比如matlab(这个我也做了,稍后完善一下也分享出来),还有其他各种小软件。不喜欢黑箱软件,不能调整算法,还是先研究一下excel的实现吧。上面的系列公式,正好适合用excel做。 第一步,输入判断矩阵,拉出列和

继续地,根据上面的公式,先后按次序作出归一化后的矩阵、求行和、求归一化后的权重、计算矩阵乘积、矩阵对应元素与权重向量元素求商,最后得到最大特征值——话说这也是普通矩阵得到最大特征值的一种方式。 这里要介绍一个Excel命令:MMULT:求矩阵相乘 矩阵相乘,矩阵A乘以矩阵B=矩阵C,需要用命令指定两个矩阵,和一个结果矩阵的位置。 MMULT(array1,array2)函数介绍: 返回两个数组的矩阵乘积。结果矩阵的行数与数组array1的行数相同,矩阵的列数与数组array2的列数相同。 语法 MMULT(array1,array2)

(完整版)SPSS因子分析法-例子解释

因子分析的基本概念和步骤 一、因子分析的意义 在研究实际问题时往往希望尽可能多地收集相关变量,以期望能对问题有比较全面、完整的把握和认识。例如,对高等学校科研状况的评价研究,可能会搜集诸如投入科研活动的人数、立项课题数、项目经费、经费支出、结项课题数、发表论文数、发表专著数、获得奖励数等多项指标;再例如,学生综合评价研究中,可能会搜集诸如基础课成绩、专业基础课成绩、专业课成绩、体育等各类课程的成绩以及累计获得各项奖学金的次数等。虽然收集这些数据需要投入许多精力,虽然它们能够较为全面精确地描述事物,但在实际数据建模时,这些变量未必能真正发挥预期的作用,“投入”和“产出”并非呈合理的正比,反而会给统计分析带来很多问题,可以表现在: 计算量的问题 由于收集的变量较多,如果这些变量都参与数据建模,无疑会增加分析过程中的计算工作量。虽然,现在的计算技术已得到了迅猛发展,但高维变量和海量数据仍是不容忽视的。 变量间的相关性问题 收集到的诸多变量之间通常都会存在或多或少的相关性。例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。例如,多元线性回归分析中,如果众多解释变量之间存在较强的相关性,即存在高度的多重共线性,那么会给回归方程的参数估计带来许多麻烦,致使回归方程参数不准确甚至模型不可用等。类似的问题还有很多。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。因子分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 因子分析的概念起源于20世纪初Karl Pearson和Charles Spearmen等人关于智力测验的统计分析。目前,因子分析已成功应用于心理学、医学、气象、地址、经济学等领域,并因此促进了理论的不断丰富和完善。 因子分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,名为因子。通常,因子有以下几个特点: ↓因子个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓因子能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓因子之间的线性关系并不显著 由原有变量重组出来的因子之间的线性关系较弱,因子参与数据建模能够有效地解决变量多重共线性等给分析应用带来的诸多问题。 ↓因子具有命名解释性 通常,因子分析产生的因子能够通过各种方式最终获得命名解释性。因子的命名解

关键因素分析法

关键因素分析法---层次分析法介绍及应用案例 一.方法介绍 层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。它是一种定性和定量相结合的、系统化、层次化的分析方法。例如,如果打算去旅游有3个旅游胜地A、B、C供你选择,你会根据诸如景色、费用和居住、饮食、旅途条件等一些准则去反复比较这3个候选地点.首先,你会确定这些准则在你的心目中各占多大比重,如果你经济宽绰、醉心旅游,自然分别看重景色条件,而平素俭朴或手头拮据的人则会优先考虑费用,中老年旅游者还会对居住、饮食等条件寄以较大关注。其次,你会就每一个准则将3个地点进行对比,譬如A景色最好,B次之;B费用最低,C次之;C居住等条件较好等等。最后,你要将这两个层次的比较判断进行综合,在A、B、C中确定哪个作为最佳地点。 二.使用步骤 1.第一步, 通过分析, 确定所给定问题要达到的总目标, 实现目标的准则, 可供选择的措施或方案。在这一过程中, 要广泛收集信息, 注意把握问题的主要因素, 做到不重不漏。 2.第二步,建立层次结构模型。在深入分析实际问题的基础上,将有关的各个 因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。当准则过多时(譬如多于9个)应进一步分解出子准则层。 3.第三步,构造成对比较阵。从层次结构模型的第2层开始,对于从属于(或影 响)上一层每个因素的同一层诸因素,用成对比较法和1—9比较尺度构造成对比较阵,直到最下层。 4.第四步,计算权向量并做一致性检验。对于每一个成对比较阵计算最大特征 根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构造成对比较阵。

层次分析法的基本步骤和要点(20210228093222)

层次分析法的基本步骤和要点

层次分析法的基本步骤和要点 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP军决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组 成: 目标层(最高层):指问题的预定目标; 准则层(中间层):指影响目标实现的准则; 措施层(最低层):指促使目标实现的措施;通

过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系'即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一 层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构

相关主题
文本预览
相关文档 最新文档