当前位置:文档之家› 肿瘤放射治疗常见问题解答

肿瘤放射治疗常见问题解答

肿瘤放射治疗常见问题解答
肿瘤放射治疗常见问题解答

肿瘤放射治疗常见问题解答

1.什么是放射线?

在1895年12月的一个夜晚,德国的一位世界著名的物理学家伦琴(ROentgen 1845~1923年)在物理实验室进行阴极射线特点的研究的试验中发现:放电的玻璃管不仅发射看得见的光,还发射某种看不见的射线,这种射线穿透力很强,能穿透玻璃、木板和肌肉等,也能穿透黑纸使里面包着的底片感光,还能使涂有氰酸钡的纸板闪烁浅绿色的荧光,但对骨头难以穿透。伦琴还用这种射线拍下他夫人手骨的照片。他认为新发现的射线本质很神秘,还只能算一个未知物,于是就把数学中表示本知数的"X"借用过来,称之为"X射线"。后来又经过科学家们多年的研究,才认清了"X射线"的本质,实质上它就是一种光子流,一种电磁波,具有光线的特性,是光谱家族中的成员,只是其振荡频率高,波长短罢了,其波长在 1~0.01埃(1埃=10-10米)。X射线在光谱中能量最高、范围最宽,可从紫外线直到几十甚至几百兆电子伏特(MeV)。因为其能量高,所以能穿透一定厚度的物质。能量越高,穿透得越厚,所以在医学上能用来透视、照片和进行放射治疗。

科学家们在放射线研究的过程中,还发现放射性同位素在衰变时能放射三种射线:α、β、γ射线。α射线实质上就是氦原子核流,它的电离能力强,但穿透力弱,一张薄纸就可挡住;β射线实质上就是电子流,电离能力较α射线弱,而穿透力较强,故常用于放射治疗;γ射线本质上同X射线一样,是一种波长极短,能量甚高的电磁波,是一种光子流,不带电,以光速运动,具有很强的穿透力。因此常常用于放射治疗。

2.什么是放射治疗?

放射治疗是指用放射性同位素的射线,X线治疗机产生的普通X线,加速器产生的高能X线,还有各种加速器所产生的电子束、质子、快中子、负兀介子以及其它重粒子等用来治疗癌瘤。

广义的放射治疗既包括放射治疗科的肿瘤放射治疗,也包括核医学科的内用同位素治疗(如131碘治疗甲状腺癌和甲状腺功能亢进,32磷治疗癌性胸水等)。狭义的放射治疗一般仅指前者,即人们一般所称的肿瘤放射治疗。放射治疗有两种照射方式:一种是远距离放疗(外照射),即将放射源与病人身体保持一定距离进行照射,射线从病人体表穿透进人体内一定深度,达到治疗肿瘤的目的,这一种用途最广也最主要;另一种是近距离放疗(内照射),即将放射源密封置于肿瘤内或肿瘤表面,如放入人体的天然腔内或组织内(如舌、鼻、咽、食管、气管和宫体等部位)进行照射,即采用腔内,组织间插植及模型敷贴等方式进行治疗,它是远距离60钴治疗机或加速器治疗癌瘤的辅助手段。近年来,随着各医院医疗设备的不断改进,近距离放疗也逐渐普及。

体内、外放射治疗有三个基本区别:①和体外照射相比,体内照射放射源强度较小,由几个毫居里到大约100毫居里,而且治疗距离较短;②体外照射,放射线的能量大部分被准直器、限束器等屏蔽,只有小部分能量达到组织;体内照射则相反,大部分能量被组织吸收;③体外照射,放射线必须经过皮肤和正常组织才能到达肿瘤,肿瘤剂量受到皮肤和正常组织耐受量的限制,为得到高的均匀的肿瘤剂量,需要选择不同能量的射线和采用多野照射技术等;而体内照射,射线直到肿瘤组织,较深部的正常组织受照射量很小。

3.有人把放射治疗称为"烤电",对不对?

有人把放射治疗称为"烤电",这是普通百姓对放射治疗的一种不确切的称谓。可能源于放射治疗使病人放射野内的皮肤发红,甚至由于色素沉着增多而变"黑",而联想到用电灯或其它电器设备烘烤皮肤而出现类似的皮肤改变所致。殊不知两者的作用机理并不相同。放射治疗是用放射治疗设备如X线治疗机、60钴治疗机和加速器产生的看不见、摸不着、闻不到的射线(X线、γ线和电子束等)来照射肿瘤,使增殖的肿瘤细胞的脱氧核糖核酸链(DNA)损伤,进而其增殖能力丧失,引起细胞死亡。当然,放射线同样损伤照射野内的正常组织,如皮

肤上皮和表皮的毛细血管内皮细胞,使毛细血管通透性增高,血管内的红细胞、炎症细胞等渗出,出现炎症反应;另外色素沉着增多使局部皮肤颜色加深,变红甚至变"黑"。在此过程中,尚有机体自身稳定系统起作用,使皮肤上皮损伤修复,增殖加速,修复并替换受损的上皮。而用电灯等电器设备烘烤皮肤("烤电")是由于局部温度升高,高热引起皮肤表层毛细血管扩张,通透性增高,血管内的炎症细胞和红细胞等渗出,出现炎症反应,使表皮变红;当然温度过高同样也会损伤表皮细胞,损伤毛细血管内皮细胞使之通透性更加增加,炎症反应加重,色素沉着等使皮肤变红、甚至变"黑",最后机体修复受损的皮肤。因此,把放射治疗称为"烤电"是不确切的。

4.放射线为什么能治疗肿瘤?

人们利用放射线对各种组织器官的正常细胞群和肿瘤细胞群的不同影响和损伤,以及它们恢复能力的差别,使放射治疗成为治疗肿瘤的主要手段之一。

因为正常组织受射线损伤后,自动稳定控制系统开始起作用,细胞增殖周期缩短,细胞的生长比率也增加,这样很快就完成受损伤的正常组织的修复。而肿瘤细胞群受射线打击后有自己的、与正常组织不同的反应体系,在不同的肿瘤之间的反应也极为不同。在对人体肿瘤细胞的观察过程中,发现细胞增殖率及细胞丢失和放射敏感性之间有明显的关系,凡平均生长速度最快的、生长比率及细胞更新率高的肿瘤,对放射线较敏感:一般胚胎性肿瘤对放射线最敏感;淋巴类肿瘤次之;上皮性肿瘤再次之;而间质性肿瘤最不敏感,需要较高剂量才可能起作用。由于正常组织有自动稳定控制系统和肿瘤组织不同,所以在分次照射后正常组织及肿瘤组织的恢复及生长情况都不相同:①正常组织在受照射后,细胞增殖周期恢复正常的时间快,而肿瘤组织对放射的损伤修复慢,细胞增殖周期延长;

②照射后虽然肿瘤可能有暂时的加速生长的现象,但这种生长速度还比不上正常组织为修补损伤而出现的增殖快;③肿瘤细胞群内的生长比率原来就比正常组织为大,处于细胞周期的细胞多,因此受致死损伤的就比正常组织为多,受不同程度损伤的也较正常组织为多。

因此,在临床上肿瘤放疗中,利用正常组织和肿瘤组织放疗效果的不同,进行分次放疗,达到尽可能地杀灭肿瘤细胞和保护正常组织的目的。在肿瘤的临床治疗中,约有70%以上的肿瘤患者均接受过放射治疗,包括根治性放疗和姑息性放疗。

5.放射线对正常组织有损害吗?

在临床放射治疗过程中,放射线对人体正常组织必然会产生一定的影响,从而造成一定的放射反应与损伤。但是,肿瘤放疗科医生首先考虑的是在尽量避免并减少对正常组织损伤的同时,如何彻底消灭肿瘤,从而达到治愈肿瘤、保护功能、提高生存质量和延长生命的目的。

放射线对组织器官的损伤与很多因素有关。组织对放射线的敏感性(指损伤程度)与其增殖能力成正比,与其分化程度成反比,即繁殖能力越强的组织越敏感,分化程度越低的越敏感,反之亦然。如淋巴组织、骨髓、睾丸、卵巢、小肠上皮等对放射线最敏感,最容易受损害;其次是皮肤上皮、角膜、口鼻腔、晶体、胃和膀胱上皮等;最不敏感的组织是肌肉和神经组织。在一定的照射剂量下,受照射面积越大,损伤越大;面积越小,损伤越小。在一定的照射面积下,照射速度(单次照射剂量)越大,损伤也越大。一般健康状况的好坏以及并发的疾病,如恶液质、感染性疾病、心肺血管疾病等都影响放射反应的程度。年龄也是一个因素,青少年较成年人敏感,但到老年敏感性又增加。

放射引起的正常组织反应一般分为早期原发反应和晚期继发反应。早期放射反应一般是指放射引起的组织细胞本身的损伤,还有可能并发的炎症,如口、鼻腔粘膜急性放射性反应引起局部粘膜红肿、痛、浅溃疡及伪膜形成等;皮肤急性干性或湿性放射性反应等。晚期放射反应是指放射引起的小血管闭塞和结绨组织纤维化而影响组织器官的功能,如腺体分泌功能减退引起口干,肺、皮肤及皮下组织的纤维化收缩等。而较严重的放射损伤,如放射性截瘫、脑坏死、骨坏死和

肠坏死等都是绝对不允许的。

6. 用放射线治疗肿瘤有什么优缺点?

众所周知,70%以上的肿瘤患者均接受了不同程度的放射治疗,到底放射治疗有什么优缺点?

(1)放疗的优点:①许多肿瘤患者通过放疗得到治愈,获得长期生存,如早期鼻咽癌、淋巴瘤和皮肤癌等;②有些患者的放疗疗效甚至同手术疗效一样好,如早期宫颈癌、声带癌、皮肤癌、舌癌、食管癌和前列腺癌等,而患者的说话、发音、咀嚼、进食和排便等功能完好,外观也保存完好;早期乳腺癌通过小手术大放疗后,不仅存活时间同根治术,而且乳腺外观保存基本完好,为世界各国女性乳癌患者所接受;③有些肿瘤患者开始不能进行手术治疗或切除困难,但经术前放疗后,多数患者肿瘤缩小,术中肿瘤播散机会减少,切除率提高,术后生存率提高,如头颈部中晚期癌,较晚期的食管癌、乳腺癌和直肠癌等;④也有些患者需术后放疗,既消灭残存病灶、又提高局部控制率和存活率,如肺癌、食管癌、直肠癌、乳腺癌、软组织肉瘤、头颈部癌和脑瘤等;⑤还有些肿瘤病人由于体质差或有合并症不能手术,或不愿手术者,单纯放疗效果也不错;⑥对于那些病期较晚,或癌瘤引起的骨痛、呼吸困难、颅内压增高、上腔静脉压破和癌性出血等,放疗往往能很好地减轻症状,并达到延长生命的目的;⑦近年来,由于放疗设备的不断改进,治疗计划系统已由二维发展为三维计划,如γ或X-刀的应用使肿瘤得到更高剂量的杀灭,而周围正常组织的受量大大降低;对肿瘤得到更精确照射的适形放疗在不久的将来也一定会得到广大肿瘤患者的欢迎。

(2)放疗的缺点:①放射治疗设备昂贵,治疗费用较高;②放射治疗工作人员要求全面和熟练,包括合格的放射治疗医生、放射物理、放射生物和熟练的放射技术人员;③放射治疗周期长,一般需1~2个月;④放射并发症较多,甚至引起部分功能丧失;⑤有些肿瘤,尤其是晚期肿瘤患者,放射治疗效果并不完好。

7. 放射治疗能治疗哪些肿瘤?

放射治疗是恶性肿瘤者的主要治疗手段之一,大多数病人需行放射治疗。由于放疗目的不同,可采用单纯根治放疗或姑息放疗,也可采用与手术或化疗结合的综合治疗。

(1)头颈部肿瘤鼻咽癌、早期声带癌首选放疗;其它肿瘤采用放疗与手术的综合治疗或单纯放疗。

(2)胸部肿瘤早期食管和肺癌,手术治疗;中晚期食管、肺癌用单纯放疗或配合手术治疗;肺小细胞未分化癌采用化、放疗结合。

(3)淋巴系统肿瘤霍奇金淋巴瘤I、II、IIIA期放疗为主,IIIB、IV期化疗为主,配合局部放疗;非霍奇金淋巴瘤I、II期放疗为主,III、IV期化疗为主,或可配合局部放疗。

(4)泌尿生殖系统肿瘤多数以手术治疗为主,或术后辅以放疗。睾丸精原细胞瘤以放疗为主。

(5)妇科肿瘤宫颈癌以放疗为主,宫体、卵巢癌可行手术与放疗配合,后者可化疗。

(6)消化系统肿瘤胃、肠癌手术为主,胰腺、胆道癌可放疗,直肠癌配合手术或姑息放疗。

(7)骨肿瘤骨肉瘤手术治疗为主,加放、化疗可提高疗效;骨网织细胞肉瘤,尤汶氏瘤,放疗为主,可配合化疗;骨转移瘤可行止痛放疗等。

(8)神经系统肿瘤多数颅内原发性肿瘤需行术后放疗;但髓母细胞瘤、室管膜母细胞瘤及生殖细胞瘤尚需行全中枢神经系统照射;颅内转移瘤姑息放疗首选。

(9)皮肤软组织肿瘤皮肤早期癌放疗与手术疗效相同,晚期癌用放疗或配合手术;黑色素瘤、软组织肉瘤以手术治疗为主,术后用放、化疗可提高疗效。

(l0)乳腺癌早期癌采用小手术加根治性放疗,疗效同根治术,但保留了乳腺外观和功能;中期癌可术后放、化疗,提高局部控制;晚期癌可用术前放疗或化、放疗。

(l1)某些良性疾病如表皮的血管瘤,经久不愈的湿疹,皮肤瘢痕疙瘩,神经性皮炎等,也可采用放疗。

8.放射治疗在恶性肿瘤的治疗中占有什么地位?

放射治疗至今已有近百年的历史。早在居里夫人发现镭和伦琴发现X线后,放射线便很快被用于恶性肿瘤的治疗。本世纪20~30年代,由于有了可靠的X 线设备,放射物理及放射生物学研究有了重要的发展。40年代,人们制造出人工放射性同位素。50年代,60钴治疗机开始应用于临床治疗,放疗疗效开始有了显著的提高。60年代以后,各类医用加速器产生,用高能X线和电子线治疗肿瘤,并逐步替代普通 X线机及60钴治疗机。在一些发达国家和地区,对快中子、质子、负兀介子和重粒子也进行了实验并逐步应用于临床。

目前,恶性肿瘤已成为世界各国的常见病和多发病,发病率逐年增高,其死亡率占各种死因的第一或第二位。放射治疗已成为恶性肿瘤治疗中的主要手段之一,有 70%以上的肿瘤患者需用放疗(包括综合治疗及单独治疗)。有些恶性肿瘤单独放疗就能取得很好的根治效果。而且,放射治疗已成为一个专门学科,称之为肿瘤放射治疗学,包括临床放射物理学、临床放射生物学和临床放射治疗

学,而且近40多年来发展很快。有些早期恶性肿瘤单用放疗治愈率很高,如早期鼻咽癌、宫颈癌、声带癌、霍奇金淋巴瘤、皮肤癌等。早期食管癌、前列腺癌、舌癌等5年生存率都与手术相似,而功能美容保存较满意。一般来医院就诊的肿瘤患者中, 70%~ 80%已属中晚期患者,多数病人不能手术,或切除困难,或有手术禁忌,或不愿手术者,大多数需行放射治疗,而且不少患者疗效较好。放射治疗在肿瘤综合治疗中亦占有重要的地位,如与外科配合的术前、术中和术后放疗;与化疗科配合的化疗前、中及化疗后放疗;还有放疗、手术和化疗三者配合的综合治疗。总之放射治疗是大多数恶性肿瘤患者不可缺少的重要治疗手段,恶性肿瘤病人应注意到放射治疗科会诊和诊治。

9.放射治疗能否包治百病吗?

放射治疗不能包治百病。但在恶性肿瘤病人中,大多数病人需接受放疗治疗,包括根治性放疗和姑息性放疗。

许多来医院就诊的癌症病人,其病期已达中晚期,放射治疗可以杀灭大部分肿瘤细胞,从而达到暂时控制肿瘤,减轻患者症状和延长生命,多数病人尚需配合手术或化疗以达到局部彻底控制或消灭潜在及已有的远处转移病灶,以获得更好的治疗效果。放射治疗仅是一个局部治疗手段,同时放射治疗常常受到放射野内正常组织器官耐受剂量的限制。在许多中晚期病人的治疗中,常需要很高剂量才有可能控制肿瘤,这势必引起照射野内瘤旁正常组织严重的早、晚期损伤,造成病人不必要的痛苦和伤害,这是放射治疗科医生所不愿看到的。放射治疗的原则是尽可能彻底杀灭肿瘤的同时,尽可能多地保护正常组织器官的功能,即尽可能提高肿瘤区域的照射剂量和减少周围正常组织器官的照射量。

在临床肿瘤治疗中,许多头颈部肿瘤,如上颌窦癌、鼻腔筛窦癌、口腔癌和喉癌等尚需配合手术治疗;而腮腺癌、甲状腺癌、颅内原发肿瘤一般首选手术治疗。对于胃肠道肿瘤、泌尿道肿瘤、较早期的肺癌、食管癌等一般首选手术治疗。而对于中晚期淋巴瘤、肺小细胞未分化癌和骨髓肿瘤等,化学治疗常常是其主要

治疗手段。

10.放疗中常用的放射线有哪些?

放疗中使用的放射线主要有三类:①放射性同位素放出的α、β、γ线;②X线治疗机和各类加速器产生的不同能量的X线;③各类加速器产生的电子束、快中子、质子束、负兀介子束以及其它重粒子束等。第一类放射线可用作体内体外照射;第二,三类放射线只能用作体外照射。

放射性同位素放射α、β、γ三种射线。由于α射线电离能力强,但穿透力弱,一张普通薄纸就可挡住,放疗中基本不使用此种射线;而β、γ两种射线使用较多,尤其是γ线应用广泛。天然镭源γ线,在放射治疗早期应用较多,但由于其在防护方面要求很高,缺点多,因此目前已被60钴、137铯和192铱等人工放射性同位素所代替。60钴γ线主要用于外照射,而137铯、192铱γ线主要用于腔内或组织间插植治疗。90锶β线常被做成β钱敷贴器用以治疗表浅病变(如眼角膜),也有用90锶β线治疗皮肤表残病变的。

普通X线治疗机产生的低能(16KV~400KV)X线,主要用于治疗较表浅的肿瘤。各种加速器产生的高能(2MeV以上)X线几乎可以治疗任何部位的肿瘤,尤其对较深部的肿瘤治疗效果好;而其产生的电子束常用于治疗表浅或偏心性肿瘤。对于各种加速器产生的快中子、质子、兀负介子以及氦、碳、氮、氧、氖等重粒子流,在发达国家其应用也不广泛,原因之一是价格太昂贵,而临床效果除少部分肿瘤效果较好外,大多数肿瘤效果并不肯定。我国北京地区仅有一家用快中子治疗腮腺癌、前列腺癌或一般放疗效果较差的肿瘤如软组织肉瘤或其它复发的肿瘤等。

11. X线和Y线有什么不同?

人们通常所称的X光子和γ光子,正好用"光"字说明了这种射线的本质,因为它们都是光谱这个家族中的成员。它们和可见光、无线电波一样,本质上都是

电磁波,都有光线的特性,只是能量不同罢了。X线能量最高、范围最宽,可从紫外线直到几十甚至几百兆电子伏特(MeV),其次是可见光、红外线、直到能量最低的无线电波。由于X线能量高,能穿透一定厚度的物质;能量越高,穿透得越厚,所以医学上常用来透视、照片和放射治疗。

X线和,线两者并无本质上的区别,只是其在产生方式上不同。从历史和习惯上,人们把由高压设备(如加速器,深层、中层和接触治疗机)人工产生的看不见的射线叫做X射线;而把放射性同位素产生出来的射线就称为γ线,如60钴治疗机137铯、192铱后装治疗机产生的就是y线。

由于不同能量的X线治疗机和加速器产生的X线的能量不同,在临床放疗中就有不同的应用范围。高能X线(2MeV以上)的应用范围同60钴γ线(平均能量 1.25MeV),它们同低能X线(400KV以下)相比具有以下优点:①穿透力强,百分深度剂量高,适合治疗较深部的肿瘤;③保护皮肤,因为最大吸收剂量在皮肤下4~5毫米深度或更深处,皮肤剂量相对较小;③骨和软组织有同等的吸收剂量,对骨损伤小,治疗剂量比较精确;④旁向散射小,保护了射野边缘外的正常组织和减低全身受量;⑤ 60钴γ线治疗机尚具有经济、可靠等优点。

12.什么是电子线,它有哪些特点?

电子是质量最小的带电粒子、与X线或γ线不同,它是在电子加速器中被加速到一定的高能时,被直接引出(电子束)用来治疗肿瘤。高能电子束可直接杀伤或电离细胞。其组织吸收剂量分布特点如下:

(1)从皮肤表面到一定的深度,剂量高且分布比较均匀,随着能量增加,此深度也不断增加。剂量建成区很窄,而且很快达到100%。表面剂量大小依能量不同而不同:能量低,表面剂量低;能量高,表面剂量高。如7MeV,表面量为85%;18MeV,表面量为98%。因而不能保护皮肤。

(2)在一定的深度之后,剂量突然下降。如果临床医生将病变选在80%区域内,则病变后正常组织受量极小。但是随着能量不断增加,此特点逐渐消失,对45MeV电子束,此特点几乎全部失去。因此,电子加速器的电子能量选得过高是没有实际意义的,一般最有用的电子能量选在25MeV以内。

(3)不同的放射野对百分深度剂量有影响:低能时,射野影响较小;高能时,射野影响很大,即射野增大,深度剂量增加。

(4)从其同等剂量分布曲线图上还可看出:入射面曲线集中,随深度增加逐渐散开,有较大的旁向散射;曲线的曲度随深度、射野面积和电子能量而变化、而且变化范围比较大。一般来说,特别对大野,曲线中心部分与入射表面平行,不论入射面是平的还是弯曲的。这一点对临床医生考虑不规则表面入射时,很有好处。

13.什么情况下用电子线治疗?

前面讲到电子线在组织中吸收的剂量分布有四大特点,而最主要的就是前两个特点:①从入射表面到一定的深度,剂量高而且分布均匀;随能量增加,此深度也不断增加。剂量建成区很窄,很快达到100%,因此不能有效地保护皮肤。

②在一定的深度之后,剂量突然下降。如果临床医生将病变选在80%区域内,则病变后正常组织受量极小,所以它能很好地保护肿瘤后面的正常组织器官。但是随着能量不断增加,此特点逐渐消失,临床应用的电子能量最好选在25MeV

以内。

根据以上特点,高能电子线很适合治疗那些浅表的和偏心的肿瘤,而且多用单野照射,即从一个方向照射。必要时可适当采用组织等效物以改善剂量分布,满足临床治疗的需要。颈部淋巴结的补量放疗,目的在于保护深部颈脊髓免受过量照射;乳腺癌术后的胸壁和内乳淋巴链的照射,均采用电子线照射,以减少深部肺组织受量,以提高生存质量;还有皮肤肿瘤如皮肤癌、黑色素瘤及蕈样霉菌

病等;鼻腔筛窦肿瘤也常采用电子线治疗。因为从加速器中引出的电子能量可调,所以可根据病变的不同深度,选择合适的电子能量作治疗。另外,采用多野并适当应用其它技术,也可治疗深部肿瘤,但此种治疗技术临床上基本不用,而代之以高能X线或60钴γ线治疗。此外术中放疗也可考虑用电子线治疗,因为暴露的肿瘤病灶可接受高剂量照射,而病灶后面的正常组织受量低而得到保护。

14.什么是接触治疗机?它能治疗哪些疾病?

接触治疗机是管电压在10~60千伏特之间的X线治疗机。其X线是通过阴极钨灯丝发射的电子在高真空度的管球内,经过高速运动后撞击阳极靶而产生的。由于管电压低,因此产生出来的X线能量低,穿透能力很低,照射面积比较小。临床上一般多用于治疗皮肤表面或体腔浅层疾病。如表皮的血管瘤,经久不愈的湿疹,神经性皮炎,手或足部位的指、趾疣等良性病变;也可用于眼睑、口腔、浅表病变,或身体其它部位皮肤的基底细胞癌等病变。一般接受此种治疗的患者受照皮肤会出现放射性皮炎,色素沉着致颜色变深,这属于正常的皮肤反应。其原因是该治疗机X线的最大吸收剂量在体表或粘膜表面,因而使其受量过高所致。当治疗结束后,其受照射部位的皮肤会逐渐恢复正常。当然,在口腔也会出现急性放射性粘膜炎,而放疗后受照粘膜也会逐渐恢复正常。请患者同志们不用担心,应当在医生的指导下按时完成治疗。

15.什么是深部X线治疗机,什么情况下适宜使用?

深部X线治疗机通常是指管电压在180~400千伏特之间的X线机,这种机器在结构和X射线产生的原理上与接触治疗机相同。但由于该机管电压比接触治疗机高,其产生的X线强度及穿透能力均较大,故多用于良性疾病和位于较表浅的恶性肿瘤的治疗。因此可用作60钴治疗机和加速器高能X线治疗的辅助手段,补充浅层部位剂量的不足。根据治疗的需要,该治疗机在设计上可分为固定照射型、摆动照射型和旋转照射型3种,使深部X线治疗机的应用更为广泛。

深部X线治疗机常用于皮肤瘢痕、腋臭、神经性皮炎、鸡眼、较深部位血管瘤和阴茎海绵体硬结症等良性疾病的治疗,效果较理想。对于皮肤癌、皮肤附件癌、颈部淋巴结转移癌的补量放疗,也取得明显疗效。对较浅部位的骨转移癌(如肋骨或锁骨转移癌)的止痛放疗,疗效更好,这是因为该能段的X线的光电效应较大,骨的X钱吸收较高的缘故。由于该治疗机能量较低,组织深部的剂量低,不适合对深部肿瘤的治疗,而且皮肤反应重,故只能用于较浅表部位肿瘤的治疗。在我国许多地区,该机仍然广泛用作60钴治疗机和加速器治疗的补充。

16.什么是60钴治疗机,它有什么优缺点?

60钴治疗机俗称"钴炮",60钴是一种人工生产的放射性核素。"钴炮"是以60钴做放射源,用γ射线杀伤癌细胞,对肿瘤实施治疗的装置。60钴机由下列部分组成,一个密封的放射源;一个源容器及防护机头;具有开关的遮线器装置;具有定向限束的限光筒,支持机头的机械系统及其附属的设备和一个操纵台构成)。

其优点是:

(1)射线穿透力强即可治疗相当深度的肿瘤。

(2)保护皮肤 60钴射线在皮下4~ 5毫米处能量的吸收最大,表皮剂量相对较小。

(3)骨和软组织有同等的吸收剂量即当射线穿过时,骨和软组织对射线吸收基本相同,不像普通X线,骨比软组吸收多,对骨造成危害大。

(4)旁向散射小保护周边外的正常组织。

(5)经济、可靠,结构简单、维修方便。

缺点是:

(1)60钴能量单一。(而加速器可有多种能量的X线和电子线)。

(2)60钴深度剂量偏低,为了提高深处的剂量,必须提高外照射剂量,造成全身受量增加。加速器深度剂量高,全身受量少。

(3)60钴半衰期短(约5.3年),需定期更换放射源。

(4)60钴属放射线核素,不断有射线释放,防护复杂,工作人员受量大。

(5)60钴存在半影问题,使野外的正常组织受一定的剂量影响。总之,"钴机造价低,维修方便,使其比其它放疗设备发展快,目前仍是放射治疗的主要设备。

108. 什么是加速器?

加速器是人工利用电场和磁场的作用力,把带电粒子加速到高能的一种装置或设备。加速器既可产生高能电子束,又可产生高能X线和快中子,其能量范围在4~50MeV之内。

17. 放疗中常用的加速器有哪几种,它们有何特点?

放疗中常用的加速器有以下三种:电子感应加速器,电子直线加速器和电子回旋加速器。特点如下:电子感应加速器优点是技术上比较简单,制造成本低,而且很容易做到25兆电子伏特这样的高能量。其所产生的电子线,输出量足够大,能量可调范围较宽。缺点是X线输出量比较低,照射野也小。同时此设备体积大,重量沉,给安装和医疗带来一定困难。电子直线加速器优点是克服了以上缺点,它对电子线和X线均有足够高的输出量,从而有潜力扩大照射野,并可采用偏转系统做等中心治疗。缺点是结构复杂,成本较贵,维修要求高。电子回旋加速器既有电子感应加速器的经济性,又具有直线加速器的高输出量特点,其电子线和X线的能量在医疗上使用皆很理想。总之它结构简单,体积小,成本低,是直线加速器的发展方向。

18.用加速器治疗的疗效是不是一定比60钴的好?

两者的治疗疗效无显著差别。我国自70年代末引进加速器以来,许多患者乃至部分医务人员常常迷信它有特效,从近十余年的临床观察来看,加速器治疗的疗效并无更多的优越性。我院放疗科88年总结了鼻咽癌病人的放疗,加速器组(301例),与60钴组(293例)进行比较,两组通过5年生存率、局部复发率、死亡率、放射后遗症及疗后劳动力情况等治疗结果来看是相仿的,疗效也基本相同。当然,由于社会经济及科技的飞跃发展,考虑到60钴机仍有一些不足,如深度量偏低、能量比较单一,不能满足病人及放疗工作者的多种需要,同时其对工作人员造成的辐射危害、防护差等,使得加速器的应用越来越广。但加速器造价高,维修困难,一旦机器故障也会影响到病人治疗。所以对发展中国家(包括我国),60钴机仍是目前主要的放疗设备,并以其经济、可靠、维修方便等受到广大医务工作者的青睐。

19.什么是快中子治疗,它的特点是什么?

快中子治疗就是人们所说的"中子治癌",就是利用中子束流有效地杀死癌细胞,达到提高癌症局部控制率,延长癌症病人生存期的目的。中子属于不带电的粒子,依据中子所具有能量,可分为热中子、慢中子和快中子。快中子属于高LET射线(它是一个专业名词,指线性能量传递的简称)。它具有高LET射线特点,其特点为:生物学方面:①氧增强比低,能克服乏氧肿瘤细胞对射线的抗拒,治疗对一般放射线抗拒肿瘤;②相对生物效应强,相同的吸收剂量所产生的生物效应,中子大约比普通X线作用大3倍;③肿瘤细胞动力学中,细胞周期不同时相与中子的敏感性无差异,因而快中子对肿瘤细胞杀伤作用强。物理学特点:①快中子束与X线(光子束)相似。深度剂量递减呈指数递减规律;②穿透力差,深度剂量可随中子源表面距离增大而增大;③快中子束半影大,射野边缘剂量大,皮肤和皮下组织反应大。总之,快中子依赖它优越的放射生物学特性有效地杀伤某些肿瘤,有其严格的适应证。

20.国内目前快中子治疗的现状如何?

国内现状是由中国科学院高能物理研究所牵头,成立了北京快中子治癌研究协作组,负责实施快中子临床治疗。高能物理研究所的快中子治癌研究装置?1989年6月建成1991年11月开始快中子临床治疗。工作中围绕快中子适应证病例的正确选择和高水平的物理技术工作两大课题,目的是提高局部控制率,减少中子造成的辐射损伤,这也是国际快中子治癌研究领域的共同难题。六年多来,共收治各种癌症病人300余人,包括:腮腺癌、前列腺癌、软组织肉瘤、肺癌、间皮瘤、盆腔癌、头颈部癌、肠癌等等。快中子放疗最成功的是恶性腮腺肿瘤,对某些病例做了单纯快中子放疗与混合射线放疗的疗效和副作用的比较研究。目前快中子治疗的研究正在继续进行,对快中子治癌在放疗中的地位已达到共识,随着临床工作研究的深入开展,在国家科委等部门的大力支持下,正在探索有中国特色的工作与研究。

21.什么是近距离后装治疗?

近距离后装治疗是将放射源施用器放置于人体管腔内瘤体表面或用针插植到瘤体内,通过计算机控制系统,使放射源直接在瘤体表面或瘤体内进行放疗。本世纪初,近距离放疗时医务人员用手工操作将放射源置于瘤体,受辐射量很大,50年代由于后装技术的展开,在不受辐射下工作人员进行操作和摆位,大大减少了工作人员受量,提高了治疗的准确性。它包括腔内、管内、组织间插植,术中置管及模型敷贴五种类型。

22.近距离后装治疗有哪些类型,各自的优缺点是什么?

近距离后装治疗主要有两种类型。按剂量率来分类,每小时小于2Gy的为低剂量率,每小时大于12Gy的为高剂量率。低剂量率近距离后装特点为:放置放射源后治疗时间需37小时~3天;正常组织损伤小;对妇癌治疗疗效好。缺点:①护理人员受辐射量大;②由于置源时间长,施用器位置容易变化;③低剂量率的放射源不能微型化。高剂量率近距离后装特点:①治疗时间短不需住院;②定位准确;③所用192铱放射源可以微型化(可用于气管内、插植等)治疗用途广。

缺点:①对正常组织损伤较大;②局部反应重。目前国内的近距离后装治疗几乎全部是高剂量率类型。

23.什么是腔内放疗,它能治疗哪些肿瘤?

腔内治疗是利用人体的自身腔体和管道置放治疗管的一种近距离治疗。腔内治疗置管时一般通过内窥镜或根据解剖部位将直径1.7~2.0毫米塑料管放在治疗区域内,然后按相应步骤治疗。它能治疗鼻咽癌、食管癌、气管癌、支气管癌、直肠癌、宫颈癌等。

24.腔内放疗的操作步骤有哪些,有什么注意事项?

操作步骤如下:

(1)医生选择合适的病人后,治疗前要向病人说明治疗的目的和方法,取得病人的合作。

(2)治疗前进行局部病变的处理和控制炎症,同时做血相、X线等辅助检查。

(3)局部麻醉后置管及定位,用相应的施源器把管插入到病变部位,在模拟机下定位校正后拍定位片。

(4)在定位片上主管医生划出治疗范围,确定治疗剂量,通过计算机设计治疗计划。

(5)主管技师送病人入机房,将施源器连结在近距离治疗机后,开始放疗。

(6)治疗完毕,拔出施源器,稍事休息,病人若无不适,方可离去。

注意事项:

(l)治疗结束后,向病人交待可能出现的反应及处理方法;

(2)进行操作时,手法要轻柔,减少不必要的刺激;

(3)常规告诉病人过后拍X线片或造影片,做为观察疗效及随诊的比较;

(4)如治疗后出现进食困难及咯血等,不必紧张,找医生开药后对症治疗即可好转。

25.什么是组织间插植术,它能治疗哪些肿瘤?

组织间插植术是指将组织间插植针或治疗管按一定排列顺序,直接插入到瘤体内进行放疗的一种近距离后装治疗技术。它适合于一些根治性放疗后肿瘤复发或残存的,解剖部位允许的或为保持功能所需的病人,病变位于体表及近体表部位。它能治疗乳腺癌、舌癌、口腔癌、前列腺癌、胸膜间皮瘤、脑瘤等。

26.组织间插植技术的操作步骤有哪些,有什么注意事项?

步骤如下:(1)根据不同部位病变采取不同体位,并行局部麻醉。(2)根据CT、同位素扫描、磁共振影像等确定治疗靶区,植针层数、根数、深度、针间距布局等。(3)设计治疗计划,确定治疗剂量。(4)制作模板、打孔、做好治疗准备后,实施治疗。

注意事项:

(1)严格地按无菌技术要求操作。

(2)插植一定以巴黎剂量学系统原则。

(3)插针前每个针孔用2%利多卡因行浸润麻醉,治疗结束后依次拔针,针孔用无菌敷料包好。

(4)针眼处有局部疼痛,对症止疼即可。

27.什么是模拟定位机,它有什么作用?

模拟定位机就是模拟放射治疗机(如医用加速器)、治疗的几何条件而定出

照射部位的放射治疗辅助设备,它实际上是一台特殊的X线机。它的作用正像它的机名一样,就是模拟定位。那么什么叫模拟定位呢?实际上就是:当病人被诊断患有肿瘤并准备行放射治疗时,在放射治疗前要制定周密的放疗计划,然后在定位机上定出所照射的部位,并做好标记后才能在医用加速器或60钴治疗机上去执行放疗。这就是模拟机的作用。

28 放射治疗时为什么要在皮肤上用红色墨水画印子?

病人被诊断患有肿瘤并需要放疗时,医生要先给患者做好放疗前的各项检查,然后根据体格检查,X线片,CT及磁共振等检查结果,对其病变制定放疗计划。将病人的肿瘤部位通过解剖结构或模拟定位机定出照射范围,投射到相应的皮肤上,所以医生要在皮肤上用红墨水划出皮肤印子。当病人进行放疗时,技术员将病人体位摆好后,用放射治疗机针对皮肤印子对病人实施放疗。要让病人知道皮肤印子的重要性,尽量保持皮肤照射野清楚,保证顺利完成放射治疗。

29.为什么有时要用低熔点铅做成各种形状的模块?

我们都知道铅的熔点高达327度,这不利于制作各种形状的模块,而低熔点铅却不同,它属于一种合金,由50%铋、26.7%铅、10%镉、13.3%锡组成,其熔点约为70度。利用低熔点铅的这个特点,配合热电阻丝切割技术制成不同形状和大小的泡沫塑料做成的内模,很容易加工成各种不同形状的模块。将模块牢固地固定在加速器上,可自如地做不同角度的治疗。用这种模块摆位迅速、准确,治疗后还可将这种低熔点铅回收利用。正是利用低熔点铅的上述特性.根据照射范围的不同制作各种模块,以适应照射区域的大小和形状,如照射范围为椭圆形,则模块的内轮廓为椭圆形。同时,运用模块还可以保护照射野内正常组织和重要的器官免受或少受不必要的照射,如放疗时为了保护眼球,可制作一个类圆柱形模块.在放疗时将模块固定在相应的位置,挡掉照射眼球的射线,从而免受放射损伤。

30.为什么有时要用蜡块,它起什么作用?

蜡的有关属性与人体组织相同,属"人体组织等效材料",它对射线的散射和吸收作用与人体组织相似;另外,蜡的熔点很低,很容易根据不同需要经溶解后制成不同形状、大小和厚度的蜡块,而且在尚未完全冷却时,可通过压制使蜡块与人体表面很好地敷贴。利用上述特点,可将蜡块放在相应的位置来改善照射区域的剂量分布,使剂量分布更合理。对于表浅部位的肿瘤,如皮肤癌、表浅转移的淋巴结,由于体表到剂量最大处即"剂量建成区域"的存在(用高能X线,如 6MV -X线或 8MV-X线以及电子线照射时,放疗剂量从体表向体内逐渐增大,到某一深度时达最大剂量,我们把从体表到剂量最大处的区域称为"剂量建成区域"),使相对表浅部位肿瘤的照射剂量不足。因此,可在肿瘤表面放置适当厚度的蜡块,比如,用6MV-X或8MV-X线照射时,蜡块厚度为1~1.5厘米,这样就可将剂量最大区域"上提"至需要照射的肿瘤部位,从而使肿瘤区域得到更为合理的照射以取得更好的疗效。

31.为什么有时要在皮肤上放处理过的猪皮?

猪皮的组成、结构与人体组织几乎相同,是更好的"人体组织等效材料",而且猪皮与人体表面的敷贴性能很好,取材很容易,另外,经过一些化学药物处理后可长期保存和使用。因此,对于皮肤癌、乳腺癌胸壁受累等表浅肿瘤患者,用电子线放疗时可将处理过的猪皮置于肿瘤表面皮肤上,从而使体表到放射剂量最大处即"剂量建成区域"上提至需要的、距皮肤更表浅的部位,使皮肤得到更大的放射剂量,以取得更好的放疗效果。当然,由于猪皮一般较薄,故多用于能量较低的电子线的放疗。

32.放疗时常用的体位有哪几种?

放疗时的体位是根据肿瘤的部位、不同的治疗方法以及病人的实际情况等决定的,同时这种体位必须重复性好、病人易于接受和实现。一般常用的体位有仰

肿瘤放射治疗知识点及试题

名词解释 1.立体定向放射治疗(1. 2.2)指借助CT、MRI或血管数字减影仪(DSA)等精确定位技术和标志靶区的 头颅固定器,使用大量沿球面分布的放射源,对照射靶区实行聚焦照射的治疗方法。 2.立体适形放射治疗(1.2.2)是通过对射线束强度进行调制,在照射野内给出强度变化的射线进行治疗,加 上使用多野照射,得到适合靶区立体形状的剂量分布的放射治疗。 3.潜在致死性放射损伤(1.2.4)当细胞受到非致死放射剂量照射后所产生的非致死性放射损伤,结局可导 致细胞死亡,在某些环境下(如抑制细胞分裂的环境)细胞的损伤也可修复。 4.亚致死性放射损伤(1.2.4)较低剂量照射后所产生的损伤,一般在放射后立即开始被修复。 5.加速再增殖(1.2.4)在放疗疗程中,细胞增殖的速率不一,在某一时间里会出血细胞的加速增殖现行,此 现象被为称为加速再增殖。 6.常规放射分割治疗(1.2.1)是指每天照射1次,每次1.8-2.0Gy,每周照射5d,总剂量60-70Gy,照射 总时间6~7周的放疗方法。 7.非常规放射分割治疗(1.2.1)指对常规放射分割方式中时间-剂量-分割因子的任何因素进行修正。一 般特指每日照射1次以上的分割方式,如超分割治疗及加速超分割治疗。 8.放射增敏剂(1.2.1)能够提高放射肿瘤细胞的放射敏感性以增加对肿瘤的杀灭效应,提高局控率的药物。 包括嘧啶类衍生物、化疗药物和缺氧细胞增敏剂。 9.放射保护剂(1.2.1)能够有效的保护肿瘤周围的正常组织,减少放射损伤,同时不减少放射对肿瘤的杀灭 效应化学修饰剂。 10.热疗(1.2.1)是一种通过对机体的局部或全身加温以达到治疗疾病的目的的治疗方法。 11.亚临床病灶临床及显微镜均难于发现的,弥散于正常组织间或极小的肿瘤细胞群集,细胞数量级≤ 106,如根治术或化疗完全缓解后状态。 12.微小癌巢为显微镜下可发现的肿瘤细胞群集,细胞数量级>106,如手术边缘病理未净。 13.临床病灶临床或影像学可识辨的病灶,细胞数量级≥109,如剖腹探查术或部分切除术后。 14.密集肿瘤区(GTV)指通过临床检查或影像检查可发现(可测量)的肿瘤范围,包括原发肿瘤及转移灶。 15.计划靶区(PTV)指考虑到治疗过程中器官和病人的移动、射野误差及摆位误差而提出的一个静态 的几何概念,包括临床靶区和考虑到上述因素而在临床靶区周围扩大的范围。CTV+0.5cm 16.“B”症状临床上将不明原因发热38℃以上,连续3天;盗汗;不明原因体重减轻(半年内体重减 轻大于10%)称为“B”症状。 17.咽淋巴环(韦氏环,Waldege’s ring)是由鼻咽腔、扁桃体、舌根、口咽以及软腭背面淋巴组织 所围绕的环形区域。 1、肿瘤放射治疗学:是研究和应用放射物质或放射能来治疗肿瘤的原理和方法一门临床学科。它包括放射物理学、放射生物学、放疗技术学和临床肿瘤学。 2、放射物理学——研究各种放射源的性能和特点,治疗剂量学和防护。 3、放疗技术学——研究具体运用各种放射源或设备治疗病人,射野设置定位技术摆位技术。 4、放射生物学——研究机体正常组织及肿瘤组织对射线反应以及如何改变这些反应的质和量。 5、临床肿瘤学——肿瘤病因学,病理组织学,诊断学以及治疗方案的选择,各种疗法的配合。 6、亚致死性损伤(sublethaldamage,SLD) 细胞受到照射后在一定时间内能够完全修复的损伤。 7、潜在致死性损伤(potential lethal damage,PLD)细胞受到照射后在适宜的环境或条件能够修复,否则将转化为不可逆损伤,从而最终丧失分裂能力。 8、致死性损伤(lethal damage,LD)细胞所受损伤在任何条件下都不能修复。 9、氧效应:放射线和物质作用在有氧和无氧状态下存在差异的现象 无氧状态产生一定生物效应的剂 10、氧增强比=————————————————————

肿瘤放射治疗技术的现状与发展

原创:肿瘤放射治疗技术的现状与发展 摘要放射治疗在过去的十年中经历了一系列技术革命,相继出现了三维适形放疗(3DCRT)、调强放疗(IMRT)、质子放疗等技术,这些技术的主要进步是靶区剂量分布适形性的提高。但是,由于呼吸运动等因素的影响,在放疗实施过程中肿瘤及其周围正常组织会发生形状和位置的变化,这种不确定性一定程度阻碍了3DCRT和IMRT技术的发展。图像引导放疗技术(IGRT)的出现,对补偿呼吸运动影响的肿瘤放疗取得了很好的疗效,特别是近年来提出的四维放射治疗(4DRT)技术,进一步丰富了IGRT的实现方式。本文将详细介绍现有的各种放疗技术及其存在的问题,同时讨论一下放疗技术的未来发展方向。 关键词图像引导放疗;锥形束CT;四维放疗;呼吸门控系统 1引言 理想的放疗目的是精确给予肿瘤高剂量的同时尽量减少对靶区周围正常组织的照射。近年来3DCRT和IMRT技术实现了静态三维靶区剂量分布的高度适形,较大程度上解决了静止且似刚性靶区的剂量适形放射问题。然而,在实际放疗过程中,主要由呼吸运动引起的内部组织的运动和形变(主要是胸部和腹部的靶组织),严重影响了IMRT和3DCRT技术的准确实施。如在单次放疗中,呼吸运动和心脏跳动会影响胸部器官或上腹部器官的位置和形状,胃肠蠕动也会带动邻近的靶区;在分次放疗间随着疗程的进行出现的肿瘤的缩小或扩展;消化系统和泌尿系统的充盈程度;在持续的治疗过程中患者身体变瘦或体重减轻等造成的靶区和标记的相对移位。针对上述问题,我们迫切需要某种技术手段去探测肿瘤的摆位误差和运动形态,并且这种技术可以对靶区的形态变化采取相应的补偿和控制措施。IGRT正是基于以上问题的出现而产生的。现在我们可以采用在线校位和自适应放疗技术去解决分次间的摆位误差和靶区移位问题,也可以采用呼吸限制、呼吸门控、四维放疗等技术对单次放疗中出现的靶区运动进行补偿和控制,而这些技术都是属于IGRT的范畴[2]。后面的内容将分别介绍IMRT技术、IGRT 技术的不同实现方式,包括呼吸限制、呼吸门控、自适应放疗、四维放疗,最后介绍一下未来放疗技术及设备的发展方向。 2肿瘤放疗技术的现状 由于目前各种放疗技术各具优势及经济市场发展等原因,不同的放疗技术还处于并存的状态,适形调强放疗和图像引导放疗的部分技术代表了放疗领域的现状。 2.1适形调强放射治疗 适形调强放疗技术包括三维适形放疗和调强放疗。三维适形放疗是通过采用立体定位技术,在直线加速器前面附加特制铅块或利用多叶准直器来对靶区实施非共面照射,各射野的束轴视角(beam eye view, BEV)方向与靶区的形状一样,使得剂量在靶区上的辐射分布可以更加准确,而对周围正常组织的照射又可降到较低程度[3]。与以往的常规放疗相比,三维适形放疗设备的突出优势是多叶准直器的使用。多叶准直器所产生的辐射野可以根据肿瘤在空间任何角度方向(一般指机架旋转360度范围内)上的几何投影形状而改变,使辐射野的几何形状与肿瘤投影相匹配。如美国Varian生产的23EX直线加速器上面装配有60对多叶

肿瘤放射治疗技术基础知识-4

肿瘤放射治疗技术基础知识-4 (总分:100.00,做题时间:90分钟) 一、A1型题(总题数:40,分数:100.00) 1.公众照射的年均照射的剂量当量限值为 (分数:2.50) A.全身<5mSv任何单个组织或器官<5mSv B.全身<5mSv任何单个组织或器官<50mSv √ C.全身<1mSv任何单个组织或器官<20mSv D.全身<5mSv任何单个组织或器官<15mSv E.全身<20mSv任何单个组织或器官<50mSv 解析: 2.放射工作人员的年剂量当量是指一年内 (分数:2.50) A.工作期间服用的治疗药物剂量总和 B.检查自己身体所拍摄胸片及做CT等所受外照射的剂量当量 C.工作期间所受外照射的剂量当量 D.摄入放射性核素产生的待积剂量当量 E.工作期间所受外照射的剂量当量与摄入放射性核素产生的待积剂量当量的总和√ 解析: 3.为了防止非随机性效应,放射工作人员任一器官或组织所受的年剂量当量不得超过下列限值(分数:2.50) A.大脑50mSv,其他单个器官或组织150mSv B.眼晶体150mSv,其他单个器官或组织500mSv √ C.脊髓50mSv,其他单个器官或组织250mSv D.性腺50mSv,其他单个器官或组织250mSv E.心脏50mSv,其他单个器官或组织750mSv 解析: 4.为了防止随机性效应,放射工作人员受到全身均匀照射时的年剂量当量 (分数:2.50) A.不应超过10mSv B.不应超过20mSv C.不应超过50mSv √ D.不应超过70mSv E.不应超过100mSv 解析: 5.临床患者照射时常用的防护措施有 (分数:2.50) A.照射区域附近使用铅衣,照射区域外使用蜡块 B.照射区域附近使用铅挡块,照射区域外使用铅衣√ C.照射区域附近使用楔形板,照射区域外使用铅衣 D.照射区域附近使用铅衣,照射区域外使用固定面膜 E.照射区域附近使用真空垫,照射区域外使用铅衣 解析: 6.放疗机房屏蔽设计时应当考虑的因素 (分数:2.50) A.尽量减少或避免电离辐射从外部对人体的照射 B.使职业照射工作人员所接受的剂量低于有关法规确定的剂量限值

肿瘤放射治疗知识点及试题

名词解释 1.立体定向放射治疗(1. 2.2)指借助CT、MRI或血管数字减影仪(DSA)等精确 定位技术和标志靶区的头颅固定器,使用大量沿球面分布的放射源,对照射靶区实行聚焦照射的治疗方法。 2.立体适形放射治疗(1.2.2)是通过对射线束强度进行调制,在照射野内给出 强度变化的射线进行治疗,加上使用多野照射,得到适合靶区立体形状的剂量分布的放射治疗。 3.潜在致死性放射损伤(1.2.4)当细胞受到非致死放射剂量照射后所产生的非 致死性放射损伤,结局可导致细胞死亡,在某些环境下(如抑制细胞分裂的环境)细胞的损伤也可修复。 4.亚致死性放射损伤(1.2.4)较低剂量照射后所产生的损伤,一般在放射后立 即开始被修复。 5.加速再增殖(1.2.4)在放疗疗程中,细胞增殖的速率不一,在某一时间里会 出血细胞的加速增殖现行,此现象被为称为加速再增殖。 6.常规放射分割治疗(1.2.1)是指每天照射1次,每次1.8-2.0Gy,每周照射 5d,总剂量60-70Gy,照射总时间6~7周的放疗方法。 7.非常规放射分割治疗(1.2.1)指对常规放射分割方式中时间-剂量-分割因子 的任何因素进行修正。一般特指每日照射1次以上的分割方式,如超分割治疗及加速超分割治疗。 8.放射增敏剂(1.2.1)能够提高放射肿瘤细胞的放射敏感性以增加对肿瘤的杀 灭效应,提高局控率的药物。包括嘧啶类衍生物、化疗药物和缺氧细胞增敏剂。

9.放射保护剂(1.2.1)能够有效的保护肿瘤周围的正常组织,减少放射损伤, 同时不减少放射对肿瘤的杀灭效应化学修饰剂。 10.热疗(1.2.1)是一种通过对机体的局部或全身加温以达到治疗疾病的目的的 治疗方法。 11.亚临床病灶临床及显微镜均难于发现的,弥散于正常组织间或极小的肿瘤 细胞群集,细胞数量级≤106,如根治术或化疗完全缓解后状态。 12.微小癌巢为显微镜下可发现的肿瘤细胞群集,细胞数量级>106,如手术边 缘病理未净。 13.临床病灶临床或影像学可识辨的病灶,细胞数量级≥109,如剖腹探查术或 部分切除术后。 14.密集肿瘤区(GTV)指通过临床检查或影像检查可发现(可测量)的肿瘤范围, 包括原发肿瘤及转移灶。 15.计划靶区(PTV)指考虑到治疗过程中器官和病人的移动、射野误差及摆位 误差而提出的一个静态的几何概念,包括临床靶区和考虑到上述因素而在临床靶区周围扩大的范围。 CTV+0.5cm 16.“B”症状临床上将不明原因发热38℃以上,连续3天;盗汗;不明原因 体重减轻(半年内体重减轻大于10%)称为“B”症状。 17.咽淋巴环(韦氏环,Waldege’s ring)是由鼻咽腔、扁桃体、舌根、口咽 以及软腭背面淋巴组织所围绕的环形区域。 1、肿瘤放射治疗学:是研究和应用放射物质或放射能来治疗肿瘤的原理和方法一门临床学科。它包括放射物理学、放射生物学、放疗技术学和临床肿瘤学。 2、放射物理学——研究各种放射源的性能和特点,治疗剂量学和防护。 3、放疗技术学——研究具体运用各种放射源或设备治疗病人,射野设置定位技术摆位技术。 4、放射生物学——研究机体正常组织及肿瘤组织对射线反应以及如何改变这些反应的质和量。

肿瘤放射治疗知识点及试题讲课讲稿

肿瘤放射治疗知识点 及试题

名词解释 1.立体定向放射治疗(1. 2.2)指借助CT、MRI或血管数字减影仪(DSA)等精确定位技术和 标志靶区的头颅固定器,使用大量沿球面分布的放射源,对照射靶区实行聚焦照射的治疗方法。 2.立体适形放射治疗(1.2.2)是通过对射线束强度进行调制,在照射野内给出强度变化的 射线进行治疗,加上使用多野照射,得到适合靶区立体形状的剂量分布的放射治疗。3.潜在致死性放射损伤(1.2.4)当细胞受到非致死放射剂量照射后所产生的非致死性放射 损伤,结局可导致细胞死亡,在某些环境下(如抑制细胞分裂的环境)细胞的损伤也可修复。 4.亚致死性放射损伤(1.2.4)较低剂量照射后所产生的损伤,一般在放射后立即开始被修 复。 5.加速再增殖(1.2.4)在放疗疗程中,细胞增殖的速率不一,在某一时间里会出血细胞的 加速增殖现行,此现象被为称为加速再增殖。 6.常规放射分割治疗(1.2.1)是指每天照射1次,每次1.8-2.0Gy,每周照射5d,总剂量 60-70Gy,照射总时间6~7周的放疗方法。 7.非常规放射分割治疗(1.2.1)指对常规放射分割方式中时间-剂量-分割因子的任何因素进 行修正。一般特指每日照射1次以上的分割方式,如超分割治疗及加速超分割治疗。8.放射增敏剂(1.2.1)能够提高放射肿瘤细胞的放射敏感性以增加对肿瘤的杀灭效应,提 高局控率的药物。包括嘧啶类衍生物、化疗药物和缺氧细胞增敏剂。 9.放射保护剂(1.2.1)能够有效的保护肿瘤周围的正常组织,减少放射损伤,同时不减少 放射对肿瘤的杀灭效应化学修饰剂。 10.热疗(1.2.1)是一种通过对机体的局部或全身加温以达到治疗疾病的目的的治疗方法。

磁共振模拟(MRSIM)_肿瘤放疗模拟技术新前沿

磁共振模拟——站在肿瘤放疗的最前沿 磁共振模拟 站在肿瘤放疗的最前沿
黄岁平 博士 关键词:磁共振模拟 MRSIM 据有关调查显示,目前全世界范围内的肿瘤患者,约有 70%需要接受不同程 度的放射治疗,以达到治愈肿瘤或缓解症状、改善生活质量的目的。能够最大限度 地把放射剂量集中到病变(靶区)内,杀灭肿瘤细胞,同时使其周围正常组织和器 官少受或免受不必要的照射,从而得到保护,是肿瘤放射治疗一直以来追求的目 标。 20世纪 70年代 CT的使用是放射治疗计划所取得的一个巨大进步。引入 CT 图像的模拟增加了临床医生对靶区体积的空间意识,从而较之原有的传统治疗的靶 区体积(由垂直 X线胶片确定)产生了一个质的改变-----CT扫描得到一系列断层 轴面,经过多种方式的三维重建,形成一个三维计划,这使得适形放射治疗 (CRT)的概念得以实现。但 CT却有一些先天的局限性----它只对具有不同的电 子密度或 X线吸收特征的组织结构具有较好的分辨率(如空气对骨或对水或软组 织),但如果没有明显的脂肪或空气界面,则对具有包括肿瘤在内的相似电子密度 的不同软组织结构区分较差。相比之下,磁共振最大的优点就是对具有相似电子密 度的软组织有较强的显示能力并且能区分其特征。在这种情况下,磁共振能够更好 的提供靶区的轮廓,不但包括肿瘤的范围,而且还包括临近的重要软组织器官。通 过更准确地定位肿瘤靶区、避免危及临近的组织器官、以及提高局部控制率等。
一.磁共振模拟独特的优越性。
事实上,临床医生早已意识到诊断性的 MRI扫描对肿瘤体积的确定具有相当 重要的信息补充,引入 MR图像作定位由来已久。最早通常是由医生用肉眼在 MRI上观察疾病的范围,然后手工将数据转移至模拟胶片或 CT扫描片上,这种方 法极易产生解释和转译错误。第二种方式是通过使用一种放大投影系统将 MRI图 像叠加到模拟胶片或 CT图像上进行融合处理的 MR辅助的模拟。第三种更加定量 的方式是将 MRI图像与 CT图像进行融合,那样就可以将 MRI上具有较高分辨率 的肿瘤图像与几何精确的 CT图像中电子密度信息结合起来。但以上任意一种融合 方式都是在放疗过程中增加了一个步骤,也就是说,延长了整个放疗过程花费的时 间,加重了医生的工作任务,加大了病人的经济负担,也增加了误差的可能性及偏 离度。现在我们已经很明确对于中枢神经系统部位如颅底和脊髓部位的肿瘤,以及 软组织肉瘤和盆腔肿瘤,MRI成像已远优于 CT成像。这些情况下,就可以单纯借 助 MR图像完成模拟工作,因为 MRI有许多优于 CT方面的特点, 直接利用 MR 图像进行模拟定位有着不可替代的优越性:

肿瘤放射治疗学期末考试重点笔记

精心整理恶性肿瘤的临床治愈率为45℅,其中外科占22℅,放射治疗占18℅,化学治疗占5℅ 根据肿瘤的放射敏感性分类: 1、放射高度敏感的肿瘤:恶性淋巴瘤、睾丸精原细胞瘤、肾母细胞瘤、尤文肉瘤、小细胞肺癌 2、放射中度敏感的肿瘤:鳞状细胞癌、宫颈癌、宫体癌、乳腺癌、皮肤癌、肾移行细胞癌 3、放射低度敏感的肿瘤:胃肠道的腺癌、胰腺癌、前列腺癌 4、放射敏感性较差的肿瘤:纤维肉瘤、脂肪肉瘤、横纹肌肉瘤、恶性纤维组织细胞瘤 放射治疗的禁忌症 1 (1 (2 (3 (4 2 (1(2)肿 3 (14) 3、 (源轴 1、进一步减少肿瘤周围组织和器官进入射野的范围,使正常组织得到保护,提高了靶区剂量; 2、对位于解剖结构复杂、距离重要器官较近、形状不规则肿瘤的治疗,可减少放射治疗并发症的发生; 3、进行大剂量低分割照射,缩短治疗时间,提高肿瘤的控制率。 调强适形放射治疗(IMRT)必将成为21世纪放射治疗技术的主流。 近距离放射治疗:通过人体的自然腔道(如食管、阴道、直肠)或经插针置入、经模板敷贴等方式,将密封的放射源置于瘤体内或管腔内进行照射,称为近距离放射治疗(又称内照射)。 敷贴技术:是将施源器按一定规律固定在适当的模板上,然后敷贴在肿瘤表面进行照射的一种方法。主要用于治疗非常表浅的肿瘤,一般肿瘤浸润深度<5mm为宜。

放射性核素治疗是将放射性核素或其标记物通过口服或静脉注射等方式引入人体内,利用核素的电离辐射效应,抑制或破坏病变组织,达到治疗的目的。人体某种器官或病变对某种放射性核素具有选择性吸收的特点,因而病变局部可受到大剂量照射,其他组织和器官可以得到保护。比如用碘131治疗甲状腺癌,磷32治疗癌性胸水,钐153和锶89治疗骨转移癌等 治疗计划的定量评估,主要是使用剂量体积直方图(DVH)。DVH表示的是肿瘤的体积或正常组织接受的照射剂量,是评估治疗计划的有力工具,可以直接评估高剂量区与靶区的适合度。它不仅可评估单一治疗计划,也可比较多个治疗计划。缺点是不能显示靶区内的剂量分布情况,因此要与等剂量分布图结合使用才能充分发挥作用。 放射性皮炎:一般分为三度:1度为毛囊性丘疹和脱毛,DT20-30GY;2度为红斑反应,DT40GY;3 但更

医学物理师在肿瘤放射治疗中的角色和职责

医学物理师在肿瘤放射治疗中的角色和职责 作者:傅玉川(ychfu@https://www.doczj.com/doc/b911616698.html,) 来源:原创更新日期:2005-10-26 简述:医学物理师是肿瘤放射治疗中不可或缺的重要成员。特别是随着近年来肿瘤放射治疗设备和技术的飞速发展,物理师在保证辐射安全,提高治疗技术水平,为患者提供高质量服务等方面所起的作用也越来越重要。 医学物理师在肿瘤放射治疗中的角色和职责 医学物理师是肿瘤放射治疗中不可或缺的重要成员。特别是随着近年来肿瘤放射治疗设备和技术的飞速发展,物理师在保证辐射安全,提高治疗技术水平,为患者提供高质量服务等方面所起的作用也越来越重要[1]。在欧美国家医院里的肿瘤放疗科,物理师作为一个职业已有很长的历史,从事物理师职业的人数也由于设备和精确放疗技术的发展不断增加,同时所担负的责任也越来越重。 在肿瘤放射治疗中,放射肿瘤学医师无疑将对整个放射治疗过程负责,基于这样一个角色,他或她的责任就是确定一个合适的能胜任工作的物理队伍,在这个队伍中不同人员(包括物理师,剂量师或其他人员)的职责是明确指定的。没有足够的物理支持,就无法为患者提供高标准的治疗和服务[2]。而物理师则必须领导物理组的工作,对应用于患者的所有物理数据和过程负责,不管这些过程是否由物理师本人直接实施。 每一个放射治疗部门都需要不断提高自己的治疗水平,这就意味着需要不断引入新的治疗技术和手段,同时有选择地保留原有的治疗项目。在这个过程中,物理师都扮演了重要的角色。例如在近30年里,加速器技术的发展、CT成象、三维治疗计划、适形和动态治疗、远程后装近距离照射、调强放射治疗以及立体定向治疗等新技术的相继出现和发展[3],都不断地改变着物理师的工作内容和职责范围。由于每家临床医院的肿瘤放射科所拥有的治疗设备各不相同,治疗水平和开展的项目也不一样,所以工作在不同医院里的物理师的具体工作和职责也就不尽相同。在具备大多数先进的放射治疗设备的肿瘤放疗科里,物理师这个职业的具体任务大致包括以下几个方面。 1.针对放射治疗设备方面的工作 现代放疗设备包括远距离照射设备、近距离照射设备及模拟机等等。考虑到放疗设备的迅速发展、针对的病症种类和相对昂贵的价格,物理师有责任对本单位需要购买的放射治疗设备进行性能价格比方面的选择,就如何开展该治疗项目提出自己的建议,并提出厂家的设备需要满足的指标和条件。这不仅要求物理师不断了解最新的放射治疗技术,同时也要清楚各种技术和手段的适用范围和局限性,并对这些技术实施过程的复杂程度有所了解。 放射治疗设备的安装一般都是由厂家完成的,但随后该设备的验收检测和机器数据测量都是医学物理师的工作。对每种放疗设备来说都可列出正式的验收检验条目,其指导原则是用于患者的任何设备都必须经过检测以确保满足使用要求和安

肿瘤放射治疗基本知识

1.什么是放射线? 在1895年12月的一个夜晚,德国的一位世界著名的物理学家伦琴(ROentgen 1845~1923年)在物理实验室进行阴极射线特点的研究的试验中发现:放电的玻璃管不仅发射看得见的光,还发射某种看不见的射线,这种射线穿透力很强,能穿透玻璃、木板和肌肉等,也能穿透黑纸使里面包着的底片感光,还能使涂有氰酸钡的纸板闪烁浅绿色的荧光,但对骨头难以穿透。伦琴还用这种射线拍下他夫人手骨的照片。他认为新发现的射线本质很神秘,还只能算一个未知物,于是就把数学中表示本知数的"X"借用过来,称之为"X射线"。后来又经过科学家们多年的研究,才认清了"X射线"的本质,实质上它就是一种光子流,一种电磁波,具有光线的特性,是光谱家族中的成员,只是其振荡频率高,波长短罢了,其波长在1~0.01埃(1埃=10-10米)。X射线在光谱中能量最高、围最宽,可从紫外线直到几十甚至几百兆电子伏特(MeV)。因为其能量高,所以能穿透一定厚度的物质。能量越高,穿透得越厚,所以在医学上能用来透视、照片和进行放射治疗。 科学家们在放射线研究的过程中,还发现放射性同位素在衰变时能放射三种射线:α、β、γ射线。α射线实质上就是氦原子核流,它的电离能力强,但穿透力弱,一薄纸就可挡住;β射线实质上就是电子流,电离能力较α射线弱,而穿透力较强,故常用于放射治疗;γ射线本质上同X射线一样,是一种波长极短,能量甚高的电磁波,是一种光子流,不带电,以光速运动,具有很强的穿透力。因此常常用于放射治疗。 2.什么是放射治疗? 放射治疗是指用放射性同位素的射线,X线治疗机产生的普通X线,加速器产生的高能X线,还有各种加速器所产生的电子束、质子、快中子、负兀介子以及其它重粒子等用来治疗癌瘤。 广义的放射治疗既包括放射治疗科的肿瘤放射治疗,也包括核医学科的用同位素治疗(如131碘治疗甲状腺癌和甲状腺功能亢进,32磷治疗癌性胸水等)。狭义的放射治疗一般仅指前者,即人们一般所称的肿瘤放射治疗。放射治疗有两种照射方式:一种是远距离放疗(外照射),即将放射源与病人身体保持一定距离进行照射,射线从病人体表穿透进人体一定深度,达到治疗肿瘤的目的,这一种用途最广也最主要;另一种是近距离放疗(照射),即将放射源密封置于肿瘤或肿瘤表面,如放入人体的天然腔或组织(如舌、鼻、咽、食管、气管和宫体等部位)进行照射,即采用腔,组织间插植及模型敷贴等方式进行治疗,它是远距离60钴治疗机或加速器治疗癌瘤的辅助手段。近年来,随着各医院医疗设备的不断改进,近距离放疗也逐渐普及。 体、外放射治疗有三个基本区别:①和体外照射相比,体照射放射源强度较小,由几个毫居里到大约100毫居里,而且治疗距离较短;②体外照射,放射线的能量大部分被准直器、限束器等屏蔽,只有小部分能量达到组织;体照射则相反,大部分能量被组织吸收;③体外照射,放射线必须经过皮肤和正常组织才能到达肿瘤,肿瘤剂量受到皮肤和正常组织耐受量的限制,为得到高的均匀的肿瘤剂量,需要选择不同能量的射线和采用多野照射技术等;而体照射,射线直到肿瘤组织,较深部的正常组织受照射量很小。 3.有人把放射治疗称为"烤电",对不对? 有人把放射治疗称为"烤电",这是普通百姓对放射治疗的一种不确切的称谓。可能源于放射治疗使病人放射野的皮肤发红,甚至由于色素沉着增多而变"黑",而联想到用电灯或其它电器设备烘烤皮肤而出现类似的皮肤改变所致。殊不知两者的作用机理并不相同。放射治疗是用放射治疗设备

肿瘤放射治疗学试题及答案

肿瘤放射治疗学试题及答案 1、恶性肿瘤:是在人类正常细胞基础上,在多种致癌因素作用下,逐渐形成的、 不断增殖的、个体形态变异或缺失的、具有迁徙和浸润行为的细胞群。临床上常表现为一定体积的肿物。 2、我国目前肿瘤放疗事故(恶性肿瘤最新发病率)为:10万人口每年280例。 3、肿瘤放疗:放射治疗就是用射线杀灭肿瘤细胞的一种局部治疗技术。 4、放疗时常用的射线:射线分两大类:一类是光子射线,如X、γ线,是电磁 波;一类是粒子,如电子、质子、中子。 5、放疗的四大支柱:放射物理学、放射生物学、放射技术和临床肿瘤学。 6、肿瘤细胞放射损伤关键靶点:DNA。 7、射线的直接作用:(另一种答案:破坏单键或双键)。任何射线在被生物物质 所吸收时,是直接和细胞的靶点起作用,启动一系列事件导致生物改变。如:电离、光电、康普顿。 8、射线的间接作用:(另一种答案:电解水-OH,自由基破坏)。射线在细胞内可 能和另一个分子或原子作用产生自由基,它们扩散一定距离,达到一个关键的靶并产生损伤。 9、B-T定律:细胞的放射敏感性与它们的增殖能力成正比。与它们的分化程度 成反比。 10、影响肿瘤组织放射敏感性的因素:组织类型、分化程度、临床因素。 肿瘤自身敏感性:肿瘤负荷、肿瘤分型、分期;肿瘤来源和分化程度;肿瘤部位和血供;照射剂量;2、化学修饰与肿瘤放射效应:放射增敏剂:氧气、多种药物;放射保护剂:低氧、谷胱甘肽加温与放疗;430C加温自身即可杀灭肿瘤细胞;能使S期细胞、乏氧细胞变的敏感;热休克蛋白,42-4450C, 2/周;3、放疗与同步化疗:空间协作:放射控制原发,化疗控制转移;毒性依赖:必须注意两者叠加问题;互相增敏:联合应用,疗效1+1>2,机制不详;保护正常组织:缩小病灶,减少剂量; 11、放射野设计四原则:1、靶区剂量均匀:治疗的肿瘤区域内吸收剂量要均匀,剂量梯度部超5%,90%剂量线包整个靶区。(野对称性);2、准确的靶区和剂量:即CTV准确,考虑到肿瘤类型和生物学行为(不同胶质瘤外扩大不一样),

放疗基本知识

肿瘤放疗基础知识 1.什么是放疗? 放疗为放射治疗的简称,是治疗肿瘤主要手段之一,它利用放射线杀死癌细胞使肿瘤缩小或消失来治疗肿瘤。放射线破坏照射区(靶区)的细胞,使这些细胞停止分裂直至死亡。放疗的目的是尽最大的努力杀死肿瘤细胞,同时保护正常 组织。 2.那些肿瘤需要放疗? 目前的统计表明,约70%的恶性肿瘤病人在疾病发展的不同阶段需要放疗控制,但对于一个具体的病人来讲,是否采用放疗则应按照肿瘤的规范化治疗原则、肿瘤的发展期别及病人的身体状况而定。临床上适合放疗的肿瘤主要有:鼻咽癌、喉癌、扁桃体癌、舌癌、恶性淋巴瘤、宫颈癌、皮肤癌、脑瘤、食管癌、乳腺癌、肺癌、直肠癌、骨肿瘤、肝癌、软组织肉瘤等。 3.放疗需要多长时间? 根据肿瘤性质和治疗目的,放疗分为根治性放疗、术前放疗、术后放疗、姑 息性放疗。不同的放疗目的放疗完成所需时间各异,下面分别详述: ?根治性放疗:单独用放疗手段控制甚至治愈肿瘤。部分肿瘤,如:鼻咽癌、喉癌、扁桃体癌、舌癌、恶性淋巴瘤、宫颈癌、皮肤癌等单独放疗可治愈。另外肿瘤生长的部位无法手术、或病人不愿手术者也可单独给予根治性放疗。根治性放疗时放疗剂量一定要用够量,否则会留下复发的隐患。一般需要6-7周时间完 成。 ?术前放疗:因肿瘤较大或与周围脏器粘连无法手术,术前先放疗一部分剂量,缩小肿瘤利于手术。一般需要3-4周时间完成,放疗后休息3-6周再手术。 此放疗后休息是为了正常组织修复放疗反应,同时使肿瘤进一步退缩利于手术切除。在放疗和休息期间癌细胞在逐渐死亡,不要担忧因手术推迟癌细胞是否会生 长。 ?术后放疗:因肿瘤生长在特殊部位、或与周围脏器粘连无法完全切除,这些残留肿瘤术后会复发和转移,所以术后应该放疗消灭残存癌细胞。放疗时间根据残存肿瘤多少而定。如果残存肿瘤较多,肉眼就能看到有肿瘤残留,几乎需要与根治性放疗同样的时间和剂量。如果残存肿瘤较少,只有在显微镜下看到有癌细胞残留,一般需要根治性放疗剂量的2/3剂量即可,即4-5周时间。 ?姑息性放疗:因肿瘤生长引起病人痛苦,如骨转移疼痛、肿瘤堵塞或压迫气管引起呼吸困难、压迫静脉引起血液回流障碍至浮肿、脑内转移引起头疼、肿瘤侵犯压迫脊髓引起瘫痪危险等,给予放疗一定剂量缓解症状减轻痛苦。放疗剂量根据肿瘤部位和目的而异,从放疗数次到一月时间不等。 4.什么是外照射、什么是内照射? 根据放射源的远近分为:外放射和内放射。

《放射治疗学》考试题

. '. 《放射治疗学》试卷姓名专业 一、单项选择题(每题2分,共40分。请将答案写在表格内) 1.用于治疗肿瘤的放射线可以是放射性核素产生的射线是: A.αB.δC.θ 2.X线治疗机和各类加速器产生的不同能量的射线是: A.γB.αC.X 3.各类加速器也能产生的射线是: A.电子束B.高级质子束C.低能粒子束 4.放射治疗与外科手术一样,是: A.局部治疗手段B.全身治疗手段C.化学治疗手段 5.放射治疗是用什么物质杀伤肿瘤细胞,达到治愈的目的? A.放射线B.化学药物C.激光 6.放射线治疗的适应证比较广泛,临床上约有多大比例的恶性肿瘤病人需要做放射治疗?A.50% B.70% C.90% 7.60钴的半衰期是: A.5.27年B.6.27年C.7.27年 8.几个半价层厚度的铅,可使原射线的透射率小于5%? A.4.5~5.0 B.6.5~7.0 C.7.5~8.0 9.照射患者一定深度组织的吸收剂量为: A.组织量B.空气量C.机器输出量 10.放射源到体模表面照射野中心的距离是: A.源皮距B.源瘤距C.源床距 11在放射治疗中,直接与肿瘤患者治疗有关的常用设备有: A.DSA B.适形调强C.加速器和钴-60治疗机 12.60钴治疗机的半影有: A.物理半影B.化学半影C.散射半影 13.高能x射线的基本特点是: A.等中心照射较60钴治疗机更准B.在组织中有更高的穿透能力C.照射更准确 14.高能电子束的基本特点是: A.高能电子束易于散射B.主要用于深部肿瘤的照射 C.不同能量的电子束在介质中有确定的有限射程 15.模拟治疗定位机的临床应用主要表现在: A.肿瘤和敏感器官的定位B.评价治疗计划的好坏C.固定病人的体位 16.放射治疗中用的楔形板的楔形角度有: A.100 B.200 C.300 D.400 17.放射敏感的肿瘤是指: A.给以较低的剂量即可达到临床治愈B.给以较低的剂量即可达到永久治愈C.该类肿瘤不易远处转移 18.立体定向放射治疗是: A.精确放射治疗B.根治性放射治疗C.普通放射治疗 19.一般来讲,人体组织细胞对放射线的敏感性与组织繁殖能力成正比,与分化程度成反比,即: A.繁殖能力愈强的组织对放射线愈敏感 B.繁殖能力愈强的组织对放射线愈不敏感 C.分化程度愈高的组织对放射线愈敏感 20.各种不同组织接受照射后能够耐受而不致造成不可逆性损伤所需要的最大剂量为: A.该组织的耐受剂量B.该组织的损伤剂量C.该组织的治疗剂量 二、填空题(每空1分,共40分) 1.在照射的线束内,把线束内测量的同等剂量点连线的曲线称_______________。 2.远距离放射治疗的方式有__________放射治疗技术,__________放射放射治疗技术,_________放射治疗技术。3.近距离放射治疗的方式有____________技术,______________技术,_________技术,_____________技术。 4.放射治疗的种类有___________放射治疗,____________放射治疗,__________放射治疗,__________放射治疗,___________放射治疗。 5.肿瘤区__________是指通过临床或影像检查可发现的肿瘤范围,包括_____________,_____________和____________。 6.恶性肿瘤的放射治疗剂量应当选择在正常组织能够耐受且肿瘤细胞致死的范围内,这样才能使肿瘤逐渐消退,周围正常组织不产生严重损伤。对射线不同敏感的肿瘤放射剂量大致分:_______________的肿瘤剂量,______________肿瘤剂量,______________的肿瘤剂量,_____________的肿瘤剂量,_________放射治疗剂量。 7.根据楔形板造成的等剂量曲线倾斜变形结果看,楔形板使用具有__________,放疗摆位中必须注意其__________,严格遵守___________的要求,如果使用中楔形板方向出现错误,结果将适得其反。 8.肿瘤放疗中,由于病灶总是不规则形状,常需要用铅挡块或加速器多叶准直器系统屏蔽遮挡___________或____________,使其免受或少受照射,形成___________。 9.斗蓬野照射技术一般适用于___________隔上病变的治疗,照射范围包括______,___________,__________,___________。 10.全身照射主要用于____________及某些全身广泛性且对_______________的恶性肿瘤的治疗。 11.全身照射技术主要用于白血病的骨髓移植予处理,可以达到三个目的,_________________,________________,________________________。 12.体位固定技术大致分两种_______________, ________________。 三、问答题(20分) 阐述60钴治疗机的临床应用特点。

肿瘤学习题库肿瘤放射治疗基础

精心整理肿瘤放射治疗 选择题 A1型题 1.对放射治疗高度敏感的肿瘤是: A(6. 2.1) A.淋巴组织肿瘤 B. C. D. E. 2. A B C D E 3. A B C D E 4. A B C D E 5. A、1 B、1 C、1/3~1/4 D、1/4~2/3 E、1/5~1/4 6.以下何种组织属于早反应组织?A(6.2.4) A、肿瘤 B、软组织 C、中枢神经 D、以上都是 E、以上都不是 7.在标准治疗条件下,眼晶体出现白内障的最低耐受量(TD5/5)为:A(6.2.4)

A、500cGy B、600cGy C、700cGy D、1000cGy E、1200cGy 8.在标准治疗条件下造成永久不育,卵巢的最低耐受量(TD5/5)为: A(6.2.4) A、200cGy B、400cGy C、600cGy D、1000cGy E、1200cGy 1. 2. 3. 4. 5. 细胞的加速增殖现行,此现象被为称为加速再增殖。 6.常规放射分割治疗(1.2.1)是指每天照射1次,每次1.8+2.0Gy,每周照射5d, 总剂量60-70Gy,照射总时间6~7周的放疗方法。

7.非常规放射分割治疗(1.2.1)指对常规放射分割方式中时间-剂量-分割因子的任 何因素进行修正。一般特指每日照射1次以上的分割方式,如超分割治疗及加速超分割治疗。 8.放射增敏剂(1.2.1)能够提高放射肿瘤细胞的放射敏感性以增加对肿瘤的杀灭效 应,提高局控率的药物。包括嘧啶类衍生物、化疗药物和缺氧细胞增敏剂。 9. 10. 1. 2. 70Gy/7W以上,未分化癌约需50-60Gy/5-6W。 对于亚临床病灶,放疗容易收到好的效果,只需一般剂量的2/3或4/5即可控制肿瘤生长。目前治疗方法多适当地扩大照射野,使其包括可能浸润或可能转移的淋巴区,待达到亚临床剂量后,缩小射野,针对肿瘤补足剂量。对于大的肿瘤,由

[医学类试卷]肿瘤主治医师(肿瘤放射治疗学)专业知识模拟试卷14.doc

[医学类试卷]肿瘤主治医师(肿瘤放射治疗学)专业知识模拟试卷14 1 对高能X射线剂量建成区,描述正确的是 (A)一般使肿瘤位于建成区之前 (B)一般使肿瘤体积的一半位于建成区之前 (C)肿瘤中心通过剂量最大点 (D)最大剂量建成深度随射线能量增加而增加 (E)最大剂量建成深度随射线能量增加而靠近皮肤表面 2 术中放疗常用的放射源为 (A)60钴 (B)快中子 (C)电子束 (D)质子 (E)高能X线 3 目前公认的术后放疗的作用为 (A)提高无瘤生存率 (B)提高总生存率

(C)降低局部复发率 (D)没有并发症 (E)无不良反应 4 楔形板用于临床应用的主要目的是 (A)减少皮肤剂量,得到较理想的靶区的剂量分布(B)对人体不均匀组织进行补偿 (C)提高百分深度量 (D)得到较理想的靶区的剂量分布 (E)降低剂量率 5 影响射线百分深度量的因素中,下列错误的是(A)射线的种类 (B)射线的能量 (C)照射面积 (D)照射部位 (E)源皮距离 6 下列不是高LET射线的优点的是

(A)剂量曲线具有Bragg峰 (B)氧增强比低 (C)对细胞生长周期依赖小 (D)亚致死损伤修复低 (E)经济,实用 7 60钴治疗时,骨和软组织吸收剂量 (A)骨大于软组织 (B)软组织稍微大于骨 (C)无规律可言 (D)两者相等 (E)随治疗源皮距而变 8 源皮距对百分深度量的影响是 (A)源皮距大,百分深度量高 (B)源皮距大,百分深度量低 (C)源皮距对百分深度量无影响 (D)源皮距与百分深度量关系无规律可言

(E)源皮距与百分深度量关系为平方反比定律 9 乳癌根治术后做胸壁照射时,常用的照射技术为 (A)高能X线垂直对穿 (B)电子束切线照射 (C)电子束照射 (D)深部X线垂直照射 (E)深部X线切线照射 10 目前放射治疗外照射常用的射线不包括 (A)高能电子线 (B)高能X射线 (C)192铱产生的射线 (D)60钴产生的射线 (E)3mmCu HVL X线 11 深部X线(HVL一1mmCu)造成骨的吸收剂量较高,是因为(A)光电效应 (B)康普顿效应

肿瘤放射治疗技术新进展

肿瘤放射治疗技术新进展 2007-12-17 放射肿瘤学由于高科技的发展已取得了许多理论上和技术上的突破,本文简要介绍了放射生物科学,生物等效剂量超分割以及三维调强立体定向放射等技术的进展。 1放射生物学进展 1.1放射生物学的进展以线性——平方模式(Linear-Quadratic model)来解释放射生物学中的反应,以α/β系数来预测放射治疗剂量时间疗效关系,为放射生物学开辟了较为广阔的天地。近年来深入研究了细胞周期,即增殖期(G1-S-G2-M)和静止期(G0)的关系,为此提出了4个R:即是修复(Repair),再氧化(Reoxygenation)和再分布(Redistribution)和再增殖(Regeneration)作为指导放射生物中克服乏氧等问题的研究要点,放射生物学推进到目的明确,针对性强的有效研究中去。近年来在研究细胞修复和增殖中又进一步了解到细胞凋亡(Apoptosis)和细胞分裂(Mitosis)的关系后,提出了凋亡指数(AI)与分裂指数(MI) (Apoptosisindex/Mitosisindex)比来予测放射敏感性和预后,指导调发自发性凋亡和平衡各种细胞的抗放、耐药(即Resistant RT和Resistant Chemotherapy),并由此估计复发,研究增敏,开发出超分割、加速超分割治疗等新技术,从而取得了科研及临床的许多新结果,加深了理论深度,开拓出新的领域,推动了放射治疗学的进展。 1.2DNA和染色体研究 为了测定肿瘤细胞本身辐射损伤,染色体中DNA链中的断裂(单链断裂SSB和双链断裂DS,其断裂的准确位置,以及在这个过程中,肿瘤细胞如何进行修复,也观察到错误修复,以及无修复等对细胞的子代产生的决定作用。目前临床用对DNA调节机制的多种原理表达进行测试,可以分清那些是有意义的表达,那些是灵敏的表达,建立对临床治疗,预后评估的方法学和化验项目,指导放射生物学,放射物理学,临床放射肿瘤学的发展,使更有目的性,针对性和实用性。放射生物学从细胞水平已进入到大分子水平,从纯实验室过渡到临床初步应用阶段。 2放射物理技术的进展 2.1立体定向治疗的实现 基于电子计算机精度提高,双螺旋CT及高清晰度MRI出现,因此立体定向治疗应运而生,目前使用的γ-刀,从某种意义来说是一个立体定向放射手术过程(Sterol Radiation Surgery,SRS),它通过聚焦,等中心照准,于单次短时间或多次较长时间给予肿瘤超常规致死量治疗,达到摧毁瘤区细胞的目的,γ刀利用约30~200个钴源,在等中心条件下,从立体不同方向位置,在短距离内对细小肿瘤(或良性肿瘤,先天畸形等病灶,一般约1~2cmΦ)进行一次或多次照射,给予总剂量超过肿瘤及正常组织耐受量,用准确聚焦的办法使多个60Co源的剂量集中在靶区,分射束聚焦使周围正常组织受量仍在可能的耐受量中,由于采用电脑、CT,以及准确的立体设计定位,因而射野边界锐利可达±2mm以下,确保了非瘤区正常组织安全。应用于脑部的良性小肿瘤和先天性畸形效果尤佳,应用于脑干等生命禁区

2015年肿瘤放射治疗技术(中级)专业知识真题知识点

2015年肿瘤放射治疗技术(中级)专业知识真题知识点山西医科大学第一医院放疗科傅炜 1、近距离照射治疗距离5mm~5cm 2、铯137具有和镭相同的穿透力,同等当量具有类似的剂量分布。放射性比度不可能做得太高,多用于腔内照射。铯134的半衰期比铯137短得多。 3、铱192,在距源5cm范围内任意点的剂量率与距离平方的乘积近似不变。半衰期74.2天。 4、碘125源的γ射线能量较低,主要用于眼内黑色素瘤的巩膜外插植。 5、钯103的半衰期比碘125更短,比碘125能产生更高的生物剂量效应。 6、锶90可用于治疗表浅病变,同时不会影响皮肤的血液供应 7、锎252为中子放射源。 8、医用加速器的种类有三种:电子感应加速器,电子直线加速器和回旋加速器 9、电子直线加速器是利用微波电场把电子加速到高能的装置 10、X线治疗机使用复合滤过板,要注意防止次序,从射线窗口向外,先放原子序数高的。 11、钴60治疗机几何半影的计算公式(书上有)

12、钴60治疗机电源具有足够的内阻抗,使用有载和空载两种稳定状态之间的电压波动不超过±5% 13、1953年第一台行波电子直线加速器在英国投入使用。 14、磁控管,3000兆赫兹频段,兆瓦级的脉冲大功率震荡管 15、微波功率源有磁控管和速调管 16、巴黎系统的布源规则(书上) 17、步进源计量学系统,AL=L-10mm 18、模拟定位机射野“井”字界定线的用途(书上) 19、CT模拟机的定位床的进床精度应保持在0.5mm之内 20、组织补偿器放置在射野挡块托架上。 21、射野胶片照相验证(书上) 22、EPID可用于位置验证和剂量验证。 23、肿瘤剂量的不确定度应控制在±5%以内;接受照射的治疗体积内,处方剂量的变化应在﹢7%和-5%以内 24、热点的概念(书上) 25、治疗验证,独立核对常用于常规放疗和适形放疗,模体测量用于调强放疗,在体测量在我国不是必须要做的 26、对于体厚20cm的患者,10~25MV能量的X线比较理想。 27、高能电子束照射,电子束能量E0≈3*d后+2~3(MeV) 28、两野对穿照射,一般应该使每野在体位中心处的深度剂量≥70% 29、优化算法,积分方程的逆向直接求解:傅里叶变换;使

相关主题
文本预览
相关文档 最新文档