当前位置:文档之家› 铅酸电池内阻

铅酸电池内阻

铅酸电池内阻
铅酸电池内阻

密封铅酸蓄电池内阻分析

桂长清柳瑞华

中船总公司712研究所湖北430064

前言

现在我国邮电部门已广泛采用阀控式密封铅蓄电池作为通信电源。由于这种电池是密封的,不像原来的自由电解液固定型铅蓄电池那样透明直观,又无法直接测量电解液密度,因而给使用维护工作带来一定的困难。于是人们希望通过检测电池内阻的办法来识别和预测电池的性能。目前进口的和国产的用于在线测量电池内阻的VRLA电导测试仪已在一些部门得到应用。然而实践中可以发现,利用在线检测阀控式密封铅蓄电池内阻(或电导)来识别和判断电池的性能并不能令人满意。本文拟在分析电池内阻的组成、测试原理和方法的基础上,阐述这一方法的适用条件及其局限性。

1 蓄电池内阻的组成

宏观看来,如果电池的开路电压为V0,当用电流I放电时其端电位为V,则r=( V0-V)/I 就是电池内阻。然而这样得到的电池内阻并不是一个常数,它不但随电池的工作状态和环境条件而变,而且还因测试方法和测试持续时间而异。究其实质,乃因电池内阻r包括着复杂的而且是变化着的成分。

理论电化学早已指出,电池在充电或放电时其端电压V是由以下3部分组成的:

(1)

式中的IRΩ称为欧姆极化,它是由电池内部各组件的欧姆内阻RΩ引起的;是

由电极附近液层中参与反应或生成的离子的浓度变化引起的,称为浓差极化;是由反应粒子进行电化学反应所引起的,称为活化极化。由(1)式可知,宏观上测出的电池内阻(即稳态内阻)R是由3部分组成的:欧姆内阻RΩ、浓差极化内阻R c和活化极化内阻R e。

欧姆内阻RΩ包括电池内部的电极、隔膜、电解液、连接条和极柱等全部零部件的电阻。虽然在电池整个寿命期间它会因板栅腐蚀和电极变形而改变,但是在每次检测电池内阻过程中可以认为是不变的。

浓差极化内阻既然是由反应离子浓度变化引起的,只要有电化学反应在进行,反应离子的浓度就总是在变化着的,因而它的数值是处于变化状态,测量方法不同或测量持续时间不同,其测得的结果也会不同。

活化极化内阻是由电化学反应体系的性质决定的;电池体系和结构确定了,其活化极化内阻也就定了;只有在电池寿命后期或放电后期电极结构和状态发生了变化而引起反应电流密度改变时才有改变,但其数值仍然很小。

2 电池内阻的测量原理

2.1 直流法测电池欧姆内阻

对于平板式单电极而言,当有阶跃电流i流过时,其电位就会随时间t而变化,当 t >5×10-5s时,电位变化η可用下式表示[1]:

(2)

式中C d表示电极附近双电层电容值,i o为交换电流密度,RΩ为电极欧姆内阻,N、R、T、F、n均为常数,其物理意义可参阅文献[1]。

(2)式等号右边的第一项iRΩ表示电极欧姆内阻引起的电位变化,它与时间无关;第2项表示浓差极化随时间的变化;第3项表示因给电极附近的双电层电容充电引起的电位变化,在t→0时其值也→0;第4项则表示电极反应的电化学极化,铅蓄电池的i0较大,则1/i0必然很小。由此可知,当t→0时,η→iRΩ。

由此看来,在电池中有阶跃电流I流过时,电位就要发生变化;只要测出t→0时电池电位的变化△V,就可以算出电池的欧姆内阻。

试验结果表明[1~2],当电池以恒电流I放电时,测出其在0.5~1ms内电位的变化△V1,则由RΩ=△V1/I即可算出电池的欧姆内阻。用此法测得3Q10 5汽车电池欧姆内阻1.8mΩ,单格电池为0.6mΩ[1];200Ah的VRLA为0.5mΩ[2]。

目前在一些部门使用的VRLA电导测试仪,其测试原理与此相似。它将已知频率(大约为10Hz) 和幅度的电位加在单元电池的端子上,观察相应的电流输出[3],用此法测取电池的电导 (或电阻)。由于其频率较低,信号持续时间较长(100ms),则测得的电阻值中既含有欧姆内阻又含有变化着的浓差极化内阻(此时活化极化内阻忽略了)。

2.2 交流法测电池内阻

在工作[4]中介绍了用交流阻抗法测密封铅蓄电池内阻,其交流信号频率变化范围为0. 05Hz~10kHz。由于电池阻抗模与频率的对数之间没有严格的线性关系,但在高频区(1kHz~10kHz)却变化较少,于是取此时的阻抗模作为电池内阻,结果得到6V/4Ah密封铅蓄电池内阻为40mΩ。

由于电池中的电极是多孔性的,而且又是多片电极紧密并联在一起的,它的交流阻抗等效电路极其复杂,至今尚无法从理论上精确地解决,只能根据在平板电极上得到的理论分析结果近似地处理电池中的多孔性电极问题。再者从(1)式可以看出,电池中有恒定电流流过时,其端电位是随时间而变化的,不同的时刻测得的电位变化中包含了不同的成分,因而用本方法测得的电池内阻是随交流信号的频率而变化的。

过去也曾用交流阻抗法测电池内阻,但均得不出准确的结果,其主要原因是无法建立准确的等效电路,并且受外来噪声的干扰比较严重。

3 电池内阻跟荷电态的关系

在工作[2]中采用直流电压降法对200Ah/2V的密封铅蓄电池欧姆内阻测试结果如表1 所示。对浮充状态下工作的电池测试结果表明,在电池失效之前其容量很少变化,欧姆内阻也变化不大;一旦电池容量迅速下降时,其欧姆内阻也同步增大。虽然如此,但仍然得不到电池欧姆内阻跟电池容量 (荷电态)之间的严格的数学关系。

表1 电池荷电态与欧姆内阻的关系

根据文献[4]采用交流阻抗法对6V/4Ah密封蓄电池的测试结果,在电池剩余容量高于4 0%时,电池的内阻(它包含了欧姆内阻和部分浓差极化内阻)几乎是相同的;只是在低于40%时,其内阻才迅速增加。此结果跟文献[2]中观察到的相似,即密封铅蓄电池在使用过程中(电池容量高于80%),其内阻改变很小;一旦电池内阻有了显著变化,则电池的寿命也即告终止了。在电池剩余容量与内阻之间没有找到严格的数学关系。

4 电导法在线测量结果的分析

根据以上对单个电池的测量结果,再来观察和分析当前邮电部门使用的电导测试仪对密封铅蓄电池组的测试结果。

表2列出了用电导法对2V/300Ah阀控式密封铅蓄电池内阻和电位的测试结果。前2 行取自文献[3],后4行取自曹昌胜先生在1998年4月召开的通信电源检测技术会议上发表的论文。表2 中最下排的代表该组电池的电导或电压的平均值;S表示它们的标准差,它代表了该组电池中各单电池电导或电压的离散程度。S越小,则该蓄电池组中各单电池的性能越均匀,反之亦然。S/则代表了相对标准差。

表2 电导法对在线电池的测试结果

从表2数据可以看出:①电池的电导跟电压之间没有对应的关系,②同一组电池的各个电导之间的离散程度远大于电压之间的离散程度,③对同样的2V/300Ah电池,不同作者用不同电导仪测试的结果会相差1倍以上。造成上述现象的原因看来首先在于目前用电导仪测得的电池“电导”的含义不够明确,它既包含了电池欧姆内阻的影响,又包含了变化着的浓差极化电阻的作用。再者从所测的电导值来看,电池的内阻是在mΩ级,测量过程中接触电阻引入的误差(接近mΩ级)严重干扰了测试结果。

因此用电导仪测试密封铅蓄电池内阻时,必须由专人细心操作,尽量减少引入的误差,这样得出的数据才能真正反映电池实际。对照相同情况下电池电压的分布,其离散性则小得多。这是因为电极的电位是电极表面热力学和动力学状态的直接反映,并且在测量过程中引入的误差较电导测量要小,因而电池在充电或放电过程中(不是开路静置时)电位的变化比较更能反映电池的状态。

5 结论

a.密封铅蓄电池的内阻是复杂的,它包含了电池的欧姆内阻、浓差极化内阻、电化学反应内阻以及双层电容充电时的干扰作用。

b.用不同的测试方法和不同时刻测得的内阻值中包含的成分及其相对含量是不同的,因而测得的内阻值也不相同。

c.密封铅蓄电池内阻(或电导)跟电池容量之间没有观察到严格的数学关系,无法根据单个电池的内阻(或电导)值去预测电池使用寿命。但电池内阻突然增大或电导突然减小时,则预示着电池寿命即将终止。

参考文献

1,桂长清,包发新.大容量电池欧姆内阻的测定.电源技术,1984,(6):13~ 15

2,Isamu Kurisawa,Masashi Iwata.Internal resistance and deterior ation of VRLA for

stand-by applications.GS News Technical Report,1997,(2):19~25

3,陈熙.阀控式密封铅蓄电池的管理计划.通信电源技术,1998,(3):33~35

4,佘沛亮,陈体衔.阀控式密封铅蓄电池的内阻.蓄电池,1995,(3):3~6

(1)蓄电池的内阻

蓄电池的内阻由欧姆极化(导体电阻)和电化学极化及浓差极化电阻三个部份组成。在充放电过程中电阻是变化的,充电过程内阻由大变小,反之内阻增加。

温度对蓄电池内阻也颇有影响,低温状态如0℃以下,温度每下降10℃,内阻约增大15%,其中因硫酸溶液粘度变大,而增加了比电阻是重要的原因之一。在较高温度时,如10℃以上,硫酸离子的扩散速率提高了浓度极化作用将明显减小,极化电阻下降,但导体电阻却随温度增加而上升,不过上升的速率较小。

蓄电池的内阻与放电电流的大小有关,瞬间的大电流放电,由于极板空隙内的硫酸溶液迅速稀释,而极板孔外90%以上溶液中硫酸分子来不及扩散到极板空隙中去。这样,极板孔中溶液比电阻增加,端电压明显下降。但停止放电后,随着浓度高的硫酸分子向极板空隙中扩散,极板孔中溶液比电阻下降,端电压回升。

另外,薄极板的电池,其内阻明显小于厚极板,因为同容量电池的极板数量,薄的要多于厚极板电池的极板数量,因此相同电流放电时,薄极板电池的电流密度小,其各极极化也要小得多。

由此可见,蓄电池内阻是由诸多因素构成的动态电阻。我们研究蓄电池的内阻是为了了解与蓄电池直接连接的母线及馈线出口短路时,蓄电池将提供多大短路电流,并依此来选择母线及其它设备,并根据短路电流来确定保护电器的级差配合。显然,同容量的蓄电池短路电流越大(即内阻越小)对设备和人身安全带来的危害性也越大。

(2)蓄电池内阻的测定方法

确定蓄电池的内阻有两种方法,为便于说明,我们称之为一次放电法和两次放电法,对此分别说明如下:

一次放电法对充足电的蓄电池,首先测取其开路电压U0,然后以电流Ikt=1.0~1.5C10A放电,测取放电瞬间电压Ut,则蓄电池内阻:

U0-Ut

rb = ——————(3-2)

Ikt

由示波器来测定0~1s冲击放电电流Ikt及放电瞬间电压Ut:

U0

Ikt = ——————(3-3)

rb

两次放电法两次放电法,是IEC896.2-1995提出的一种方法,对充足电的蓄电池,首先以I1=0.4~0.6C10A放电20s后,测取电压U1,放电时间不超过25s,立即断开放电回路。静置2~5min不再充电,然后再以I2=2~4C10A的电流放电5s,测取电压U2。则蓄电池内阻:

U1-U2

rb = ——————————(3-4)

I2-I1

U1I2-U2I1

Ibk = ——————————(3-5)

U1-U2

(3)连接条的电阻

计算蓄电池短路电流时应计算电池间连接条电阻。连接条有两种,一是用多股绝缘铜导体组成,称为软连接。另一种是用115×30×8mm镀锡铜排的连接板。每根软连接的绝缘铜导线的平均内阻0.0382mΩ。每根铜排的平均内阻0.015mΩ。

浅谈铅酸蓄电池容量及其测试方法

铅酸蓄电池剩余容量测试方法 1、容量的定义 铅酸蓄电池的容量即电池的放电能力,指的是当电池在一定的条件下进行放电,外界可以从电池中获取的容量,人们一般用安时数来表示,即AH,符号是C。 2、铅酸蓄电池容量的分类 铅酸蓄电池的容量分为额定容量、理论容量、实际容量。 1)额定容量 额定容量指的是在铅酸蓄电池设计和生产的时候,厂家规定在一定放 电条件下,电池能放出的最低限度的电量。 2)理论容量 理论容量指的是按照理论计算,参照化学反应方程式以及电解液中每 种化学物质的含量,假设电池中的所有化学物质在电池放电时全部参 加化学反应,所有化学物质消耗完所计算得到的容量。 3)实际容量 实际容量指的是在实际的电池放电中,电池放电放到规定条件时所释 放的电量。实际容量达不到理论容量,与铅酸蓄电池使用的次数多少、 使用时间的长短有关。电池使用越多,时间越久,实际容量就会越少。 一般铅酸蓄电池放出1A的电量,其正极的二氧化铅就会被消耗掉 4.463g左右,负极的海绵状铅就会被消耗掉3.866g左右,电解液中 的硫酸就会被消耗掉3.660g左右。 3、放电率和放电终止电压 在讲电池容量的时候,首先,有必要来了解一下与铅酸蓄电池有关的两个重要参数。即放电率和放电终止电压。 1)放电率 放电率指的是铅酸蓄电池在一定条件下放电电流的大小,有电流率和时间率之分。电流率指的是对额定容量不同的铅酸蓄电 池间的放电电流的比较,一般用10小时率来作为电流率的标准, 表示符号为I 。时间率指的是铅酸蓄电池在一定的放电条件下, 10

电池放电放到电池的终止电压时止的时间长短。 2)放电终止电压 放电终止电压指的是铅酸蓄电池在一定的温度下(例如25℃),用一定的放电率对电池进行放电,放电放到电池还可以再反复充 电使用时的最低电压,这个最低电压就称为放电终止电压。 因此,一般铅酸蓄电池的额定容量是这样规定的,在温度为25度的环境下,以放电率为10小时率的电流对电池进行放电,放大终止电压时电池所能释放出的电量,即为电池的额定容量。电池10小时放电率下的额定容量用C 10 来表示。10小时率的放电电流的大小如下式: I 10= 10 10 C =0.1C 10 4、影响铅酸蓄电池容量的因素 1)生产工艺因素 这里包括电池铅板与电解液接触的面积、极板的中心距离、参与化学 反应的物质的孔率、电解液的量、铅板的厚度等。 2)电池使用过程中的因素 包括电池放电时的放电终止电压、电池工作环境(温度、湿度)、放电 电流大小、电解液的密度、电池使用的时间、电池使用过程中的保养 等。 5、铅酸蓄电池剩余容量测试方法 1)传统测试方法 传统的容量测试方法是将电池接上一个负载进行放电,按照某一个恒定的放电率,放到终止电压后,停止放电,计算放电时 间和放电电流的乘积,就得到电池的容量。这种方法虽然可以比 较精确的得到铅酸蓄电池的保有容量,但是这种方法在测量过程 中时间长,人工成本高,消耗的电池能量高,对在线的电池组有 一定的风险,同时由于要对电池经常性的放电,这样就加速了电 池的老化,缩短了电池的使用寿命,因此在很多场合不适用。 例如,电池用10A的电流放电,放电时间为10H,则此电池的容量为10*10=100AH。 对于一个200AH/12V的蓄电池,如果采用20小时放电率进行放电,则放电电流为10A(0.05C),放电到终止电压10.5V,电池

铅酸蓄电池内阻模型

铅酸蓄电池内阻模型 铅酸蓄电池的内阻受到制造工艺、材料以及结构等许多因素的影响,导致内阻模型复杂。由于铅酸蓄电池具有化学特性,因此其内阻不能简单的理解成为单纯的电阻。每个电池内阻模型的建立都是基于很多数学和化学的假设。 我们知道,铅酸蓄电池内部电极主要是由铅板及其氧化物组成,电解液是硫酸。由此可见,铅酸蓄电池的内阻就分为欧姆内阻和极化内阻。极化内阻就是铅酸蓄电池内部电极在进行电化学反应时产生的电阻。由于铅酸蓄电池的电极是多孔状的,并且是由多个电极并联起来的。因此铅酸蓄电池的欧姆内阻不但包括电极电阻,电解液电阻,还包括电离子穿过隔膜微孔时所受到的阻力,正负极与隔离层的接触电阻,连接条和极柱等全部零部件的电阻。极化电阻包括电化学电阻和浓差极化电阻。电化学极化电阻是由电极附近液层中参与反应或生成离子的浓度变化而引起,发生电化学反应时,反应离子的浓度总是在变化,因而它的数量也会随之变化,测量方法的不同、测量时间的不同,其测量的结果都是不同的。浓差极化电阻是由反应离子进行电化学反应引起,其在充放电过程中电阻是变化的。研究表明,随着蓄电池充电过程的进行,内阻逐步减小,随着放电过程的进行,内阻逐步增多。 经典的铅酸蓄电池内阻阻等效模型是经过对其电化学阻抗分析得到的,如下图1所示: 图1铅酸蓄电池内阻等效模型 图1所示电路中,L1为电极产生的电感,其值得范围为0.05到0.2mh,一般情况下电感在高频时影响较大,由于我们目前使用的电池设备中,频率的范围较低,故电感的影响可以忽略不计。R1是电解液中电子转移时遇到的阻力形成的电阻,此电阻值受到电解液与电极板表面的化学反应程度影响。R2是分析阻抗,用来表示反应物的扩散特性,是一个低频物件。C1是电解液中的平板导体间形成的电容,其典型值为100AH/1.3-1.7F。R3是金属电阻(包括汇流排、极柱、

密封铅酸蓄电池内阻分析

密封铅酸蓄电池内阻分析 下载:上传时间:11-26 文件大小:85k 作者:桂长清柳瑞华 前言 现在我国邮电部门已广泛采用阀控式密封铅蓄电池作为通信电源。由于这种电池是密封的,不像原来的自由电解液固定型铅蓄电池那样透明直观,又无法直接测量电解液密度,因而给使用维护工作带来一定的困难。于是人们希望通过检测电池内阻的办法来识别和预测电池的性能。目前进口的和国产的用于在线测量电池内阻的VRLA电导测试仪已在一些部门得到应用。然而实践中可以发现,利用在线检测阀控式密封铅蓄电池内阻(或电导)来识别和判断电池的性能并不能令人满意。本文拟在分析电池内阻的组成、测试原理和方法的基础上,阐述这一方法的适用条件及其局限性。 1蓄电池内阻的组成 宏观看来,如果电池的开路电压为V0,当用电流I放电时其端电位为V,则r =( V0-V)/I就是电池内阻。然而这样得到的电池内阻并不是一个常数,它不但随电池的工作状态和环境条件而变,而且还因测试方法和测试持续时间而异。究其实质,乃因电池内阻r包括着复杂的而且是变化着的成分。 理论电化学早已指出,电池在充电或放电时其端电压V是由以下3部分组成的: (1) 式中的IRΩ称为欧姆极化,它是由电池内部各组件的欧姆内阻RΩ引起的;是由电极附近液层中参与反应或生成的离子的浓度变化引起的,称为浓差极化;是由反应粒子进行电化学反应所引起的,称为活化极化。由(1)式可知,宏观上测出的电池内阻(即稳态内阻)R是由3部分组成的:欧姆内阻RΩ、浓差极化内阻Rc 和活化极化内阻Re。 欧姆内阻RΩ包括电池内部的电极、隔膜、电解液、连接条和极柱等全部零部件的电阻。虽然在电池整个寿命期间它会因板栅腐蚀和电极变形而改变,但是在每次检测电池内阻过程中可以认为是不变的。 浓差极化内阻既然是由反应离子浓度变化引起的,只要有电化学反应在进行,反应离子的浓度就总是在变化着的,因而它的数值是处于变化状态,测量方法不同或测量持续时间不同,其测得的结果也会不同。 活化极化内阻是由电化学反应体系的性质决定的;电池体系和结构确定了,其活化极化内阻也就定了;只有在电池寿命后期或放电后期电极结构和状态发生了变化而引起反应电流密度改变时才有改变,但其数值仍然很小。

我国废铅酸蓄电池火法冶炼污染防治最佳可行技术研究(新编版)

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 我国废铅酸蓄电池火法冶炼污染防治最佳可行技术研究(新编版)

我国废铅酸蓄电池火法冶炼污染防治最佳可 行技术研究(新编版) 导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 摘要:本文从铅回收火法冶炼工艺最佳可行工艺流程、最佳可行工艺参数、处置系统集成控制、污染物消减及污染防治措施及技术经济适用性等五方面入手,对铅回收火法冶炼污染控制最佳可行技术进行了充分的论证,对于推进废铅蓄电池铅回收处置设施建设中技术选择、工程设计、工程施工、设施运营、监督管理等方面工作具有重要的指导意义。 关键词:废铅蓄电池,铅回收,污染控制,最佳可行技术 1、前言 我国的废蓄电池再生铅生产技术研究起步较晚,无论从技术水平还是装备水平来看与发达国家相比还有较大的差距。废铅酸蓄电池铅回收的主要工艺可分为火法、湿法和火湿联用法三大类别。其中火法冶炼工艺可分为无预处理混炼、无预处理单独冶炼和预处理单独冶炼工艺。

无预处理混炼就是将废铅酸蓄电池经去壳倒酸简单处理后,进行火法混合冶炼,得到铅锑合金。该工艺金属回收率平均为85~90%,废酸、塑料及锑等元素未合理利用,污染严重。 无预处理单独冶炼就是废蓄电池经破碎分选后分出金属部分和铅膏部分,二者分别进行火法冶炼,得到铅锑合金和精铅,该工艺回收率平均水平为90~95%,污染控制较第一类工艺有较大改善。 预处理单独冶炼工艺就是将废蓄电池经破碎分选后分出金属部分和铅膏部分,铅膏部分脱硫转化,然后二者再分别进行火法冶炼,得到铅锑合金和软铅,该工艺金属回收率平均为95%以上。 目前,关于最佳污染控制技术和最佳环境实践较多,某些环境保护领域、某些行业也已实施最佳污染控制技术和最佳环境实践,以实现经济建设与环境保护协调发展,取得了一定成效和经验。但是,在废铅酸蓄电池铅回收领域,本研究是国内首次针对废铅蓄电池铅回收污染控制最佳可行技术和最佳环境管理实践进行研究,从铅回收预防控制技术、末端污染治理技术以及环境管理实践,开展环境有益的尝试性系统研究,对废铅酸蓄电池铅回收行业环境保护和经济效益的协调发展,以及循环经济领域有关技术政策的制定,都具有重要的支持作用。

蓄电池仿真研究

蓄电池仿真研究 一背景 铅酸蓄电池是电力系统中一种常用的器件 ,在以前的仿真中,我们是把它一个电压源替代 ,但是实 际上,电压源是无法准确描述蓄电池的各种工作特性的 ,尤其对于类似于 UPS 系统开发中,准确 描述蓄电池特性是很重要的,例如放电工作时的端电压变化趋势对于检测电路正常工作,充电 时的注入电流变化过程决定充电器的负载特性,等等。本文的主要目的是介绍运用仿真工具分 析蓄电池特性,以及蓄电池仿真模型中各种参数的理解和设置方法。 二蓄电池的基本特性 铅酸蓄电池作为一个电化学设备,完整描述其性能是极其复杂的,描述其内部过程是化学领域 的任务,我们这里关心的是它在电路中表现出来的外部性能,主要有以下一些。 2.1放电性能 当蓄电池给电路供电的时候,处于放电状态,它具有以下一些基本特性。 2.1.1容量限制 蓄电池是通过活物质反应产生电荷,当它放电时 ,这些活物质被消耗, 在消耗到一定度以前, 蓄电池端电压会维持在某个电平附近 (有轻微下降) 当超过这个限度,电压会急剧下降。一般我们用电池以某个恒定电流放电的电压 -时间曲线来表示, 如图2- 1。 通常,我们用一个电压和时间的曲线 表示这种放电特性,电压急剧下降的 转折点称为"拐点(knee point ) ”,表 示这个时候活物质已经接近消耗殆 尽,此时的对应电压称为放电终止电 压,在应用中应该设置保护电路防止 电池过放电,对应的时间则称为在该 放电电流下的放电时间。 图2-1 2.1.2放电电流的影响 通常电池的容量用安时(A.h )来表示,字面含义可以理解为指放电时间和放电电流的乘积,但是 实际上,电池的容量是会随着放电电流而变化的,而且,电池的端电压的也是随着放电电流大小而 变化的。不同放电电流时的端电压 --时间关系可以用图 2-2表示。 Discharge Voltage Characteristics (V): t(s)

铅酸蓄电池装配过程的主要危害因素及预防标准范本

解决方案编号:LX-FS-A31887 铅酸蓄电池装配过程的主要危害因 素及预防标准范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

铅酸蓄电池装配过程的主要危害因 素及预防标准范本 使用说明:本解决方案资料适用于日常工作环境中对未来要做的重要工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 蓄电池作为一种方便适用的直流电源广泛用于发电厂,工矿企业变配电所和各类机动车。由于在铅酸蓄电池的装配过程中涉及到铅中毒、易燃、易爆等危险特性,因而确保铅酸蓄电池的安全生产十分重要。目前,铅酸蓄电池已被列入《危险化学品名录》,我国也一直重视铅酸蓄电池的安全生产,加强了对蓄电池生产装配的安全防范措施,制定了《铅作业安全生生规程》等规范标准。 一、铅酸蓄电池装配过程中的主要危害因素分析

铅酸蓄电池结构详解

铅酸蓄电池结构详解 一、蓄电池的功用 蓄电池种类较多,根据电解液不同,有酸性和碱性之分。由于铅酸蓄电池内阻小,电压稳定,在短时间内能供给较大的起动电流,而且结构简单,价格较低,所以在汽车拖拉机上被广泛采用。 蓄电池为一可逆直流电源,在汽车拖拉机上及发电机并联,它的主要作用是: (1)发动机起动时,蓄电池向起动机和点火装置供电。起动发动机时,蓄电池必须在短时间内(5~10s)给起动机提供强大的起动电流(汽油机为200~600A。柴油机有的高达1000A)。 (2)在发电机不发电或电压较低发动机处于低速时,蓄电池向点火系及其它用电设备供电,同时向交流发电机供给他激励磁电流。(3)当用电设备同时接入较多,发电机超载时,蓄电池协助发电机共同向用电设备供电。 (4)当蓄电池存电不足,而发电机负载又较少时,可将发电机的电能转变为化学能储存起来,即充电。 (5)蓄电池还有稳定电网电压的作用。当发动机运转时,交流发电机向整个系统提供电流。蓄电池起稳定电器系统电压的作用。蓄电池相当于一个较大的电容器,可吸收发电机的瞬时过电压,保护电子元件不被损坏。延长其使用寿命。 二、蓄电池的构造

车用12V蓄电池均由6个单格电池串联而成,每个单格的标称电压为2V,串联成12V的电源,向汽车拖拉机用电设备供电。 蓄电池主要由极板、电解液、格板、电极、壳体等部分组成。 1.极板 极板分为正极板和负极板两种。蓄电池的充电过程是依靠极板上的活性物质和电解液中硫酸的化学反应来实现的。正极板上的活性物质是深棕色的二氧化铅(PbO2),负极板上的活性物质是海绵状、青灰色的纯铅(Pb)。 正、负极板的活性物质分别填充在铅锑合金铸成的栅架上,加入锑的目的是提高栅架的机械强度和浇铸性能。但锑有一定的副作用,锑易从正极板栅架中解析出来而引起蓄电池的自行放电和栅架的膨胀、溃烂,从而影响蓄电池的使用寿命。 负极板的厚度为1.8mm,正极板为2.2mm,为了提高蓄电池的容量,国外大多采用厚度为1.1~1.5mm的薄型极板。另外,为了提高蓄电池的容量,将多片正、负极板并联,组成正、负极板组。在每单格电池中,负极板的数量总比正极板多一片,正极板都处于负极板之间,使其两侧放电均匀,否则因正极板机械强度差,单面工作会使两侧活性物质体积变化不一致,造成极板弯曲。 2.隔板 为了减少蓄电池的内阻和体积,正、负极板应尽量靠近但彼此又不能接触而短路,所以在相邻正负极板间加有绝缘隔板。隔板应具有多孔性,以便电解液渗透,而且应具有良好的耐酸性和抗碱性。

电池行业重金属污染综合防治方案.

电池行业重金属污染综合防治方案 (征求意见稿) 一、电池行业重金属使用和污染物产排现状 (一)电池行业基本情况。我国为电池生产大国,2009年铅酸蓄电池产量约12000万千伏安时,太阳能电池4000MW,其他电池403亿只(其中镉镍电池4.19亿只,扣式碱性锌锰电池90亿只,普通锌锰电池221亿只),占全世界电池总产量一半以上,其中60%出口。 现有电池生产企业约4000家,其中涉重金属企业2400家,包括铅酸蓄电池2000家,镉镍电池80家,扣式碱性电池20家,普通锌锰电池300家。 (二)电池行业重金属使用情况。2009年我国电池行业耗铅约254万吨、镉7600吨、汞140吨,分别约占全国铅使用量69%,镉占70%,汞占15%。 (三)电池行业重金属污染物产排情况与废旧电池回收情况。据测算,2009年产生含重金属废水1317万吨,排放废水1267.5万吨;产生固废22.2万吨,其中排放含汞镉固废0.4万吨。铅酸蓄电池企业产生含铅废水1036万吨,占全行业废水产生总量的78.7%,其中排放1028.9万吨;产生含铅固体废物21.8万吨;废旧铅酸蓄电池回收市场不规

范,有组织回收率不足30%,加大了再生环节污染风险。废旧一次电池缺乏回收系统,含重金属废旧电池随生活垃圾处理,造成环境污染。 二、电池行业存在的主要问题 电池行业清洁生产水平低,重金属耗用量大;企业结构布局不合理,低水平重复建设严重,“三废”排放量大,循环利用率低;铅酸蓄电池回收再生利用体系不健全,有组织回收率低,再生利用技术装备落后,二次污染严重;民用镉镍电池、含汞扣式碱锰电池、含汞普通锌锰电池等废旧电池产品,因无法回收,废弃后直接进入环境,重金属污染严重;工业用废旧镉镍电池因缺少回收处理运行机制,造成大量积存,潜在环境污染风险。 三、总体思路和主要目标 (一)总体思路 为深入贯彻落实国务院《关于加强重金属污染综合防治工作的指导意见》,全面防范电池生产、回收、再生利用过程中重金属的污染,以科技创新为抓手,以绿色产品设计和源头减量为理念,健全产业政策,完善标准体系,全面推进清洁生产,减少重金属耗用量,提高生产废水回用率,规范废旧电池回收再生利用,扎实做好电池行业重金属污染综合

蓄电池内阻标准

蓄电池内阻标准文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

蓄电池内阻测试标准内阻值为亳欧(mΩ)

蓄电池内阻测试仪 “智能蓄电池测试仪”又叫蓄电池内阻仪或蓄电池快速容量测试仪,是快速准确测量蓄电池健康状态和荷电状态以及连接电阻参数的便携式数字存储式测试仪器。该仪表通过在线测试,能显示并记录单节或多组电池的电压、内阻、容量等重要参数,精确有效地挑出落后电池,并可与计算机及专用电池数据管理软件产生测试报告,跟踪电池的衰变趋势,并提供维护建议。适用与通讯基站、变电站、UPS的蓄电池的维护检验。用于蓄电池验收、蓄电池配组和常规检验。 功能特点 ※适用于2、6、12V电池。※测试速度快,一组108节的蓄电池组测试只需要10分钟 ※体积小,重量轻,便携式手持操作。※使用交流注入法高精度在线测试,全自动量程转换,大容量数据存储。1、仪表在Ω~1Ω,~测量范围自动转换量程。2、可永久存储2500节电池参数(系统检测)。3、可循环存储108节电池参数(快捷检测)。 ※菜单操作简明易懂,中英文两种显示模式,可在线显示参数及电池状态。1、在单电池测试的同时,报告电池的状态(优、良、中、换、异常)2、完成一组电池测试后,自动形成本组测试结果的分析报告。※系统内置强大的标准内阻值数据库,含250种内阻参考值。※可以对电池按照站/组/节号进行参考值管理,一

次设定,重复测试。※增强的过压、过流保护功能,使仪表工作更安全可靠。※派司德专用测试夹头满足不同尺寸电池极柱的要求。※有效测试的声音提示使得测试更方便。※关键数据和操作有密码保护。※通过USB接口,将测试数据永久存储在PC 机上,实现电池的“病历”跟踪分析。1、自动分析判断电池的“劣化”状态。2、形成历史记录库,描述电池状态曲线。 3、同组电池对比分析。 4、所有电池分级管理(优良中差) ※电池数据管理软件可以查询生成打印各种图表如饼状图、柱形图、曲线图。 知识背景 A、为什么蓄电池(组)需要定期维护和检测过去,开口式蓄电池维护起来比较麻烦,因为蓄电池在使用的时候要分解电解液中的水,所以要定期检测电解液的比重,蓄电池的电压等参数,消耗的电解液,要定期加水来补充。而后又有密封式的蓄电池出现,主要以阀控式铅酸蓄电池(为主,由于不需加水,所以阀控式铅酸蓄电池从一开始便被称为免维护电池,而生产厂家又承诺该电池的使用寿命为10 ~ 20年(最少为8年),这样就给国内的技术和维护人员一种误解,似乎这种电池既耐用又完全不需要维护,许多用户从装上电池后就基本没有进行过维护和管理,因而在90年代初国内使用的VRLA电池出现了很多以前未遇到的新问题,例如,电池壳变形、电解液渗漏、容量不足、电池端电压不均匀等。这些现象不单在国内,就是在比我国早采用VRLA电池的国外也同样存在。在电池中由于电解

铅酸电池生产过程中有哪些污染

铅酸电池生产过程中的污染 铅酸蓄电池经过百余年的发展与完善已成为世界上广泛使用的一种化学电源,该产品具有良好的可逆性、电压特性平稳、使用寿命长、适用范围广、原材料丰富及造价低廉等优点。主要应用在交通运输、通讯、电力、铁路、矿山、港口、国防、计算机、科研等国民经济各个领域,是社会生产经营活动和人类中不可缺少的产品。虽然铅酸蓄电池的质量与体积比能量低于镉镍、金属氢化镍、锂离子和聚合物锂离子蓄电池,但是铅酸蓄电池凭借其优良的价格性能比,目前在蓄电池领域中占有举足轻重的地位。 铅酸电池生产过有哪些污染:要想详细的了解铅酸蓄电池污染物的来源就必须熟悉其相应的生产流程,然后根据生产工艺流程来分析其污染物的来源。铅酸电池生产工艺流程见附图(1) 铅酸电池污染主要是在生产环节,在涂板、电池清洗工序产生含铅的重金属废水,在板栅铸造、合金配制、铅零件及铅粉制造等工序,产生多种含铅烟、铅尘。 铅对神经系统的影响 人体的中枢神经系统是生命活动的总管,它的机能状态在铅中毒病程中起主导作用铅可使形象化智力、视觉运动功能、记忆、反应时间受损;语言和空间抽象能力,感觉和行为能力改变,出现疲劳、失眠、烦躁、头痛及多动等症状,中度以上的铅中毒者,可出现多发性神经炎,严重者甚至损害梢神经或脊髓前角细胞,导致“铅麻痹”,晚期铅中毒严重者可因中枢神经发生器质性病变而引起中毒性脑病,如颅内血管痉挛促使脑血管发生早期硬化 铅对造血系统的影响 铅能影响卟啉代谢,卟啉是血红蛋白合成过程的中间的产物当机体接触铅中毒后,影响了与δ—氨基乙酰丙酸(δ—ALA)转变为卟胆原,粪卟啉转变为原卟啉及原卟啉与亚铁合成正铁红素等过程,导致血红蛋白形成障碍,引起铅诱发贫血铅诱发贫血常见于铅作业工人及儿童,特别是儿童另外,铅还抑制红细胞膜上Na+—K+—ATP酶和抑制磷酸戊糖旁路导致溶血 铅对消化系统的影响 在铅毒的作用下,可能发生肠胃机能一系列的变化,铅可抑制胰腺功能,增加唾液腺和胃腺的分泌;同时,铅会与肠道中硫化氢结合,使硫化氢失去促进肠蠕动的作用,导致顽固性便秘

蓄电池内阻与容量关系及测试标准

蓄电池内阻与容量关系及测试标准 一、蓄电池的内阻及变换原因 蓄电池的内阻是指蓄电池在工作时,电流流过蓄电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直 流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而 测其交流内阻可免除极化内阻的影响,得出真实的内值。 蓄电池的容量主要是和极板上活性物质的利用率有关。而蓄电池极板上的活性物质是:二氧化铅、铅。在蓄电池内部的化学反应过程中,其实质就是极板上的活性物质和稀硫酸电解液发生的电化学反应,产生电流。在这个电化学反应过程中,经常伴随着一种学名叫“硫酸盐化的”负反应,也就是铅和硫酸生成了一种硫酸铅,这种硫酸铅是一种绝缘体,它的形成必将对电池的充放电产生极不好的影响,因为在负极板上形成的硫酸盐越多,电池的内阻越大,电池的可充放电性能越差,负极板上吸收不了正极产生的气体,久而久之电池失效。 二、蓄电池的内阻与容量的关系 而且影响铅酸蓄电池容量的因素有很多:放电率、温度、终止电压、极板几何尺寸、电解液浓度等。 电池的内阻:欧姆电阻和极化内阻 欧姆电阻:电极材料、电解液、隔膜的电阻。 极化内阻:正负极化学反应时引起的内阻 两者并不是直接影响的,而是通过影响其他方面来影响对方。也就是说,两者并没有直接的关系,而是通过影响对方的制约因素来影响对方。例如:温度的变化可以影响到电池的电解液和电阻变化。 1)电解液温度升高,扩散速度增加,电阻降低,电动势增加,因此电池容量及活性物质的利用率随温度增加而增加。 2)电解液温度降低大,黏度增大,离子运动受阻,扩散能力降低,电阻增大,电化学反应阻力增加,导致蓄电池容量下降。 蓄电池检测内阻已经成为比较流行判断电池好坏的方式. 三、影响蓄电池内阻的因素 1.蓄电池的内阻由欧姆极化(导体电阻)和电化学极化及浓差极化电阻三个部份组成。在充放电过程中电阻是变化的,充电过程内阻由大变小,反之内阻增加。 2.温度对蓄电池内阻也颇有影响,低温状态如0℃以下,温度每下降10℃,内阻约增大15%,其中因硫酸溶液粘度变大,而增加了比电阻是重要的原因之一。在较高温度时,如10℃以上,硫酸离

铅酸蓄电池产业现状及发展趋势

铅酸蓄电池产业现状及发 展趋势 Newly compiled on November 23, 2020

铅酸蓄电池产业现状及发展趋势 电池工业是新能源领域的重要组成部分,是全球经济发展的一个新热点,与电力、交通、信息等产业发展息息相关,是社会生产经营活动和人类生活中不可缺少的产品。铅酸蓄电池凭借其性能价比高、大容量、高功率、长寿命、安全可靠等优点,是目前世界上产量最大、用途最广的一种电池,铅酸蓄电池销售额占全球电池销售额的30%以上。铅作为铅酸蓄电池最为重要的原料,其质量和价格的高低直接影响蓄电池产业未来的发展,铅和铅酸蓄电池的发展是相辅相成的。现就对近年来我国铅酸蓄电池发展现状进行分析,谈点自己的感想。 一、我国铅酸蓄电池行业现状 随着我国经济的持续快速发展,中国汽车、摩托车、电动助力车、通信、信息、电力等基础产业发展十分迅速,这些行业在我国处于一个高速成长期,对铅酸蓄电池的需求日益增长,铅酸蓄电池工业呈持续、快速增长趋势。 据不完全统计,我国铅酸蓄电池制造厂家已达到1500家左右,生产量平均以每年约20%的速度快速增长,铅酸蓄电池产量约占世界产量的1/3,出口量、出口额分别以每年高达29%和34%左右的速度递增,在国际市场上具有举足轻重的地位,成为全球铅酸蓄电池的生产和消费大国。 2003年,中国铅酸蓄电池的销售额约130亿元人民币,约占中国电池销售总额的1/3,占二次电池销售总额的45%。 2004年,由于铅等原料价格的集聚增长,影响了市场销售和利润,但由于国内需求和出口的增长,中国铅酸蓄电池产量达到了约6000万KVAH,销售额约150亿元。

2005年,铅酸蓄电池总产量达6645万KVAH,销售额200亿元左右,出口额亿美元,同比增长40%。蓄电池产量年平均增长远远高于国民经济的增长速度和欧美等发达国家,起动蓄电池增长15%以上,固定电池增长30%,动力电池增长50%以上。 2006年,铅酸蓄电池产量为万KVAH,销售额350亿元. 2007年,铅酸蓄电池产量为万KVAH,销售额503亿元。其产品结构见下图: 2007年我国铅酸蓄电池产量结构图 随着中国市场经济进程的加快,铅酸蓄电池企业已呈现优胜劣汰趋势,地域性规模企业逐步形成并壮大,市场份额逐年增长。仅以助动车用铅酸蓄电池企业为例,浙江省长兴县的蓄电池产业是随着近年来我国电动助力车产业的兴起迅速发展壮大,2003年,铅酸蓄电池企业有175家之多,销售额为亿元;2004年开始进行了专项整治,到2005年蓄电池企业保留下来53家,销售额为亿元,到2007年底,销售额为亿元,年均增长%,约占国内市场份额的45%左右,预计2008年销售额可达100亿元。 二、铅酸蓄电池产业发展前景 未来几年,我国铅市场还将主导全球铅工业,中国铅市场平衡和精铅出口量将继续影响国际供求平衡。2006年,全国用铅量为280万吨,其中铅酸蓄电池的耗铅量为172万吨,占%,预计到2010年,我

蓄电池内阻标准

内阻值为亳欧(m Q) 序号容量电压内阻值序号容量电压内阻值 1 0.8AH 12V 120.00 33 150AH 12V 4.00 2 1.3AH 12V 102.00 34 200AH 12V 3.00 3 2.2AH 12V 63.70 35 230AH 12V 2.00 4 3.3AH 12V 55.70 36 250AH 12V 1.00 5 4.0AH 12V 46.90 37 1.3AH 6V 55.00 6 5AH 12V 37.40 38 2.8AH 6V 40.00 7 6AH 12V 30.20 39 3.2AH 6V 28.50 8 7AH 12V 23.00 40 4AH 6V 24.00 9 8AH 12V 20.00 41 5AH 6V 18.30 10 9AH 12V 19.00 42 7AH 6V 14.00 11 10AH 12V 18.70 43 10AH 6V 12.00 12 12AH 12V 14.40 44 110AH 6V 4.30 13 14AH 12V 13.60 45 200AH 6V 1.70 14 15AH 12V 13.00 46 100AH 2V 1.00 15 17AH 12V 12.10 47 150AH 2V 0.83 16 18AH 12V 11.40 48 170AH 2V 0.76 17 20AH 12V 10.60 49 200AH 2V 0.70 18 24AH 12V 9.80 50 250AH 2V 0.68 19 25AH 12V 9.50 51 300AH 2V 0.65 20 26AH 12V 9.20 52 350AH 2V 0.60 21 28AH 12V 8.90 53 400AH 2V 0.50 22 31AH 12V 8.60 54 420AH 2V 0.48 23 33AH 12V 8.40 55 450AH 2V 0.45 24 38AH 12V 8.20 56 462AH 2V 0.43 25 40AH 12V 7.90 57 500AH 2V 0.40 26 60AH 12V 6.50 58 600AH 2V 0.32 27 65AH 12V 5.80 59 800AH 2V 0.24 28 75AH 12V 5.50 60 1000AH 2V 0.20 29 80AH 12V 5.30 61 1500AH 2V 0.16 30 85AH 12V 5.00 62 2000AH 2V 0.12 31 100AH 12V 4.50 63 3000AH 2V 0.11 32 120AH 12V 4.30 蓄电池内阻测试仪 智能蓄电池测试仪”又叫蓄电池内阻仪或蓄电池快速容量测试仪,是快速准确测量蓄电池健

铅酸蓄电池铅污染物的来源及生产防护

铅酸蓄电池铅污染物的来源及生产防护 要想详细的了解铅酸蓄电池污染物的来源就必须熟悉其相应的生产流程,然后根据生产工艺流程来分析其污染物的来源。 2.1 铅酸蓄电池的生产工艺 2.1.1 铅酸蓄电池的生产工艺流程 铅酸蓄电池的生产工艺流程略。 图2-1 铅酸22.2.1.2 板栅的制造 板栅在电池中的作用,主要是支持活性物质,充当活性物质的载体,传导汇集电流,使电流均匀分布在活性物质上,以提高活性物质的利用率。所以,板栅质量的好坏直接影响着蓄电池的整体性能。其生产工艺流程如下: 合金配制→熔化→铸模调温→喷模→浇铸→剪修平整→检查→贮存→待用 2.1.2.1.合金的配制 铅基合金的配制要在专用的熔锅或合金冶炼炉内进行,锅内应有搅拌装置。在铅锑合金配制时,先将总数约一半的铅锭加入熔锅内,加温到350-400℃,使铅熔化(铅熔点327℃),待熔锅内的铅全部熔化后,加入配方所规定的全部量的锑。锑锭在加入熔锅前,须砸碎成50-70mm的小块,锑加入后,升高熔锅内合金温度到500-550℃(锑熔点631℃,含锑量为2%-8%的铅锑合金的熔点为313℃-271℃),使全部的锑熔化,最后再将余下的铅全部加入锅内,待合金全部熔化后,开始进行搅拌,使之充分混合均匀,搅拌的时间不少于30min。搅拌的形式有机械搅拌和压缩空气搅拌。此时,熔锅内的合金液温度应保持在450-550℃,由于铅的密度(11.3g/cm3)与锑的密度(6.7g/cm3)差别较大。上述的方法可以避免锑块过早地浮在铅液表面,同时,为了合金均匀,必须进行充分的搅拌。以上铅锑合金配制过程的时间大约为4h。在开始铸锭前必须检查合金的锑含量。如不符合规定,应加适量的铅或适量的锑进行调整,符合工艺规定的合金液,除掉表面氧化残渣后,开始铸锭。铸模要干燥无水,铸锭时要注意避免合金液溅出烫伤。铸锭后标号存放。在铅锑合金的配制过程中,熔渣损失约为 1.0%- 2.0%,烧减损失约为0.2%-0.6%。 2.1.2.2 合金的熔化 板栅浇铸时,需先将配制好的合金熔化,熔化后的合金液温度对板栅浇铸时的成型关系很大,合金液温度过高或过低都不能浇铸出良好的板栅。一般情况下,合金液温度应控制在450-550 ℃的范围,但工厂在实际中应根据具体情况摸索出最佳的合金液浇铸温度。 2.1.2.3 浇铸模具的温度调整 浇铸使用的模具在浇铸前都应进行预热和温度调整,铸板机通过由加热预热,手工模具通过电加热或合金液预铸预热,其目的是为了保证在浇铸过程中合金液的冷却速度,铸模温度过高或过低或不均匀都会对板栅的成型影响很大,特别是对于手工铸板显得更为重要。 2.1.2.4 喷模、刮模 在浇铸时由于模具是金属制成,故存在散热快的特点,加入模具内腔沟槽比较窄浅,使得熔锅状态下的合金液难以充满模具。为了保证浇铸板栅的成型率,必须在模具表面和浇铸合金之间喷涂脱模剂。目前,在蓄电池厂一般使用由软木粉、硅酸钠和水配制的脱模剂,喷涂在模具内腔,主要起保温、隔热、润滑,确保合金液充满模具的作用。同时,对板栅的厚度均匀性起调整作用。 脱模剂的配制方法如下: 取8Kg左右的水和密度为1.35g/cm3的硅酸钠(水玻璃)450mL左右,放入加温锅内(可用铝锅)混合均匀后放在炉子上加热烧煮。待硅酸钠水溶液煮沸后,即将1kg细度为180-200目的软木粉缓慢地倒入锅内,充分搅拌均匀,再加入8kg左右的水小火煮沸30min,冷却后用60-80目筛子过滤后装入容器内待用。以上配制出的脱模剂使用的有效期为2-3小时,如在上述配方中加入25mL左右的磷酸铝(含铝36.4%)或400g左右的膨润土,有效期可延长至6-8小时。在使用中,如果脱模剂发粘,可适当减少硅酸钠量或适当增加用水量,如果脱模剂稀,喷模时容易从模具表面脱落,可适当增加硅酸钠量或适当减少水用量。脱模剂稀稠要合适,太稀粘附力差,太稠脱模剂在模具表面堆积太厚,因此,可以根据实际使用情况和板栅要求的厚薄程度进行调整。 2.1.3 铅粉的制造

蓄电池内阻与容量的关系

本文由unisheva贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 015821年1月2日第2卷第1期 TlcmPwrTcnlgeooeehooye Jn2,01,Vl2o1a.521o.8N. 文章编号:0936(010-02010-6421)103-3新能源 蓄电池内阻与容量的关系 桂长清,柳瑞华(中船重工第72研究所,湖北武汉406)1304阀锂金O0摘要:蓄电池的内阻跟额定容量有关。荷电态SC高于5%时,控密封铅酸蓄电池、离子电池、属氢化物镍电池、镉镍蓄电池、锌镍电池的内阻都是保持不变的;只是SC低于4%以下时,它们的内阻才很快升高。O0关键词:蓄电池;电池内阻;荷电态;容量中图分类号:92TM1文献标识码:A RltnewenenlRstneadCpcyfrBteiseisbtenItraeiacnaaioatraosteGUhn-igLUu-uICagqn,IRiha(hnhpudnnutyCroaoo72RsacntueWua304,hn)CiaSibiigIdsroprtnN.1eerhIstt,hn406CialiiAsrc:nenleiacatraetdtsrtdcpcybtatItrarstneobteywsrleoiaeaai.WheSC>5,nenleiacsfrfattiOl0%itrarstneossVL、ioatr、RAL-nbteyMH-N、dinniatreenthnebeams;sSC<4,hiitrarstiiC-NdZ-NteywroagalotaOabcl0%tenenlei-rsacswudrerpdyneolsail.iKywrsbteyitrarstnesaeohrecpcyeod:atr;enleiac;tcag;aintfats蓄电池内阻与容量之间的关系其中有两种含义:电池内阻跟额定容量的关系,及同一型号电池的内以阻跟荷电态SC的关系。十多年前人们曾经试图利O用阀控密封铅酸蓄电池内阻(或电导)的变化去在线检测电池的容量和预测电池寿命,但却未能如愿;近来随人着电动汽车和电动助力车产业的发展,们对动力电池的大电流放电能力提出了越来越高的要求,就要这求尽可能降低电池内阻。因而本文将进一步探索和阐明一些常用蓄电池内阻与容量之间的内在关系。 2它们之间存在线性相关关系,其相关系数R=0.2。85 由此有人提出对于在线使用的阀控密封铅酸蓄电池,可以用测得的电导值去推测它们的剩余容量。虽然十多年前本人从客观实际出发已多次对这一观点提出了2而否定的看法[],后被众多的同行专家所认可。但今 天仍有一些人没做过试验不假思索地引用上述已经过。时的观点,因而重提一下上述观点的‘症结’ 1阀控密封铅酸蓄电池 当前阀控密封铅酸蓄电池已逐步取代开口式流动广电解液铅酸蓄电池,泛用

浅谈铅酸蓄电池行业重金属污染治理与环境管理

浅谈铅酸蓄电池行业重金属污染治理与环境管理 在全面贯彻可持续发展理念的大环境背景下,铅酸蓄电池行业逐步成为重金属污染治理的重点行业。基于此,本文分析了铅酸蓄电池行业的重金属污染问题,并提出了切实可行的污染治理与环境管理策略,以期推动行业的良好发展。 标签:铅酸蓄电池;重金属污染;环境管理策略 近年来,重金属污染事件屡见不鲜,尤其是铅污染事件,不仅对区域生态环境造成了不可的逆损害,也对周围居民的身体健康造成了潜在威胁。因此,铅酸蓄电池行业的重金属污染治理与环境管理成为社会各界关注的焦点。 一、铅酸蓄电池行业的重金属污染问题 (一)极板生产与电池组装分离,延伸环境污染 在铅蓄电池生产过程中,仅15%是采用内化成工艺,其余均为外化成工艺。外化成工艺产出的熟极板是重要的中间产品,可以满足电池组装的基本需求。尽管这种生产模式实现了中间产品的合理利用,创造了一定的经济效益,但同时也加重了环境污染问题。 外化成需要在电解液中使生极板通过充电转变为荷电状态。与内化成工艺相比,需要增设极板清洗环节,且铅废水排放量是内化成工艺的十倍以上。一旦铅废水处理不到位,极易造成严重的铅污染。再者,由于极板与电池是独立组装的,且小微化、单一化组装企业泛滥,此类组装企业约占整个铅蓄电池企业的60%以上,这就导致特定产品供过于求,出现供需关系失衡。同时,部分小微化、单一化组装企业专业资质不完备,甚至以小作坊生产形式为主,这使得污染防治处理不达标,增加了生态环境污染隐患。 由此可知,铅蓄电池行业应当推行极板生产与电池组装一体化模式,限制小微化、单一化组装企业,进而优化产业结构调整,推动整个铅蓄电池行业的良好发展。 (二)生产设备与环保设备不完善 据相关调查资料显示,2011年铅蓄电池企业环保合格率仅为15.67%。由于各方面因素的制约,国内铅蓄电池行业仍处于人工干预到半自动生产的过渡阶段。绝大多数铅蓄电池生产企业的技术装备不完善,生产工艺水平偏低,仍沿用传统的开口式填料装置和人工投粉装饰,原料利用效率低。而在生产环境的干预下,铅粉扬尘污染问题严重,这对一线技术人员的身体健康构成了潜在威胁。另外,铅蓄电池生产企业环保意识淡薄,专项投资力度小,污染治理效果不够理想,无法满足行业的标准要求。

蓄电池内阻标准

蓄电池内阻测试标准内阻值为亳欧(mΩ)

蓄电池内阻测试仪 “智能蓄电池测试仪”又叫蓄电池内阻仪或蓄电池快速容量测试仪,是快速准确测量蓄电池健康状态和荷电状态以及连接电阻参数的便携式数字存储式测试仪器。该仪表通过在线测试,能显示并记录单节或多组电池的电压、内阻、容量等重要参数,精确有效地挑出落后电池,并可与计算机及专用电池数据管理软件产生测试报告,跟踪电池的衰变趋势,并提供维护建议。适用与通讯基站、变电站、UPS 的蓄电池的维护检验。用于蓄电池验收、蓄电池配组和常规检验。 功能特点 ※适用于2、6、12V电池。※测试速度快,一组108节的蓄电池组测试只需要10分钟 ※体积小,重量轻,便携式手持操作。※使用交流注入法高精度在线测试,全自动量程转换,大容量数据存储。 1、仪表在0.000mΩ~1Ω,0.000V

~220.0V测量范围自动转换量程。 2、可永久存储2500节电池参数(系统检测)。 3、可循环存储108节电池参数(快捷检测)。※菜单操作简明易懂,中英文两种显示模式,可在线显示参数及电池状态。 1、在单电池测试的同时,报告电池的状态(优、良、中、换、异常) 2、完成一组电池测试后,自动形成本组测试结果的分析报告。※系统内置强大的标准内阻值数据库,含250种内阻参考值。※可以对电池按照站/组/节号进行参考值管理,一次设定,重复测试。※增强的过压、过流保护功能,使仪表工作更安全可 靠。※派司德专用测试夹头满足不同尺寸电池极柱的要求。※有效测试的声音提示使得测试更方便。※关键数据和操作有密码保护。※通过USB接口,将测试数据永久存储在PC机上,实现电池的“病历”跟踪分析。 1、自动分析判断电池的“劣化”状态。 2、形成历史记录库,描述电池状态曲 线。 3、同组电池对比分析。 4、所有电池分级管理(优良中差)※电池数据管理软件可以查询生成打印各种图表如饼状图、柱形图、曲线图。 知识背景 A、为什么蓄电池(组)需要定期维护和检测?过去,开口式蓄电池维护起来比较麻烦,因为蓄电池在使用的时候要分解电解液中的水,所以要定期检测电解液的比重,蓄电池的电压等参数,消耗的电解液,要定期加水来补充。而后又有密封式的蓄电池出现,主要以阀控式铅酸蓄电池(为主,由于不需加水,所以阀控式铅酸蓄电池从一开始便被称为免维护电池,而生产厂家又承诺该电池的使用寿命为10 ~ 20年(最少为8年),这样就给国内的技术和维护人员一种误解,似乎这种电池既耐用又完全不需要维护,许多用户从装上电池后就基本没有进行过维护和管理,因而在90年代初国内使用的VRLA电池出现了很多以前未遇到的新问题,例如,电池壳变形、电解液渗漏、容量不足、电池端电压不均匀等。这些现象不单在国内,就是在比我国早采用VRLA电池的国外也同样存在。在电池中由于电解液比重更大而且浮充电流更大,因而电极腐蚀更为迅速。电极腐蚀也会消耗氧气从而使电池变干,这是VRLA电池特有的故障。电池过度的气体逸出、焊接柱或盖板裂缝、密封不严,最后通过容器壁和塑料容器渗出水、氢和氧,这些都会引

相关主题
文本预览
相关文档 最新文档