当前位置:文档之家› 底盘悬架-设计参考

底盘悬架-设计参考

底盘悬架-设计参考
底盘悬架-设计参考

底盘悬架-设计参考

说明:

本规范为TG0数据设计指导。

该系列设计规范用于指导结构功能说明、结构布置与

尺寸控制的正向设计,尤其是在没有标杆车的状态下

的正向开发;基于本规范完成结构数据TG0版的设计

开发。

本规范是TG0版数据的设计指导。

[键入文字]

目录

1、系统整体概述

1.1系统功用

1.2系统原理简图

2、系统性能设计

2.1设计参数要求

2.2悬架系统运动车轮跳动间隙要求

2.3制造及安装工艺性要求 7

3、系统开发流程图

4、零部件结构设计

4.1钢板弹簧设计

4.2减振器设计

4.3螺旋弹簧设计

4.4 悬架横梁设计

4.5 横向稳定杆设计

4.6 缓冲块设计

5、悬架系统验算及分析校核案例

5.1前悬架位移与受力情况分析

5.2后悬架(钢板弹簧)位移与受力情况分析

5.3悬架静挠度的计算

5.4侧倾角刚度计算

5.5侧倾角刚度校核

5.6减振器参数的确定

5.7总结

6、基于Adams的操纵稳定性分析

6.1分析目的

6.2 模型建立

6.2.1 车身

6.2.2 前、后悬架

6.2.3 转向系简化模型

6.2.4 轮胎

6.2.5 发动机的动力输出

2.6 传动系

6.2.7 整车模型

6.3 操纵稳定性试验

6.3.1 蛇形实验

6.3.2转向盘转角阶跃输入

6.3.3 转向盘转角脉冲输入

6.3.4 转向回正性能试验

6.3.5 转向轻便性试验

6.3.6稳态回转试验

6.4 结论

6.4.1 整车操稳性能分数量化

6.4.2 得分说明

1、系统整体概述

1.1系统功用

悬架是保证车轮或车桥与汽车承载系统(车架或承载式车身)之间具有弹性联系并能传递载荷、缓和冲击、衰减振动以及调节汽车行驶中的车身位置等有关装置的总称。

悬架最主要的功用是传递作用在车轮和车架(或车身)之间的一切力和力矩,并缓和汽车驶过不平路面时所产生的冲击,衰减由此引起的承载系统的振动,以保证汽车的行驶平顺性。为此必须在车轮与车架或车身之间提供弹性联接,依靠弹性元件来传递车轮或车桥与车架或车身之间的垂向载荷,并依靠其变形来吸收能量,达到缓冲的目的。采用弹性联接后,汽车可以看作是由悬挂质量(即簧载质量)、非悬挂质量(非簧载质量)和弹簧(弹性元件)组成的振动系统,承受来自不平路面、空气动力及传动系,发动机的激励。为了迅速衰减不必要的振动,悬架中还必须包括阻尼元件,即减振器。此外,悬架中确保车轮与车架或车身之间的所有力和力矩可靠传递并决定车轮相对于车架或车身的位移特性的连接装置统称为导向机构。导向机构决定了车轮跳动时的运动轨迹和车轮定位参数的变化,以及汽车前后侧倾中心及纵倾中心的位置,从而在很大程度上影响了整车的操纵稳定性和抗纵倾能力。在有些悬架中还有缓冲块和横向稳定杆。

微车的前后悬架系统的前后悬架与轿车和货车有所不同。微车的前后悬架结构形式比较集中,一般前悬架采用独立悬架,如麦弗逊式悬架系统,后悬架采用非断开式非独立悬架,例如钢板弹簧系统。1.2系统结构图

图1 前悬架:麦弗逊悬架结构

1-减振器外筒;2-活塞杆;3-弹簧支座;4-横向稳定杆支架;5-横向稳定杆拉杆;6-副车架;7-横向稳定杆;8-发动机支座;9-弹簧上支座;10-隔离座;11-辅助弹簧;12-防尘罩;13-U形夹;14-轴承;15-定位螺栓

图2 后悬架:(钢板弹簧非独立悬架)

1-钢板弹簧;2-减振器;3-钢板弹簧安装吊耳;4-后桥总成

2、系统性能设计

2.1设计参数要求

在汽车悬架的设计工程中,首先要确定与悬架有关的操纵稳定性、行驶平顺性等方面的指标,然后选定满足这些性能的悬架结构和参数,并考虑成本及质量等因素。然而,由于受到结构,布置空间、生产工艺、设备投资等因素的限制,设计程序也会前后调整。比如,根据实际可能的布置空间,先确定悬架结构,再优化性能指标。

2.1.1 前束及前束的变化

汽车前束角是汽车纵向中心平面与车轮中心平面和地面的交线之间的夹角。如果车轮的前部靠近汽车纵向中心平面,则前束为正;反之则为负值。一般指在空载时车轮停在直线行驶位置的状态下,在车轮中心的高度上测量。

在汽车行驶中保持前束不变非常重要,换言之,设计上希望在车轮上下跳动过程中,前束不变,这比在汽车静止时有个正确的前束更重要。

对于汽车前轮,车轮上跳时的前束值多设计成零至弱前束的变化。设计值取在零附近时为了控制直行时由路面的凹凸引起的前束变化,确保良好的直行稳定性。另外,取弱负前束变化是为了使车辆获得弱的不足转向特性,以使装载质量变化引起车高变化时也能保持不足转向。与上跳行程相对应的前束变化最好呈直线,但受悬架、转向结构的限制,实际呈曲线变化的为多。

对于汽车的后轮,由于微车多采用非断开式后桥,非独立悬架的钢板弹簧,因此在上调过程中没有前束的变化。

前束变化的较理想特性值为:前轮上跳时,为零至负前束(-0.5°/50mm)(即弱负前束变化。)如图所示,原车前束变化曲线有轮胎偏磨的问题,而改为优化方案的弱负前束变化,能解决这一问题。

图3-1前轮前束优化曲线

2.1.2 外倾变化

车轮上跳及车轮回落时的外倾变化与前束变化一样对车辆直行稳定性、车辆的稳态响应特性等有很大影响。由于轮胎与路面之间有相对的外倾角,路面对车轮作用有外倾推力,该力与侧偏角产生的侧向力汇合而成为车辆转向所需要的横向力,因此,在考虑外倾变化与车辆特性的关系时,必须考虑对地面的外倾变化。

汽车转向时,其车身要发生侧倾,趋于使外倾车轮的外倾角向正的方向变化、内侧车轮的外倾角向负的方向变化。研究结果表明,当车轮外倾角为正时,其在最大负荷时可以得到的侧向附着力会减小。为了防止转向时提供大部分侧向力的外侧车轮出现明显的正外倾角,在悬架设计时,一般要保证悬架压缩时车轮外倾角向负的方向变化,而当伸张时向正的方向变化,下图为麦弗逊悬架的外倾角变化曲线(双横臂独立悬架的该曲线向负方向变化的速率是逐渐变快,、麦弗逊悬架是逐渐变慢,这是双横臂独立悬架的一个优点),如图所示:

原车

优化方案满载

图3-2外倾角随车轮跳动曲线图 在车辆直行状态下,较大的对地外倾变化会使车辆的直行稳定性不好。综合考虑转向性能和直行稳定性,一般上跳时,对车身的外倾变化为-2°~0.5°/50mm 。

2.1.3 主销的内倾角及偏移距

转向主销倾角是指从车辆正面看在转向主销轴线与铅锤直线的夹角,转向主销偏移距是指从转向轮接地点到转向主销轴与路面的交点之间左、右方向的距离。

由制动力所引发的绕转向主销轴的回正力矩一般来说左右轮是相等的,同时与转向拉杆的内力平衡。然而,当路面摩擦系数不同而引起左右前轮制动力不同时,或呈对角线布置的制动管路一侧系统失效后,就会有力传至方向盘。因此,当转向主销偏移距较大的情况下需抓紧转向盘。多数前轮驱动车的制动管路为对角线布置,在这种状态下为防止紧抓方向盘及使车辆正常停车,转向主销偏移距多设计成负值。

在实际设计中,主销内倾角及偏移距大小主要受结构的限制,大致的范围为:转向主销倾角7°~13°,希望取较小的数值;主销偏移距-10~30mm ,希望取较小的数值,特别是在FF 车中,多设定为零到负值。

满载

汽车悬架的发展历程

汽车悬架的发展历程 汽车的悬架系统是指车身、车架和车轮之间的一个连接结构系统,而这个结构系统包含了避震器、悬架弹簧、防倾杆、悬吊副梁、下控臂、纵向杆、转向节臂、橡皮衬套和连杆等部件。当汽车行驶在路面上时因地面的变化而受到震动及冲击,这些冲击的力量其中一部份会由轮胎吸收,但绝大部分是依靠轮胎与车身间的悬架装置来吸收的。 在汽车的行驶过程中,悬架的作用是弹性的连接车桥和车架,减缓行驶中车辆受到由路面不平引起的冲击力,保证乘坐舒适和货物完好,迅速衰减由于弹性系统引起的振动,传递垂直、纵向、侧向反力及其力矩,并起导向作用,使车轮按照一定轨迹相对车身运动。悬架决定着汽车的稳定性、舒适性和安全性,是现代汽车十分重要的部件之一。 典型的悬架结构由弹性元件、导向机构以及减震器等组成,个别结构则还有缓冲块、横向稳定杆等。弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,而现代轿车悬架多采用螺旋弹簧和扭杆弹簧,高档豪华大客车则使用空气弹簧。 悬架的种类和工作原理 根据悬架的阻尼和刚度是否随行驶条件的变化而变化,可分为被动悬架、半主动悬架和主动悬架,半主动悬架还可以按阻尼分为有级式和无级式两类。传统的悬架系统的刚度和阻尼系数,是按经验设计或优化设计方法选择的,一经选定后,在车辆行驶过程中,就无法进行调节,因此其减震性能的进一步提高受到限制,这种悬架成为被动悬架。为了克服被动悬架的缺陷,20世纪60年代提出了主动悬架的概念,主动悬架就是由在悬架系统中采用有源或无源可控制的元件组成。它是一个闭环控制系统,根据车辆的运动状态和路面状况主动作出反应,以抑制车体的运动,使悬架始终处于最优减震状态。所以主动悬架的特点就是能根据外界输入或车辆本身状态的变化进行动态自适应调节。因此系统必须是有源的。半主动悬架则由无源但可控制的阻尼元件组成。 在车辆悬架中,弹性元件除了吸收和贮存能量外,还得承受车身重量及载荷,因此半主动悬架不考虑改变悬架的刚度而只考虑改变悬架的阻尼。由于半主动悬架结构简单,在工作时,几乎不消耗车辆动力,又能获得与主动悬架相近的性能,故应用较广。 由于路面输入的随机性,车辆悬架阻尼的控制属于自适应控制,即所设计的系统在输入或干扰发生大范围的变化时,能自适应环境,调节系统参数,使输出仍能被有效控制,达到设计要求。它不同于一般的反馈控制系统,因为它处理的具有“不确定性”的反馈信息。 自适应控制系统按其原理不同,可分为校正调节器和模型参考自适应控制系统两大类,由于要建立一个精确的“车辆-底面”系统模型还很困难,故目前的主动悬架,多采用自校正调节器。 虽然现代汽车的种类较多,结构差异较大,但一般由弹性元件、减振元件和导向构件组成。工作原理是:当汽车轮胎受到冲击时,弹性元件对冲击进行缓冲,防止对汽车构件和人员造成损伤。但弹性件受到冲击时会产生长时间持续的振动,容易使驾驶员疲劳。故减振元件应快速衰减振动。当车轮受到冲击而跳动时,应使其运动轨迹符合一定的要求,否则会降低汽车行驶时的平顺性和操纵稳定性。导向构件在传力的同时,必须对方向进行控制。

底盘-10-麦弗逊式悬架的构造及拆装实训

底盘-10-麦弗逊式悬架的构造及拆装实训

汽修专业理实一体教案 课题项目七麦弗逊式悬架的结构、工作原理及拆装实训 教学目标一、知识目标 了解麦弗逊式悬架的工作原理原理二、技能目标 拆卸安装悬架 三、情感目标 培养团队合作能力 培养不怕脏不怕累的劳动精神 教学重点一、实训车间的行为规范 二、悬架及减震的工作原理 教学难点一、悬架的运动原理 二、规范的使用各种工具 教学准备一、转向系统实训台 二、拆装作业台 三、120件套工具箱 作业布置一、作业 二、实训报告 教学考核一、现场提问(30%) 二、现场实践操作(70%)

教学反思 教学内容或教学流程教法设计 一、课前三分钟 1.强调车间内不允许玩手机,督促班干部收缴手机 2.保持车间干净整洁,不准带入饮料零食等物 3.未经老师允许,不得擅自操作各个机械 4.检查教材、笔记本、笔 二、复习旧知与导入新课 1.复习旧知 底盘构成 2.导入新课 颠簸路面上,车辆如何减少震动,吸收能量? (1)弹簧延时,缓冲 (2)减震吸收能量 三、悬架的结构

『悬挂在汽车底盘安放位置的示意 图』 ●悬挂的概念和分类 首先让我们来了解一下什么 是悬挂:悬挂是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。典型的汽车悬挂结构由弹性元件、减

震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。绝大多数悬挂多具有螺旋弹簧和减振器结构,但不同类型的悬挂的导向机构差异却很大,这也是悬挂性能差异的核心构件。根据结构不同可分为非独立悬挂和独立悬挂两种。 『奥迪S4前后均采用了独立悬挂』 非独立悬挂由于是用一根杆件直接刚性地连接在两侧车轮上,一侧车轮受到的冲击、振动必然要影响另一侧车轮,这样自然不会得到较好的操纵稳定性及舒适性,同时由于左

悬架设计开题报告

本科毕业设计(论文)手册 (理工科类专业用) 毕业设计(论文)题目__工程自卸车底盘悬架系统设计_____专题题目______________________________________________________ 设计(论文)起止日期:年月日至年月日 __学院__专业__年级__班 学生姓名______ 指导教师_________ 教研室(系)主任____________ 教学院长____________ 年月日____2012.2.26 ___

须知 一、本手册第1页是毕业设计(论文)任务书,由指导教师填写;第2页是开题报告;第3页是答辩申请事项。答辩时学生须向答辩委员会(或答辩小组)提交本手册,作为答辩评分的参考材料,没有本手册不得参加答辩。本手册可以使用电子版打印,但签署姓名和日期处必须手工填写。本手册最后装入学生毕业设计(论文)档案袋。 二、毕业设计(论文)期间,要求学生每天出勤不少于6小时,在校外进行毕业设计(论文)或实习(调研)者,应遵守有关单位的作息时间,学生如事假(病假)必须按规定的程序办理请假手续,凡未获准请假擅自停止工作者,按旷课论处。 三、学生在毕业设计(论文)中,要严格遵守纪律、服从领导、爱护仪器设备,遵守操作规程和各项规章制度;自觉保持工作场所的肃静和清洁,不做与毕业设计(论文)工作无关的事情。 四、学生要尊敬指导教师、虚心请教,并主动接受老师的随时检查。 五、学生要独立完成毕业设计(论文)任务,在毕业设计(论文)过程中要有严谨的科学态度和朴实的工作作风,严禁抄袭和弄虚作假。 六、毕业设计(论文)成绩评定标准按五级:优秀(90分以上)、良好(80分以上)、中等(70分~79分)、及格(60分~69分)、不及格(59分以下)。

汽车钢板弹簧悬架设计方案

汽车钢板弹簧悬架设计 (1)、钢板弹簧种类 汽车钢板弹簧除了起弹性元件作用之外,还兼起导向作用,而多片弹簧片间磨擦还起系统阻尼作用。由于钢板弹簧结构简单,使用维修、保养方便,长期以来钢板弹簧在汽车上得到广泛应用。目前汽车使用的钢板弹簧常见的有以下几种。 ①通多片钢板弹簧,如图1-a所示,这种弹簧主要用在载货汽车和大型客车上,弹簧弹性特性如图2-a所不,呈线性特性。 变形 载荷变形 载荷变形载荷 图1 图2 ②少片变截面钢板弹簧,如图1-b所不,为减少弹簧质量,弹簧厚度沿长度方向制成等厚,其弹性特性如一般多片钢板弹簧一样呈线性特性图2-a。这种弹簧主要用于轻型货车及大、中型载货汽车前悬架。 ③两级变刚度复式钢板弹簧,如图1-c 所示,这种弹簧主要用于大、中型载货汽车后悬架。弹性特性如图2-b 所示,为两级变刚度特性,开始时仅主簧起作用,当载荷增加到某值时副簧与主簧共同起作用,弹性特性由两条直线组成。 ④渐变刚度钢板弹簧,如图1-d 所示,这种弹簧多用于轻型载货汽车与厢式客车后悬架。副簧放在主簧之下,副簧随汽车载荷变化逐渐起作用,弹簧特性呈非线性特性,如图2-c 所示。

多片钢板弹簧 钢板弹簧计算实质上是在已知弹簧负荷情况下,根据汽车对悬架性能(频率)要求,确定弹簧刚度,求出弹簧长度、片宽、片厚、片数。并要求弹簧尺寸规格满足弹簧的强度要求。 3.1钢板弹簧设计的已知参数 1)弹簧负荷 通常新车设计时,根据整车布置给定的空、满载轴载质量减去估算的非簧载质量,得到在每副弹簧上的承载质量。一般将前、后轴,车轮,制动鼓及转向节、传动轴、转向纵拉杆等总成视为非簧载质量。如果钢板弹簧布置在车桥上方,弹簧3/4的质量为非簧载质量,下置弹簧,1/4弹簧质量为非簧载质量。 2)弹簧伸直长度 根据不同车型要求,由总布置给出弹簧伸直长度的控制尺寸。在布置可能的情况下,尽量增加弹簧长度,这主要是考虑以下几个方面原因。 ①由于弹簧刚度与弹簧长度的三次方成反比,因此从改善汽车平顺性角度看,希望弹簧长度长些好。 ②在弹簧刚度相同情况下,长的弹簧在车轮上下跳动时,弹簧两卷耳孔距离变化相对较小,对前悬架来说,主销后倾角变化小,有利于汽车行驶稳定性。 ③增加弹簧长度可以降低弹簧工作应力和应力幅,从而提高弹簧使用寿命。 ④增加弹簧长度可以选用簧片厚的弹簧,从而减少弹簧片数,并且簧片厚的弹簧对提高主片卷耳强度有利。 3)悬架静挠度 汽车簧载质量与其质量组成的振动系统固有频率是评价汽车行驶平顺性的重要参数。悬架设计时根据汽车平顺性要求,应给出汽车空、满载时前、后悬架频率范围。如果知道频率,就可以求出悬架静挠度值c δ。选取悬架静挠度值时,希望后悬架静挠度值2c δ小于前悬架静挠度值1c δ,并且两值最好接近,一般推荐:

汽车悬架构件的设计计算

汽车悬架构件的设计计算 前言 第一章汽车悬架的基本知识 第一节汽车悬架构件 一、导向机构 二、弹性元件 三、梯形机构 四、阻尼元件 五、稳定装置 第二节汽车悬架型式 一、悬架的基本要求 二、悬架的分类 (一)按功能原理划分 (二)按导向机构划分 (三)按弹性元件划分 第三节汽车悬架型式的发展 一、导向机构悬架型式的发展 (一)单臂悬架的发展 (二)从单臂到双臂 (三)麦弗逊悬架 (四)平衡悬架 二、弹性元件悬架型式的发展 (一)钢板弹簧悬架 (二)螺旋弹簧悬架 (三)扭杆弹簧悬架 (四)空气弹簧悬架 (五)油气弹簧悬架 第二章汽车悬架的基础理论 第一节汽车悬架术语和力矩中心 一、特定术语 二、力矩中心 (一)定义 (二)相关定理 (三)悬架的侧倾力矩中心 (四)悬架的纵倾力矩中心 第二节多轴汽车的特性参数 一、特性参数 (一)外心距 (二)组合线刚度 (三)中性面 (四)内心距 (五)换算线刚度

二、角刚度与角刚度比 (一)角刚度 (二)角刚度比 第三节汽车平顺性的评价指标 一、IS0263l标准 二、常用评价指标 第四节汽车操纵稳定性的评价指标 一、定义及研究对象 二、评价指标 三、车身稳定性 第三章汽车悬架构件的设计计算 第一节汽车导向机构 一、车轮定位参数 (一)轮距 (二)车轮外倾角 (三)前束 二、麦弗逊悬架的导向机构 (一)悬架中心和力矩中心 (二)换算线刚度和角刚度 (三)受力分析 三、半拖臂悬架的导向机构 (一)相关参数 (二)线刚度与角刚度 (三)设计要点 四、双横臂悬架的导向机构 (一)空间模型 (二)运动学特性 (三)弹性元件受力 (四)换算线刚度与角刚度 (五)摆臂临界角 五、单纵臂悬架的导向机构 六、钢板弹簧悬架的导向机构 (一)对称板簧的运动特性 (二)非对称板簧的运动特性 (三)中心扩展法的作图步骤及其修正方法 (四)两点偏转法的作图步骤及其修正方法第二节汽车弹性元件 一、钢板弹簧 (一)普通钢板弹簧 (二)变断面钢板弹簧 (三)渐变刚度钢板弹簧 (四)非对称钢板弹簧 二、螺旋弹簧 (一)普通压缩螺旋弹簧

汽车底盘(悬架)毕业设计

课程设计说明书 学院:机械电子工程学院 班级:交通运输 学生:略 指导老师:略

任务书 本次课程设计的任务如下: 第一组: 建立汽车的前悬架模型,然后测试,细化,优化该模型,建立目标函数,最后与MATLAB实现联合仿真。 1.测量车轮接地点侧向滑移量 2.测量车轮侧偏角 3.测量车轮前束值 4.测量车轮跳动量 5.测量主销后倾角 第二组: 建立整车模型,实现该车在A,B,C三级道路路面上的仿真。

第一部分创建前悬架模型 (1)创建新模型 双击桌面上得ADAMS/View得快捷图标,创建一个名称为:FRONT_SUSP的新模型。(2)设置工作环境 在ADAMS/View选择菜单中得单位命令将长度单位,质量单位,力的单位,时间单位,角度单位和频率单位分别设置为毫米,千克,牛顿,秒,度和赫兹。在工作网格命令中将网格的X方向和Y方向分别设置为750和800,将网格距设置为50。同时将图标大小设置为50。( 3 ) 创建设计点 在ADAMS/View中的零件库中选择点命令,创建八个设计点,其名称和位置如下图: (4)创建主销,上横臂,下横臂,拉臂,转向拉杆,转向节 在ADAMS/View中的零件库中选择圆柱体命令,定义不同的参数值,在对应点之间创建主销,上横臂,下横臂,拉臂,转向拉杆,转向节。 在ADAMS/View中的零件库中选择球体命令,分别在上横臂,下横臂,转向横拉杆上相应点作为参考点创建铰接球。图形如下:

(5)创建车轮,测试平台及弹簧 在ADAMS/View中的零件库中选择圆柱体命令,选择转向节两端点作为设计点。并在ADAMS/View中的零件库中选择倒角命令,定义倒圆半径为50,完成车轮倒角的设计。 应用ADAMS/View中的零件库中选择圆柱体和长方体命令,在创建的(-350,-320,-200)设计点上创建测试平台。 在上横臂上选择创建一点(174.6,347.89,24.85),在大地上创建点(174.6,647.89,24.85),点击ADAMS/View力库的弹簧,设置其刚度和阻尼,选择创建的两点绘制弹簧。 如图:

课程设计---汽车底盘设计

课程设计说明书 任务书 本次课程设计的任务如下: 第一组: 建立汽车的前悬架模型,然后测试,细化,优化该模型,建立目标函数,最后与MATLAB实现联合仿真。 1.测量车轮接地点侧向滑移量 2.测量车轮侧偏角 3.测量车轮前束值 4.测量车轮跳动量 5.测量主销后倾角 第二组: 建立整车模型,实现该车在A,B,C三级道路路面上的仿真。

第一部分创建前悬架模型 (1)创建新模型 双击桌面上得ADAMS/View得快捷图标,创建一个名称为:FRONT_SUSP的新模型。(2)设置工作环境 在ADAMS/View选择菜单中得单位命令将长度单位,质量单位,力的单位,时间单位,角度单位和频率单位分别设置为毫米,千克,牛顿,秒,度和赫兹。在工作网格命令中将网格的X方向和Y方向分别设置为750和800,将网格距设置为50。同时将图标大小设置为50。( 3 ) 创建设计点 在ADAMS/View中的零件库中选择点命令,创建八个设计点,其名称和位置如下图: (4)创建主销,上横臂,下横臂,拉臂,转向拉杆,转向节 在ADAMS/View中的零件库中选择圆柱体命令,定义不同的参数值,在对应点之间创建主销,上横臂,下横臂,拉臂,转向拉杆,转向节。 在ADAMS/View中的零件库中选择球体命令,分别在上横臂,下横臂,转向横拉杆上相应点作为参考点创建铰接球。图形如下:

(5)创建车轮,测试平台及弹簧 在ADAMS/View中的零件库中选择圆柱体命令,选择转向节两端点作为设计点。并在ADAMS/View中的零件库中选择倒角命令,定义倒圆半径为50,完成车轮倒角的设计。 应用ADAMS/View中的零件库中选择圆柱体和长方体命令,在创建的(-350,-320,-200)设计点上创建测试平台。 在上横臂上选择创建一点(174.6,347.89,24.85),在大地上创建点(174.6,647.89,24.85),点击ADAMS/View力库的弹簧,设置其刚度和阻尼,选择创建的两点绘制弹簧。 如图:

大学生方程式赛车悬架设计

大学生方程式赛车悬架设计 加布里埃尔·德·波拉爱德华多 圣保罗大学摘要 独立完成一次大学生方程式赛车的悬架设计。首先分析赛规,通常,赛规会对悬架的最小行程和轴距作出限制,并且给出本次设计所要达成的最终目的,除此之外还会评判出得分最高的一个团队。本文会讨论到轮胎的运动,并详细分析前后悬架的拉杆不等长的摆臂。维度论是基于CAD的尺寸限制发展出来的。在总的力与时间的图上分析了暂态稳定、控制和操纵性能。在分析运动学和动力学时创建了多体模型。该模型能模仿侧翻,驾驶和操纵并且能进行几何调整,使得弹簧和阻尼器实现其性能。 前言 美国汽车工程师学会举办的大学生方程式汽车大赛激励学生 们去设计、制作一个小的方程式风格的赛车,并参加比赛。竞争的基础是假设一个公司集合了一个工程师团队来制造一个小的方程式赛车。第一步是分析赛事规则,赛规限制悬架系统的最小轮距为50mm,轴距大于1524mm。FSAE悬架工作在一个狭窄的车辆动力学范围,这是由于赛道尺寸决定的有限过弯速度,140公里每小时为最高速度和60公里每小时为转弯最高速度。比赛的动态部分包括15.25m的直径防滑垫,91.44m的加速项目,0.8km的越野赛,44km耐力赛。 设计目标已经给定并且会评判出得分最高的十个团队。悬架系统的几何部分集中在一些悬架设计理念和亮点的基本领域。因此,

FSAE悬架设计应该集中在竞赛的限制因素方面。例如,车辆轮距宽度和轴距是决定汽车操纵性设计成功与否的关键因素。这两个尺寸不仅影响重量传递还影响转弯半径。设计目标是首先满足赛则,其次降低系统重量,创造最大的机械抓地力,提供快速响应,准确的传输驱动程序的反馈,并能调节平衡。 轮胎和车轮 悬架设计过程中采用了“由外而内”的方法,先选择满足赛车要求的轮胎,然后设计悬架以适应轮胎参数。短的比赛时间和低速的比赛项目都要求轮胎快速达到其工作温度。轮胎对于车辆操纵性很重要,设计团队应当充分地调查轮胎尺寸及可用的化合物材料。轮胎的尺寸在这一阶段的设计中很重要,因为在确定悬架的几何结构之前,轮胎的尺寸必须已知。例如,一个给定了车轮直径的轮胎高度决定,如果轮胎内部被组装起来了,下球接头应当离地面多近。 设计者应当意识到提供对于给定车轮直径的轮胎尺寸的数量是有限的。因此,考虑到轮胎对于汽车操纵性的重要性,选择轮胎的过程应当有条不紊。由于轮胎在地面上的部分对抓地力有很大的影响,有时希望使用宽的轮胎,增加牵引力。然而,切记宽的轮胎使回转质量增加,而这又使FSAE发动机的加速受到限制。 相比较使用宽轮胎而引起的牵引力的增加,这些增加的回转质量也许会对整车的性能产生更大的损害。宽轮胎不仅增大质量,而且使受热的橡胶数量增加。因此比赛用的轮胎必须设计成在某一特定的

汽车悬架系统开发布置流程图

悬架系统开发流程---布置部分 目标设定BENCHMARK 在此主要是分析竞争车型的底盘布置。底盘布置首先要确定出轮胎、悬架形式、转向系统、发动机、传动轴、油箱、地板、前纵梁结构(满足碰撞)等,因为这些重要的参数,如轮胎型号、悬架尺寸、发动机布置、驱动形式、燃油种类等在开发过程中要尽可能早地确定下来。在此基础上,线束、管路、减振器、发动机悬置等才能继续下去 悬架选择 对各种后悬架结构型式进行优缺点比较,包括对后部轮罩间空间尺寸的分析比较,进行后悬架结构的选择。 常见的后悬架结构型式有:扭转梁式、拖曳臂式、多连杆式。 扭转梁式悬架 优点: 1.与车身连接简单,易于装配。 2.结构简单,部件少,易分装。 3.垂直方向尺寸紧凑。 4.底板平整,有利于油箱和后备胎的布置。 5.汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定作用, 若还需更大的悬架侧倾角刚度,还可布置横向稳定杆。 6.两侧车轮运转不均衡时外倾具有良好的回复作用。 7.在车身摇摆时具有较好的前束控制能力。 8.车轮运动特性比较好,操纵稳定性很好,尤其是在平整的道路情况下。 9.通过障碍的轴距具有相当好的加大能力,通过性好。 10.如果采用连续焊接的话,强度较好。 缺点: 1.对横向扭转梁和纵向拖臂的连续焊接质量要求较高。 2.不能很好地协调轮迹。 3.整车动态性能对轴荷从空载到满载的变化比较敏感。 4.但这种悬架在侧向力作用时,呈过度转向趋势。另外,扭转梁因强度关系,允 许承受的载荷受到限制。 扭转梁式悬架结构简单、成本低,在一些前置前驱汽车的后悬架上应用较多。

拖曳臂式悬架 优点: 1.Y轴和X轴方向尺寸紧凑,非常有利于后乘舱(尤其是轮罩间宽度尺寸较大) 和下底板备胎及油箱的布置。 2.与车身的连接简单,易于装配。 3.结构简单,零件少且易于分装; 4.由于没有衬套,滞后作用小。 5.可考虑后驱。 缺点: 1.由于沿着控制臂相对车身转轴方向控制臂较大的长宽比,侧向力对前束将产生 不利的影响。 2.车身摇摆(body roll)对外倾产生不利影响;(适当的控制臂转轴有可能改善外 倾的回复能力,但这导致轮罩间宽度尺寸的减小。) 3.调校很困难,因为所有的几何参数以及相关变量都是相关联的。 4.由于没有衬套,所有传递给车身的振动都是未经过滤的。 多连杆式悬架 优点: 多连杆式悬架能同时兼顾良好的乘坐舒适性和操纵稳定性,这种优点主要得益于其结构上具有下面这些几何特性: 1.利用多杆控制车轮的空间运动轨迹,能更好地控制车轮定位参数变化规律,得 到更为满意的汽车顺从转向特性。 2.受到侧向力时前束具有自动回正能力; 3.受到纵向力时前束具有自动回正能力。 4.车轮行驶时的外倾角回复能力。 5.通过障碍的轴距较大 6.能兼顾后轮驱动。 7.后轮驱动时的转向力控制。 缺点: 1.零部件数量多,制造加工困难。 2.试验调校工作复杂,且不便于调整,适应性较差。 3.对悬架几何尺寸的公差和弹性元件特性的要求较高。 4.单位质量的负荷能力较低(需要一个后副车架)。 5.对使用条件要求比较苛刻。 6.所占空间较大,影响后乘员舱和后底板的空间布置。 7.制造成本较高。 考虑到后悬架载荷的变化较前悬架大,一般的,前悬架结构选择时性能不优于后悬架。 簧上质量的值按大小顺序为:1)Beam Axle(刚性轴);2)Twisted Axle(扭梁);

悬架系统设计步骤分解

悬架系统设计步骤 在此主要是分析竞争车型的底盘布置。底盘布置首先要确定出轮胎、悬架形式、转向系统、发动机、传动轴、油箱、地板、前纵梁结构(满足碰撞)等,因为这些重要的参数,如轮胎型号、悬架尺寸、发动机布置、驱动形式、燃油种类等在开发过程中要尽可能早地确定下来。在此基础上,线束、管路、减振器、发动机悬置等才能继续下去 悬架选择 对各种后悬架结构型式进行优缺点比较,包括对后部轮罩间空间尺寸的分析比较,进行后悬架结构的选择。 常见的后悬架结构型式有:扭转梁式、拖曳臂式、多连杆式。 扭转梁式悬架 优点: 1.与车身连接简单,易于装配。 2.结构简单,部件少,易分装。 3.垂直方向尺寸紧凑。 4.底板平整,有利于油箱和后备胎的布置。 5.汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定作用, 若还需更大的悬架侧倾角刚度,还可布置横向稳定杆。 6.两侧车轮运转不均衡时外倾具有良好的回复作用。 7.在车身摇摆时具有较好的前束控制能力。 8.车轮运动特性比较好,操纵稳定性很好,尤其是在平整的道路情况下。 9.通过障碍的轴距具有相当好的加大能力,通过性好。 10.如果采用连续焊接的话,强度较好。 缺点: 1.对横向扭转梁和纵向拖臂的连续焊接质量要求较高。 2.不能很好地协调轮迹。 3.整车动态性能对轴荷从空载到满载的变化比较敏感。 4.但这种悬架在侧向力作用时,呈过度转向趋势。另外,扭转梁因强度关系,允 许承受的载荷受到限制。 扭转梁式悬架结构简单、成本低,在一些前置前驱汽车的后悬架上应用较多。 拖曳臂式悬架 优点: 1.Y轴和X轴方向尺寸紧凑,非常有利于后乘舱(尤其是轮罩间宽度尺寸较大) 和下底板备胎及油箱的布置。 2.与车身的连接简单,易于装配。 3.结构简单,零件少且易于分装; 4.由于没有衬套,滞后作用小。 5.可考虑后驱。 缺点: 1.由于沿着控制臂相对车身转轴方向控制臂较大的长宽比,侧向力对前束将产生 不利的影响。 2.车身摇摆(body roll)对外倾产生不利影响;(适当的控制臂转轴有可能改善外 倾的回复能力,但这导致轮罩间宽度尺寸的减小。)

汽车悬架结构简介

汽车悬架结构设计:A系列 大众新Golf 新GOLF后悬架采用新式多连杆独立悬架,(取代低成本的半独立扭力梁后悬架),前悬架采用原麦弗逊独立悬架, 对于全驱动车型:采用一个较复杂和昂贵的铝质副车架,它同时也承载后轮的驱动装置,通过四个橡胶件与车身连接起来,可避免车身受到驱动装置震动的影响对于前驱动车型:副车架是一套比较简单的钢结构,新的后桥会使车身后部的重量增加,但这样可令前后配重更加理想 优点:新的四连杆悬架结构分别适应纵向力和横向力,使车轮更自由,导向更精确,舒适性更操控性更好 悬架结构形式: 新的四连 杆后悬架取代 了扭力梁,纵 向连杆2直接 挂在车身上, 横向连杆3与 钢制副车架4 想连,副车架 与车身固定在 一起; 全轮驱动 车型采用较复 杂的铝质副车 架5,它承载后 轮的驱动装 置,并通过四 个橡胶件6与 车身相连

汽车悬架结构设计:B系列、T系列 保时捷Cayenne 保时捷Cayenne融会跑车技术和强大的越野本领于一身,公路上,Cayenne是同类汽车中速度最快的,在野外同样是最出色的越野车之一 Cayenne具有很长的横向双叉臂悬挂系统,基本型弹簧系统采用钢质弹簧,空气弹簧做为选装,而在涡轮增压型上为标准配置; Cayenne前悬架结构:双叉臂式Cayenne后悬架结构:多连杆式1、铝质横叉臂 2、副车架上的 液压支撑3、齿轮齿条转 向装置 4、刚弹簧 5、副车架 6、前差速器连 同驱动轴7、副车架上的 车身稳定杆8、由灰口铸铁 制成的横拉 杆 9、6活塞整体 刹车卡钳 1、4活塞整体 刹车卡钳 2、铝质横拉杆 3、钢弹簧 4、后差速器连 同驱动轴 5、副车架 6、副车架上的 橡胶支承7、用型钢制成 的横拉杆

悬架设计流程

赛车悬架设计流程简介 发布: 2009-9-21 22:46 | 作者: 网络转载 | 来源: 本站原创 | 查看: 17次一般说来,当工程师在设计一辆F1赛车时,通常需要考虑赛车在飞驰过程中的4个动模态特征(赛车的头部和尾部连线为X轴,赛车左侧与右侧连线为Y轴,垂直于地面为Z轴): 1)俯仰:赛车有绕着Y轴旋转的趋势。 2)侧倾:赛车有绕着X轴旋转的趋势。 3)弹跳:轮胎与地面接触面沿Z轴做上下直线运动。 4)翘曲:轮胎与地面接触面沿Z轴做上下非匀速直线运动。 上述动模态特征主要由赛车前、后两轴的悬挂刚度和侧倾刚度决定。赛车行驶过程中,当簧下质量与赛道路面间相对运动为零时,可以获得理想化最大的赛车抓地力;换句话说,赛车簧下质量的几何重心的运动轨迹与赛道表面轮廓形状完全平行。很明显,在现实世界的工程应用中,这是无法达成的理想目标,那么尽可能地减小簧下质量与地面间的相对运动就是悬挂设计的主要目标之一,通常设计工程师会在满足所有性能要求的前提下选择最小的弹簧刚度。但同时,设计者为了控制制簧上质量与赛道表面间的相对运动需要选择较大的弹簧以及减震器刚度。所以,为了分别控制簧上质量与簧下质量,关于弹簧和减震器性能选择存在一对无法避免的矛盾,无论是悬挂设计工

程师还是赛场调教工程师都需要靠车队多年积累的数据和经验来对两个参数进行优化选择,并根据现场赛道和气候条件做出最终抉择。讲解到此处,还需要引出一个参数名词——弹跳频率(bounce frequency),随着赛车质量而发生变化,从公路民用车到赛车,弹跳频率约为0.8到1.5Hz之间,然而F1赛车的弹跳频率大约为2.0Hz。在设计F1赛车悬挂时,后轮轴的设计弹跳频率都会比前轮轴高一些,这主要是为了在起伏赛道上消除赛车的俯仰趋势。 悬挂设计的第二个考虑因素就是赛车的重量转移,这由赛车的质量、加(减)速度、重心高度、赛道宽度或轴距长度等参数多方面联动决定的。重量转移与侧倾趋势有着密不可分的联系。尽管消除赛车侧倾的最好方法就是穿过赛车重心点增加一根防侧倾杆,但这样做也有很大的副作用——带来瞬时重量转移。赛车设计工程发展到如今,通过多年的实验与数据积累,与其采取上述方法完全消除侧倾,还不如保留一定数值的可控侧倾趋势,但同时可以最大化地减小赛车的重量转移。其实,也就是在20世纪70年代以后,F1赛车工程师才开始逐渐考虑降低车体的侧倾趋势以提高赛车的平衡性和操控性,较软的悬挂侧倾刚度会降低赛车的抓地力水平。 翘曲主要用来描述悬挂抗路面畸变性的能力。选择较硬的悬挂可以有效地降低赛车的俯仰、侧倾和震荡趋势,同时也可以有效减小悬挂上、下叉形架上拱或下凹变形,但这样的设置却牺牲了悬挂的抗翘

载重车悬架设计开题报告

.
杭州电子科技大学
毕业设计(论文)开题报告
题目 学院 专业 姓名 班级 学号 指导教师
载重车悬架系统设计 信息工程学院
机械设计制造及其自动化 唐云飞
11090111 11901122
赵骆伟
;.

.
一、综述本课题国内外研究动态,说明选题的依据和意义
1.1 课题的设计意义:
随着汽车在生活中的越来越广泛的应用,它已经不再只是人们代步的工具, 它在社会发展中也起着非常重要的作用。它为人们的生产效率带来了提高。特别 是在公路运输中。
作为载人的工具之一,舒适性是不可忽略的一个条件。悬架也就应允而生。 现在的小轿车的悬架系统已经发展到非常成熟了,并可以使长途的驾驶者带来更 多的舒适性,减轻了驾驶者和乘客的疲劳程度。但是,载货货车却远远达不到这 样的效果。同时货车却常常在长途的路途上行走,为驾驶者带大的疲劳程度,也 不利于在行车安全。因此货车的悬架系统尽可能地设计到更好的舒适性,减轻架 驶者的行车过程中的疲劳程度。
悬架是保证车轮或车桥与汽车承载系统(车架或承载式车身)之间具有弹性 联系并能传递载荷,缓和冲击,衰减振动以及调节汽车行驶中的车身位置等有关 装置的总称。并且随着研究的进一步深入,发现悬架的性能还影响着整车的很多 性能,包括行驶平顺性,行驶车速,燃油经济性和运营经济性等。特别是在工业 中应用较多的运输车辆的悬架系统的设计,对于用车单位十分重要。悬架系统的 制造成本要低,要便于维护、保养,并且工作可靠,使用寿命长[1]。
1.2 悬架国内外研究动态:
半主动悬架的研究工作开始于 1973 年,由 D.A.Crosby 和 D.C.Karnopp 首 先提出。半主动悬架以改变悬架的阻尼为主,一般较少考虑改变悬架的刚度。工 作原理是:根据簧上质量相对车轮的速度响应、加速度响应等反馈信号, 按照 一定的控制规律调节弹簧的阻尼力或者刚度。半主动悬架产生力的方式与被动悬 架相似,但其阻尼或刚度系数可根据运行状态调整,这和主动悬架极为相似。有 级式半主动悬架是将阻尼分成几级,阻尼级由驾驶员根据 “路感”选择或由传 感器信号自动选择; 无级式半主动悬架根据汽车行驶的路面条件和行驶状态, 对悬架的阻尼在几毫秒内由最小到最大进行无级调节。由于半主动悬架结构较简 单,工作时不需要消耗车辆的动力,而且可取得与主动悬架相近的性能,具有广 阔的发展空间[2]。
随着道路交通的不断发展,汽车车速有了很大的提高,被动悬架的缺陷逐渐 成为提高汽车性能的瓶颈,为此人们开发了能兼顾舒适和操纵稳定的主动悬架。 主动悬架的概念是 1954 年美国通用汽车公司在悬架设计中率先提出的。它在被
;.

浅谈汽车底盘悬架结构设计要点

浅谈汽车底盘悬架结构设计要点 近年来,随着社会的发展,人们的生活水平逐渐的提高,汽车的发展也越来越广泛。人们对于汽车的需求量也在不断增长,这在加剧汽车行业市场竞争的同时,也对汽车产品的更新产生了一定的推动作用,而底盘作为汽车的重要组成部分,其技术水平会直接影响到汽车的性能。 标签:汽车底盘;悬架结构;设计要点 引言 汽车底盘作为汽车最具有科技含量的一部分结构,其主要功能在于支撑和安装各种各样的零部件,在接受发动机设备引擎动力的基础上,从而实现发动并行驶的最终目的。因此,由于汽车底盘的基础作用,做好汽车底盘维修保养工作可以保证汽车安全和汽车的稳定行驶,实现现代汽车工业良好有序发展。 1整车工作原理 汽车在平行于地面的平面上行驶,并且轮胎靠着地面放置以确保操作期间的稳定性。转向力矩电机固定于车架法兰盘上,可以带动上转向臂及其他部件绕电机主轴旋转,理论转角为360°.上转向臂与转向力矩电机采用键连接,通过加紧装置固定,可绕转向电机主轴旋转。减震器上部与上转向臂的下部、减震器下部与下转向臂上部采用固定连接,随着上转向臂一起转动,可以减小车体的震动。下转向臂的另一端固定地连接到支撑轴并随减震器一起旋转。撑轴一端固定在下转向臂,一端安装有轴承,安装有轴承的一端与轮毂连接在一起,使得轮胎随着支撑轴一起旋转,从而实现汽车的转向驱动电机安装在轮毂内,以驱动轮毂绕支撑轴旋转,从而驱动车辆。 2汽车底盘悬架结构设计要点及优化 2.1连续控制底盘系统 该系统对于马力以及制动力的输出主要是借助车轮速度、方向盘角度以及横向、纵向、倾斜感应器来实现的,通过这些数据,系统可以对悬挂以及动力分布进行适当的调整。在底盘分布的传感器,能够对车身进行测量,明确车身相对于道路的垂直、横向纵向加速度,之后借助稳定控制系统和防抱死制动器,对方向盘速度边转角、车轮垂直运动、车轮旋转、发动机扭矩等相关数据进行测量。在整个过程当中,主要是通过传感器对上述数据进行收集并上传,之后再由微处理器,将数据反馈到减震器,每秒会刷新数据约500次左右。 2.2离合器异常判断及维修 汽车运行状态下,离合器装置在踩下状态下出现异常振动,松开时异常振动

汽车悬架结构设计

目录 1. 绪论 (1) 2 .汽车悬架结构设计 (4) 3.汽车悬架参数计算 (12) 4.弹簧应力计算 (13) 5 .设计总结 (15) 6 .参考文献 (16)

1 绪论 十六世纪的四轮载人和载货马车为解决颠簸问题,将车厢用皮带吊在底盘的四根柱子上,就像翻过来的桌子一样。因为车厢是挂在底盘上的,所以人们渐渐将其称为“悬架”,并沿用至今,以描述整个一类的解决方案。车厢吊起式的悬架还不是一个真正的弹簧系统,但它确实使车厢与车轮的运动分离开来。 随着人类社会的迅速发展,汽车已成为人们日常生活中不可或缺的部分。人们对汽车性能的要求也越来越高,同时行业竞争亦日趋激烈,汽车生产商在提高性能的同时缩短开发周期,节约成本才能在竞争中立于不败之地。人们在考虑汽车的性能时,通常会关注马力,扭矩和加速时间等参数。但是如果驾驶员无法操控汽车,那么发动机所产生的所有动力都将毫无用处。有鉴于此,汽车工程师在掌握了发动机后,立即就把注意力转向了悬架系统。 汽车是日常生活中被广泛应用的交通工具,其本身可以被看做是一个具有质量,弹性和阻尼的振动系统。汽车产生的振动会导致车身与车架之间的连接部件的振动和噪声,严重的时候甚至损坏汽车的零部件,大大缩短汽车的使用寿命,另外也可导致乘客晕车,影响了乘客的身心健康,那些长期处在这种振动环境下的驾驶员等往往会患上腰椎劳损,胃下垂等职业病。 汽车悬架是汽车地盘的一部分,是保证车轮或车桥与汽车承载系统(车架或承载式车身)之间具有弹性联系,并能传递载荷、缓和冲击、衰减振动以及调节汽车行驶中的车身位置等有关装置的总称。用于支撑重量,吸收和消除振动以及帮助维持轮胎接触。汽车悬架的工作是最大限度的增加轮胎与路面之间的摩擦力,提供能够良好操纵的转向稳定性,以及确保乘客的舒适度。 悬架的作用最主要的是传递作用在车轮和车架(或车身)之间的一切力和力矩,并缓和汽车驶过不平路面时所产生的冲击,衰减由此引起的承载系统的振动,以保证汽车的行驶平顺性。此外,悬架对整车操纵稳定性、抗纵倾能力也起着决定性的作用。 悬架弹性的连接车桥和车架,缓和行驶中车辆受到的冲击力,保证货物完好和人员舒适,衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性,同时悬架系统承担着传递垂直反力,纵向反力和侧向反力以及这些力所造成的力矩作用到车架上,以保证汽车行驶平顺性,并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的局向作用。悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性,操纵稳定性和

汽车底盘总布置设计和后悬架的设计 说明书

第1章绪论 1.1 底盘及车架悬挂设计技术现状及发展趋势 中国汽车工业这些年逐步建立起有竞争性、不同技术层次的零部件配套体系。并积极开展节能环保型的汽车研发,推动技术进步,加快汽车产品的结构升级。坚持对外开放和自主发展相结合的原则,努力提高自主研发能力,培育自主品牌产品。 为了实现由“汽车大国”向“汽车强国”转变,一方面,国家通过宏观调控、政策扶持等措施,鼓励和支持汽车产业的转型升级;另一方面,企业在国家政策的引导下,在组织结构、产品结构、技术结构、市场结构等方面积极实施转型升级战略,全面、有效提升汽车产业的国际竞争力。 一辆汽车有多个系统组成,传动系统,制动系统,转向系统,行驶系统等等,而决定汽车的操纵稳定性和行驶平顺性的是汽车悬架系统。悬架是现代汽车上重要总成之一。汽车悬架把车架(或车身)与车轴(或车轮)弹性的连接起来。悬架的最主要的功能是传递作用在车轮和车架(或车身)之间的一切力和力矩,缓和汽车驶过不平路面时路面传递给车架(或车身)的冲击载荷,衰减由此引起的承载系统的振动,以保证汽车的行驶平顺性。保证汽车的操纵稳定性,使汽车获得高速行驶能力。 悬架由弹性元件、导向装置、减震器、缓冲块和横向稳定器等组成。导向装置由导向杆系组成,用来决定车轮相对于车架(或车身)的运动特性,并传递除了弹性元件传递的垂直力以外的各种力和力矩。缓冲块用来减轻车轴对车架(或车身)的直接冲撞,防止弹性元件产生过大的变形。装有横向稳定器的汽车,能减少转弯行驶时车身的侧倾角和横向角振动。减振器是具有减振作用,使振动迅速衰减,减轻振动使乘员感到不舒适和疲劳。弹性元件则是为了缓和冲击,使车架与车桥之间具有弹性联系。 因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。完善的汽车悬架系统可以很好的缓解路面给予车辆的冲击,减轻汽车振动给乘客带来头晕,晕车等不良反应,使乘客感受到很好的乘坐舒适性。同时将汽车的悬架系统调校好,好的悬架系统在弯道性能上就能很好的表现出来,还有出去郊游时,能在恶劣的路况下通行,可以给驾驶员带来更好的操作稳定性以及一定的驾驶乐趣。优良的悬架避震性能,也可以减轻振动给零件带来的

汽车悬架设计作业指导书

1. 悬架系统设计流程

2. 悬架设计的基本要求: 2.1悬架设计应满足技术协议中相关要求。 2.2悬架设计应执行国家标准和企业标准。 2.3悬架设计应符合总布置方案和结构尺寸应满足设计硬点要求。 2.4产品设计中尽量采用系列化、标准化、通用化。 2.5产品设计中应考虑到加工、装配、安装调试、维修的方便性和经济性。 2.6借用件中逆向测绘的孔径及位置尺寸要圆整,公差和形位公差标注正确。 3. 任务分析 3.1 悬架明细表一套(报告借用件明细表一套;标准件明细表一套;设计件明细表 一套); 3.2 悬架爆炸图一套; 3.3前后悬架完整装配数模一套; 3.4技术报告: 3.4.1 悬架选型报告; 3.4.2悬架刚度与阻尼匹配报告; 3.5悬架图纸一份。 4. 设计要点 4.1 引用标准 4.1.1汽车悬挂系统的固有频率和阻尼比测定方法,见GB-4783-1984 4.1.2汽车平顺性名词术语和定义,见GB-4971-1985 4.1.3汽车平顺性脉冲输入行使实验方法,见GB-5902-1986 4.1.4汽车平顺性随机输入行使试验方法,见GBT-4970-1996 4.1.5汽车操纵稳定性试验方法,见GBT-6323.1-1994 GBT-6323.1-1994 GBT-6323.3-1994 GBT-6323.4-1994 GBT-6323.6-1994 4

4.1.6汽车操纵稳定性指标限值与评价标准,见GBGB/T13047-91 4.1.7汽车悬架用螺旋弹簧台架试验方法,见JB-3824-1984 4.1.8关于标准转号的说明,见QCT-491-1999 QCT-545-1999 4.1.9汽车产品零部件编号规则,见QCT-265-1999 4.2设计参数 4.3悬架定位参数 5

汽车悬架史上最全介绍(图文)

悬架 定义:汽车的车架与车桥或车轮之间的一切传力连接装置的总称 作用:传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击 力,并衰减由此引起的震动,以保证汽车能平顺地行驶。 组成:(1)减振器 功能:减振器是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的行驶平顺性,增强车轮和地面的附着力?另外,减振器能够降低车身部分的动载荷,延长汽车的使用寿命?目前在汽车上广泛使用的减振器主要是筒式液力减振器,其结构可分为双筒式,单筒充气式和双筒充气式三种。 工作原理:在车轮上下跳过程中,减振器活塞在工作腔内往复运动,使减振器液体通 过活塞上的节流孔,由于液体有一定的粘性和液体通过节流孔时与孔壁间产生摩擦, 使动能转化成热能散发到空气中,从而达到衰减振动功能。 (2)弹性元件 功能:支撑垂直载荷,缓和和抑止不平路面引起的振动和冲击?弹性元件主要有钢板弹簧,螺旋弹簧,扭杆弹簧,气弹簧和橡胶弹簧等。 原理:用具有弹性较高材料制成的零件,在车轮受到大的冲击时,动能转化为弹性势能储存 起来,在车轮下跳或回复原行驶状态时释放出来。 (3)导向机构 作用:传递力和力矩,同时兼起导向作用。在汽车的行驶过程当中,能够控制车轮的运 动轨迹。 轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求, 又要满足其操纵稳定性的要求,而这两方面又是互相对立的。比如,为了取得良好的舒适性, 需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。

底盘悬架-设计参考

底盘悬架-设计参考 说明: 本规范为TG0数据设计指导。 该系列设计规范用于指导结构功能说明、结构布置与 尺寸控制的正向设计,尤其是在没有标杆车的状态下 的正向开发;基于本规范完成结构数据TG0版的设计 开发。 本规范是TG0版数据的设计指导。 [键入文字]

目录 1、系统整体概述 1.1系统功用 1.2系统原理简图 2、系统性能设计 2.1设计参数要求 2.2悬架系统运动车轮跳动间隙要求 2.3制造及安装工艺性要求 7 3、系统开发流程图 4、零部件结构设计 4.1钢板弹簧设计 4.2减振器设计 4.3螺旋弹簧设计 4.4 悬架横梁设计 4.5 横向稳定杆设计 4.6 缓冲块设计 5、悬架系统验算及分析校核案例 5.1前悬架位移与受力情况分析 5.2后悬架(钢板弹簧)位移与受力情况分析 5.3悬架静挠度的计算 5.4侧倾角刚度计算 5.5侧倾角刚度校核 5.6减振器参数的确定 5.7总结 6、基于Adams的操纵稳定性分析 6.1分析目的 6.2 模型建立 6.2.1 车身 6.2.2 前、后悬架 6.2.3 转向系简化模型 6.2.4 轮胎 6.2.5 发动机的动力输出 2.6 传动系 6.2.7 整车模型 6.3 操纵稳定性试验 6.3.1 蛇形实验 6.3.2转向盘转角阶跃输入 6.3.3 转向盘转角脉冲输入 6.3.4 转向回正性能试验 6.3.5 转向轻便性试验 6.3.6稳态回转试验 6.4 结论 6.4.1 整车操稳性能分数量化 6.4.2 得分说明

1、系统整体概述 1.1系统功用 悬架是保证车轮或车桥与汽车承载系统(车架或承载式车身)之间具有弹性联系并能传递载荷、缓和冲击、衰减振动以及调节汽车行驶中的车身位置等有关装置的总称。 悬架最主要的功用是传递作用在车轮和车架(或车身)之间的一切力和力矩,并缓和汽车驶过不平路面时所产生的冲击,衰减由此引起的承载系统的振动,以保证汽车的行驶平顺性。为此必须在车轮与车架或车身之间提供弹性联接,依靠弹性元件来传递车轮或车桥与车架或车身之间的垂向载荷,并依靠其变形来吸收能量,达到缓冲的目的。采用弹性联接后,汽车可以看作是由悬挂质量(即簧载质量)、非悬挂质量(非簧载质量)和弹簧(弹性元件)组成的振动系统,承受来自不平路面、空气动力及传动系,发动机的激励。为了迅速衰减不必要的振动,悬架中还必须包括阻尼元件,即减振器。此外,悬架中确保车轮与车架或车身之间的所有力和力矩可靠传递并决定车轮相对于车架或车身的位移特性的连接装置统称为导向机构。导向机构决定了车轮跳动时的运动轨迹和车轮定位参数的变化,以及汽车前后侧倾中心及纵倾中心的位置,从而在很大程度上影响了整车的操纵稳定性和抗纵倾能力。在有些悬架中还有缓冲块和横向稳定杆。 微车的前后悬架系统的前后悬架与轿车和货车有所不同。微车的前后悬架结构形式比较集中,一般前悬架采用独立悬架,如麦弗逊式悬架系统,后悬架采用非断开式非独立悬架,例如钢板弹簧系统。1.2系统结构图 图1 前悬架:麦弗逊悬架结构 1-减振器外筒;2-活塞杆;3-弹簧支座;4-横向稳定杆支架;5-横向稳定杆拉杆;6-副车架;7-横向稳定杆;8-发动机支座;9-弹簧上支座;10-隔离座;11-辅助弹簧;12-防尘罩;13-U形夹;14-轴承;15-定位螺栓

相关主题
文本预览
相关文档 最新文档