当前位置:文档之家› 半导体物理第九章

半导体物理第九章

半导体物理第九章
半导体物理第九章

第9章半导体异质结构

第6章讨论的是由同一种半导体材料构成的p-n结,结两侧禁带宽度相同,通常称之为同质结。本章介绍异质结,即两种不同半导体单晶材料的结合。虽然早在1951年就已经提出了异质结的概念,并进行了一定的理论分析工作,但是由于工艺水平的限制,一直没有实际制成。直到气相外延生长技术开发成功,异质结才在1960年得以实现。1969年发表了第一个用异质结制成激光二极管的报告之后,半导体异质结的研究和应用才日益广泛起来。

§9.1异质结及其能带图

一、半导体异质结

异质结是由两种不同的半导体单晶材料结合而成的,在结合部保持晶格的连续性,因而这两种材料至少要在结合面上具有相近的晶格结构。

根据这两种半导体单晶材料的导电类型,异质结分为以下两类:

(1)反型异质结

反型异质结是指由导电类型相反的两种不同的半导体单晶材料所形成的异质结。例如由p 型Ge与n型Si构成的结即为反型异质结,并记为pn-Ge/Si或记为p-Ge/n-Si。如果异质结由n型Ge与p型Si形成,则记为np-Ge/Si或记为n-Ge/p-Si。已经研究过许多反型异质结,如pn-Ge/Si;pn-Si/GaAs;pn-Si/ZnS;pn-GaAs/GaP;np-Ge/GaAs;np-Si/GaP等等。(2)同型异质结

同型异质结是指由导电类型相同的两种不同的半导体单晶材料所形成的异质结。例如。。。

在以上所用的符号中,一般都是把禁带宽度较小的材料名称写在前面。

二、异质结的能带结构

异质结的能带结构取决于形成异质结的两种半导体的电子亲和能、禁带宽度、导电类型、掺杂浓度和界面态等多种因素,因此不能像同质结那样直接从费米能级推断其能带结构的特征。

1、理想异质结的能带图

界面态使异质结的能带结构有一定的不确定性,但一个良好的异质结应有较低的界面态密度,因此在讨论异质结的能带图时先不考虑界面态的影响。

(1)突变反型异质结能带图

图9-1(a)表示禁带宽

半导体和n型半导体在形

成异质pn结前的热平衡

能带图,E g1 E g2。图中,

δ1为费米能级E F1和价带

顶E V1的能量差;δ2为费米能级E F2与导带底E C2的能量差;W 1、W 2分别是两种材料的功函数;χ1、χ2分别是两种材料的电子亲和能。总之,用下标“1”和“2”分别表示窄禁带和宽禁带材料的物理参数。

当二者紧密接触时,跟同质pn 结一样,电子从n 型半导体流向p 型半导体,空穴从p 型半导体流向n 型半导体,直至两块半导体的费米能级相等时为止。这时两块半导体有统一的费米能级,并在交界面的两边形成空间电荷区。由于不考虑界面态,空间电荷区中正、负电荷数相等。正、负空间电荷之间产生电场,称为内建电场。因为存在电场,电子在空间电荷区中各点有不同的附加电势能,即能带弯曲,其总弯曲量仍等于二者费米能级之差。这些都跟同质pn 结一样,所不同的,一是因为两种半导体材料的介电常数不同.内建电场在交界面处不连续;二是因为两种材料的禁带宽度不同,能带弯曲出现新的特征。对于图9-1所示窄禁带材料的禁带包含于宽禁带材料的禁带之中的情况,禁带宽度不同使能带弯曲出现如图9-l(b)所示的两个特征:

1)界面处导带在n 型侧翘起一个“尖峰”,在p 型侧凹下一个“凹口”。

2)导带和价带在界面处都有突变。导带底在界面处的突变就是两种材料电子亲和能之差:

21χχ-=?C E 而价带顶的突变自然就是禁带宽度之差的剩余部

分,即

以上二式对所有突变异质结普遍适用。△E C 和△

E V 分别称为导带阶和价带阶,是很重要的物理

量,在实际中常用。

图9-2为实际的p-n-Ge-GaAs 异质结的能带

图。表9-1为实验测定的一种p 型Ge 与一种n 型

GaAs 的有关常数值。对pn-Ge/GaAs 异质结,△E c

=0.07eV ;而△E v =0.69eV 。

图9-3为n 型窄禁带材料与p 型宽禁带材料构

成的突变异质结的能带图,情况与上述类似,读者

可自行讨论。

图9-3 np 异质结的平衡能带图

(2)突变同型异质结的能带图

图9-4(a)和(b)分别为都是n 型的两种不同禁带宽度半导体形成异质结前、后的平衡能带图。当这两种半导体材料紧密接触形成异质结时,由于宽禁带材料比窄禁带材料的费米能级高,所以电子将从前者流向后者。结果在禁带窄的一边形成电子的积累层,而另一边形成耗尽层。这种情况和反型异质结不同。对于反型异质结,两种半导体材料的交

界面两边都成为耗尽层。而在同型异质结中,一般必有一边成为积累层。在这种异质结中的导带阶和价带阶与上述反型异质结相同。

图9-5为pp异质结在热平衡状态时的能带图。其情况与nn异质结类似。

图9-4 nn异质结的平衡能带图9-5为pp异质结平衡能带图

2界面态对异质结能带结构的影响

1)晶格失配

界面态的一个主要生成原因是形成异质结的两种半导体材料的晶格失配。晶格失配定义为两种材料的晶格常数之差与其平均晶格常数之比。表9-2中列出了若干半导体异质结的晶格失配。

表9-2几种半导体异质结的晶格失配

表中(W)表示该半导体材料为纤维锌矿型结构;(c)表示六方晶系的c轴上的晶格常数。

2)界面态密度

晶格失配在异质结中不可避免。由晶格失配而在界面产生的悬挂键就会引入界面态,界面态密度即悬挂键密度。突变异质结界面的悬挂键密度△N S为两种材料在界面上的键密度之差。即

N S1、N S2为两种半导体材料在交界面处的键密度,由构成材料的晶格常数及界面的晶向决定。

下面举一个例子,计算具有金刚石型结构的两块半导体所形成的异质结的悬挂键密度、如图9-6(a)所示,取(111)晶面制造异质结。在晶胞中画出的(111)晶面为正三角形(图中划斜线部分),它的面积是(3a2)/2,a为晶格常数。包含在这个面中的键数为2(6个正三角形共有一个顶角原子,2个正三角形共有一

个腰心原子),如图9-6(b)所示。所以晶面(111)

的键密度是4/(3a2)。因此,对晶格常数分别为

a1和a2(a1<a2)的两块半导体形成的异质结,其

(111)面的悬挂键密度为

同理,对(110)和(100)晶面,悬挂键密度分别为

()

22

21

22

12

s

a a

N

a a

??

-

??

?=

??

()

22

21

22

12

4

s

a a

N

a a

??

-

??

?=

??

??

应用上述公式,计算得Ge-GaAs及Ge-Si异质结

的悬挂键密度如表9-3所示

根据表面能级理论计算求得,当具有金刚石

结构的晶体的表面能级密度在1×1013m-2以上

时,表面费米能级位于E V之上1/3禁带宽度处,

如图9-7所示。跟前面讨论表面态对金-半接触

的影响类似,这时整个系统的费米能级被“钉扎”在表面费米能级处。对于n型半导体,悬挂键起受主作用,使表面附近能带向上弯曲。对于p

型半导体,悬挂键起施主作用,表

面附近能带向下弯曲。对异质结而言,当悬挂键起施主作用时,则pn、np、pp异质结的能带图如图9-8中(a)、(b)、(c)所示;当悬挂键起受主作用时,则pn、np、nn异质结的能带图如图9-8中(d)、(e)、(f)所示。

热膨胀系数不同也会在高温下引起晶格失配,从而产生悬挂键,引入界面态。除了晶格失配,化合物异质结中还会因成分元素的互扩散引人界面态。因此,实际异质结都会受界面态的影响。

图9-7表面能级密度大的半导体能带图图9-8计入界面态影响时异质结的能带示意图

三、异质结的接触电势差、势垒区宽度与势垒电容(略,自学)

§9.2异质结的电流

半导体异质结的电流电压关系比同质结复杂的得多。迄今已针对不同情况提出了多种模型如扩散模型、发射模型、发射—复合模型、隧道模型和隧道—复合模型等,以下根据实际应用的需要,主要以扩散—发射模型说明半导体突变异反结的电流电压特性及注入特性。

如图9-9所示,半导体异质pn结界面导带连接处存在一个尖峰势垒,根据尖峰高低的不同,可有图(a)和(b)所示的两种情况:(a)宽禁带n区势垒尖峰的顶低于窄禁带p区导带的底,称为负反向势垒(低势垒尖峰);(b)n区势垒尖峰的顶高于p区导带的底,称为高势垒尖峰。

一、异质pn结的电流—电压特性

1、负反向势垒(低势垒尖峰)

图9-10(a)和(b)分别表示负反向势垒异质

结在零偏压和正偏压情况下的能带图。

这种结与同质结的基本情况类似,在正

偏压下载流子主要通过扩散运动的方式

越过势垒,不同的是结两侧多数载流子

面临的势垒高度不同。热平衡时,电子

势垒和空穴势垒为

q(V D1+V D2)-?E C=qV D-?E C

q(V D1+V D2)+?E V=qV D+?E V

加正向偏压U时,电子势垒和空穴势垒变分别变为

q(V D-U)-?E C

q(V D-U)+?E V Array二者相差很大。

按求解同质pn结电流方程式的

相同方法和过程,求得正偏压下电

子和空穴的扩散电流密度分别为

以上两式中,若两侧材料的多子密

度n20和p10在同一数量级,则指数

前面的系数也在同一数量级,消去

相同因式后,二者最大的不同在于

)exp(

kT E J C n ?∝;)exp(kT

E J V p ?-∝ 对于由窄禁带p 型半导体和宽禁带n 型半导体形成的异质pn 结,△E C 和△E v 都是正值,一般其值较室温时的kT 值大得多,故J n >>J p ,表明通过异质pn 结的电流主要是电子电流,空穴电流比例很小,正向电流密度可近似为J n ,其值随电压指数增大。 2、正反向势垒(高势垒尖峰)

对于图9-9(b)所示的正反向势垒情况,通过异质结的电流主要受发射机构的控制。图9-11表示正反向势垒加正向电压时的能带图,设U 1和U 2分别为所加电压U 在p 区和n 区的降落。利用讨论肖特基势垒电流的热电子发射模型,计算出在正偏压下由n 区注入p 区的电子电流密度为

从p 区注人n 区的电子流密度为 (以上两式利用了)exp(2010kT

E qV n n C D ?--

=的关系) 于是,总电子电流密度为

式中m *=m 1*=m 2*。由于异质结情况的复杂性,由热

电子发射模型推出的这个结论也只得到了部分异质结

实验结果的证实。对正偏压,式中第二项可以略去,

即由p 区注入n 区的电子流很小,正向电流主要由从n

区注入p 区的电子流形成,这时上式简化为

这说明发射模型也同样能得到正向电流随电压按指数关系增加的结论。

以上结果不能用于反偏置情况。因为反偏置时电子流从p 区注人n 区,反向电流的大小由p 区少数载流子浓度决定,在较大的反向电压下电流应该是饱和的。

二、异质pn 结的注入特性

1、高注入比

由扩散模型的电流-电压方程式,可得异质pn 结正偏压下电子电流与空穴电流之比为

式中△E =△E C +△E V =E g2–E g1,表示n 区和p 区的禁带宽度之差。在p 区和n 区杂质完全电离的情况下,n 20和p 10分别等于n 区的掺杂浓度N D2和p 区的掺杂浓度N A1,于是上式可表示为

上式中的近似处理是因为D n1与D p2相差不大,L p2与L n1相差不大,而exp(△E /kT )可远大于1。由此可知,即使N D2<N A1,仍可得到很大的注入比。以宽禁带n 型Al 0.3Ga 0.7As 和窄禁带p 型GaAs 组成的pn 结为例,其禁带宽度之差△E =0.21eV ,设p 区掺杂浓度为2×1019cm -3,n 区掺杂浓度为5×1017cm -3则由上式可得

这表明即使宽禁带n 区掺杂浓度比p 区低近两个数最级,但注入比仍可高达80左右。异质pn 结的这一高注入特性是区别于同质pn 结的主要特点之一,有重要的实用价值。

对高注入比的应用在npn 双极晶体管中,发射结的发射效率定义为

式中J n 和J p 分别表示由发射区注入基区的电子电流密度和由基区注入发射区的空穴电流密度,当γ接近于1

时,才能获得高的电流放大倍数。对于同质结的双极晶体管,为了提高

电子发射效率,发射区的掺杂浓度应比基区掺杂浓度高几个数量级,这就限制了基区的掺杂浓度,增大了基区电阻。为了减小基极电阻,只能增加基区宽度,这又影响了器件的频率特性。从前面的讨论中可以看到,若采用宽禁带n 型半导体与窄禁带p 型半导体形成的异质结作为发射结,则可获得高的注入比和发射效率。以前述的n 型Al 0.3Ga 0.7As 与p 型GaAs 组成的异质发射结为例,当其p 型基区的掺杂浓度为2×1019cm -3时,注入比仍达80左右,相应的注入效率γ≈0.99,这就可使基区大大减薄,从而大大提高晶体管的频率特性。使用这种结构制作的双极晶体管称为异质结双极晶体管,简写为HBT ,在微波和毫米波领域得到广泛应用。由于Al x Ga 1-x As/GaAs 异质结有较好的晶格匹配,且研究最早,故早期的HBT 用n 型Al x Ga 1-x As 和p 型GaAs 作为异质发射结。后来,随着异质结新材料的发展,现已开发出多种性能优良的HBT 。其中之一是用宽禁带n 型Ga 0.5In 0.5P 与p 型GaAs 构成的异质结作为发射结在GaAs 衬底上制作的HBT 。Ga 0.5In 0.5P 与GaAs 也是晶格匹配的,二者间的价带阶△E V 为0.30eV ,导带阶△E C 为0.03eV ,△E V >>△E C 。由图9-10可以看到△E V 越大,空穴从p 区进入n 区所面临的势垒越高,空穴电流I p 越小,将更有利于提高注入比。采用这种材料结构制作的HBT ,其截止频率可高达100GHz ,所用的典型基区厚度为0.08?m ,掺杂浓度为6×1019cm -3。另一例子是用n 型Si 和p 型Si 1-x Ge x 合金形成的异质结作为发射结制作的HBT 。Si 1-x Ge x 混晶的禁带宽度随Ge 组分x 的提高而减小,且与Si 的价带阶△E V >>△E C ,故十分有利于作为基区与Si 匹配制作HBT 。

2、超注入现象

超注入现象是指在异质pn 结中由宽禁带半导体注入到窄禁带半导体中的少数载流子密度可超过宽带半导体中多数载流子浓度,这一现象首先在由宽禁带n 型Al x Ga 1-x As 和窄禁带p 型GaAs 组成的异质pn 结中观察到的。图9-12为这种pn 结在正向偏压下的能带图。图中可见,正偏压下n 区导带底相对p 区导带底随外加电压升高而上升,当电压足够高时可将势垒拉平。由于导带阶的存在,n 区导带底就会高于p 区导带底。因为p 区电子为少数载流子,其准费米能级随电子浓度的上升很快,在稳态正向电流很大时,结两边电子的准费米能级E Fn 可达到一致。在此情况下,由于p 区导带底E C1较n 区导带底E C2更低,距E Fn 更近,故p 区导带电子密度n 1高于n 区电子密度n 2,根据玻尔兹曼统计

??? ??--=kT E E N n Fn C C 111ex p ;??

? ??--=kT E E N n Fn C C 222ex p 式中N C1和N C2分别表示p 型GaAs 和n 型Al x Ga 1-x As 的导带底有效态密度,其值一般相差不大,可粗略认为两者相等,故由以上两式可得

式中E C2>E C1,故n 1>n 2;若E C2-E C1比kT 大一

倍,则n 1就比n 2高一个数量级。因为常温kT 很

小,这是很容易实现的。

超注入现象是异质结特有的另一重要特性,

在半导体异质结激光器中得到广泛出用。应用这

一效应,可使窄带区的注入少子密度达到1×

1018cm -3以上,从而实现异质结激光器所要求的粒

子数反转条件。

半导体物理学(第7版)第三章习题和答案

第三章习题和答案 1. 计算能量在E=E c 到2 *n 2 C L 2m 100E E 之间单位体积中的量子态数。 解: 2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。 3 22 23 3*28100E 21 23 3 *22100E 002 1 233*231000L 8100)(3 222)(22)(1Z V Z Z )(Z )(22)(23 22 C 22 C L E m h E E E m V dE E E m V dE E g V d dE E g d E E m V E g c n c C n l m h E C n l m E C n n c n c )() (单位体积内的量子态数) () (21)(,)"(2)()(,)(,)()(2~.2'2 1 3'' ''''2'21'21'21' 2 2222 22C a a l t t z y x a c c z l a z y t a y x t a x z t y x C C e E E m h k V m m m m k g k k k k k m h E k E k m m k k m m k k m m k ml k m k k h E k E K IC E G si ? 系中的态密度在等能面仍为球形等能面 系中在则:令) (关系为 )(半导体的、证明: 3 1 23 2212 32' 2123 2 31'2 '''')()2(4)()(111100)()(24)(4)()(~l t n c n c l t t z m m s m V E E h m E sg E g si V E E h m m m dE dz E g dk k k g Vk k g d k dE E E ?? ? ? )方向有四个, 锗在(旋转椭球,个方向,有六个对称的导带底在对于即状态数。 空间所包含的空间的状态数等于在

半导体物理学(第7版)第三章习题和答案

AHA12GAGGAGAGGAFFFFAFAF 第三章习题和答案 1. 计算能量在E=E c 到2 *n 2 C L 2m 100E E π+= 之间单位体积中的量子态数。 解: 2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。 3 22 233*28100E 21 23 3 *22100E 002 1 233*231000L 8100)(3 222)(22)(1Z V Z Z )(Z )(22)(23 22 C 22 C L E m h E E E m V dE E E m V dE E g V d dE E g d E E m V E g c n c C n l m h E C n l m E C n n c n c πππππ= +-=-== = =-=*+ + ? ?** )() (单位体积内的量子态数) () (21)(,)"(2)()(,)(,)()(2~.2'21 3'' ''''2'21'21'21' 2 2222 22C a a l t t z y x a c c z l a z y t a y x t a x z t y x C C e E E m h k V m m m m k g k k k k k m h E k E k m m k k m m k k m m k ml k m k k h E k E K IC E G si -=??? ? ??+?=+++====+++=* ****系中的态密度在等能面仍为球形等能面 系中在则:令) (关系为 )(半导体的、证明:[] 3 1 23 2 21232' 212 3 2 31 '2 '''')()2(4)()(111100)()(24)(4)()(~l t n c n c l t t z m m s m V E E h m E sg E g si V E E h m m m dE dz E g dk k k g Vk k g d k dE E E =-==∴-??? ?????+??==∴?=??=+** πππ)方向有四个, 锗在(旋转椭球, 个方向,有六个对称的导带底在对于即状态数。 空间所包含的空间的状态数等于在

半导体物理第十章3

§10.5 半导体发光 一、辐射复合 半导体中电子从高能量状态向较低能量状态跃迁并伴随发射光子的过程。主要有两种: 1、本征辐射复合(带-带复合) 导带电子跃迁到价带与空穴复合的过程称为本征跃迁,本征跃迁伴随发射光子的过程称为本征辐射复合。对于直接禁带半导体,本征跃迁为直接辐射复合,全过程只涉及一个电子-空穴对和一个光子,辐射效率较高。II-VI 族和具有直接禁带的部分III-V 族化合物的主要发光过程属于这种类型。对于间接禁带半导体,本征跃迁必须借助声子,因而是间接复合。其中包含不发射光子的多声子无辐射复合过程和同时发射光子和声子的间接辐射复合过程。因此,间接禁带半导体中发生本征辐射复合的几率较小,辐射效率低。Ge 、Si 、SiC 和具有间接禁带的部分III-Ⅴ族化合物的本征复合发光属于这种类型,发光比较微弱。 因为带内高能状态是非稳状态,载流子即便受激进入这些状态也会很快通过“热化”过程加入导带底或价带顶。显然,带间跃迁所发射的光子能量与E g 有关。对直接跃迁,发射光子的能量满足 g E h =ν 对间接跃迁,在发射光子的同时,还要发射声子,因而光子能量应满足 p g E E h -=ν 其中E p 是声子能量。 2、非本征辐射复合 涉及杂质能级的辐射复合称为非本征辐射复合。在这种过程中,电子从导带跃迁到杂质能级,或从杂质能级跃迁到价带,或仅仅在 杂质能级之间跃迁。由于这种跃迁不受选择定则的限制,发生的几 率也很高,是间接禁带半导体,特别是宽禁带发光材料中的主要辐 射复合机构。 下面着重讨论电子在施主与受主杂质之间的跃迁,如图10-22所示。当半导体中同时存在施主和受主杂质时,两者之间的库仑作用力使受激态能量增大,其增量△E 与施主和受主杂质之间距离r 成反比。当电子从施主向受主跃迁时,若没有声子参与,发射光子能量为 )4/()(02r q E E E h r A D g επεν++-= 式中E D 和E A 分别代表施主和受主的束缚能,εr 是发光材料的相对介电常数。 由于施主和受主一般以替位原子出现在晶格中,因此r 只能取原子间距的整数倍,相应的光子能量为不连续数值,对应于一系列不连续的发射谱线。但这只在r 较小,即电子在相邻的施主和受主间跃迁时才可区分;随着r 的增大,发射光子的能量差别越来越小,而且电子从施主向受主跃迁所要穿过的距离也越来越大,跃迁几率很小。因此杂质发光主要发生在相邻施-受主之间。 3、GaP 中的非本征辐射复合机构 GaP 的室温禁带宽度E g =2.26eV ,但其本征辐射跃迁效率很低,主要依靠非本征发光中心。图10-23表示GaP 中几种可能的辐射复合机构。 图10-22施主与受主间的

半导体物理学第七版 完整课后题答案

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)与价带极大值附近 能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1==π (1)禁带宽度; (2) 导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064 30382324 30)(2320212102 2 20 202 02022210 1202==-==<-===-== >=+== =-+ηηηηηηηη因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 3222* 83)2(1m dk E d m k k C nC ===η

s N k k k p k p m dk E d m k k k k V nV /1095.704 3)()()4(6 )3(25104300222* 11-===?=-=-=?=-==ηηηηη所以:准动量的定义: 2、 晶格常数为0、25nm 的一维晶格,当外加102V/m,107 V/m 的电场时,试分别计 算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=?η s a t s a t 13719282 1911027.810106.1) 0(1027.810106.1) 0(----?=??--= ??=??-- =?π πηη 补充题1 分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先 画出各晶面内原子的位置与分布图) Si 在(100),(110)与(111)面上的原子分布如图1所示: (a)(100)晶面 (b)(110)晶面

半导体物理学第八章知识点

第8章 半导体表面与MIS 结构 许多半导体器件的特性都和半导体的表面性质有着密切关系,例如,晶体管和集成电路的工作参数及其稳定性在很大程度上受半导体表面状态的影响;而MOS 器件、电荷耦合器件和表面发光器件等,本就是利用半导体表面效应制成的。因此.研究半导体表面现象,发展相关理论,对于改善器件性能,提高器件稳定性,以及开发新型器件等都有着十分重要的意义。 §8.1 半导体表面与表面态 在第2章中曾指出,由于晶格不完整而使势场的周期性受到破坏时,禁带中将产生附加能级。达姆在1932年首先提出:晶体自由表面的存在使其周期场中断,也会在禁带中引入附加能级。实际晶体的表面原子排列往往与体内不同,而且还存在微氧化膜或附着有其他分子和原子,这使表面情况变得更加复杂。因此这里先就理想情形,即晶体表面无缺陷和附着物的情形进行讨论。 一、理想一维晶体表面模型及其解 达姆采用图8-l 所示的半无限克龙尼克—潘纳模型描述具有单一表面的一维晶体。图中x =0处为晶体表面;x ≥0的区域为晶体内部,其势场以a 为周期随x 变化;x ≤0的区域表示晶体之外,其中的势能V 0为一常数。在此半无限周期场中,电子波函数满足的薛定谔方程为 )0(20202≤=+-x E V dx d m φφφη (8-1) )0()(2202≥=+-x E x V dx d m φφφη (8-2) 式中V (x)为周期场势能函数,满足V (x +a )=V(x )。 对能量E <V 0的电子,求解方程(8-1)得出这些 电子在x ≤0区域的波函数为 ])(2ex p[)(001x E V m A x η -=φ (8-3) 求解方程(8-2),得出这些电子在x ≥0区域中波函数的一般解为 kx i k kx i k e x u A e x u A x ππφ22212)()()(--+= (8-4) 当k 取实数时,式中A 1和A 2可以同时不为零,即方程(8-2)满足边界条件φ1(0)=φ2(0)和φ1'(0)=φ2'(0)的解也就是一维无限周期势场的解,这些解所描述的就是电子在导带和价带中的允许状态。 但是,当k 取复数k =k '+ik ''时(k '和k ''皆为实数),式(8-4)变成 x k x k i k x k x k i k e e x u A e e x u A x '''--''-'+=ππππφ2222212)()()( (8-5) 此解在x→∞或-∞时总有一项趋于无穷大,不符合波函数有限的原则,说明无限周期势场不能有复数解。但是,当A 1和A 2任有一个为零,即考虑半无限时,k 即可取复数。例如令A 2=0,则 x k x k i k e e x u A x ''-'=ππφ2212)()( (8-6) 图8-l 一维半无限晶体的势能函数

半导体物理学(刘恩科)第七版 完整课后题答案

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近 能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2) 导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43 (0,060064 3 382324 3 0)(2320 2121022 20 202 02022210 1202== -==<-===-==>=+===-+ 因此:取极大值 处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 32 2 2*8 3)2(1 m dk E d m k k C nC ===

s N k k k p k p m dk E d m k k k k V nV /1095.704 3 )() ()4(6 )3(25104 3002 2 2*1 1 -===?=-=-=?=- == 所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别 计算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? s a t s a t 137 19 282 1911027.810 10 6.1)0(102 7.810106.1) 0(----?=??-- =??=??-- = ?π π 补充题1 分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度 (提示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示: (a )(100)晶面 (b )(110)晶面

第三章平衡态半导体的物理基础半导体物理学

第三章习题 平衡半导体的物理基础 1、当E-E F 分别为kT 、4kT 、7kT ,用费米分布和玻尔兹曼分布分别计算分布概率,并对结果进行讨论。 2、设半导体导带具有以下E -k 关系, ??? ? ??++=3222122 2m k m k m k E z y x (E >0) 试求出其有效质量m *和状态密度g(E)(单位晶体体积) 3、设二维能带具有以下抛物线性E -k 关系, m k E 22 2 = (E>0) 求单位面积晶体的态密度g(E)。 4、Si 和GaAs 态密度有效质量分别为m n =1.065m 0, m p =0.647m 0;m n =0.067m 0, m p =0.47m 0, 求在300K 下两者的N C 和N V 。若Si 和GaAs 的E G 分别为1.17eV 和1.52eV ,求两者的本证载流子浓度。 5、已知Si 中只含施主杂质N D =1015cm -3,现在40K 测得电子浓度为1012cm -3,试估算该施主杂质的电离能。 6 7、对补偿的N 型半导体,推导公式: )e x p ()(kT g N n N N n N n D D C A D A ε-=--+ 8、试由金的能级位置及有关数据计算掺有11015cm -3施主和21015cm -3 的金的n 型硅的电阻率(设g=1)。 9、每立方厘米的硅样品中掺有1014个硼原子,硼原子在Si 中的掺杂能级为E A , 电离能为0.045eV ,求: (a )在温度T =300K 时,硅样品中的载流子(电子与空穴)浓度是多少? (b )在温度T= 470K 时,硅样品中的载流子(电子与空穴)浓度是多少? 10、 在上题所给出的条件下,计算F i E E -,并在能带图中仔细画出Ei 和E F 的位置。(在300K 时,E G (Si)=1.17eV ,/0.608p n m m * *=,在470K 时,E G (Si) =1.08eV ,/0.17p n m m **=。 ) 11、 *利用类氢原子模型,估算Si 半导体中杂质B 和P 的电离能。(选做)

《半导体物理与器件》第四版答案第十章

《半导体物理与器件》第四版答案第十章 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

Chapter 10 10.1 (a) p-type; inversion (b) p-type; depletion (c) p-type; accumulation (d) n-type; inversion _______________________________________ 10.2 (a) (i) ??? ? ??=i a t fp n N V ln φ ()??? ? ????=1015105.1107ln 0259.0 3381.0=V 2 /14?? ? ???∈=a fp s dT eN x φ ()( ) ()( )( ) 2 /1151914107106.13381.01085.87.114? ? ? ??????=-- 51054.3-?=cm or μ354.0=dT x m (ii) ()???? ????=1016105.1103ln 0259.0fp φ 3758.0=V ()( ) ()( )( ) 2 /1161914103106.13758.01085.87.114? ? ? ??????=--dT x 51080.1-?=cm or μ180.0=dT x m (b) ()03022.03003500259.0=?? ? ??=kT V ??? ? ? ?-=kT E N N n g c i exp 2 υ ()() 3 19 19 3003501004.1108.2?? ? ????= ?? ? ??-?03022.012.1exp 221071.3?= so 111093.1?=i n cm 3- (i)()???? ????=11151093.1107ln 03022.0fp φ 3173.0=V ()( ) ()( )( ) 2 /1151914107106.13173.01085.87.114? ? ? ??????=--dT x 51043.3-?=cm or μ343.0=dT x m (ii) ()???? ????=11161093.1103ln 03022.0fp φ 3613.0=V ()( ) ()( )( ) 2 /1161914103106.13613.01085.87.114? ? ? ??????=--dT x 51077.1-?=cm or μ177.0=dT x m _______________________________________ 10.3 (a) ()2 /14max ? ? ? ???∈=='d fn s d dT d SD eN eN x eN Q φ ()()[]2/14fn s d eN φ∈= 1st approximation: Let 30.0=fn φV Then ()281025.1-? ()()()()()() [] 30.01085.87.114106.11419--??=d N 141086.7?=?d N cm 3- 2nd approximation: ()2814.0105.11086.7ln 0259.01014=??? ? ????=fn φV Then ()2 81025.1-? ()()()()()() [] 2814.01085.87.114106.11419--??=d N 141038.8?=?d N cm 3-

半导体物理学第七版完整答案修订版

半导体物理学第七版完 整答案修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k) 分别为: E C (K )=0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子 自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? 补充题1 分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提 示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示:

(a )(100)晶面 (b )(110)晶面 (c )(111)晶面 补充题2 一维晶体的电子能带可写为)2cos 81 cos 8 7()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求 (1)布里渊区边界; (2)能带宽度; (3)电子在波矢k 状态时的速度; (4)能带底部电子的有效质量* n m ; (5)能带顶部空穴的有效质量*p m 解:(1)由 0)(=dk k dE 得 a n k π = (n=0,?1,?2…) 进一步分析a n k π ) 12(+= ,E (k )有极大值, a n k π 2=时,E (k )有极小值

半导体物理学第7版习题及答案

第五章习题 1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。计算空穴的复合率。 2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为。 (1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。 3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10cm 。今用光照射该样品,光被半导体均 匀的吸收,电子-空穴对的产生率是1022cm -3s-1 ,试计算光照下样品的电阻率,并求电导中少数在流子 的贡献占多大比例? 4. 一块半导体材料的寿命=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后, s cm p U s cm p U p 31710 10010 313/10U 100,/10613 ==?= ====?-??-τ τμτ得:解:根据?求:已知:τ τ τ ττ g p g p dt p d g Ae t p g p dt p d L L t L =?∴=+?-∴=?+=?+?-=?∴-. 00 )2()(达到稳定状态时,方程的通解:梯度,无飘移。 解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p p n p n p n p n L /06.396.21.0500106.1101350106.11010.0:101 :1010100 .19 16191600'000316622=+=???+???+=?+?++=+=Ω=+==?==?=?=+?-----μμμμμμσμμρττ光照后光照前光照达到稳定态后% 2606.38.006.3500106.1109. ,.. 32.0119 161 0' '==???=?∴?>?Ω==-σσ ρp u p p p p cm 的贡献主要是所以少子对电导的贡献献 少数载流子对电导的贡

《半导体物理》复习大纲

《半导体物理》复习大纲 题型:名词解释、选择、填空、简答、问答、画图、证明、计算 第一章:半导体中的电子状态 1、晶体结构、点阵及基元的关系 2、Wigner-Seitz初基晶胞的定义 3、晶面、晶列与晶向的关系 4、十四种晶体结构是什么 5、布喇格定律、倒易点阵、布里渊区 6、电子共有化运动及其产生结果是什么? 7、硅、锗能带的特点是什么? 8、如何理解电子在周期性势场中运动(即:E(k)和k的关系的定量计算 理解)? 9、怎样从能带区分绝缘体、半导体和导体? 10、有效质量的理解 11、导电机构的理解 12、回旋共振 13、硅和锗的能带结构 第二章:半导体中杂质和缺陷能级 1、替位式杂质与间隙式杂质的定义,计算间隙式原子占晶胞空间的百分比? 2、间隙式扩散和替位式扩散的理解 3、施主杂质和受主杂质的概念 4、掺杂元素与电导类型的关系、施主能级、受主能级、杂质电离能 5、浅能级杂质与深能级杂质的区别,几种常见的浅能级杂质是什么? 6、浅能级杂质电离能的简单计算 7、杂质补偿的理解 8、点缺陷种类有哪些?及它们的特点以及对半导体性能的影响是什么? 9、位错的理解 第三章:热平衡状态下载流子的统计分布 1、什么是热平衡状态? 2、状态密度的理解及其计算 3、状态密度g c(E)和g v(E)与能量E的关系?抛物线。状态密度与有效质 量的关系?有效质量决定了开口大小。有效质量与状态密度的关系?有效质量大的能带中的状态密度大。

4、什么是费米分布函数?它反映了什么物理含义?它与温度和能量的关系是什 么? 5、电子占据杂质能级的几率? 6、什么是费米能级?不同掺杂浓度半导体材料费米能级的差别是什么? 7、什么是波尔兹曼分布?它的物理含义是什么?波尔兹曼分布满足的前提条件 是什么?它和费米分布的区别是什么? 8、电子的玻氏分布于空穴玻氏分布 9、简并系统和非简并系统 10、导带电子浓度和价带空穴浓度的表达式是什么? 11、影响平衡时电子浓度和空穴浓度的因素?(有效质量、温度、E F) 12、平衡态电子、空穴浓度积及其影响因素是什么?(有效质量、温度、E g) 13、本征半导体费米能级的位置及其定性推倒 14、杂质能级上的电子和空穴浓度表达式及其理解 15、杂质半导体的电中性条件是什么? 16、杂质半导体在不同温度区域的电导性能(n0、p0)和费米能级的变化及主导 机制是什么?(低温弱电离、中间电离、强电离、过渡区、本征激发)17、已知工作温度,如何确定材料的掺杂范围?已知材料的掺杂范围,如何确定 其工作温度? 18、简并半导体的载流子浓度分布 19、杂质能带、杂质带导电、禁带变窄效应、 第四章:半导体导电性 1、电阻率、电导率、电流密度、电场强度、漂移速度以及迁移率之间的关系 2、载流子散射的定义 3、平均自由程的定义 4、平均自由时间与散射几率的关系 5、迁移率、电导率与平均自由时间的关系 6、载流子输运过程中遇到的散射机构有哪些?电离杂质、晶格散射 7、横波、纵波、光学波、声学波的理解 8、对于不同类型晶体受到散射的机构不同,原子晶体是纵声学波,离子晶体是 纵光学波散射。 9、温度不同时候的主要散射机构不同。低温是电离杂质散射、高温是晶格散射 10、温度、杂质浓度以及电子有效质量怎样影响迁移率的 11、半导体电阻率与温度和杂质浓度的关系 12、什么是强电场效应 13、什么是霍尔效应

半导体物理学第九章知识点

第9章半导体异质结构 第6章讨论的是由同一种半导体材料构成的p-n结,结两侧禁带宽度相同,通常称之为同质结。本章介绍异质结,即两种不同半导体单晶材料的结合。虽然早在1951年就已经提出了异质结的概念,并进行了一定的理论分析工作,但是由于工艺水平的限制,一直没有实际制成。直到气相外延生长技术开发成功,异质结才在1960年得以实现。1969年发表了第一个用异质结制成激光二极管的报告之后,半导体异质结的研究和应用才日益广泛起来。 §9.1 异质结及其能带图 一、半导体异质结 异质结是由两种不同的半导体单晶材料结合而成的,在结合部保持晶格的连续性,因而这两种材料至少要在结合面上具有相近的晶格结构。 根据这两种半导体单晶材料的导电类型,异质结分为以下两类: (1)反型异质结 反型异质结是指由导电类型相反的两种不同的半导体单晶材料所形成的异质结。例如由p型Ge与n型Si构成的结即为反型异质结,并记为pn-Ge/Si或记为p-Ge/n-Si。如果异质结由n型Ge 与p型Si形成,则记为np-Ge/Si或记为n-Ge/p-Si。已经研究过许多反型异质结,如pn-Ge/Si;pn-Si/GaAs;pn-Si/ZnS;pn-GaAs/GaP;np-Ge/GaAs;np-Si/GaP等等。 (2)同型异质结 同型异质结是指由导电类型相同的两种不同的半导体单晶材料所形成的异质结。例如。。。 在以上所用的符号中,一般都是把禁带宽度较小的材料名称写在前面。 二、异质结的能带结构 异质结的能带结构取决于形成异质结的两种半导体的电子亲和能、禁带宽度、导电类型、掺杂浓度和界面态等多种因素,因此不能像同质结那样直接从费米能级推断其能带结构的特征。 1、理想异质结的能带图 界面态使异质结的能带结构有一定的不确定性,但一个良好的异质结应有较低的界面态密度,因此在讨论异质结的能带图时先不考虑界面态的影响。 (1)突变反型异质结能带图 图9-1(a)表示禁带宽度分别为E g1和E g2的p型半导体和n型半导体在形成异质pn结前的热平衡能带图,E g1 E g2。图中,δ1为费米能级E F1和价带顶E V1的能量差;δ2为费米能级E F2与导带底E C2的能量差;W1、W2分 别是两种材料的功函数;χ1、χ2 分别是两种材料的电子亲和 能。总之,用下标“1”和“2”分 别表示窄禁带和宽禁带材料 的物理参数。 当二者紧密接触时,跟同 质pn结一样,电子从n型半 导体流向p型半导体,空穴从图9-1 形成突变pn异质结之前和之后的平衡能带图

半导体物理第十章1

第l0章 半导体的光电特性 本章讨论光和半导体相互作用的一般规律,用光子与晶体中电子、原子的相互作用来研究半导体的光学过程、重点讨论光吸收、光电导和发光,以及这些效应的主要应用。 §10.1 半导体的光学常数 一、折射率和吸收系数(Refractive index & Absorption coefficient ) 固体与光的相互作用过程,通常用折射率、消光系数和吸收系数来表征。在经典理论中,早已建立了这些参数与固体的电学常数之间的固定的关系。 1、折射率和消光系数(Extinction coefficient) 按电磁波理论,折射率定义为 2ωεσεi N r -= 式中,εr 和σ分别是光的传播介质的相对介电常数和电导率,ω是光的角频率。显然,当σ≠0时,N 是复数,因而也可记为 ik n N -=2 (10-1) 两式相比,可知 222,ωεσε==-nk k n r (10-2) 式中,复折射率N 的实部n 就是通常所说的折射率,是真空光速c 与光波在媒质中的传播速度v 之比;k 称为消光系数,是一个表征光能衰减程度的参量。这就是说,光作为一种电磁辐射,当其在不带电的、σ≠0的各问同性导电媒质中沿x 方向传播时,其传播速度决定于复折射率的实部,为c/n ;其振幅在传播过程中按exp(-ωkx /c )的形式衰减,光的强度I 0则按exp(-2ωkx /c)衰减,即 )2exp(0c kx I I ω- = (10-3) 2、吸收系数 光在介质中传播而有衰减,说明介质对光有吸收。用透射法测定光在介质中传播的衰减情况时,发现介质中光的衰减率与光的强度成正比,即 I dx dI α-= 比例系数α的大小和光的强度无关,称为光的吸收系数。对上式积分得 x e I I α-=0 (10-4) 上式反映出α的物理含义是:当光在媒质中传播1/α距离时,其能量减弱到只有原来的1/e 。将式(10-3)与式(10-4)相比,知吸收系数 λπωαk c k 42== 式中λ是自由空间中光的波长。

半导体物理50本书

半导体物理50本书 1、半导体激光器基础633/Q003 (日)栖原敏明著科学出版社;共立出版2002.7 2、半导体异质结物理211/Y78虞丽生编著科学出版社1990.5 3、超高速光器件9/Z043 (日)斋藤富士郎著科学出版社;共立出版2002.7 4、半导体超晶格物理214/X26夏建白,朱邦芬著上海科学技术出版社1995 5、半导体器件:物理与工艺6/S52 (美)施敏(S.M.Sze)著科学出版社1992.5 6、材料科学与技术丛书.第16卷,半导体工艺5/K035(美)R.W.卡恩等主编科学出版社1999 7、光波导理论与技术95/L325李玉权,崔敏编著人民邮电出版社2002.12 8、半导体光学性质240.3/S44沈学础著科学出版社1992.6 9、半导体硅基材料及其光波导571.2/Z43赵策洲电子工业出版社1997 10半导体器件的材料物理学基础612/C49陈治明,王建农著科学出版社1999.5 11、半导体导波光学器件理论及技术666/Z43赵策洲著国防工业出版社1998.6

12、半导体光电子学631/H74黄德修编著电子科技大学出版社1989.9 13、分子束外延和异质结构523.4/Z33 <美>张立刚,<联邦德国>克劳斯·普洛格著复旦大学出版社1988.6 14、半导体超晶格材料及其应用211.1/K24康昌鹤,杨树人编著国防工业出版社1995.12 15、现代半导体器件物理612/S498 (美)施敏主编科学出版社2001.6 16、外延生长技术523.4/Y28杨树人国防工业出版社1992.7 17、半导体激光器633/J364江剑平编著电子工业出版社2000.2 18、半导体光谱和光学性质240.3/S44(2)沈学础著科学出版社2002 19、超高速化合物半导体器件572/X54谢永桂主编宇航出版社1998.7 20、半导体器件物理612/Y75余秉才,姚杰编著中山大学出版社1989.6 21、半导体激光器原理633/D807杜宝勋著兵器工业出版社2001.6 22、电子薄膜科学524/D77 <美>杜经宁等著科学出版社1997.2 23、半导体超晶格─材料与应用211.1/H75黄和鸾,郭丽伟编著辽宁大学出版社1992.6 24、半导体激光器及其应用633/H827黄德修,刘雪峰编著国防

半导体物理学 (第七版) 习题答案

半导体物理习题解答 1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为: E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0 2 23m k h ; m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。试求: ①禁带宽度; ②导带底电子有效质量; ③价带顶电子有效质量; ④价带顶电子跃迁到导带底时准动量的变化。 [解] ①禁带宽度Eg 根据dk k dEc )(=0232m k h +0 12)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值: k min = 14 3 k , 由题中E C 式可得:E min =E C (K)|k=k min = 2 10 4k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0; 并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =2 02 48a m h =11 28282 2710 6.1)1014.3(101.948)1062.6(----???????=0.64eV ②导带底电子有效质量m n 0202022382322 m h m h m h dk E d C =+=;∴ m n =022 283/m dk E d h C = ③价带顶电子有效质量m ’ 022 26m h dk E d V -=,∴022 2'61/m dk E d h m V n -== ④准动量的改变量 h △k =h (k min -k max )= a h k h 83431= [毕] 1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带 底运动到能带顶所需的时间。 [解] 设电场强度为E ,∵F =h dt dk =q E (取绝对值) ∴dt =qE h dk

半导体物理第十章习题答案

第10章 半导体的光学性质和光电与发光现象 补充题:对厚度为d 、折射率为n 的均匀半导体薄片,考虑界面对入射光的多次反射,试推导其总透射率T 的表达式,并由此解出用透射率测试结果计算材料对光的吸收系数α的公式。 解:对上图所示的一个夹在空气中的半导体薄片,设其厚度为d ,薄片与空气的两个界面具有相同的反射率R 。当有波长为λ、强度为I 0的单色光自晶片右侧垂直入射,在界面处反射掉I 0R 部分后,其剩余部分(1-R)I 0进入薄片向左侧传播。设材料对入射光的吸收系数为α ,则光在薄片中一边传播一边按指数规律exp(-αx )衰减,到达左边边界时其强度业已衰减为(1-R)I 0exp(-αd )。这个强度的光在这里分为两部分:一部分为反射光,其强度为R(1-R)I 0exp(-αd );另一部分为透出界面的初级透射光,其强度为(1-R)2I 0exp(-αd )。左边界的初级反射光经过晶片的吸收返回右边界时,其强度为R(1-R)I 0exp(-2αd ),这部分光在右边界的内侧再次分为反射光和透射光两部分,其反射光强度为R 2(1-R)I 0exp(-2αd ),反射回到左边界时再次被衰减了exp(-αd )倍,即其强度衰减为R 2(1-R)I 0exp(-3αd )。这部分光在左边界再次分为两部分,其R 2(1-R)2I 0exp(-3αd )部分透出晶片,成为次级透射光。如此类推,多次反射产生的各级透射光的强度构成了一个以 (1-R)2I 0exp(-αd )为首项,R 2exp(-2αd )为公共比的等比数列。于是,在左边界外测量到的总透过率可用等比数列求和的公式表示为 ()22211d i d i R e T T R e αα---==-∑ 由上式可反解出用薄片的透射率测试值求材料吸收吸收的如下计算公式 410ln(2A d T α-=- 式中,薄片厚度d 的单位为μm ,吸收系数α的单位为cm -1,参数A ,B 分别为 2 1R A R -??= ???;21R B = 空气 薄片 空气 入射光I 0 反射光I 0R

半导体物理第三章3

§3.4 一般情况下的载流子统计分布 一般情况指同一半导体中同时含有施主和受主杂质的情况。在这种情况下,电中性条件为 - ++=+A D p n n p 00 (3-80) 因为n D +=N D -n D ,p A - =N A -p A ,电中性条件可表示成 D A A D n N n p N p ++=++00 式中,n D 和p A 分别是中性施主和中性受主的浓度,上式即 )exp(kT E E N N V F V D --+) exp( 2 11kT E E N A F A -++)exp(21 1)exp(kT E E N kT E E N N F D D F C C A -++ --+= 对确定的半导体,式中的变数仅是E F 及T ,但E F 是T 的隐函数。因此,若能利用这一关系确定出E F 与T 的函数关系,则对于半导体同时含施主和受主杂质的—般情况下,导带中的电子和价带中的空穴以及杂质能级上电子的统计分布问题就可完全确定。 然而,要想利用上式得到E F 的解析表达式是困难的。不过,对计算机的使用已十分普及的今天并不是什么大问题。如果实际应用时式中某些项还可忽略,求解费米能级E F 的问题还能进一步简化。事实上,前面讨论的本征半导体和含一种杂质的半导体就是它的简化特例。 请同学阅读参考书中对含少量受主杂质的n 型半导体求解费米能级的讨论。特别注意求解过程中的近似处理方法。 §3.5 简并半导体 一、重掺杂半导体的载流子密度 1、适用于玻耳兹曼统计的掺杂浓度 已知n 型半导体处于施主杂质完全电离的温区时,其费米能级为 D C F C N N kT E E ln =- (N A =0) ;A D C F C N N N kT E E -=-ln (N A ≠0) 注意此公式成立的先决条件是(E C -E F )>>kT ,因此它只适用于N D 或(N D -N A ) <

半导体物理学(刘恩科)第七版-完整课后题答案

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带 极大值附近能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2) 导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1)

eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43 (0,060064 3 382324 3 0)(2320 2121022 20 202 02022210 1202== -==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 32 2 2*8 3)2(1 m dk E d m k k C nC === s N k k k p k p m dk E d m k k k k V nV /1095.704 3 )() ()4(6 )3(25104 3002 2 2*1 1 -===?=-=-=?=- == 所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场 时,试分别计算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=?

半导体物理学[第九章异质结]课程复习

第九章异质结 9.1 理论概要与重点分析 (1)由两种不同的半导体材料形成的结,称为异质结。异质结是同质结的引申和发展,而同质结是异质结的特殊情况。异质结分为同型异质结(如n-nGe—GaAs,p—pGe-Si,等)和反型异质结(如p—nGe—GaAs,p—nGe—Si等)。另外,根据结处两种材料原子过渡的陡、缓情况,可分为突变和缓变异质结。 通常形成异质结的两种材料沿界面有相近的结构,因而界面仍保持晶格连续。 (2)研究异质结的特性时,异质结的能带图起着重要作用。在不考虑界面态的情况下,任何异质结能带图都取决于两侧半导体材料的电子亲和能、禁带宽度、功函数(随掺杂类型及浓度而异)三个因素。然而平衡异质结内具有统一费米能级仍然是画能带图的重要依据。 由于禁带宽度和电子亲和能不同,两种半导体的E c 、E v ,在交界面处出现不 连续而发生突变,其突变量: 由于晶格失配,必然在界面处存在悬挂键而引入界面态,晶格失配越严重,悬挂 键密度越高,界面态密度越大。 不同晶面相接触形成异质结其悬挂键密度是不同的,经推算,几个主要面形 成异质结后的悬挂键密度△N s 分别为

如果界面态的密度很大(1013/cm2以上),表面处的费米能级在表面价带以上禁带宽度的1/3处。对n型半导体,界面态起受主作用,界面态接受体内电子,界面带负电,半导体表面带正电,使能带上弯。对p型半导体,界面态起施主作用,界面态向体内施放电子,界面带正电,半导体表面带负电,使能带下弯。总之高界面态的存在,使异质结的能带图与理想情况相比有较大的变化。 (4)因为异质结在结处能带不连续,存在势垒尖峰和势阱,而且还有不同程度的界面态和缺陷,使异质结的电流传输问题比同质结要复杂得多。不存在一种在多数情况下起主导作用的电流传输机制,根据结的实际情况发展了多种电流传输模型。这些模型是:扩散模型、发射模型、发射复合模型、隧道一复合模型等。分别或联合使用这些模型计算的结果,可使不同异质结的伏安特性有较好的解释。 (5)异质结的调制掺杂和量子阱结构。如果在异质结宽禁带一边重掺杂,窄禁带一边不掺杂,就构成调制掺杂结构。设宽禁带重掺杂一边为n型,其费米能级远高于窄禁带,因而电子从重掺杂一边注入到不掺杂的一边,使电子的输运在不掺杂一边进行。这样使提供载流子的材料与输运载流子的材料在空间上分开,大大减少了载流子输运时受电离杂质的散射作用,使迁移率大为提高,这就是迁移率的增强效应。用此原理可制成异质结高迁移率晶格管。 实际上在调制掺杂结构中,宽禁带重掺杂一边的载流子注入到不掺杂一边的过程中,两边的费米能级逐渐趋于相等,最后达到平衡,在结处形成空问电荷区,其电场使能带发生弯曲,在窄禁带半导体近结处形成电子势阱。窄禁带半导体中获得的高密度电子仅存在于很薄的近似三角形的势阱中。在平行于结面方向,是

相关主题
文本预览
相关文档 最新文档