当前位置:文档之家› 箱涵-碗扣式脚手架满堂支架设计计算Word版

箱涵-碗扣式脚手架满堂支架设计计算Word版

箱涵-碗扣式脚手架满堂支架设计计算Word版
箱涵-碗扣式脚手架满堂支架设计计算Word版

天水路框架中桥碗扣式脚手架满堂支架计算书

1 工程概况

1.1 总概况

天水路框架桥中心里程DK0+149.82与线路斜交角度-38.7°,框架为4孔连体净宽(7+13.5+13.5+7)m,净高为(7.55+7+7+7.55)m桥梁全长58.8m。施工方案中确定对于通道结构顶板考虑采用碗扣式脚手架搭设满堂作为支架体系。

现以框架中桥第二孔为例,顶板长度为16.48m,宽度为10.89m,斜交角度为35?,高度为7m,共有C40砼164m3,钢筋重量50.4t。

2 支架初步设计

2.1 立杆及横杆的初步设计

根据经验及初略计算,来选定立杆间距。钢筋混凝土自重取26KN/m3,由顶板高度为1m,则顶板重Q1=26KN/m2,单根立杆允许承载力保守取[N]=40KN。

每平方米需要立杆根数:1.2Q1/[N]=0.78;取安全系数1.3,则为1.014。

所以选定立杆纵横向间距为:0.9×0.9=0.81m2<1/1.014=0.99 m2,满足要求。

由于框架中桥结构顶板结构高为7m,立杆间距一般取0.9m。

2.2 底模、纵横梁的初步确定

底模采用竹胶板,选用1.8cm厚的桥梁专用竹胶板。纵横梁均采用方木,宽度均为0.1m,高度均为0.1m,方木允许受弯强度为[σ]=12MPa,其中横梁间距选择0.3m,纵梁间距选择0.9m,横杆步距1.2m。

3 支架检算

碗扣式脚手架满堂支架竖向力传递过程:通道结构顶板钢筋混凝土和内模系统的自重及施工临时荷(活载)通过底模传递到横梁上,横梁以集中荷载再传递给纵梁,纵梁以支座反力传递到每根立杆,立杆通过底托及方木传递至钢筋混凝土通道结构底板。下面以这种力的传递方式依次对支架的底模、横梁、纵

梁、立杆、通道结构底板载力进行检算。

3.1 荷载计算

3.1.1 竖向荷载计算

①本框架中桥钢筋混凝土自重取26KN/m 3,以第二跨顶板为例,结构顶板混凝土体积为164m 3,按照最不利工况,将涵洞墙身顶部分的顶板混凝土重量也折算到地板上,混凝土的自重如下计算:

F1=V ×γ÷V ’=(164+27)×26÷164=30.3KN/m 3

式中:V 为第二跨顶板混凝土体积;

γ为钢筋混凝土的容重,取26KN/m 3;

V ’为除去框架墙身顶部分顶板的混凝土体积。

框架中桥顶板结构混凝土高度取h1=1m ,故混凝土自重为:

F1a=F1×h1=30.3kPa

②竹胶板厚度为1.8cm,容重取γ=7.5KN/m 3,则模板自重为

F2=0.018×1×1×7.5=0.135kPa

③纵横梁方木荷载:

横梁方木:g1=0.1m ×0.1m ×γ÷0.3m=0.25kPa

纵梁方木:g2=0.1m ×0.1m ×γ÷0.9m=0.08kPa

式中:γ——按橡木、落叶松质木材取7.5KN/m 3

④内模及支撑荷载,取3kPa :F3=3kPa

⑤临时荷载

施工人员及机具:G1=2.5kPa

振捣荷载:G2=2.0 kPa

则临时荷载为:G=4.5kPa

3.1.2 水平荷载计算

①混凝土振捣时对侧模的荷载取:4kPa

②新浇混凝土对侧模的最大侧压力:

kPa h P 261261=?==γ

kPa h k P c 76.3205.1262.12=??==γ

式中:k ---外加剂影响修正系数,取1.2

v ----混凝土浇注速度,取0.5h

m /

.0=

22

24

9.

?

+

=

+

=

/

.0

.1

h05

v

T

h---有效压头高度,m

15

22

/5.0

24

9.

T---混凝土入模温度,取15C?

则有:kPa

P76

36

.

=

max

3.2 底模验算

A、竹胶板板的力学性能(取10cm宽度模板进行计算)

①弹性模量

E=9×103MPa

②截面惯性矩

I=bh3/12=0.1×0.023/12=6.67×10-8m4

③截面抵抗矩

W= bh2/6=0.1×0.022/6=6.67×10-6m3

B、模板受力计算

底模下的横梁间距30cm,可以把底模简化为三跨连续梁进行计算。强度检算荷载组合为:①+②+④+⑤;刚度检算荷载组合为:①+②+④

①模强度检算

q’=F1a×1.2+F2×1.2+F3×1.2+G×1.4=46.42 kPa

q=q’×0.1m=46.42×0.1=4.64kN/m

Mmax=1/10×ql2=0.04176 kN·m

σ=Mmax/W=6.02MPa≤[σW]=12MPa ,满足要求。

本支架各部件(除去立杆)均为受弯构件,仅需要检算弯矩,下同不再赘述。

②模刚度验算

q’=F1a×1.2+F2×1.2+F3×1.2=38.256 kPa

q=q’×0.1m=38.17×0.1=3.8256kN/m

f=0.677×ql4/100EI=0.35mm≤[f]=0.3/400=0.75mm ,满足要求。

3.3 横梁检算

A.横梁力学性能

①弹性模量

E=10×103Mpa

②截面惯性矩

I=bh3/12=0.1×0.13/12=8.33×10-6m4

③截面抵抗矩

W= bh2/6=0.1×0.12/6=0.167×10-3m3

B、横梁受力计算

横梁间距30cm,可以把横梁简化为三跨连续梁进行计算。强度检算荷载组合为:①+②+③+④+⑤;刚度检算荷载组合为:①+②+③+④

①梁强度验算

q’=F1a×1.2+F2×1.2+F3×1.2+G×1.4=44.556 kPa

q=q’×0.3m+g=13.4418KN/m

式中g为方木自重,g=7.5KN/m3×0.1m×0.1m=0.075KN/m

Mmax=1/10×ql2=0.121 KN·m

σ=Mmax/W=0.72MPa≤[σW]=12MPa ,满足要求。

最大支座反力R=11ql/10=1.2×13.4418×3/4=12.1KN

②梁刚度验算

q’=F1a×1.2+F2×1.2+F3×1.2=38.256 kPa

q=q’×0.3m+g=57.87×0.25+0.075 =11.5518kN/m

式中g为方木自重,g=7.5KN/m3×0.1m×0.1m=0.075KN/m

f=0.677ql4/100EI=0.12mm≤[f]=0.3m/400=0.75mm ,满足要求。

3.4 纵梁验算

A.纵梁的力学性能

①弹性模量

E=10×103Mpa

②截面惯性矩

I=bh3/12=0.1×0.13/12=8.33×10-6m4

③截面抵抗矩

W= bh2/6=0.1×0.12/6=0.167×10-3m3

B、纵梁验算

纵梁受到10个横梁集中荷载和自重均布荷载的作用,计算弯矩和挠度的时候,可以按照集中荷载和均布荷载两种形式进行叠加。

集中荷载P=R=12.1KN

均布荷载q=7.5KN/m3×0.1m×0.1m=0.075KN/m

Mmax=0.175Pl+0.1ql2=1.912kN·m

σ=Mmax/W=11.45MPa≤[σW]=12MPa,满足要求。

支座最大反力:R=1.156P+P+1.1ql=26.31KN

3.5 立杆检算

立杆的检算,很多资料采用单根立杆所承受的投影面积荷载这种简单的方法进行计算,而在理论上应该采用纵梁对立杆的支座反力进行计算。下面按这两种方式分别进行计算。

3.5.1 立杆计算模型

立杆选用Ф4.8×3.5钢管,计算模型为两端铰支。

①弹性模量

E=2.1×105Mpa

②质量

M=3.84kg/m

③截面积

A=4.89×10-4m2

④面惯性矩

I=12.19×10-8m4

⑤面抵抗矩

W= 5.08×10-6m3

⑥惯性积

i=1.59×10-2m

⑦柔度

λ=ul/i=1×1.2/1.59×10-2m=75.47

3.5.2 单根立杆承受的荷载

单根立杆竖向荷载

荷载组合为:F’=①+②+③+④+⑤,图式如上

F’= F1a×1.2+F2×1.2+ (g1+g2)×1.2+F3×1.2+G×

满堂支架计算

精心整理 满堂支架计算 1、荷载计算 根据支架布置方案,采用满堂支架,对其刚度、强度、稳定性必须进行检算。 钢管的内径Ф41mm 外径Ф48mm 、壁厚3.5mm 。 截面积 转动惯量 1A W 砼B ((C 、人员及机器重 W=1KN/m 2(《JGJ166-2008建筑施工碗扣式脚手架安全技术规范》) D 、振捣砼时产生的荷载 W=2KN/m 2(《JGJ166-2008建筑施工碗扣式脚手架安全技术规范》) E 、倾倒混凝土时冲击产生的荷载 W=3KN/m 2(采用汽车泵取值3.0KN/m 2) F 、风荷载 W 模板W 方木22222893.44)1.48.4(14.34/)(cm d D A =÷-?=-=π2/144444187.1264)1.48.4(14.364/)(cm d D J =÷-?=-=π2/12.0105.33 .01m kN kg W =??=钢管

按照《建筑施工碗扣式脚手架安全技术规范》,风荷载W k =0.7u z u s W o 其中u z 为风压高度变化系数,按照《建筑结构荷载规范》取值为1; u s 为风荷载体型系数,按照《建筑结构荷载规范》取值为0.8; W o 为基本风压,按照贵阳市市郊离地高度5m 处50年一遇值为0.3KN/m 2。 风荷载W k =0.7×1×0.8×3=1.68KN/m 2 由风荷载产生立杆弯矩值: 式中: w M k ωα0l 22.1(1)βγW E N ——欧拉临界力; (2)立杆稳定验算 结论:立杆满足强度及稳定性要求。 (3)横向钢管(次楞)强度和刚度验算 次楞荷载组合N=1.2×(27.2+0.4)+0.9×1.4×(1+2+3+1.68)=42.8KN/m 2 按照次楞最不利位置0.3m 间距布置,单根次楞荷载q=42.8×0.3=12.8KN/m A 、横向钢管抗弯强度验算 []MPa f MPa 1704.761712.278.0108.515.12.019.01089.4728.0102.2743=≤=?-????+???=-)(σ

满堂支撑架结构计算书

扣件式满堂支撑架安全计算书 一、计算依据 1、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 2、《混凝土结构设计规范》GB50010-2010 3、《建筑结构荷载规范》GB50009-2012 4、《钢结构设计规范》GB50017-2003 5、《建筑施工临时支撑结构技术规范》JGJ300-2013 6、《建筑施工高处作业安全技术规范》JGJ80-1991

二、计算参数

(图1)平面图 (图2)纵向剖面图1 (图3)纵向剖面图2

三、次楞验算 恒荷载为: g1=1.2[g kc+g1k e]=1.2×(0.022+0.35×250/1000)=0.131kN/m 活荷载为: q1=1.4(Q1+Q2)e=1.4×(2+2)×250/1000=1.4kN/m 次楞按三跨连续梁计算符合工况。计算简图如下: (图4)可变荷载控制的受力简图 1、强度验算 (图5)次楞弯矩图(kN·m) M max=0.124kN·m σ=M max/W=0.124×106/(1×85.333×103)=1.454N/mm2≤[f]=15N/mm2 满足要求 2、抗剪验算

(图6)次楞剪力图(kN) V max=0.827kN τmax= V max S0/(Ib) =0.827×103×40.5×103/(341.333×104×4×10)=0.245N/mm2≤[τ]=125N/mm2 满足要求 3、挠度验算 挠度验算荷载统计: q k=g kc+g1k e+(Q1+Q2)e =0.022+0.3×250/1000+(2+2)×250/1000=1.097kN/m (图7)挠度计算受力简图 (图8)次楞变形图 (mm) νmax=0.145mm≤[ν]=max(1000×0.9/150,10)=10mm 满足要求 4、支座反力计算 承载能力极限状态下支座反力为:R=1.516kN 正常使用极限状态下支座反力为:R k=1.086kN 五、主楞验算 按三跨连续梁计算符合工况,偏于安全,计算简图如下:

(完整版)现浇箱梁内模支架计算

国道324线磊口大桥续建工程 现浇连续箱梁(50+85+50m) 内模满堂支架 计 算 书 编制: 审核: 审批: 广州市方阵路桥工程技术有限公司 国道324线磊口大桥续建工程项目经理部 2016年9月11日

目录 一、现浇箱梁满堂扣件支架布置及搭设要求 (1) 二、支架材料力学性能指标 (1) 1、钢管截面特性 (1) 2、竹胶板、木方 (1) 三、荷载分析计算 (1) 1、板自重荷载分析 (2) 2、其它荷载 (2) 三、荷载验算 (2) 1、底模验算 (2) 2、[10#槽钢主横梁验算 (3) 3、顺桥向顶部10×10cm方木分配梁验算 (3) 4、立杆受力计算 (4) 5、支架立杆稳定性验算 (4) 7、箱梁侧模验算 (5)

一、现浇箱梁满堂扣件支架布置及搭设要求 采用满堂支架,使用与立杆配套的横杆及立杆可调底座、立杆可调托撑。支架体系由支架基础、Φ48×3.5mm 立杆、横杆,立杆顶设两层支撑梁,10cm ×10cm 木方做顺桥向分配梁、间距35cm 均匀布置;主横梁采用[10#槽钢间距同立杆间距75cm ;模板系统由侧模、底模、端模等组成。 二、支架材料力学性能指标 1、钢管截面特性 2、竹胶板、木方 2.1、箱梁底模、侧模及内模均采用δ=15 mm 的竹胶板。竹胶板容许应力 []pa 80M =σ,弹性模量Mpa E 3109?=。 2.2、横桥向顶部主梁[10#槽钢,截面参数和材料力学性能指标: 截面抵抗矩:W=39.7cm 3 截面惯性矩:I=198cm 4 截面积:A=12.7cm 2 2.3、顺桥向顶部分配梁采用方木,截面尺寸为10x10cm 。截面参数和材料力学性能指标: 截面抵抗矩:W=bh 2/6=10×102/6=166.7cm 3 截面惯性矩:I=bh 3/12=10×103/6=833.3cm 4 2.4、方木的力学性能指标按《公路桥涵钢结构及木结构设计规范》(JTJ025-86)取值,则: []pa 12M =σ,Mpa E 3109?= 木头容重6kN/m 3,折算成10cm ×10cm 木方为0.06kN/m 3,木头最大横纹剪应力取 [τ]=3.2~3.5N/mm 2 三、荷载分析计算 碗扣式脚下手架满堂支架竖向力传递过程:箱梁钢筋砼和内模系统的自重及施工临时荷载能过底模传递到横梁上,横梁以集中荷载再传递给纵梁,纵梁以支座反力传递到每根立杆,立杆通过底托及方木传递至底板模板上。以下分别对支架的底模、横梁、纵梁、立

满堂脚手架设计计算法(最新)

满堂脚手架设计计算方法 钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)、 《钢结构设计规范》(GB50017-2003)、《冷弯薄壁型钢结构技术规范》(GB50018-2002)、 《建筑地基基础设计规范》(GB 50007-2002)、《建筑结构荷载规范》(2006年版)(GB 50009-2001)等编制。 一、参数信息: 1.脚手架参数 计算的脚手架为满堂脚手架, 横杆与立杆采用双扣件方式连接,搭设高度为4米,立杆采用单立管。 搭设尺寸为:立杆的纵距l a= 1.20米,立杆的横距l b= 1.20米,立杆的步距h= 1.50米。 采用的钢管类型为Φ48×3.5。 横向杆在上,搭接在纵向杆上的横向杆根数为每跨2根 2.荷载参数砼板厚按均布250mm计算 2400X0.25X1=6.0KN/mm2 施工均布荷载为6.0kN/m2,脚手板自重标准值0.30kN/m2, 脚手架用途:支撑混凝土自重及上部荷载。 满堂脚手架平面示意图

二、横向杆的计算: 横向杆钢管截面力学参数为 截面抵抗矩 W = 5.08cm3; 截面惯性矩 I = 12.19cm4; 横向杆按三跨连续梁进行强度和挠度计算,横向杆在纵向杆的上面。 按照横向杆上面的脚手板和活荷载作为均布荷载计算横向长杆的最大弯矩和变形。 考虑活荷载在横向杆上的最不利布置(验算弯曲正应力和挠度)。 1.作用横向水平杆线荷载 (1)作用横向杆线荷载标准值 q k=(3.00+0.30)×1.20/3=1.32kN/m (2)作用横向杆线荷载设计值 q=(1.4×3.00+1.2×0.30)×1.20/3=1.82kN/m 横向杆计算荷载简图 2.抗弯强度计算 最大弯矩为 M max= 0.117ql b2= 0.117×1.82×1.202=0.307kN.m σ = M max/W = 0.307×106/5080.00=60.49N/mm2 横向杆的计算强度小于205.0N/mm2,满足要求! 3.挠度计算 最大挠度为 V=0.990q k l b4/100EI = 0.990×1.32×12004/(100×2.06×105×121900.0) = 1.079mm 横向杆的最大挠度小于1200.0/150与10mm,满足要求! 三、纵向杆的计算:

满堂支架设计与验算方案

一.编制依据 1.1 《建筑施工碗扣式脚手架安全技术规范》JGJ 166-2008 1.2 《房建工程施工与质量验收规范》(CJJ2-2008) 1.3 《建筑施工安全检查标准》(JGJ59-99) 1.4 《广西省<建筑施工安全检查标准>实施细则》及图纸等 1.5《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001) 二.工程概况 新建云桂铁路引入南宁枢纽南环线工程施工设计邕宁站综合行车室工程总建筑面积为730m2,现场实测中心里程为NK765+283.55。邕宁站综合行车室采用全现浇框架结构,基础采用条形基础,房屋一层为框架结构(信号楼),二层为砖混结构(办公楼)。信号楼净空尺寸为4.3m,总长为46.7m,宽为7.9m。 三.支架结构设计 3.1扣件钢管脚手架的材质要求 (1)钢管采用外径48mm, 壁厚35mm焊接钢管,其质量符合先行国家标准《碳素结构钢》(GB/T700)中Q235-A级钢的规定。 (2)扣件采用可锻铸铁制造的扣件,其材质应符合先行国家标准《钢管脚手架扣件》)(GB15831)的规定。 (3)脚手架下,立杆使用垫板尺寸为:30cm×30cm。 3.2支架构件 满堂支架主体构件包括: 纵向水平杆、横向水平杆、立杆、顶托、底座、剪刀撑等。 3.3支架布置 根据房屋设计高度和承重要求,根据梁体混凝土的自重荷载,考虑施工荷载以及其它荷载的影响,预留足够的施工安全储备,进行现浇梁支架的检算(检算资料详见满堂支架设计计算书)。 现浇支架自下而上由钢管立柱,分配梁、模板肋及底模、侧模、内模、防护栏及施工平台等组成。 满堂支架采用Φ48δ3.5小钢管,碗扣连接。

满堂脚手架计算书

扣件式满堂脚手架安全计算书 一、计算依据 1、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 2、《建筑结构荷载规范》GB 50009-2012 3、《钢结构设计规范》GB 50017-2003 4、《建筑施工临时支撑结构技术规范》JGJ300-2013 5、《建筑施工高处作业安全技术规范》JGJ80-1991

二、计算参数

架体是否封闭密目网 是密目式安全立网自重标准值 g 3 (kN/m2) 0.1 风压高度变化系数uz/ 风荷载体型系数us/ 脚手板自重标准值g 1k (kN/m2)0.35 栏杆自重标准值g 2k (kN/m)0.17 基础类型混凝土楼板地基土类型/ 地基承载力特征值fak(kPa) / 是否考虑风荷载否架体搭设省份、城市北京(省)北京 (市) 地面粗糙度类型/ (图1)平面图 (图2)剖面图1

(图3)剖面图2 三、次楞验算 、脚手板自重g1,转化为次楞上的线荷载,活荷载包括施恒荷载包括次楞自重g kc 工活荷载、材料堆放荷载,转化为次楞上线荷载。 次楞按三跨连续梁计算,恒荷载满布,活荷载按不利布置进行组合;强度及挠度验算时,活荷载按第一跨及第三跨布置计算;抗剪验算时,活荷载按第一跨及第二跨布置计算。 1、强度验算 恒荷载为: g1=1.2[g kc+g1k e ]= 1.2×(0.033+0.35×300/1000)=0.166kN/m 活荷载为: q1=1.4(Q1+Q2)e =1.4×(2+2)×300/1000=1.68kN/m 计算简图如下: (图4)可变荷载控制的受力简图1

(图5)次楞弯矩图(kN·m) M max= 0.149kN·m σ=M max/W=0.149×106/(1×4.493×103)=33.273N/mm2≤[f]=205N/mm2 满足要求 2、挠度验算 挠度验算荷载统计: q k=g kc+g1k e + (Q1+Q2)e =0.033+0.3×300/1000+(2+2)×300/1000=1.323kN/m (图7)挠度计算受力简图 (图8)次楞变形图(mm) νmax=0.269mm≤[ν]=max(1000×0.9/150,10)=10 mm 满足要求 3、支座反力计算 承载能力极限状态下支座反力为:R=1.827kN 正常使用极限状态下支座反力为:R k=1.31kN

满堂支架计算

中交二航局硚孝高速第QXTJ-6标 标准跨径现浇砼箱梁支架结构计算书 编制 审核 中交第二航务工程局

2010年7月 标准跨径(20m)砼箱梁现浇支架结构设计和计算书 一、设计与验算条件 1、设计与验算假定及原则 为简化计算,对于连续结构按简支结构计算,这样偏于安全;其结构形式及构件型号选用宜结合现场条件尽量采用原有,即可周转和便于采购,租赁以及便于运输的材料;施工简单和便于装拆,节省费用,加快施工进度,确保交通,施工安全及施工质量。 2、设计与验算依据 (1)硚口至孝感高速第QXTJ-06合同段设计说明及相关施工图; (2)《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001); (3)公路桥涵技术规范(JTJ041—2000); (4)路桥施工计算手册; 3、工程概况 武汉硚口至孝感高速公路时武汉城市圈中武汉(汉口中心城区)至孝感(孝南区)的快速通道,是武汉城市圈实施交通一体化建设的重要组成部分,同时也是武汉市西北方向环线公路之间的一条快速联络通道,沿线经过武汉市下辖的硚口区、东西湖区以及孝感市下辖的孝南区。第QXTJ-6合同段位于位于武汉市东西湖区的东山农场灯塔大队和胜利大队范围内,为上跨京港澳高速的一个互通(灯塔互通)。主线全长 2.393km(K20+107-K22+500)、其中路基只有24米,主线宽26米。主线通过 A、B、C、D、E、F6条匝道桥与京港澳高速互通,匝道总长4.618Km,其中桥梁长度3.008Km、路基长度1.61Km,宽8.5米。

4、桥型及结构特点 全桥分主线桥、A 、B 、C 、D 、E 和F 六条匝道桥。本项目共有现浇箱梁365孔。箱梁顶宽8.5m-15.54m ,有单室、双室、三室和四室。高度为1.4m 。为非预应力连续箱梁,3跨-6跨为一联。本项目跨越5口鱼塘,一条灌溉渠,10条水沟,其余均为旱地,因此本项目所有旱地均采用满堂脚手架作为临时支撑,鱼塘、沟渠、跨路处采用少支架。 二、现浇箱梁满堂支架设计与验算 由于本工程现浇箱梁跨径不一,但以20m 跨径居多,所以采用20m 跨径、宽12.75m 、梁高为1.4m 、净空为10m 的箱梁为标准跨径箱梁进行计算。采用φ48轮扣式满堂支架搭设,底模、侧模采用竹胶合板、钢模组合模板。经验算满堂支架脚手管的布置型式为: ①箱梁底板下脚手管横桥向布距:箱梁腹板位置为0.6m ,底板及翼缘板区为0.9~1.2m ,层间0.9m 。每根立杆顶端设60cm 顶托,在其上横向铺设I10横向分配梁,箱梁底模面板采用竹胶合板mm 12=δ,纵向次肋为10×10cm 硬杂枋木,箱梁下布置间距均为@=30cm 。外侧模及翼缘底模为面板δ=12mm ;横纵梁均为10×10木枋,横向间距300mm ,顺桥向间距100mm ;内模为δ=12mm 竹胶合板加10×10木枋纵横向主次肋。 ②脚手管纵桥向排距为60cm 。具体布置见图一。 ③同时支架横向采用φ80×3.5mm 普通脚手管设置剪刀撑,以增加支架整体稳定性,剪刀撑均上、下到底。

满堂支架计算

办公楼满堂支架施工方案 一、满堂支架方案 2.1、支架设计的要求 2.1.1、支架结构必须有足够的强度、刚度、稳定性。 2.1.2、支架在承重后期弹性和塑性变形应控制在15mm以内。 2.1.3、支架部分地基的沉降量控制在5mm以内,地基承载(压)力达200kPa。 2.1.4、支架顶面与梁底的高差应控制在理想值范围内,且应与预留应变通盘考虑。 2.2、支架基础 按通过后满堂支架的设计方案,要求地基承载力大于200MPa,因此必须对地基作特殊处理。 2.2.1、将原地面腐植地表层上耕植土清除15cm,然后用挖掘机挖松50cm,用强夯分两层压实,底层压实度>80%,顶层压实度>85%。 2.2.2、按2%横向排水坡(主体结构边缘四周排水)填筑宕渣30cm,填筑分两层进行,每层压实厚度为15cm,用强夯压实,底层压实度>90%,顶层压实度>95%。 2.2.3、为了防止浇筑混凝土时,流水软化支架的地基,浇筑厚5cm的C10细石混凝土封闭层。 2.3、满堂支架 在混凝土硬化好的基础顶面放置40*40*7cm C30砼预制块作为支架立杆底座,在已放置好的底座上搭设碗扣式多功能钢支架,支架布置为:底板立杆按0.9m×1.2m进行布置,即立杆纵向间距1.2m,横向间距0.9m,内排距主体0.3m,横向7排,纵向56排,步距1.2m; 支架外围四周设剪刀撑,内部沿主体结构纵向每4排立杆搭设一排横向剪刀撑,横向剪刀撑间距不大于5m,支架高度通过可调托座和可调底座调节。

满堂支架平面布置示意图 满堂支架纵立面布置示意图 满堂支架横立面布置示意图

2.4、模板结构及支撑体系 模板结构是否合适将直接影响该悬挑结构造型的外观,底模面板均采用厚为18mm 的竹胶板,面板尺寸1.2m ×2.8m ,以适应立杆布置间距,面板直接钉在横向方木上,横向方木采用100×100mm 方木,间距25cm ;横向方木置于纵向100×160mm 方木上,纵向方木间距应与立杆横向间距一致。在钉面板时,每块面板应从一端赶向另一端,以保证面板表面平整。 二、支架结构检算 3.1、拟采用的材料截面特性 根据上图的布置方案,采用碗扣式多功能钢支架,对其刚度、强度、稳定性必须进行检算。拟采用钢管外径D=48mm ,壁厚3.5mm ,即内径d=44.5mm 。 断面积2222254.24)45.48.4(14.34/)(cm d D A =÷-?=-=π 转动惯量4444481.664)45.48.4(14.364/)(cm d D J =÷-?=-=π 回转半径cm d D i 64.14)45.48.4(4/)(2/1222/122=÷+=+= 截面模量)32/()(44D d D W -=π 34484.2)8.432()]45.48.4(14.3[cm =?÷-?= 钢材弹性系数MPa E 5101.2?= 钢材容许应力MPa f 170][= 3.2、荷载计算及荷载的组合 计算单元荷载(按受荷较大的梁处计算) A 、钢筋混凝土梁重:2/6.15266.0m kN h W p =?==钢筋砼砼ρ(钢筋混凝土梁重量按 26kN/m 3计算) B 、支架模板重 ① 模板重量: 2/4498.099.24018.0m kN h W p =?==模板模板ρ(竹胶板重量按24.99kN/m 3计算) ② 方木重量: 2/40.01.2 0.98.33)21.20.160.1+30.90.1(0.1m kN h W p =????????==方木方木ρ(方木重量按8.33KN/m3计算) ③ 支架重量: 根据现场情况以21米高支架,步距1.2m 进行检算 2/68.201.0*84.3*18*2*1.2 0.9)9.0(1.2m kN W W W =?+=+=横杆立杆支架(48*3.5杆重量3.84kg/m) C 、人员及机器重 2/2.1m kN W =人员机器

满堂支架计算.(DOC)

东乌-包西铁路联络线工程格德尔盖公路中桥 现浇箱梁模板及满堂支架计算书 一、荷载计算1.1荷载分析 根据本桥现浇箱梁的结构特点,在施工过程中将涉及到以下荷载形式: ⑴ q1——箱梁自重荷载,新浇混凝土密度取2600kg/m3。 ⑵q2——箱梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算,经计算取q2 =1.0kPa(偏于安全)。 ⑶q3——施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板及其下肋条 时取2.5kPa;当计算肋条下的梁时取1.5kPa;当计算支架立柱及替他承载构 件时取1.0kPa。 ⑷ q4——振捣混凝土产生的荷载,对底板取2.0kPa,对侧板取4.0kPa。 ⑸ q5——新浇混凝土对侧模的压力。 ⑹ q6——倾倒混凝土产生的水平荷载,取2.0kPa。 ⑺ q7——支架自重,经计算支架在不同布置形式时其自重如下表所示: 满堂钢管支架自重 1.2荷载组合 模板、支架设计计算荷载组合

1.3荷载计算 1.3.1 箱梁自重——q 1计算 根据跨G208国道现浇箱梁结构特点,我们取5-5截面(桥墩断面两侧)、6-6截面(跨中横隔板梁)两个代表截面进行箱梁自重计算,并对两个代表截面下的支架体系进行检算,首先分别进行自重计算。 ① 预应力箱梁桥墩断面q 1计算 根据横断面图,用CAD 算得该处梁体截面积A=12.7975m 2则: q 1 = B W =B A c ?γ=kPa 365.445.77975 .1226=? 取1.2的安全系数,则q 1=44.365×1.2=53.238kPa 注:B —— 箱梁底宽,取7.5m ,将箱梁全部重量平均到底宽范围内计算偏于安全。 ② 预应力箱梁跨中断面q 1计算 1200 4080 100 15 75025 200 145 113 60 1.5% 1.5% 25 200 连续梁支点断面图 1200 22 2040 15 75020 25 200 145 113 22 20 20 1.5% 1.5% 25 200 连续梁跨中断面图

满堂脚手架设计计算方法(最新)

满堂脚手架设计计算方法(新) 钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)、 《钢结构设计规范》(GB50017-2003)、《冷弯薄壁型钢结构技术规范》(GB50018-2002)、 《建筑地基基础设计规范》(GB 50007-2002)、《建筑结构荷载规范》(2006年版)(GB 50009-2001)等编制。 一、参数信息: 1.脚手架参数 计算的脚手架为满堂脚手架, 横杆与立杆采用双扣件方式连接,搭设高度为18.0米,立杆采用单立管。 搭设尺寸为:立杆的纵距l a= 1.20米,立杆的横距l b= 1.20米,立杆的步距h= 1.50米。 采用的钢管类型为Φ48×3.5。 横向杆在上,搭接在纵向杆上的横向杆根数为每跨2根 2.荷载参数 施工均布荷载为3.0kN/m2,脚手板自重标准值0.30kN/m2, 同时施工1层,脚手板共铺设2层。 脚手架用途:混凝土、砌筑结构脚手架。

满堂脚手架平面示意图 二、横向杆的计算: 横向杆钢管截面力学参数为

截面抵抗矩 W = 5.08cm3; 截面惯性矩 I = 12.19cm4; 横向杆按三跨连续梁进行强度和挠度计算,横向杆在纵向杆的上面。 按照横向杆上面的脚手板和活荷载作为均布荷载计算横向长杆的最大弯矩和变形。 考虑活荷载在横向杆上的最不利布置(验算弯曲正应力和挠度)。 1.作用横向水平杆线荷载 (1)作用横向杆线荷载标准值 q k=(3.00+0.30)×1.20/3=1.32kN/m (2)作用横向杆线荷载设计值 q=(1.4×3.00+1.2×0.30)×1.20/3=1.82kN/m 横向杆计算荷载简图 2.抗弯强度计算 最大弯矩为 M max= 0.117ql b2= 0.117×1.82×1.202=0.307kN.m σ = M max/W = 0.307×106/5080.00=60.49N/mm2 横向杆的计算强度小于205.0N/mm2,满足要求! 3.挠度计算 最大挠度为 V=0.990q k l b4/100EI = 0.990×1.32×12004/(100×2.06×105×121900.0) = 1.079mm 横向杆的最大挠度小于1200.0/150与10mm,满足要求! 三、纵向杆的计算: 纵向杆钢管截面力学参数为 截面抵抗矩 W = 5.08cm3; 截面惯性矩 I = 12.19cm4; 纵向杆按三跨连续梁进行强度和挠度计算,横向杆在纵向杆的上面。

满堂支架计算

东乌-包西铁路联络线工程格德尔盖公路中桥 现浇箱梁模板及满堂支架计算书 一、荷载计算1.1荷载分析 根据本桥现浇箱梁的结构特点,在施工过程中将涉及到以下荷载形式: ⑴ q 1—— 箱梁自重荷载,新浇混凝土密度取2600kg/m 。 ⑵ q 2—— 箱梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算,经计算取q 2 ⑶ =1.0kPa (偏于安全)。 q 3—— 施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板及其下肋条 时取2.5kPa ;当计算肋条下的梁时取1.5kPa ;当计算支架立柱及替他承载构 件时取1.0kPa 。 ⑷ q 4—— 振捣混凝土产生的荷载,对底板取2.0kPa ,对侧板取4.0kPa 。 ⑸ q 5—— 新浇混凝土对侧模的压力。 ⑹ q 6 —— 倾倒混凝土产生的水平荷载,取2.0kPa 。 ⑺ q 7 —— 支架自重,经计算支架在不同布置形式时其自重如下表所示: 1.2荷载组合 3

1.3荷载计算 1.3.1 箱梁自重——q 1计算 根据跨G208国道现浇箱梁结构特点,我们取5-5截面(桥墩断面两侧)、6-6截面( 跨中横隔板梁)两个代表截面进行箱梁自重计算,并对两个代表截面下的支架体系进行检算 ,首先分别进行自重计算。 ① 预应力箱梁桥墩断面q 1 计算 连续梁支点断面图 连 续梁1200支点断面图 1.5% 1.5% 1200 1.5% 200 200 2580 25 100 750 1.5% 25 200 25 200 根据横断面图,用C AD 算得该处梁体截面积A =12.7975m 则: q 1 = W γc A = = B B 26 12.7975 7.5 44.365kPa 取1.2的安全系数,则q 1=44.365×1.2=53.238kPa 注:B —— 箱梁底宽,取7.5m ,将箱梁全部重量平均到底宽范围内计算偏于安全。 ② 预应力箱梁跨中断面q 1 计算 连续梁跨中断面图 1200 1.5% 1.5% 20 40 20 200 25 750 25 200 2 ⑸+⑹ ⑸ 15 145 113 侧模计算 40 15 145 113 60 750 22 15 145 113 22 20 20

满堂脚手架计算方法

L --长杆总长度(m);N2 --直角扣件数(个); N3 --对接扣件数(个);

N4 --旋转扣件数(个); S --脚手板面积(m2); n --立杆总数(根) n=121; H --搭设高度(m) H=18; n1 --纵向跨度n1=10; n2 --横向跨度n2=10; h --步距(m) h=; la--立杆纵距(m) la=; lb --立杆横距(m) lb=; 长杆总长度(m) L =×18×(121+×121/× 直角扣件数(个) N2=×18/×121=3485 对接扣件数(个) N3=6=1075 旋转扣件数(个) N4=×6=322 脚手板面积(m2) S=×10×10××= 根据以上公式计算得长杆总长米;直角扣件3485个;对接扣件1075个;旋转扣件322个;脚手板。 九、脚手架的搭设要求: 1、满堂脚手架搭设在建筑物楼面上时,脚手架自重及施工荷载应在楼面设计荷载许可范围内, 否则须经验算后制定加固方案;

2、立杆搭设应符合下列规定: (1)当立杆基础不在同一高度上时,必须将高处的纵向扫地杆向低处延长两跨与立杆固定,高低差不应大于1m;靠边坡上方的立杆轴线到边坡的距离不应小于500mm,如下图所示: (2)立杆接长除顶层顶步外,其余各层各步接头必须采用对接扣件连接; (3)立杆顶端宜高出女儿墙上皮1m,高出檐口上皮m; 3、水平杆搭设应符合下列规定,如图所示: (1)纵向水平杆应设置在立杆内侧,其长度不宜小于3跨; (2)纵向水平杆接长宜采用对接扣件连接,也可采用搭接; (3)横向水平杆应放置在纵向水平杆上部,靠墙一端至墙装饰面距离不宜大于100mm; (4)主节点处必须设置横向水平杆; (5)杆件接头应交错布置,两根相邻杆件接头不应设置在同步或同跨内,接头位置错开距离不应小于500mm, 各接头中心至主节点的距离不宜大于纵距的1/3; (6)搭接接头的搭接长度不应小于1m,应采用不少于3个旋转扣件固定; 4、扫地杆设置应符合下列要求: (1)纵向扫地杆必须连续设置,钢管中心距地面不得大于200mm; (2)脚手架底部主节点处应设置横向扫地杆,其位置应在纵向扫地杆下方;5、扣件安装应符合下列规定:

承重脚手架计算书(满堂脚手架)

***********工程 楼板满堂脚手架验算计算书 计算: 复核: 审批: ************工程项目经理部二〇一六年四月十九日

目录 一、计算依据 (1) 二、工程概况 (1) 三、工程属性 (1) 四、荷载设计 (1) 五、模板体系设计 (2) (一)面板检算 (3) (二)小梁检算 (4) (三)主梁检算 (6) (四)立柱验算 (8) (五)可调拖座验算 (9) (六)立杆地基基础检算 (10) 六、检算结论 (10)

楼板满堂脚手架计算书 一、计算依据 1、《********工程》施工图纸 2、《**********工程》地勘报告 3、《建筑施工模板安全技术规范》(JGJ162-2008) 4、《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011) 5、《建筑结构荷载规范》(GB50009-2012) 6、《建筑地基基础设计规范》(GB50007-2011) 7、《木结构设计规范》(GB50005-2003) 8、《路桥施工手册》周永兴编 二、工程概况 本工程建筑物均为框架结构,根据设计图纸,脱水机房单体高度为本工程建筑物最高单体,脚手架搭设高度为5.19m,我们将选取该单体进行满堂脚手架的验算,其余房建均按此验算结果进行组织施工。 三、工程属性 新浇混凝土楼板名称 脱水机房楼 板 新浇混凝土楼板板厚(mm) 110 新浇混凝土楼板边长L(m) 30 新浇混凝土楼板边宽B(m) 14 四、荷载设计 施工人员及设备荷载标准 值Q1k 当计算面板和小梁时的均布活荷(kN/m2) 2.5 当计算面板和小梁时的集中荷载(kN) 2.5 当计算主梁时的均布活荷载(kN/m2) 1.5 当计算支架立柱及其他支承结构构件时 的均布活荷载(kN/m2) 1 模板及其支架自重标准值 G1k(kN/m2) 面板自重标准值0.1 面板及小梁自重标准值0.3

现浇箱梁满堂支架计算

107国道跨线桥5×20m一联箱梁支架检算 一.箱梁支架计算 张石高速公路跨京广铁路、107国道跨线桥,21号墩—26号台上部结构为5×20m一联现浇预应力连续箱梁。箱梁采用碗扣式支架现场浇筑施工,箱梁下部宽11.20 m,顶宽16.75 m,梁高1.5m。箱梁采用C50混凝土现浇,左幅箱梁混凝土数量为898m3。 钢管采用外径4.8cm,壁厚3.5mm的钢管。支架纵向间距均为0.9米,横向间距,腹板下为0.6m,其余为0.9m;支架步距为1.2m。 模板构造纵向为10cm×10cm的方木搁于可调托顶上,上面横向搁置7cm×10cm小方木,其上搁置模板。 施工检算以20米跨径的箱梁数据为例进行验算,5×20m箱梁基本要素: 箱梁高1.5m,箱梁底宽11.2m,顶板16.75m,顶板厚0.25m,底板厚0.20m,翼缘板前端厚0.15m,根部0.4m,翼板宽2. 5m,腹板厚0.50m,腹板面积1.1m2(含倒角部分),根据荷载集度分部情况的分析,腹板处荷载集度最大为最不利位置,故取腹板下杆件进行检算。 1.腹板下砼重: 1.1 m2×26KN/ m3 =28.6 KN/ m 2.模板重量 模板重量取0.5 KN/ m2,模板面积2+2+1=5 m2 0.5 KN/ m2×5 m2=2.5 KN/m 3. 立杆承受的钢管支架自重 支架和调平层,钢管Φ48,厚3.5mm,每米重量0.045KN 架高16m计算,16÷1.2=14层水平杆 每根立杆连接的钢管水平层总长度 14×0.45×4=25.2m 25.2m+16m=41.2m 每根立杆承受的钢管支架自重 41.2×0.045=1.86 KN 4.施工荷载

满堂支架计算材料

新建武汉至咸宁城际铁路二标连续梁满堂支架临时结构检算资料 中国铁建 中铁十一局集团武咸城际铁路二标项目经理部 二〇一一年十一月

目录 一、项目概况 (1) 二、临时结构方案 (3) 三、支架布置图 (6) 四、支架计算书 (9) 五、相片资料 (23)

一、项目概况 1. 概况 武咸城际铁路位于湖北省南部,北连"九省通衢"武汉,南接鄂南著名的生态城市咸宁,自武汉枢纽武昌站引出,途经东湖新技术开发区、庙山经济开发区,江夏区纸纺镇、于贺站进入咸宁市境内。全线运营长度90.12km,新建正线长度77km,其中武汉市境内长51.6km,咸宁市境内长25.4km。 WXSG-2标段位于湖北省咸宁市境内,起点桩号为DK53+500,终点桩号为DK76+062,全长22.562公里。十六潭特大桥位于湖北省咸宁市甘鲁村以及咸安区经济开发区境内,在DK69+960-DK70+000处采用(40+64+40)m连续梁跨越横温路,银泉大道行车道为双向4车道,正宽约24m,与线路夹角144°。 图1 线路关系图 连续箱梁全长145.2m,计算跨径40+64+40m,为单箱单室、变高度、变截面结构。中支点处梁高5.4m,跨中2m直线段及边跨7.6m直线段处梁高均为3.00m,梁底下缘按二次抛物线变化;箱梁顶宽12.2米,箱梁底宽为变截面,中支点处为6.91m,其余按5.54m~6.150m线性变化;顶板厚度除梁端附近外均为37cm;底板厚度44~72cm,按圆曲线线性变化;腹板厚度50~70cm,按折线变化。全梁在端支点、中跨中及中支点处共设5个横隔板,横隔板设有过人门洞,供检查人员通过。 箱梁采用纵、横、竖三向预应力体系。主桥箱梁共分7个节段,其中2A0#块长27m、2A1#块长17.5m、2A2#块长27.1m、中跨合拢段2m。

满堂支架及门洞支架验算(最终版)

重庆市轨道交通十号线(建新东路~王家庄)工程 环山公园站~长河站区间(高架段) 箱梁满堂支架及门洞支架 安全检算报告 重庆市轨道交通设计研究院有限责任公司 二〇一五年一月

重庆市轨道交通十号线(建新东路~王家庄)工程 环山公园站~长河站区间(高架段) 箱梁满堂支架及门洞支架 安全检算报告 审查: 复核: 审核: 重庆市轨道交通设计研究院有限责任公司 二〇一五年一月

目录 第一章概述 (1) 1.1工程概况 (1) 1.2主要计算依据 (6) 第二章简支箱梁支架结构受力计算 (6) 2.1方木检算 (9) 2.2立柱检算 (14) 2.3支座检算 (17) 第三章连续箱梁支架结构受力计算 (18) 3.1方木检算 (20) 3.2立柱检算 (26) 3.3支座检算 (29) 第四章连续箱梁门洞支架结构受力计算 (30) 4.1贝雷梁上部型钢计算 (30) 4.2贝雷梁计算 (31) 4.3贝雷梁下部型钢验算 (32) 4.4钢管立柱计算 (34) 4.5基础计算 (34) 第五章结论及建议 (35) 5.1结论 (35) 5.2建议 (35)

第一章概述 1.1工程概况 本工程(建新东路-王家庄段)线路长度33.42km,其中地下段长度为27.04km,高架段长度为6.38km。环山公园站至长河站区间高架总长1130.906m,共29跨,均为群桩基础;1#为桥台,2#~21#墩为花瓣式桥墩,22#~30#为矩形双肢墩(上设盖梁),墩柱高度1.8~15米;其中11#~14#墩、27#~30#墩为现浇连续箱梁,其余为预应力简支箱梁,标准梁宽10.4m(1~21#墩,21#至30#墩梁宽渐变)。高架段箱梁参数统计表如下: 表1:桥梁箱梁参数统计表 2m梁高双线单箱单室箱梁断面图如下(腹板加厚段): 图1.1:双线简支梁标准断面箱梁 1

满堂支架计算

满堂支架计算 1、荷载计算 根据支架布置方案,采用满堂支架,对其刚度、强度、稳定性必须进行检算。 钢管的内径Ф41mm 外径Ф48mm 、壁厚3.5mm 。 截面积 转动惯量 回转半径 截面模量 钢材弹性系数 钢材容许应力 ,按照《钢管满堂支架预压技术规程》中关于旧钢管抗压强度设计值的规定需要乘以折减系数0.85,故验算时按照170MPa 的容许应力进行核算。 1、支架结构验算 荷载计算及荷载的组合: A 、钢筋混凝土自重: W 砼= 0.4×26=10.4KN/m2(钢筋混凝土梁重量按26kN/m 3计算) B 、支架模板重 ① 模板重量: (竹胶板重量按24.99kN/m 3计算) ②主次楞重量: 主楞方木: (方木重量按8.33KN/m3计算) 次楞钢管: C 、人员及机器重 W =1KN/ m 2 (《JGJ166-2008 建筑施工碗扣式脚手架安全技术规范》) D 、振捣砼时产生的荷载 2/4.0015.099.24m kN h W p =?==模板模板ρ2/47.033.81.01.025.011.01.06.01m kN h W p =???+??==)(方木方木ρ22222893.44)1.48.4(14.34/)(cm d D A =÷-?=-=π344078.5)8.432()]1.48.4(14.3[cm =?÷-?=D d D W 32/)(44-=πcm A J i 58.1)/(2/1==44444187.1264)1.48.4(14.364/)(cm d D J =÷-?=-=πMPa E 51005.2?=MPa f 205][=2/12.0105.33.01m kN kg W =??=钢管

满堂支架设计计算实例

满堂支架设计计算(一)1.《京承高速公路—陡子峪大桥工程施工图》 2. 《公路钢筋砼及预应力砼桥涵设计规范》JTJ023-85 (0#台—1#墩)出京线 3.目录《公路桥涵施工技术规范》JTJ041-2000 4. 《扣件式钢管脚手架安全技术规范》JGJ130-2001 5. 《公路桥涵钢结构及木结构设计规范》JTJ025-86 6.《简明施工计算手册》1 一、设计依据.......................................................................................二、地基容许承载力1 二、地基容许承载力..............................................................................根据本桥实际施工地质柱状图,地表覆盖层主要以亚粘素填土为主,地基承载力三、箱梁砼自重荷载分布 (1) 较好。四、模板、支架、枕木等自重及施工荷载 (2) 为了保证地基承载力不小于12t/ 五、支架受力计算㎡,需要进行地基处理。地基表皮层进行土层换填,换填如下:开挖标高见图纸,底层填0.5m中砂,经过三次浇水、分层碾压(平、立杆稳定计算 (15) 板震动器)夯实,地基面应平整,夯实后铺设5cm2、立杆扣件式钢管强度计算……………………………………………………6 石子,继续

压实,并进行承载力检测。整平地基时应注意做好排水设施系统,防止雨水浸泡地基,、纵横向水平钢管承载力...............................................................36 导致地基承载力下降、基础发生沉降。钢管支架和模板铺设好后,按6 4、地基承载力的检算.....................................................................120%设计荷载进行预压,避免不均匀沉降。、底模、分配梁计算 (57) 三、箱梁砼自重荷载分布12 、预拱度计算 (6) 根据设计图纸,箱梁单重为819t。 墩顶实心段砼由设于墩顶的底模直接传递给墩身,此部分不予检算。对于空心段 箱梁,根据《0#台-1#墩出京线30米跨箱梁满堂支架施工总体布置图》,综合考虑箱梁横截面面积和钢管支架立杆纵向间距,空心段箱 梁腹板等厚段下方,纵桥向间距最 d=大的立杆受力最不利。根据立杆纵桥向布置,受力最不利立杆纵向间距取为一、设计依据 (0.9+1.2)/2=1.05m。本计算书主要检算该范围箱梁和支架受力。载均匀传至地基。 1、底模、外模面积共:15.16×四种形式,横向间距为30=454.80m 钢管支架立杆纵向间距为30cm、60cm、90cm、120cm2共重:120cm+3×60cm+3×90cm+60cm+3×90cm+3×60cm+120cm。

满堂支架计算书

附件1 现浇箱梁满堂支架受力计算书 一、现浇箱梁满堂支架布置及搭设要求 采用WDJ 碗扣式多功能脚手杆搭设,使用与立杆配套的横杆及立杆可调底座、立杆可调托撑。立杆顶设二层方木,立杆顶托上纵向设15×15cm 方木;纵向方木上设10×10cm 的横向方木,其中在墩顶端横梁和跨中横隔梁下间距不大于0.25m (净间距0.15m )、在跨中其他部位间距不大于0.3m (净间距0.2m )。模板宜用厚1.5cm 的优质竹胶合板,横板边角宜用4cm 厚木板进行加强,防止转角漏浆或出现波浪形,影响外观。 具体布置见下图:支架横断面图、支架搭设平面图、支架搭设纵断面图 支架横断面图 1280 15601898,69

0 / 1

支架搭设平面图挖 开 线 计 设 、 底 45° 顶 角 置 平 水 夹 设 部 部 刀 向 竖 面 撑 剪 间 地 与 3.6m, 距 刀 剪 撑 4.8m 平 距 间 刀 撑 剪 水 , 中 部 0 / 1

支架搭设纵断面图 0 / 1

主桥和引桥立杆的纵、横向间距及横杆步距等搭设要求如下: (1)30m+45m+30m顶推现浇箱梁支架 立杆采用横桥向间距×纵桥向间距×步距为60cm×60cm×120cm、60cm×90cm×120cm和90cm×90cm×120cm三种布置形式的支架结构体系,其中:横桥向中心8.4m范围间距60cm,两侧翼缘板3.6m范围间距90cm。纵桥向墩旁两侧各4.0m范围内的支架间距60cm;除墩旁两侧各4m之外的其余范围内的支架间距90cm,跨中横隔板下1.5m范围内的支架顺桥向间距加密至60cm。 (2)2*27.45m、4*29.439m、3*28.667m、4*28.485m现浇箱梁支架 立杆采用横桥向间距×纵桥向间距×步距为60cm×60cm×120cm、60cm×90cm×120cm和90cm×90cm×120cm三种布置形式的支架结构体系,其中:横桥向中心8.4m范围间距60cm,两侧翼缘板3.6m范围间距90cm。纵桥向墩旁两侧各4.0m范围内的支架间距60cm;除墩旁两侧各4m之外的其余范围内的支架间距90cm。 二、现浇箱梁支架验算 本计算书分别以顶推梁30m+45m+30m等截面预应力混凝土箱形连续梁(单箱双室)和4*28.485m等截面预应力混凝土箱形连续梁(单箱双室)为例,对荷载进行计算及对其支架体系进行检算。 1、荷载分析 根据本桥现浇箱梁的结构特点,在施工过程中将涉及到以下荷载形式: ⑴ F1——箱梁自重荷载,新浇混凝土密度取2700kg/m3(含钢筋重)。 ⑵F2——施工人员、施工材料和机具荷载,按均布荷载计算,取F2 = 2.5 kN/㎡

相关主题
文本预览
相关文档 最新文档