集美大学 船舶结构力学(48学时)第二章 单跨梁(2)2014年 4学时
- 格式:ppt
- 大小:3.88 MB
- 文档页数:193
第一章:绪论1由于船舶经常在航行状态下工作,它所受到的外力是相当复杂的。
这些外力包括船的各种载重(静载荷)、水压力、冲击力、以及运动所产生的惯性力(动载荷)等。
为了保证船舶在各种受力下都能正常工作,船舶具有一定的强度。
所谓具有一定的强度是指船体结构在正常使用的过程中和一定的年限内具有不破坏或不发生过大变形的能力。
2船体强度包括中拱状态、总纵强度、局部强度、扭转强度问题、应力集中问题、低周期疲劳。
3把船舶整体当做空心薄壁梁计算出来的强度就成为船体的总纵强度。
局部强度是指船体的横向构件(如横梁、肋骨、及肋板等)一集船体的局部构建(如船底板、底纵衍等)在局部载荷作用下的强度。
4船体强度所研究的问题通常包括外力,结构在外力作用下的响应,及内力与变形,以及许用应力的确定等一系列问题。
船舶结构力学只研究船体结构的静力响应,及内力与变形,以及受压结构的稳定性问题,因此,船舶结构力学的首要任务是阐明结构力学的基本原理与方法,即阐明经典的方法、位移法及能量原理。
5船舶设计与制造是一个综合性很强的行业。
学习本课程不要仅仅满足于会计算船体结构中一些典型构件(如连续梁、钢架、板架、板)还应学会解决一般工程结构的计算问题。
6船体结构是由板和骨架等构件组成的空间复杂结构,在进行结构计算之前需要对实际的船体结构加以简化。
简化后的结构图形称为实际结构的理想化图形或计算图形(又称计算模型或力学模型等)7结构的计算图形是根据实际结构的受力特征,构建之间的相互影响,计算精度的要求以及所采用的计算方法,计算工具等因素确定的。
因此,对于同一个实际结构,基于不同的考虑就会得出不同的计算图形,对于同一个实际结构,其计算图形不是唯一的,一成不变的。
8首先是船体结构中的板,板是船体的纵、横骨架相连接的,且通常被纵、横骨架划分成许多矩形的板格。
9其次是船体结构中的骨架,船体结构中的骨架无外乎是横向构件—横梁、肋骨、肋板和纵向构件—纵桁、纵骨等,它们大都是细长的型钢或组合型材,故称为“杆件”或简称为“杆”。
集美大学船舶与海洋工程专业2012级船舶结构力学初参数法单元测试题(参考答案及评分标准)1.已知单跨梁如图1所示,试写出该梁用初参数表达的挠曲线及边界条件(不必确定初参数;梁端外力并入边界条件之中)。
(10分)图1 解:挠曲线方程:224302000)2(22462)(l x EI m x EI q x EI N x EI M x v x v --++++=θ (2分) 梁左端边界条件:P A v N M +-==000000;αθ (4分) 梁右端边界条件:1'''1''';A v EIv v EIv l l l l =-=α (4分) 2.两端刚性固定的单跨梁如图2所示,不受外荷重作用,当其左、右支座分别发生已知位移21,v v 时, 试求挠曲线。
(15分)图2解:1) EIx N EI x M v x v v v 62)(0,30201010++===θ (5分) 2)代入梁右边条0)(',)(2==l v v l v 有: 0262200230201=+=++l EIN l EI M v l EI N l EI M v (4分) 3)由上式得:31202120)12;)6l v v EI N l v v EI M --=-=(( (4分) 4) 331222121)2)3)(x lv v x l v v v x v ---+=(( (2分) 3.试求出图3所示单跨梁的挠曲线。
(5分) l EI ,x y omlEI ,x y o P图3解:1) 00=N (2分); 2) l EI m =0θ (2分);3)22)(x EI m lx EI m x v -=(1分)。
s目录欧阳歌谷(2021.02.01)第1章绪论1第2章单跨梁的弯曲理论2第3章杆件的扭转理论7第4章力法9第5章位移法11第6章能量法21第7章矩阵法35第9章矩形板的弯曲理论46第10章杆和板的稳定性52第1章绪论1.1题1)承受总纵弯曲构件:连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中和轴的纵向连续构件(舷侧列板等)2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙骨等1.2题甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压力,横向作用)舷侧外板:横向水压力等骨架限制力沿中面内底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力舱壁板:主要为横向力如水,货压力也有中面力第2章 单跨梁的弯曲理论2.1题设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x )1)图 2.133323034243()()()424()26666llll l l p x p x p x M x N x v x EI EIEIEIEI---=++++ 原点在跨中:3230111104()4()266ll p x M x N x v x v EI EIEI-=+++,'11'11()0()022(0)0(0)2l l v v p v N ⎧==⎪⎨⎪==⎩ 2)33203()32.2()266ll p x N x Mx v x x EI EIEIθ-=+++图 3)333002()22.3()666x x x ll p x N x qx dx v x x EI EIEIθ-=++-⎰图 2.2题 a)33111311131(3)(2)616444641624pp p pl pl v v v EI EI ⎡⎤⎡⎤=+=⨯⨯-+⨯-⨯⎢⎥⎢⎥⎣⎦⎣⎦=3512pl EIb)2'292(0)(1)3366Ml Ml Pl v EI EI EI-=+++=2220.157316206327Pl Pl Pl EI EI EI-+=⨯ =2220.1410716206327Pl Pl Pl EI EI EI---=⨯=2372430pl EIc)()44475321927682304ql ql ql l v EI EI EI=-=d)2.1图、2.2图和2.3图的弯矩图与剪力图如图2.1、图2.2和图2.3图2.1 图2.2图2.32.3题 1)2)32101732418026q l Ml l l Ml lq EI EI EI EI θ⎡⎤=-++-⎢⎥⎣⎦ =3311117131824360612080q l q l EI EI⎛⎫-++-=-⎪⨯⎝⎭ 2.4 题2.5图3000()6N x v x v x EIθ=++,()00v A p N =-如图2.4, ()()0v l v l '==由得3333()1922pl x x v x EI l l ⎛⎫∴=-+ ⎪⎝⎭图2.4 2.5题2.5图:(剪力弯矩图如2.5)()132023330222002332396522161848144069186pl Mp pR p ll p pl v AR EI EIv l Mlpl pl pl v EI EI EI EI v Ml pl pl pl v l EI EI EIEI θ-∴==-===⋅=⎛⎫=-=-= ⎪⎝⎭-'==--=-=-()16A pa b b M A l K l ⎡⎤=++⎢⎥⎣⎦,图2.5111,0,6632A l a l b A K ====+=将代入得:()16312pl pl M ==2.7图:(剪力弯矩图如2.6)图2.62.8图(剪力弯矩图如2.7)图2.72.6题.[]1max 2max 2113212132142.()()62()()62()()242(0)sN EIv s sss s N dv dx dx dx GGA N EI v dx v C GA GA EI ax bx v v v f x cx d f x ax b C GA EI EI ax bx f x f x c a x d GA GA qx qx f x f x EI EI v v τγ'''====-''=−−−→-+⎡⎤''∴=+=++++-+++⎢⎥⎣⎦⎛⎫''=-+++-+ ⎪⎝⎭''==''=⎰式中由于11142323432342(0)00()()00242602,224()241222425()23848s s s s sd b v l v l ql EI ql al EI c a l EI GA EIGA qlal EIql ql c EI EI qx qlx qx qx qlv x x EI EI GA EI GA l ql ql v EI GA ===''==⎧⎛⎫-++-=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩=⎛⎫∴=--++⎪⎝⎭∴=+可得出由得方程组:解出:a=2.7.题先推广到两端有位移,,,i i j j θθ∆∆情形:212,i j s EI GA l β⎛⎫∆=∆-∆=⎪⎝⎭令 2.8题 已知:20375225, 1.8,751050kg l cm t cm s cm cm σ=⨯====面积2cm 距参考轴cm面积距3cm惯性矩4cm自惯性矩4cm外板1.845⨯ 81 0 0 0 (21.87)略 球扁钢O N 24a38.75 9430.2 2232 ∑119.815.6604.59430.22253.9AB C=11662224604.55.04116628610119.8BBe cm I C cm AA===-=-=275 1.838.75174min ,4555A cm l lI be s cm=⨯+=⎧⎫===⎨⎬⎩⎭计算外力时面积计算时,带板1).计算组合剖面要素:形心至球心表面1240.9 5.0419.862t y h e cm =+-=+-=形心至最外板纤维若不计轴向力影响,则令u=0重复上述计算: 2.9.题 解得: 2.10题 2.11题 图2.120 2.12题1)先计算剖面参数:图2.8a2422u u P P l δδδ⎛⎫⋅⎛⎫ ⎪⋅+= ⎪⎝⎭ ⎪⎝⎭p M 图2.8b2.13补充题剪切对弯曲影响补充题,求图示结构剪切影响下的v(x)解:可直接利用2.14. 补充题试用静力法及破坏机构法求右图示机构的极限载荷 p ,已知梁的极限弯矩为p M (20分) (1983年华中研究生入学试题) 解: 1)用静力法:(如图2.9)由对称性知首先固端和中间支座达到塑性铰,再加力u p p →,当p作用点处也形成塑性铰时结构达到极限状态。