当前位置:文档之家› 隧道精确定位系统解决方案设计

隧道精确定位系统解决方案设计

第一章引言

自十一五以来,我国加大了基础设施建设力度,中国交通建设事业进入了快速发展轨道。尤其在高速公路、铁路、城市轨道方面的建设突飞猛进。在公路、铁路建设方面,道路建设路线逐渐由平原、微丘向山区高原挺进,隧道、桥梁等结构物占线路的比重越来越大,隧道建设工程数量持续增长;在城市轨道建设方面,地铁具有节省土地、减少噪音、减少污染、节省资源等优点,成为各城市解决拥堵、提升城市交通运输能力的重要手段。由于隧道及城市地铁建设的造价高、运营管理相对复杂、施工环境恶劣、事故发生频率较高,常要求对隧道中人员数量进行统计、对施工现场环境进行监控。

目前市场上隧道安全监控系统中都没有与外界直接通话的无线通信系统,在遇到突发事故,如崩塌、涌水涌泥等事故,不能及时向隧道监控室汇报,很容易贻误抢险时机。如果有无线通信系统,施工人员在隧道中工作,可随时将隧道的掘进和安全情况汇报到隧道监控室,便于调度和及时处理突发事故。

当遇到隧道突发事故,对隧道施工人员的抢救缺乏可靠的位置信息,也缺乏语音通信手段,抢险救灾、安全救护的效率仍然不高,效果不理想。由于通信网络不畅,通信手段单一,网络承受能力差,往往造成领导层信息不畅通,指挥不足,数字不准,不利于事故的抢险,极易造成事故损失的扩大。隧道对利用相应的人员跟踪定位设备,全天候对施工人员进行实时自动跟踪和考勤,随时掌握每个员工在隧道的位置及活动轨迹、全隧道人员的位置分布情况等需求迫切。

深圳科技致力于隧道安全建设,通过深入研究我国隧道现状,推出了“隧道安全综合监测系统”。

1.1 系统简介

本系统着重在综合隧道管理各项资源,在保证既定的系统功能正常应用的前提下,利用先进zigbee技术对系统进行整合利用。包含视频监控、人员考勤和实时精确定位管理、人员/车辆门禁系统、LED大屏同步系统等。最大限度的利用资源将隧道工作、管理提升到更搞水平的管理平台上。

1.2 设计原则与依据

总体设计原则

总体以客户的需求为基本原则,并充分结合现有成熟完善的技术进行设计。

隧道综合应用系统是一个涉及视频监控技术、传感技术、LED显示技术、射频识别技术等多方面领域的先进技术,因此总体方案设计必须具有可靠性、安全性、先进性、灵活扩充性、经济实用性、操作和维护的方便性,更要具有前瞻性的建设全局统一管理的平台。

在规划设计过程中,系统设计以保障安全生产、提高企业效率,提升企业管理品质为目标,以高质量服务管理者和使用者为基本原则和设计思路。

系统设计原则

首先根据企业实际需要结合隧道区域现场具体情况,放置一定数量的信息传输分站,形成系统的传输主干网络。然后根据企业实际需要布置读卡主站(用于人员定位),典型情况下每隔800米布置一台读卡主站,可保证网络覆盖范围内无线手机及人员定位卡。典型情况下在隧道入口及锚喷面附近各放一台通信基站,可保证网络覆盖范围内无线通信;在隧道口附近放置一个读卡主站,可实现精确考勤管理,在隧道内放置读卡主站,可实现精确定位。

为需要定位的人员佩带一个定位卡,当人员进入隧道以后,只要在隧道网络覆盖范围内,在任何时刻任意一点,基站都可以感应到信号,并上传到信息工作站,经过软件处理,得出各具体信息(如:是谁,在哪个位置,具体时间),同时可把它动态显示(实时)在监控中心的电脑上或隧道外的LED大屏幕上,并作好备份。监管人员可随时了解隧道中人员的状态。

管理者也可以根据电脑上的分布示意图查看某一区域,计算机即会把这一区域的人员情况统计并显示出来。管理者能实时的观察到隧道内工作人员的即时区域位置,实现隧道内人员精确定位。另外一旦隧道内发生事故,可根据电脑中的人员定位分布信息马上查出事故地点的人员情况,以便帮助营救人员以准确快速的方式营救出被困人员。

一旦隧道内发生突发情况,隧道内人员可通过所携带的定位仪(识别卡)发出警报。隧道内人员只要按定位仪上的报警按钮即可发出报警。在监控室的动态显示界面会立即弹出红色报警信号。

另外,系统还具有以下特性:

先进性:系统硬件应具有先进性,避免短期内因技术陈旧造成整个系统性能不高或者过早淘汰。

可靠性:在充分考虑先进性的同时,硬件系统应立足于用户对整个系统的具体需求,应优先选择先进、适用、成熟的技术,最大限度地发挥投资效益。

开放性:计算机网络选择和相关产品的选择要以先进性和适用性为基础,同时考虑兼容性。

扩充性:系统数据采集设备采用模块化结构和总线通信方式,在系统规模扩展时,不需较大的改造,增加相应的模块即可。

设计依据标准

设计标准、依据严格遵守国家或部委或地方相关的执行标准

Q/YRKJ001-2009 科技隧道、煤矿人员管理系统企业标准

Q/YRKJ006-2009 科技隧道、矿用无线通信系统企业标准

GB4208-2008 外壳防护等级(IP代码)

GB/T191-2008 包装储运图示标志

GB/T 2423.1-2001 电工电子产品环境试验第2部分:试验方法试验A:低温

GB/T 2423.2-2001 电工电子产品环境试验第2部分:试验方法试验B:高温

GB/T 2423.4-2008电工电子产品环境试验第2部分: 试验方法试验Db 交变湿热(12h+12h 循环)

GB/T 2423.5-1995 电工电子产品环境试验第2部分:试验方法试验Ea和导则:冲击

GB/T 2423.8-1995 电工电子产品环境试验第2部分:试验方法试验Ed:自由跌落

GB/T 2423.10-2008 电工电子产品环境试验第2部分: 试验方法试验Fc: 振动(正弦)

GB/T10111-2008 随机数的产生及其在产品质量抽样检验中的应用程序

GB/T2829-2002 周期检验计数抽样程序及表(适用于对生产过程稳定性的检验)

GB/T 9969-2008 工业产品使用说明书总则

AQ1043-2007 本安产品安全标志标识

MT209-90 煤矿通讯、检测、控制用电工电子产品通用技术要求

MT210-90 煤矿通信、检测、控制用电工电子产品基本试验方法

MT/T286-92 煤矿通信、自动化产品型号编制方法和管理方法

MT 1007-2006 本安信息传输接口

MT 1005-2006 本安基站

MT/T 772-1998 煤矿监控系统主要性能测试方法

MT/T899-2000 矿用信息传输装置

第二章系统组成及工作原理

2.1 系统组成

隧道综合监测系统主要有人员考勤和精确定位管理系统、人员/车辆门禁系统、LED同步显示系统、视频监控系统组成。

人员进出定位管理系统●考勤管理

●精确定位管理

人员/车辆门禁通道系统●门禁道闸管理

●人员/车辆刷卡管理

视频监控系统

●隧道口视频监控

●掌子面视频监控LED大屏同步

显示系统

●实时隧道内人员显示

2.2 系统应用总体平台架构

◇以本地系统为基础,实现各功能模块数据通信;

◇可以拥有远程中心,可实时查询当前隧道的相关安全信息;

◇采用包括前端工点监控、中间通讯层、后台调度监控的三层体系架构

◇前端工点监控(人员进出定位管理系统、视频监控、人员/车辆门禁管理)以及后台调度(远程中心机房、服务器以及部分外部对接平台)采用B/S应用架构。

2.3 系统网络结构拓扑图

2.4人员进出定位管理系统

1)系统能够覆盖隧道大部分区域。

2)系统能可靠识别静态或≤80Km/h的高速移动目标。

3)单台基站可同时识别200张以上的人员标识卡。

4)人员定位标识卡采用有源工作方式(独立供电),超低能耗设计,一次充电可使用3个

月,可充电500次,并具有欠压指示功能,出现欠压报警指示后定位卡可以正常工作3天。

5)系统具有强大实用的隧道人员应急救援功能:

A、当隧道内人员遇险时,可触发“求救”按钮,当工人发现隧道塌方、涌水涌泥时,也可通过定位卡按键向监控中心发出对应报警信号,监控中心将及时报警,并可查询显示是谁、在什么时间、什么地点发出的报警

6)B、在隧道内某区域有危险需要撤离人员时,在监控中心的调度人员或系统管理人员可

向隧道内危险区域人员群发紧急撤离通知,隧道内人员即可通过定位卡震动或声音、指示灯及时收到“撤离”信号;

7)能准确地统计全隧道及某个区域(如:掌子面)的人员数量。

8)可实时跟踪查询、打印当前及某时间段隧道内人员数量、活动轨迹及分布情况。

9)基站和人员定位标识卡具有完全独立的发射与接收部件,其核心技术均由嵌入式微处理

器和嵌入式软件组成。

10)人员定位标识卡采用高级嵌入式微处理器,在嵌入式软件的控制下,实现编码、解码、

通信及信息碰撞处理等功能。

11)系统软件具有人员标识卡电池管理功能。

12)自动识别功能:乘车出入的工作人员无需下车,在车辆进入监测区域后,就可自动完成

人员考勤及定位功能。

13)隧道人员定位基站与监控中心站失去联系时,基站仍能独立工作,自动存储人员监测数

据,当通讯恢复后监控主机可提取数据自动完成数据修复,存储数据不小于2小时。

14)系统在进行实时数据采集时,可进行记录、显示、查询、编辑、人工录入、网络通信等。

15)系统中心站及网络终端可以联网运行, 使网上所有终端在使用权限范围内都能共享监测

信息,查询、打印各类数据报表。

16)报警功能:可以对进入隧道人员限制出入时间及地点,如果超过授权时间会触发报警设

备发出警示,以便控制人员迅速做出反映,采取安全措施。

17)系统可自动生成人员信息数据库,实现考勤作业的统计与管理等方面的报表资料,提高

管理效益。

18)系统具有自诊断功能。当系统中基站等设备发生故障时,报警并记录故障时间和故障设

备,可供查询及打印。

2.4.1精确定位系统拓扑图

精确定位系统拓扑图

精确定位系统设备清单: 序号

名称

图片 型号规格

品牌/产地

单位

数量

1

5.0网络型读卡主

站-隧道

KJ571-F

深圳

12

2

电源适配器

KJ571-F1

国产

20

3 定位卡

KJ571-K 深圳 张 200

4 系统软件

精确定位监控软件

深圳 套 1

5 无线网桥ZoneFree

5014

国产台28

6 交换机

TP-Link

TL-SF-1008+

国产台8

7 电源排插四孔国产个8

8 网线超六类国产箱 4

9 电源线RVV2*1.5 国产米400

10 监控主机计算机国产台 2

11 辅材定制国产批 1

2.4.2精确定位系统功能:

人员实时定位:运用无线ZigBee识别技术实现对人员实时位置的监控。基于实时位置信息,实现人员实时管理。人员实时定位可提供人员实时位置信息,方便观察其在岗情况,或者方便寻找所需对象;另可对区域进行分类管理,限制未经授权的人进入危险区域,防止意外事故的发生。人员考勤:通过给隧道人员佩带定位卡,地面监控人员可在隧道地图实时观测到所有隧道人员的真实分布情况、数量、姓名,可对人员进行定位,从而可进行人员考勤管理。

人员轨迹回放:系统通过对采集的数据进行存储,形成了人员历史轨迹数据,该数据可动画显示人员历史行进路线,其主要作用在于:为已发生的事故提供基础数据;另一个方便主要是为人员

管理提供基础数据,如有无脱岗现象、巡查人员是否按时巡查等,以提升企业管理效率,提高服务水平。

人员统计:人员定位系统具有数据实时统计功能,可实时统计出人员总数、各区域内人员数量及各班组的人员数量。

该功能通过对人员分布的统计分析,为管理者对人员的合理调配提供基础数据。

求救报警:当员工遇到紧急情况时,可按下定位卡上的求救报警按钮,报警信息可以立刻传送到监控室,并进行声光报警提示,管理人员可根据报警信息及报警位置,迅速做出响应。

区域超时报警:系统根据监控区域的不同,可设置人员停留在监控区域的时间。如系统监控到员工在危险区域停留时间过长,可能会出现危险时,会向系统发出报警信息,以提示管理人员注意查看。

2.4.3精确定位系统主要产品介绍:

本安型读卡主站

1)、设备描述

读卡主站用于隧道内人员考勤、定位,可接收、存储标识卡的无线信号,通过传输分站上传到隧道外,读卡主站也可向标识卡发送无线信号。

2)、设备特点

●大范围内同时快速、可靠地识别大量标识卡。

●微功率、识别率高、高抗干扰性、稳定可靠。

●小巧,轻便,非常便于安装和维护。

3)、技术参数

工作电压DC 12V

工作电流≤200mA

接口

1

个天线接口

1 个12VDC 电源接口

1个远程供电接口(给读卡辅站供电) 1个百兆网口

外形尺寸 280mm x 190mm x 136mm 外壳材质 冷轧钢 重量 1.8kg

防爆型式 矿用本质安全型 防爆标志

ExibI

读卡主站与标识卡通信: 无线频段 2.4GHz

通信协议 ZigBee(IEEE802.15.4) 发射功率 不大于+18dBm 接收灵敏度 ≤-85dBm

无线通信距离 500米(可视距离) 并发识别 200张卡 最大位移速度 20m/s 调制方式

O-QPSK

KJ571-K 标识卡

1)、设备描述

定位卡相当于“隧道内身份证”,所有隧道内人员和机车各携一张,该卡不断地自动向读卡主站发送信号,报告其实时地理位置信息,使系统全程掌握人员的活动路线和时间。 2)、定位卡特点

● 功耗低,并且可充电。

● 与读卡主站通信距离远,直线可达500米。 ● 双向通讯,可向隧道外报警。 ● 具有低电报警功能。

● 防水、防尘设计;无辐射伤害。

3)、技术参数

工作电压DC 3.7V

无线频段 2.4GHz

通信协议ZigBee(IEEE802.15.4)

电池类型锂聚合物充电电池

电池规格600mA/H

电池寿命充满电使用1个月,充电最大次数:500次

外形尺寸55 mm×45 mm×15 mm

外壳材质阻燃ABS塑脂

重量55g

携带方式穿在皮带上,贴在安全帽内

2.5 人员/车辆门禁通道系统

门禁通道系统主要利用自动刷卡机制限制人员的进出,保障禁止非工作人员私自进出施工区域,同时也可用来来保障数据的真实性和有效性,避免因人为因素而导致考勤失效,或是管理出错。车辆的门禁可以提升对现场车辆的及时管控,做到更加有效的车辆利用率主机(现场服务器):负责整个系统设备及人员检测数据的管理、通讯、统计存储

以及屏幕显示、查询打印、画面编辑、网络通讯等任务。

控制板:实时采集接收人员卡的信息,并及时通过通信线路实时反馈到系统当中并生成控制摆闸的指令,根据数据有效性就行控制,保证人员进出正常。

道闸:主要安装在入口处,对车辆进出限制作用

地感检测器:及时检测是否有车辆经过,并发送信息至控制系统,产生相关联动

三辊闸:也安装在隧道入口处,对人员进出限制作用

读卡器:远距离读卡器,通过靠近自动刷卡方式,获取人员/车辆携带的电子标签卡信息,并传输到后台控制中央去。

人员/车辆门禁通道示意图

利用人员/车辆门禁通道系统可以实现进出人车分流通过,保证一定的进出安全,只要给人员和车辆配置相关电子标签即可。当人员携带人员卡(即电子标签),靠近人员门禁通道也即三辊闸的时候,内置的读卡器可以及时读取卡片信息,并送交后台核实,运行通过,则发送命令给三辊闸,开启放行,否则不变化。而对于车辆门禁系统,也需要给每一辆车配置车辆卡,车辆经过通行区域的时候,会触发读卡,同时也有地感触发,当同时读卡和地感触发的时候,系统将判定车辆允许通行,则开启道闸放行。单单的读卡或是单一的地感触发,系统统一认为不允许通过。

2.5.1人员/车辆门禁通道系统清单

系统序号名称图片型号规格品牌/产

单位数量

道闸(手动控制)1 道闸6米国产台 4

2 12V3A电源

控制器用

电源

国产个 4 3 遥控器国产个 4

三棍闸4 三棍闸国产台 4

5 控制器KB-2000A 国产个 4

6 ID读头AR-485R 国产个8

7 门禁专用电源国产个 4

8 发卡器国产个 2

9 ID卡国产个200

辅材

10 线材线缆国产米200

11 辅材国产套 1

人员/车辆门禁通道原理图

2.6 视频监控系统

网络视频监控系统包括前端视频采集设备、网络视频编解码、通讯传输设备,以及后端的监控接收客户端软件。安装在隧道各主要的监控点执行信号采集传输,软件主要是安装在监控室电脑上,两者之间通过平台管理中心系统授权,对其前端视频点进行多点对多点的实时监控管理。如:视频、云台、放大、录像、等功能,有管理权限的用户还可以对任何点的录像进行设置、下载、实时点播录像等操作;系统还可以通过PC浏览器进行监控。

由此可以看出,网络监控系统采用的是监控摄像机对隧道施工现场各视频点进行24小时的实时监控。对于一些关键视频点可启动视频移动侦测功能和报警功能,系统根据图像移动情况自动识别、触发,并进行录像(有预先录制机制,预录时长能提前20秒以上);同时系统将图像、声音、报警等实时数据传送到监控室电脑,管理人员可以通过本地监视、远程IE监视、WEB 网页客户端等方式随意切换前端任意监控点的视频,能直观地了解和掌握施工各视频监控点的实时情况,从而达到随时随地及时准确地对其进行监管。

在实际的隧道现在,一般在在掌子面以及洞口附近分别安装摄像头,实时显示查看监控区域的情况,让管理者更直接的了解现场情况。

系统组成:服务器、摄像机、视频服务器、传输数据接口转换器以及通讯传输部分 服务器:监控平台终端,对系统返回的信息进行显示,并通过平台软件对各个监控点位的摄像机进行操控,以及提供录像、播放视频、云台控制等多个功能。

摄像机:前段监测设备,实时采集信号。提供云台设备,实现摄像角度的改变,提供全方位式立体式监控。

视频服务器:主要是实现将声音图像的模拟信号转换成数字信号进行传输,通过通讯线路回传给监控平台。

传输数据接口转换器:包括一些信号转换器,主要实现对信号的转换以便系统更好的接收处理数据。

通讯传输:主要是一些RVVP 线缆和网线构成,实现视频信号的及时传输。

施工面监控

料场监控

工地现场监

拌合站监控

机房中心管

洞口监控

2.6.1视频监控系统清单

序号名称图片型号规格

品牌/产

单位数量

1 网络高清球型

摄像机

DS-2DE7174-A 国产台8

3 无线网桥ZoneFree 501

4 国产台0

4 网络硬盘录像

DS-8616N-ST 国产台 2

5 显示器22寸国产台 2

6 2T硬盘ST2000VX000 国产个 4

7 网线

超六类国产箱 2

8 电源线RVV2*1.5 国产米400

9 辅材定制国产项 1 2.6.2视频监控系统主要产品介绍:

网络高清球型摄像机

电源:AC24V(仅-A型号支持)

30W max(其中加热6W max,红外9W max)

工作温度和湿度:-40℃-65℃(室外)

湿度小于90%

防护等级:IP66(室外球)

TVS 4000V 防雷、防浪涌、防突波,符合GB/T17626.5 四级标准

安装方式:多种安装方式可选根据应用环境进行选择

尺寸:Φ220(mm)×353.4(mm)(室外)

重量:5.5kg

2.7 LED大屏同步系统

主要功能

LED大屏幕安装于隧道口,用于实时显示隧道施工人员的信息,使管理先进化,透明化。

显示的内容包括:姓名,工种、部门、进入隧道时间,隧道总人数等,领导及监管人员不用进入隧道,也不必查看监控中心主机就能及时了解隧道内施工人员信息。

LED大屏幕系统不仅可以使洞内各区域内施工人员信息形象、直观、一目了然的体现出来,而且,在领导视察或开隧道现场会时,可在大屏幕上显示各种欢迎标语、宣传标语;在平时可以通过大屏幕提示施工人员注意施工安全,有雨雪、冰冻等恶劣天气时可以及时进行温馨提示。这些都能充分体现隧道施工管理上的人性化、现代化、科学化。

系统界面:

可对界面显示内容进行编辑,支持多种显示方式。

数据调取

LED同步控制系统与监控主机实时通讯,从监控主机调取实时监测信息,同步显示于LED 大屏幕上。

显示内容

显示的内容包括:姓名,工种、部门、进入隧道时间,隧道总人数等。

同步显示

第三章系统功能特点

3.1核心功能特点

系统可实现在建铁路全线隧道管控,从总指挥部到各项目部再到各隧道驻地,逐级权限管理。由总指挥部统一发卡,统一装备,统一管理,高清远程视频上墙统一显示,及时性隧道人员信息数据集中监控。

本系统遵循"统一发发卡、统一装备、统一管理"的原则,按准许隧道洞内工作人员和班组实行"一人一卡"制,该感应器可视为"上岗凭证"或"隧道准入证"。

(1)在建铁路全线隧道管控

●各驻地,各隧道均与中心平台对接,数据及时上传;

●总指挥部可以及时查询任意一驻地或隧道当前工作状态及相关数据;

●可视化电视墙及高性能服务器,提供直观的数据以及图像信息

(2)洞内危险气体监测功能:

●可以及时预防,做到早发现,早处理,保证员工健康安全;

●及时性数据强,便利的时间段数据报表显示;

(3)洞内工作人员实时动态显示功能:

●任一时间洞内某个地点作业人员人数,作业人员人数具体信息;

●查询一个或多个人员现在的洞内实际位置;

●记录有关人员在任一地点的到/离时间和总工作时间等一系列信息,可以督促和落实重要

巡查人员是否按时、到点的进行实地查看,或进行各项数据的检测和处理,从根本上尽量杜绝因人为因素而造成的相关事故

高精度超短基线在水下定位中的应用

高精度超短基线在水下定位中的应用高精度超短基线定位系统在水下定位中的应用 1 2张粤宁刘鹏 (1.武汉长江航道救助打捞局,武汉430014;2.上海地海仪器有限公司,上海200233) 摘要:声学定位系统(Acoustic Positioning System)的技术研究和应用开发在现代海洋科学调查和水下施工中起着重要作用。本文以某品牌超短基线定位系统为例,就超短基线 hort BaseLine)声学定位系统的原理、应用范围等几个方面展开讨论,同时介绍(Ultra S 了高精度超短基线工程中的实际应用,对使用过程中影响定位性能的主要因素进行了简单分析。 关键词: 超短基线水下定位 1 概述 20世纪90年代以来,世界先进国家的海洋调查技术手段逐步成熟与完善,其中超短基 线(简称USBL)水下设备大地定位技术也获得了长足的发展。高精度水下定位系统具有 广泛的用途,在海洋探测研究、海洋工程、水下建筑物施工、潜水员水下作业、水下考 古、海洋国防建设等方面,都离不开水下定位系统为其提供高精度、高质量的定位资料, 因此高精度水下定位技术对维护国家领土权益和国民经济建设都具有重要意义。

1(1关于水下声学定位系统 20世纪50,60 年代,在国际上,随着光、声、磁等技术的不断发展,在大力开发海洋自然资源和海洋工程的进程中,水下探测技术得到了较大发展,相继开发了一系列先进的、高效能的水下探测设备:在各种水下检测的光、声、磁技术中,由于水下光波衰减很快,即使是波长最长、传播最远的红外光波在水中传播到了几米以后也衰减完了,而声波和电磁波在水中有良好的传播性,因而,声呐、磁探和超短基线成为水下检测的有效方法。 声学定位系统最初是在19世纪60年代的时候被开发出来用于支持水下调查研究。从那时起,这类系统便在为拖体,ROV等水下目标的定位中成为了重要角色。声学定位系统能够在有限的区域内提供非常高的位置可重复精度,甚至在远离海岸。对大多数用户来说,可重复性精度要比绝对精度重要。 在声学定位系统中,有3种主要的技术:长基线定位(LBL),短基线定位(SBL),和超短基线定位(SSBL/USBL),有些现代的定位系统能组合使用以上技术。 长基线(LBL):长基线定位能在宽广的区域内提供高精度的位置,它需要至少3个应答器组 成的阵列部署在海底上的已知点上,水面舰只安装一个换能器。换能器测量出到水底应答器的斜距,从而计算出自身的坐标位置。

2020年隧道毕业设计开题报告

隧道毕业设计开题报告 开题报告是指开题者对科研课题的一种文字说明材料。这是一种新的应用写作文体,这种文字体裁是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。以下是的隧道毕业设计开题报告,欢迎阅读。 一、课题的研究背景 随着社会经济的不断发展,对交通运输的要求也越来越大,特别是对于关乎国民经济命脉的铁路更是有着特殊的依赖,总结其原因大致有三点:铁路运输不仅方便快捷,而且运量大,另一方面,以其安全,廉价的特点吸引了大多数的货物运输,最后,在国防建设中,铁路运输是必不可少和重要的环节,比如我们引以为傲的青藏铁路,除了在经济建设上有着不可估量的作用,而且有着极其重要的军事战略地位。然而修铁路就难以避开山岭地带,在山岭地区可利用隧道工程克服地形或高程障碍,改善线形,提高车速,缩短里程,节约燃料,节省时间,减少对植被的破坏,保护生态环境;还可克服落石、坍方、雪崩、雪堆等危害,既能保证路线平顺、行车安全、提高舒适性和节约运费,又能增加隐蔽性、提高防护能力和不受气候影响。 我国内地有许多地势起伏、山峦纵横的山区。铁路穿越这些地区时,往往遇到高程障碍。而铁路限坡平缓,无法拔起需要的高度,同时,限于地势无法绕 避,这时开挖隧道直接穿山最为合理,他既可以使线路顺直,避免许多无谓的展线缩短线路,又可以减小坡度,使运营条件得以改

善,从而提高牵引定数,多拉快跑。所以在铁路线上尤其是在山区铁路上,隧道的方案常为人们所选用,修建的数量也越来越多。我国铁路采用隧道克服山区地形的范例很多的,例如,川黔线的凉风垭隧道,使跨越分水岭时,拔起高度小、展线短、线路顺直、造价低;越岭高度降低96M、线路缩短了14.7km,占线路总延长的37.75%。又比如宜万铁路的建设,隧道所占比率达60%。由此可见,隧道在山区铁路线上的作用之巨大。 二、国内外发展状况 人类很早就知道利用自然洞穴作为住处。当社会发展到能制造挖掘的工具时,就出现了人工挖掘的隧道。近代隧道兴起于运河时代,从17世纪起,欧洲陆续修建了许多隧道。 国内外隧道施工中形成了两大理论体系:一种20世纪20年代提出的传统“松弛荷载理论”,其核心内容是稳定的围岩有自稳能力,对隧道不产生荷载,而不稳定的围岩可能产生坍塌,需要用支护结构予以支承围岩体荷载。这样,作用在支护结构上的荷载就是围岩在一定范围内由于松弛并坑坍塌的岩体重力。另一种是20世纪50年代提出的“岩承理论”。其核心内容是隧道围岩稳定显然是岩体自身有承载自稳能力,不稳定围岩是具有一个过程的,如在这个过程中提供必要的支护和限制,则围岩仍然能够保持稳定状态。“岩体理论”则是在新奥法的基础上提出来的。 国内外隧道施工多用新奥法施工,新奥法即新奥地利隧道施工方法的简称,原文是NewAustrianTunnellingMethod简称NATM,新奥

井下精确定位系统可行性研究报告

井下精确定位系统可行性 研究报告

一、义煤集团目前存在的问题 1、矿用电机车 煤炭生产过程中,矿用电机车是井下轨道煤炭运输及辅助运输重要的动力设备,电机车按供电方式分为架线式和蓄电池式两种,轨道数量有单轨道和双轨道两种。由于电机车具有结构简单,维护方便,运输费用低等特点,在煤矿水平巷道中,作为运输工具起着很大作用,得到广泛应用。为确保煤矿井下运输安全,《煤矿安全规程》对电机车运输的轨距、轨型、运行速度、机车的制动距离以及两台机车在同一轨道同一方向行驶时,必须保持不小于100m的距离等做出了明确的规定。 由于煤矿井下运输巷道沿途灯光昏暗,工况恶劣,如果电机车司机注意力稍有不集中,反应迟钝,观察判断失误以及道岔错位等原因,电机车很容易出现事故,轻者掉轨,误开到其它轨道上,重者使两电机车行驶到同一轨道上造成迎面相撞或追尾事故,特别是迎面相撞事故由于极大的惯性,造成的后果更加严重。可能会损毁轨道、路基、车辆和运送的设备,甚至会造成冒顶塌方、火灾瓦斯事故。若是运送人员的车辆相撞后果更为严重,将造成大量人员受伤。而目前电机车的制动一般都是人工操作电阻制动和手闸制动两种,刹车时易产生剧烈抖动或刹车过猛而造成人为事故。这种机车相撞事故一旦发生危害巨大,后果惨重,极大地影响了煤矿企业正常有序的安全生产。 除电机车之间出现碰撞事故外,电机车撞人事故也常有发生。长期以来大巷机车运输事故在主巷运输事故中所占比例一直较大,其发生的类型一般有以下几类:①大巷作业人员避让列车不及被碰挂致伤;②大巷人行道宽度不够,使巷道内人员无法安全避让列车,被列车碰挂致伤;③无乘车候车室的大巷,下班后候车的工人因劳累睡在线路旁,被列车碰挂致伤;④乘车人员乘坐人车时,未挂好防护链且因劳累睡着后,意外被列车甩出车外摔伤;⑤跟车工摘挂钩时,因与司机联络失误或机车司机操作失误,兑车不当,被挤碰致伤;⑥行人在从石门巷道快速跨越大巷轨道时,被运行中的列车碰伤等。 要消除以上事故,一是要完善巷道设施;二是职工要做好自我保护;更重要的是要在完善机车安全设施,主动做好大巷行车安全防范工作。 2、人员定位 煤矿安全生产事关煤矿系统人员的生命和财产安全,各级政府一贯高度重视煤矿安全生产问题,并采取了一系列措施不断加强安全生产工作。通过不断

隧道施工方案45919

隧道工程施工工艺 一、总体方案 (一)施工原则 采用大型施工机械配套施工,开挖出渣机械配套作业线、初期支护砼机械配套作业线与二次衬砌砼施工作业线相配合一条龙作业。软弱围岩坚持“短进尺、弱(不)爆破、快封闭、强支护、紧衬砌”的原则,开挖后仰拱及时跟上封闭成环。施工中进行超前地质预报,采用先进的量测探测技术对围岩提前做出判断,拟定相应的施工方案。 (二)施工布置 隧道根据施工现场场面状况,采用单向掘进,隧道进口布置一个隧道专业机械化施工队。洞内施工开挖、出渣初期支护与二次衬砌模筑砼平行作业。隧道路面待贯通后从洞口反向施工。根据地形地貌及工期要求,本隧道不设施工支洞。 (三)总体方案 根据磐南隧道围岩情况、及断面设计,结合本承包人现有技术装备力量和多年的隧道施工经验,确定Ⅲ类围岩采用正台阶开挖法施工,Ⅳ类采用全断面开挖法施工。隧道出渣采用侧翻装载机装车,自卸汽车运输。初期支护施作及时可靠,衬砌砼采用机械化作业,二次衬砌采用砼输送车、输送泵和全断面液压衬砌台车相配合的方案。施工过程中加强监测,及时处理分析数据,高速支护参数。开挖前做好超前地质预报、探测工作,根据围岩情况采取相应的施工方案。 二、隧道施工测量控制 为保证隧道贯通精度,拟定如下测量控制方案: 1、地表平面控制 (1)为保证洞口投点的相对精度,平面控制网根据设计提供的控制点和实地地形情况布设精密控制网,并保证洞口附近有二个或二个以上的精密控制网点。 (2)地表控制网经过多次复测,复测无误后方可引线进洞的测量工作。 2、洞口联系测量 为保证地面控制测量精度很好地传递到洞内,采用如下洞口控制测量方案: (1)在洞口仰坡完成及洞口施工至设计标高后,在洞口埋设二个稳固的导线控制点。 (2)洞口附近在基础稳定处埋设2~4个水准点,与地表水准控制网级网观测及平差计算,以便于隧道进洞水准测量。 3、测量方法及措施 (1)地表平面控制测量选用全站仪施测,建立四等导线控制网,并把隧道中线和横向轴线纳入控制网内以保证放样精度。 (2)高程控制按四等网施测,用自动按平水准仪施测,精度至毫米。 (3)洞内控制测量与地表控制测量按同等精度建网,施工中线测量使用全站仪。 (4)具体要点:

隧道工程课程设计报告(铁路单洞双线)

隧道工程课程设计姓名: 专业班级: 学号: 指导老师:

目录 第一章工程概况 (1) 1.1 隧道概况 (1) 1.2 工程地质及水文地质 (1) 1.2.1工程地质 (1) 1.2.2 水文地质 (1) 第二章隧道深浅埋判定及围岩压力的计算 (2) 2.1 深浅埋隧道的判定原则 (2) 2.2 围岩压力的计算方法 (2) 2.3 Ⅳ级围岩计算 (3) 2.3.1 Ⅳ级围岩深浅埋的判定 (3) 2.3.2 Ⅳ级围岩压力的计算 (4) 2.4 Ⅴ级围岩的计算 (4) 2.4.1 Ⅴ级围岩深浅埋判定 (4) 2.4.2 Ⅴ级围岩压力的计算 (4) 第三章衬砌内力计算与检算 (5) 3.1 Ansys的加载求解过程 (5) 3.2 衬砌结构强度检算原理 (5) 3.3 IV级围岩衬砌内力计算与强度检算 (6) 3.4 V级围岩衬砌内力计算与强度检算 (9) 第四章衬砌截面配筋计算 (19) 4.1 截面配筋原理 (19) 4.2 IV级围岩配筋计算 (19) 4.3 V级围岩配筋计算 (20) 4.3.1 断面1的配筋计算 (20) 4.3.2 断面2的配筋计算 (21)

第一章 工程概况 1.1 隧道概况 太中银铁路为客货共线的双线铁路。线路上一共建有22座隧道,其中王家庄2号隧道位于王家庄东侧,隧道进口地势较陡,此处岩石裸露,进口前方为一冲沟,冲沟内有水,地势狭窄。出口坡度陡,为黄土覆盖,并有大量植被,出口前方为一冲沟,沟内地势平缓,沟内经过开采,原有地形已改变。隧道进口里程DK194+082,出口里程DK194+450,全长368m 。隧道位于半径为5000m 曲线上,隧道内坡度为7.5‰的下坡,最大埋深61.08m 。隧道进出线间距4.49m ,DK194+340至出口线间距为4.40m 。 1.2 工程地质及水文地质 1.2.1工程地质 (1) 隧道洞身通过的地层为第四系中更新统洪积层老黄土,奥陶系下统灰白色石灰岩。 地层描述如下: 老黄土:稍湿、坚硬状态,具垂直节理; 奥陶系下统灰白色石灰岩:强风化~弱风化,节理发育,岩层产状195°∠15°。 (3) 土壤最大冻结深度:1.04m 。 (4) 地震动峰值加速度0.05g ,地震基本烈度VI 度。 1.2.2 水文地质 隧道洞体内土石界面有地下水。

水下和海底大地坐标的精确测量

文章编号:1009-671X(2003)09-0019-03 水下和海底大地坐标的精确测量 张 炜1,王大成2 (1.中国人民解放军91550部队,辽宁大连 116000;2.哈尔滨工程大学水声工程学院,黑龙江哈尔滨 150001)摘 要:潜艇水下高精度定位,长期以来一直是水下导航定位领域的一个难题.为了解决潜艇在水下长时间航行过程中的高精度定位问题,提出了一种比较实用的解决方案.该方案构建了由DGPS 定位和水声定位相结合的水下定位系统.系统采用系缆浮筏作为潜艇,利用DGPS 进行水下定位的中继站,利用水声相对定位技术将DGPS 水面定位向水下延伸,使潜艇在工作潜深就可以直接获得自身的大地经纬度坐标.系统将DGPS 的优良性能与超短基线在水下定位中的优势很好地结合在一起,其定位精度可以保证与DGPS 水面定位精度在同一量级.关 键 词:DGP S;高精度;水下定位中图分类号:T B568 文献标识码:A Precision measurement of coordinates of underwater and sea bed ZHANG Wei 1,WANG Da cheng 2 (1.T he Chinese Peo ple s Liberation Army No.91550,Dalian 116000,China;2.School of U nder water Acoust ic Engineer ing ,Harbin Eng ineering U niversity ,Har bin 150001,China) Abstract:For a long time,high precision positioning for underw ater submarine has been a difficult problem in the field of underw ater navigation and positioning.The traditional positioning for submarine depends on inertial navigation system (INS).But the positioning error of INS accumulates along w ith time.In order to solve the problem of high precision positioning for underw ater subm arine,this paper proposed a relatively practical scheme.T his scheme constructs an underw ater positioning system based on the combination of DG PS and acoustical positioning.This method makes use of acoustical relative positioning technique for ex tend ing the DGPS positioning technique for surface applications to underw ater cases.With this positioning sys tem ,the submarine can directly get its long itude and latitude,and the positioning precision can ensure the same level as the surface application cases of DGPS. Key words:DGPS;high precision;underwater positioning 大地坐标点的测量有两种工作状态需要考虑.第一,水中和海底运动目标大地坐标的实时测量.这在ROV 、水下机器人等的水下作业和潜艇、潜器、水下无人作战平台等军事武备水下实验过程中是经常遇到的.第二,固设于海底处的大地测量控制点坐标的测量.这是被称为 海洋大地测量!任务的一项基础性工作[1],它对于潜艇水下航行、各种水下作业、海底地图测绘等有重要作用. 近年来,由于差分式全球定位系统(DGPS)和高精度水声定位技术的飞速发展,为水下以及海底高精度大地坐标的精确测量提供了更先进的技术手段.尤其是国家海事局在北起大三山、南至防城和三亚港,沿整个海岸线建成的包括总计有20个差分站组成的RBN/DGPS 系统,使无线电差分信号有效地覆盖了我国以海岸为基线的大约300km 的水域范围.再加上美国出于自身商业利益的考虑,取消了C/A 码上的精度干扰,使得DGPS 系统的应用更加方便和有效. 近年来国内外的水声定位技术不断发展,定位精度不断提高,轻便易用的超短基线水声定位系统(USBL 系统)原有的相位模糊(目标定位位置跳象限)、在与基阵面垂直向下的方向和水平方向存在低精度区等缺点,已被克服,加上采用一系列的近代信号处理技术,使USBL 系统能以稳定的高精度测量结果参与水下或海底点坐标测量系统[2,5]. 收稿日期:2002-06-28. 作者简介:张 炜(1961-),男,工程师,主要研究方向:测控技术. 第30卷第9期 应 用 科 技 Vol.30,?.92003年9月 Applied Science and Technology Sep.2003

公路隧道毕业设计

公路隧道毕业设计

榆树坪隧道综合设计 (长安大学公路学院西安 710064 ) 摘要: 本设计按照“新奥法”施工的要求,对某山岭二级公路上的榆树坪隧道进行了综合设计。主要内容包括:路线方案的拟定比选、隧道横纵断面设计、隧道衬砌结构设计、路基路面防排水及管线沟槽设计以及施工组织设计,并进行了隧道二次衬砌的结构计算,IV级围岩隧道施工阶段分析,同时还完成了隧道通风、照明的计算及设计。 关键词: 隧道新奥法防排水衬砌结构 通风照明监控测量结构计算 第一章隧道设计说明书 一、设计概况 榆树坪隧道位于吴旗县,是连接刘河湾,胜利山,贺石湾,洛源桥,榆树坪地区的山岭二级公路区段上重要的通道,该地区为构造剥蚀侵蚀低山地貌,地质地形复杂,拟建隧道经过区域地表地形整体起伏较大,其中最低标高1252.0m,最高标高1512.0m。该隧道拟设计为单洞双向隧道,该隧道为整体一段,入口桩号K0+015,出口桩号

K2+140.87,全长2125.87m,采用双坡,坡度为第一段1.25%,第二段-1.5%。隧道行车道宽度按照设计行车速度60km/m考虑。明洞施工按明挖法施工,暗洞按“新奥法”施工。隧道衬砌结构设计采用“新奥法”复合式衬砌,并采用高压钠灯光电照明、射流风机机械通风;隧道洞门形式根据地形条件采用入口削竹式,出口端墙式洞门。隧道围岩以较为破碎的白云岩、片麻岩、玄武岩、页岩、变质砂岩为主,围岩级别以Ⅲ,Ⅳ、Ⅴ级为主。 二、隧道主要技术标准 定的远景交通量设计,采用单洞双向隧道 公路等级:山岭重丘二级公路 设计交通量:262辆/h(近期),540/h(远期) 隧道设计车速:60km/h 隧道建筑限界 根据《公路隧道设计规范》(JTGD70—)规定确定: 行车道: W=2×3.50m 侧向宽度: L L=0.50m 余宽: C= 0.25m 人行道宽: R=1.00m 限界净高: 5.00m 隧道净高: 7.09m

隧道人员精确定位方案2020

隧道人员精准定位方案(精度小于0.5米) 北京华星北斗智控技术有限公司 2020年3月

目录 一、技术先进性简介 (3) 二、定位原理 (4) 三、系统拓扑图 (5) 3.1、网桥传输模式 (5) 3.1、有线传输模式 (7) 四、定位系统功能介绍 (8) 4.1、精确的定位功能 (8) 4.2、自动考勤统计功能 (10) 4.3、轨迹回放功能 (12) 4.4、一键呼救功能 (13) 4.5、电子围栏功能 (14) 4.6、标签基站管理功能 (16) 4.7、长时间静止报警功能 (17) 4.8、气体检测功能 (18) 4.9、LED投屏功能 (21) 五、定位基站的供电 (22) 六、定位标签的供电 (23) 七、定位基站的安装 (24) 八、定位基站参数 (27) 九、定位标签参数 (30) 十一、项目案例 (33) 2

一、技术先进性简介 华星智控隧道人员定位管理系统采用我司具有自主知识产权的UWBLOC技术,该技术基于无线脉冲通信原理实现定位,UWBLOC技术利用纳秒至微秒级的非正弦波窄脉冲传输数据。通过在较宽的频谱上传送极低功率的信号,UWBLOC能在300米左右的范围内实现数百Mbit/s至数Gbit/s的数据传输速率。 UWBLOC技术抗干扰性能强,传输速率高,系统容量大发送功率非常小。UWBLOC系统发射功率非常小,通信设备可以用小于1mW的发射功率就能实现通信。低发射功率大大延长系统电源工作时间。而且,发射功率小,其电磁波辐射对人体的影响不到手机千分之一。 UWBLOC隧道人员定位系统定位精度最高可以做到10厘米,毫秒级的延迟实时显示人员的位置,可以实现隧道内的2维或1维精确定位。 UWBLOC系统信号几乎不对工作于同一频率的无线设备造成干扰,信号具有极强的穿透能力,可在室内和地下空间比如隧道、管廊等进行精确定位,相比于GPS卫星定位系统只能工作在露天环境,在定位卫星的可视范围之内;UWBLOC定位系统可以实现室内室外的精确定位,部署更为方便价格更为便宜。 3

隧洞隧道工程测量方案设计

隧洞测量方案设计 目录 1. 工程概况………………………………………………( 2 ) 2 隧洞地面和地下平面控制布网略图……………………( 2 ) 3. 隧洞地面和地下高程控制网略图……………………( 4 ) 4. 隧洞地面和地下平面控制测量设计说明……………( 4 ) 4 .1 确定遂洞地面和地下平面控制网的等级进行遂洞横向贯通误差的预计……………( 5 ) 4.2 地面和地下平面控制测量等级的各种技术要求………( 7 ) 5. 隧洞地面和地下高程控制测量设计说明……………( 18 ) 5.1 隧洞地面和地下高程控制网等级和竖向贯通误差的预计( 18 ) 5.2 地面和地下高程控制测量的等级的各种技术要求……( 20 ) 6. 隧洞施工放样方法、精度的设计说明………………( 23 ) 6.1 洞外中心线的测设方法及要求的设计………………( 23 ) 6.2 隧洞中心控制桩外的设计…………………………( 24 ) 6.3 洞内施工导线、基本导线、主要导线的精度、测量方法设计( 25 ) 6.4 隧洞内高程控制点测量方法、精度要求……………( 26 ) 6.5 隧洞长度、洞底高程、腰线高程的设计……………( 27 ) 6.6 隧洞施工面的放样方法……………………………( 29 ) 6.7 纵、横和竖向贯通误差的测定方法 (30) 7. 总结…………………………………………………( 31)

1. 工程概况 东山隧洞施工测量工程位于维州市东山镇西南方向,其东南方向是东山小学,离东山镇约 2km ,离东山小学约1.5km ,距其不远有一条穿过东山镇的南北公路。公路对隧洞的施工提供了比较方便的交通路线。 隧洞全长为 3156m ,穿过东山山头,东山山头的高程 H=198.236m 。隧洞进口=78.000m ,隧洞的设计坡降为 0.3% 。 的设计高程H A 2. 隧洞地面和地下平面控网略图 2.1 本工程测量单位所拥有的测量仪器为 (1)全站仪,测程 3km ,测距精度:±( 2mm +2ppm · D ) 测角精度:± 2 ″ 水准仪 (2) DS 3 (3) 30m 钢尺 根据所拥有的仪器及遂洞的地形图采用光电测距导线网作为平面控制网。由东山地形图可知道该地形比较陡,通视条件差,不宜布设多边形的平面控制网,测角网测量的角数比较多降低测量的速度,随着全站仪测距精度的提高,采用边角网的平面控制网可以提高测量的速度同时也可以保证测量的精度。由表 2.1.1 可知道平面控制网的等级可能为三等或四等,而且三、四、五等平面控制网,可以用相应等级的导线网来代替。所以本工程的控制网采用了光电测距导线网。平面控制网见东山地形图。 表 2.1.1 洞外控制网等级选择 2.2 平面控制网绘制导线计算图见图 2.2

中南大学隧道工程课程设计

铁路山岭隧道课程设计指示书 . 隧道教研室. (注:可供公路隧道设计者参考,基本方法一样。) 一、原始资料 (一) 地质及水文地质条件 沙口坳隧道穿越地段岩层为石灰岩,地下水不发育。其地貌为一丘陵区,海拔约为150米。(详细地质资料示于隧道地质纵断面图中)。 (二) 线路条件 本隧道系Ⅰ级干线改造工程,单线电力(或非电力)牵引,远期最高行车速度为160公里/小时,外轨最大超高值为15厘米,线路上部构造为次重型,碎石道床,内轨顶面标高与路基面标高之间的高差为Δ=70厘米,线路坡度及平、纵面见附图,洞门外路堑底宽度约为11米,洞口附近内轨顶面标高: 进口:52.00米出口:50.00米 (三) 施工条件 具有一般常用的施工机具及设备, 交通方便, 原材料供应正常, 工期不受控制。附:(1) 1:500的洞口附近地形平面图二张; (2) 隧道地质纵断面图(附有纵断面总布置图)一张。 二、设计任务及要求 (一) 确定隧道进、出口洞门位置,定出隧道长度; (二) 在1:500的地形平面图上绘制隧道进口、出口边坡及仰坡开挖线; (三) 确定洞身支护结构类型及相应长度,并绘制Ⅳ类围岩地段复合式衬砌横断面图一张(比例1:50); (四) 布置避车洞位置; (五) 按所给定的地质资料及技术条件选择适当的施工方法,并绘制施工方案横断面

分块图及纵断面工序展开图; (六) 将设计选定的有关数据分别填入隧道纵断面总布置图的相应栏中,并写出设计说明书一份。 三、应完成的设计文件 所有的图纸均应按工程制图要求绘制,应有图框和图标。最后交出设计文件及图纸如下: (一) 标明了洞门位置及边、仰坡开挖线的1:500洞口附近地形平面图两张,图名为“沙口坳隧道进口洞门位置布置图”和“沙口坳隧道出口洞门位置布置图”; (二) 参照标准图绘制的1:50衬砌横断面图一张,图名为“Ⅳ类围岩衬砌结构图”; (三) 隧道纵断面总布置图一张,图名为“沙口坳隧道纵断面布置图”; (四) 设计说明书一份,主要内容有: 1.原始资料 ①地质及水文地质条件; ②线路条件; ③施工条件等。 2.设计任务及要求 3.设计步骤 ①确定洞口位置及绘制边仰坡开挖线的过程 应列出有关参数如b、c、d等值的计算,详细表述清楚各开挖面的开挖过程; ②洞门及洞身支护结构的选择,标明各分段里程、不同加宽的里程; ③大小避车洞的布置; ④施工方案比选: 包括施工方法的横断面分块图及纵断面工序展开图。 四、设计步骤 (一) 隧道洞门位置的确定 洞门位置的确定与洞门结构形式、边仰坡开挖方式、洞口附近地形、地质及水文地质条件有关。通常采用先在1:500的洞口地形平面图上用作图法初步确定洞门位置, 然后在实地加以核对和修正。 为了保证施工及运营的安全, 《隧规》提出了“在一般情况下,隧道宜早进洞,

公路隧道毕业设计图纸

土木与建筑工程学院2015届毕业设计文件设计题目:天台山公路隧道设计 专 业:土木工程(岩土)班 级: 11-3 班 学生姓名:臧浩然学号:20117181 指导教师:刘振平院长: 武鹤 黑龙江工程学院土木与建筑工程学院 二〇一五年六月

目 录 图 表 名 称 图 号 备 注 设计总说明 I 共2页 上行先平纵缩图 S1-1 共5页 下行线平纵缩图 S1-2 隧道平面布置图(一) S1-3 隧道平面布置图(二) S1-4 隧道平面布置图(三) S1-5 隧道上行线纵断面缩图 S2 共1页 隧道上行线纵断面布置图(一) S3-1 共3页 隧道上行线纵断面布置图(二) S3-2 隧道上行线纵断面布置图(三) S3-3 隧道下行线纵断面缩图 S4 共1页 隧道下行线纵断面布置图(一) S5-1 共3页 隧道下行线纵断面布置图(二) S5-2 隧道下行线纵断面布置图(三) S5-3 Ⅲ级围岩隧道标准横断面图 S6 共1页 Ⅲ级围岩衬砌配筋图(一) S7-1 共2页 Ⅲ级围岩衬砌配筋图(二) S7-2 Ⅲ级围岩支护与衬砌构造图 S8 共1页 Ⅳ、Ⅴ级围岩标准横断面图 S9 共1页 Ⅳ级围岩衬砌配筋图(一) S10-1 共4页 图 表 名 称 图 号 备 注 Ⅳ级围岩衬砌配筋图(二) S10-2 Ⅴ级围岩衬砌配筋图(一) S10-3 Ⅴ级围岩衬砌配筋图(一) S10-4 共4页 Ⅳ、Ⅴ级围岩支护与衬砌构造图 S11 共1页 标准横断面图 S12 共1页 紧急停车带横断面和平面图 S13 共1页 人、车横向通道横断面图 S14 共1页 翼墙式洞门立面图 S15 共1页 翼墙式洞门侧面图 S16 共1页 翼墙式洞门平面图 S17 共1页 射流机安装位置图 S18 共1页 射流机平面布置图 S19 共1页 照明灯具安装位置图 S20 共1页 照明灯具平面布置图 S21 共1页 Ⅲ级围岩施工方案图 S22 共1页 Ⅳ级围岩施工方案图 S23 共1页 Ⅴ级围岩施工方案图 S24 共1页

井下人员定位概述

井下人员定位概述 我国煤炭产量居世界首位,煤矿数量超过世界上其他要紧产煤国家的煤矿总数,煤炭行业是我国国民经济和社会进展的支柱产业。安全是煤炭生产的头等大事,安全对煤炭生产起着保证、支撑和推动作用。近年来,国家针对煤矿安全咨询题采取了多方面的有力措施,但由于长期以来煤矿安全投入明显不足,煤矿企业安全装备严峻缺乏,安全治理手段极其落后,国家煤矿安全形势仍旧十分严肃。因此,加大煤矿安全投入,推广采纳先进的煤矿安全装备与手段已成为煤炭行业迫在眉睫的必定需要。 煤矿安全最重要的是保证矿工生命的安全,煤矿安全治理最重要的也是对矿工安全的治理,其中对矿工在井下工作位置的准确监测是实现保证矿工安全目的的差不多前提。为此,国内外专门多企业投入大量精力,纷纷研制出一批针对井下人员的考勤定位系统,但从技术和性能等各方面都存在专门多咨询题和缺陷,不能满足对井下人员位置准确监测的要求。 针对现代矿井生产企业迫切的安全治理与人员治理需求,西安凯虹电子科技有限公司应用最先进的射频识别与无线监控技术,历时5年半,潜心研制出国际领先的井下目标定位跟踪系统——KJ133型矿用人员定位安全治理系统。该系统的明显特点是可实现井下各种巷道条件下的信号“全覆盖”,实现对井下人员、车辆、设备等目标的“全程的、实时的、连续的、精确的定位跟踪”,同时实现对井下人员的“实时双向无线通讯”。该系统的应用,可极大提升矿井生产企业安全生产治理水平。目前,公司产品已成功应用于神华集团神东煤炭分公司、铁法煤业集团、阳煤集团、鹤壁煤业集团、澄合矿务局等国有大型煤矿企业,并得到用户一致高度认同,为煤矿企业的日常生产调度、安全监管与应急救援等信息化治理工作提供了重要的有力保证。 2、系统总体方案

新建铁路川藏线拉萨至林芝段隧道施工控制测量工程施工设计方案

新建铁路川藏线拉萨至林芝段隧道施工 控制测量施工方案 1、编制说明 1.1、概述 新建铁路川藏线拉萨至林芝段站前工程LLZQ-8标段第四项目经理部起点位于林芝地区朗镇巴热村,经堆巴村、沿S306省道前行,于林芝地区朗镇路村终止。线路穿越雅鲁藏布峡谷地带,三跨雅鲁藏布江,线路全长6.69正线公里。 1.2、工程概况 新建铁路川藏线拉萨至林芝段站前工程LLZQ-8标段第四项目经理部管段内共设计两座隧道,分别为则弄隧道、朗镇二号隧道。 则弄隧道全长865m,进口里程D4K256+150,出口里程D2K257+015,单线隧道,隧道最大埋深138m,位于朗县与山南县之间。设计纵坡为5.0‰/420m、-7‰/445m的单面下坡,轨面高程3150.613~3149.598m。本隧道曲线段位于R=1600m右偏曲线上。 朗镇二号隧道全长2652m,进口里程DK260+236,出口里程DK262+888,单线隧道,隧道最大埋深305m,位于朗县与山南县之间。设计纵坡为-3.8‰/284m、-9.5‰/2368m 的单面下坡,轨面高程3148.232~3124.884m。本隧道进口端228.597m位于R=1600的左偏曲线上、洞身段2048.798m位于R=1600m的右偏曲线上,出口端112.246位于R=1600m 的左偏曲线上。 1.3、编制依据 2、隧道控制测量总体思路 为保证隧道的准确贯通,本着先总体后碎步的原则,首先在隧道沿线建立精密控制网,覆盖全隧道,使隧道的洞内控制测量或中线测量总体受控。为便于隧道施工测量和满足洞外导线点精度要求,项目部除设计院布设的CPI和CPII控制点外分别在每座隧洞口单独布设三~四个加密控制点,当控制点经过公司精测组GPS复测并经过精密平差后的数据满足隧道洞口控制要求时取用。在洞外GPS控制网的基础上,根据洞口施工情况,在洞口设置2个洞口投点作为洞外、洞内的联系测量,洞口投点和洞外GPS控制网点组成小三角形或大地四边形进行边角测量,并达到相应等级边角网的精度要求,以

隧道通风课程设计

通风计算 1基本资料 1.公路等级:一级公路 2.车道数、交通条件:2车道、单向 =80km/h 3.设计行车速度:u r 4.隧道长度:1340m;隧道纵坡:1.5% 5.平均海拔高度:1240m;隧道气压:101.325-10×1.24=88.925 6.通风断面面积:62.982 m,周长为30.9m 7.洞内平均温度:12℃,285K 2通风方式 根据设计任务书中的交通量预测,近期(2013 年)年平均日交通量为7465辆/每日,远期(2030年)10963辆/每日,隧道为单洞单向交通,设计小时交通量按年平均日交通量的10%计算,故近期设计高峰小时交通量为747辆/h,远期为1096辆/h。 根据设计任务书所给的车辆组成和汽柴比,将其换算成实际交通量,小客车:20%,大客车:27.2%,小货车:7.8%,中货车:20.6%,大货车:20.1%,拖挂车:4.3%,汽柴比:小客车、小货车全为汽油车;中货 0.39:0.61;大客 0.37:0.63;大货、拖挂全为柴油车,结果如表6.1所示 表6.1车辆组成及汽柴比 可按下列方法初步判定是否设置机械通风。 由于本隧道为单向交通隧道,则可用公式(6.1) L*N≤2×105式(1) 式中:L——隧道长度(m);

N ——设计交通量(辆/h )。 其中L 、N 为设计资料给定,取值远期为N=1096辆/h ,L=1340m 由上式,得 1340×1096=1.46×106 >2×105 以上只是隧道是否需要机械通风的经验公式,只能作为初步判定,是否设置风机还应考虑公路等级、隧道断面、长度、纵坡、交通条件及自然条件进行综合分析,由初步设计可知知本设计需要机械通风。 3 需风量计算 CO 设计浓度可按《公路隧道通风照明设计规范》查表按中插值法的再加上50ppm 。设计隧道长度为1340m ,查表知ppm =ppm δ()292。交通阻滞时取 =300ppm δ。烟雾设计应按规范查表,设计车速为80km/h ,k (m 2)=0.0070m -1 。同时,根据规范规定,在确定需风量时,应对计算行车速度以下各工况车速按20km/h 为一档分别进行计算,并考虑交通阻滞时的状态(平均车速为10 km/h ),鹊起较大者为设计需风量。 CO : n m m m-1f =?∑ (N )219×1.0+110×7+85×2.5+88×5+188+138+220+48=2235.5 烟雾:n m m m-1 f =?∑ (N )188×1.5+138×1.0+220×1.5+48×1.5=822 3.1 CO 排放量计算 CO 排放量应按式(6.2)计算 61 1()3.610n CO co a d h iv m m m Q q f f f f L N f ==????????∑ 式(2) 式中:CO Q ——隧道全长CO 排放量(m 3/s ); co q ——CO 基准排放量(m 3/辆·km ),可取为0.01 m 3/辆·km ; a f ——考虑CO 车况系数查表取1.0; d f ——车密度系数,查表取0.75; h f ——考虑CO 的海拔高度系数,海拔高度取1240m 查表取1.52; m f ——考虑CO 的车型系数,查表; iv f ——考虑CO 的纵坡—车速系数,查表取1.0; n ——车型类别数; m N ——相应车型的设计交通量(辆/h )查表。 稀释CO 的需风量应按式(6.3)计算

隧道及地下工程“设计”类毕业设计指导书2

隧道及地下工程“设计”类毕业设计指导书 1 设计原则及有关技术指标 1.1主要构件设计使用年限为100年。根据承载能力极限状态和正常使用极限状态的要求,采取有效措施,保证结构强度、刚度,满足结构耐久性要求。 1.2 根据工程地质和水文地质条件,结合周围地面建筑物、地下构筑物状况,通过对技术、经济、环保及使用功能的综合比较,合理选择结构形式。 1.3结构设计应满足施工、运营、环境保护、防灾等要求。 1.4 结构的净空尺寸除应满足建筑限界要求外,尚应考虑施工误差、测量误差、结构变形和沉陷等因素。 1.5 断面形状和衬砌形式应根据工程地质及水文地质、埋深、施工方法等条件,从地层稳定、结构受力合理和环境保护等方面综合确定。 1.6隧道结构按结构“破损阶段”法,以材料极限强度进行设计。 1.7 施工引起的地层沉降应控制在环境条件允许的范围内。 1.8 隧道建设应尽量考虑减少施工中和建成后对环境造成的不利影响。 1.9设计中除参照本指导书外,尚应符合《铁路隧道设计规范》或《地铁设计规范》等相关国家现行的有关强制性标准的规定。 1.10隧道主体工程等级为一级、防水等级为二级,耐火等级为一级。 1.11隧道结构的抗震等级按二级考虑,按抗震烈度8度设防。 1.12 结构设计在满足强度、刚度和稳定性的基础上,应根据地下水水位和地下水腐蚀性等情况,满足防水和防腐蚀设计的要求。当结构处于有腐蚀性地下水时应采取抗侵蚀措施,混凝土抗侵蚀系数不低于0.8。 1.13 在永久荷载基本荷载组合作用下,应按荷载效应标准组合并考虑长期作用影响进行结构构件裂缝验算。二类环境混凝土构件的裂缝宽度(迎土面)应不大于0.2mm,一类环境(非迎土面及内部混凝土构件)混凝土构件的裂缝宽度均应不大于0.3mm。当计及地震、人防或其它偶然荷载作用时,可不验算结构的裂缝宽度。 1.14 混凝土和钢筋混凝土结构中用混凝土的极限强度应按表1-1采用。区间隧道衬砌采用钢筋混凝土时其混凝土强度不应低于C30。 表1-1 混凝土的极限强度(MPa)

井下人员定位概述

概述 我国煤炭产量居世界首位,煤矿数量超过世界上其他主要产煤国家的煤矿总数,煤炭行业是我国国民经济和社会发展的支柱产业。安全是煤炭生产的头等大事,安全对煤炭生产起着保证、支撑和推动作用。近年来,国家针对煤矿安全问题采取了多方面的有力措施,但由于长期以来煤矿安全投入明显不足,煤矿企业安全装备严重缺乏,安全管理手段极其落后,国家煤矿安全形势仍然十分严峻。因此,加大煤矿安全投入,推广采用先进的煤矿安全装备与手段已成为煤炭行业迫在眉睫的必然需要。 煤矿安全最重要的是保证矿工生命的安全,煤矿安全管理最重要的也是对矿工安全的管理,其中对矿工在井下工作位置的准确监测是实现保证矿工安全目的的基本前提。为此,国内外很多企业投入大量精力,纷纷研制出一批针对井下人员的考勤定位系统,但从技术和性能等各方面都存在很多问题和缺陷,不能满足对井下人员位置准确监测的要求。 针对现代矿井生产企业迫切的安全管理与人员管理需求,西安凯虹电子科技有限公司应用最先进的射频识别与无线监控技术,历时5 年半,潜心研制出国际领先的井下目标定位跟踪系统——KJ133 型矿用人员定位安全管理系统。该系统的显著特点是可实现井下各种巷道条件下的信号“全覆盖” ,实现对井下人员、车辆、设备等目标的“全程的、实时的、连续的、精确的定位跟踪” ,同时实现对井下人员的“实时双向无线通讯” 。该系统的应用,可极大提高矿井生产企业安全生产管理水平。目前,公司产品已成功应用于神华集团神东煤炭分公司、铁法煤业集团、阳煤集团、鹤壁煤业集团、澄合矿务局等国有大型煤矿企业,并得到用户一致高度认同,为煤矿企业的日常生产调度、安全监管与应急救援等信息化管理工作提供了重要的有力保障。

隧道测量方案

吉怀三标隧道测量方案 1 工程概况 我标段拟建隧道为冲口隧道,该隧道位于凤凰县杆子坪乡东侧,设计为小间距隧道,最小间距位于怀化端,宽度为8.17米。洞轴线走向约184°,最大埋深约107m.。冲口隧道左线起讫桩号ZK10+630~ZK11+055,全长425m;平面线型为直线;纵坡为0.7%和-2%的人字坡。隧道右线起讫桩号YK10+660~YK11+065.696,全长405.696m;平面线型为直线;纵坡为0.69%和-2%的人字坡。隧道净宽10.75m,隧道净高5.0 m。本隧道选择采用拱部单心半圆,侧墙为大半径圆弧的单曲墙式内轮廓断面。其中岩性的V、Ⅲ类围岩占全线隧道的大部分。 2 控制点的布设及施测 2.1控制点的布设 首先对设计院交付的GPS点位进行复测,依据复测点位在隧道口设置精密三角网,并对其基准点和水准点进行校核。洞外水准点、中线点根据隧道平纵面、隧道长度等定期进行复核,洞内控制点根据施工进度设定。洞内施工隧道测量,桩点必须稳定、可靠,且通视良好。水准点应设在不易破坏处,并加以妥善保护。洞内导线点采用地下挖坑,然后浇筑混凝土并埋入铁制标心的方法。这与一般导线点的埋设方法基本相同。但由于洞内狭窄,施工及运输繁忙,且照明差,桩志

露出地面极易破坏,故标石顶面应埋在坑道底面以下10~20cm处,上面盖上铁板或厚木板。并在边墙上用红油漆注明点号,并以箭头指示桩位。导线点兼作高程点使用时,标心顶面应高出桩面5mm。 2.2控制点的施测 控制点施测主要为洞内施工测量,洞内导线根据洞口投点向洞内作引伸测量,洞口控制点纳入控制网内,由洞口投点传递进洞方向的联接角测角中误差,不应超过测量等级的要求,后视方向的长度不宜小于300m。导线点尽量沿路线中线布设,导线边长在直线地段不宜短于200m;无闭合条件的单导线,应进行二组独立观测,相互校核。导线点按一级导线测量要求施测,水准点按四等水准点测量要求施测。 3 中线及高程点放样程序 工艺流程 洞外平面控制测量洞外高程控制测量洞内导线测量洞内高程控制测量隧道中线的测设隧道施工放样隧道贯通误差的测量与调整竣工测量 3.1 洞外导线测量 洞外导线测量的主要任务是对设计院提供的隧道控制网进行复测,以保证隧道控制网的精度, 3.2 洞外水准测量,按四等水准测量施测 3.3 洞内导线测量 洞内导线测量的目的是以必要的精度,按照洞外控制测量的坐标

相关主题
文本预览
相关文档 最新文档