当前位置:文档之家› 二维离散小波变换实验报告

二维离散小波变换实验报告

二维离散小波变换实验报告
二维离散小波变换实验报告

二维离散小波变换(Mallat快速算法)

实验报告

实验目的:

在理解离散小波变换原理和Mallat快速算法的基础上,通过编程对图像进行二维离散小波变换,从而加深对二维小波分解和重构的理性和感性认识,并能提高编程能力,为今后的学习和工作奠定基础。

实验原理:

实验编程思路:

模块化编程,程序分为主函数、多分辨率分解函数、多分辨率重构函数、阈值化、边缘延拓五个大的模块。其中,主函数负责图片读取、子函数调用、数据统计以及图像生成函数调用。

实验结果及分析:

1.采用三级变换分解并重构

a.多尺度分解图像

b. 原始图像与重构图像

c. 数值信息

阈值化后系数中0的个数百分比NUM0=80.78% 重构图像的峰值信噪比PSNR=38.9269dB

多尺度分解图像

50

100

150

200

250

50

100

150

200

250

原始图像

50

100

150

200

250

50100150200

250

重构图像

50

100

150

200

250

50

100

150

200

250

2. 采用补零、周期、对称三种方法进行延拓

a. 对原始图像进行延拓后的图像

b. 边缘效应

补零延拓和对称延拓重建时会产生边界效应,而且分解的层数越多,产生的边界效应越显著。零延拓方法给人一种跳跃的感觉。至于对称延拓,由于正交小波滤波器一般都是非对称性的(Harr 小波基虽然是正交的,但它是非连续的),重建图像给人一种错位的感觉。相比较而言,只有周期延拓方式可以得到比较精确的重建结果,它不仅能保证分解与重建正确计算,而且恢复的质量也好。不过,周期性延拓方法虽然是常用的三种方法中比较好的方法,但会导致信号边缘的非连续性,从而会使得较高频率(子带)层的小波系数很大,即使信号本身相当平滑。从信号压缩的角度看,大的系数是希望避免的。

3. 取不同的小波滤波器列表比较其能量分布、均值、方差

由于能量分布mesh 图像较大,此处不予列出。 由能量分布图可知,小波系数的能量主要分布在低频段,高频段内只有极 少能量分布

滤波器 均值 方差 Sym215.55231.7419e+004

Db5 15.49941.7421e+004 Haar15.30721.7427e+004

Coif3 15.43841.7423e+004

补零延拓图像

20040050100150200250300350

400

周期延拓图像

20040050100150200250300350

400

对称延拓图像

200400

50100150200250300350

400

Erdas实验报告

E RDAS实验报告 图像融合实验 数据来源 采用Erdas中examples文件内的2000年Atlanta多光谱TM数据和高清全色Pan数据。两图为同一地区不同坐标影像,故使用前需预处理从而得到实验区域。 目的 多光谱TM数据分辨率较低但包含多波段色彩,而全色Pan数据只包含一层高清影像,为了得到研究区域的高清彩色影像,我们将TM和Pan数据在Erdas2014中进行融合以达到实验目的。 方法 在遥感领域运用较多的融合方法有主成分变换法、比值变换法、小波变换法和HIS变换法。本实验则运用HIS变换法。IHS属于色度空间变换,从多光谱彩色合成影像上分离出代表信息的明度(I)和代表光谱信息的色调(H)、饱和度(S)等3个分量,并采用相同区域的高分辨率全色波段数据代替明度(I)进行空间信息融合。 步骤 1.几何校正 因原始图像空间坐标不同,需选取控制点进行几何校正。本实验校正方法为多项式法,选取6个控制点进行校正,其校正叠加截图如下:

2.叠加剪切 由校正结果可知两图像只有部分区域重合,所以建立AOI对重合区域进行剪切,以得到研究区域,截图如下: 3.重采样 因多光谱图像分辨率较低,像元点较大,若要与全色图融合出高清影像需进行重采样来调整像元大小,以达到与高清图一致。 4.二次剪切 因图为栅格,统一像元后,边缘区必然会有一定的扩展(如下图),虽说扩展的范围较小,但在科研应用方面不符合要求,故须二次剪切。 5.RGB转HIS

TM图像选取前三层再分别赋予蓝、绿、红三色,转化为HIS格式,如下图: 6.直方图匹配 将高清图像直方图以标准图像的直方图为标准作变换,使全色光图和HIS图中I层两图像的直方图相同和近似,从而使两幅图像具有类似的色调和反差,以便作进一步的运算。 7.图像叠加 运用Layer stack功能将全色光高清图和H、S图层进行叠加即所谓的图像融合。它将多波段图层组合到了一起,从而得到新的包含多个有助于研究者使用的多波段影像。 8.IHS转RGB

离散数学实验报告

《离散数学》实验报告专业网络工程 班级 姓名 学号 授课教师 二 O 一六年十二月

目录 实验一联结词的运算 实验二根据矩阵的乘法求复合关系 实验三利用warshall算法求关系的传递闭包实验四图的可达矩阵实现

实验一联结词的运算 一.实验目的 通过上机实验操作,将命题连接词运算融入到C语言的程序编写中,一方面加强对命题连接词运算的理解,另一方面通过编程实现命题连接词运算,帮助学生复习与锻炼C语言知识,将理论知识与实际操作结合,让学生更加容易理解与记忆命题连接词运算。 二.实验原理 (1) 非运算, 符号:? ,当P=T时 ,?P为F, 当P=F时 ,?P为T 。 (2) 合取, 符号: ∧ , 当且仅当P与Q的真值同为真,命题P∧Q的真值才为真;否则,P∧Q的真值为假。 (3) 析取, 符号: ∨ , 当且仅当P与Q的真值同为假,命题P∨Q的真值才为假;否则,P∨Q的真值为真。 (4) 异或, 符号: ▽ , 当且仅当P与Q的真值不同时,命题P▽Q的真值才为真;否则,P▽Q的真值为真。 (5) 蕴涵, 符号: →, 当且仅当P为T,Q为F时,命题P→Q的真值才为假;否则,P→Q 的真值为真。 (6) 等价, 符号: ? , 当且仅当P,Q的真值不同时,命题P?Q的真值才为假;否 则,P→Q的真值为真。 三.实验内容 编写一个程序实现非运算、合取运算、析取运算、异或运算、蕴涵运算、等价运算。四.算法程序 #include void main() { printf("请输入P、Q的真值\n"); int a,b; scanf("%d%d",&a,&b); int c,d; if(a==1) c=0; else c=1; if(b==1) d=0; else d=1; printf("非P、Q的结果为%d,%d\n",c,d);

二维离散小波分解的C语言实现 论文

高等教育自学考试毕业论文(设计)题目:二维离散小波分解的C语言实现 摘要 小波变换用于图像处理是小波变换应用效果比较突出的领域之一。由于图像是二维信号,因此首先需要把小波变换由一维推广到二维。本文在一维离散Mallat算法的基础上,用C语言实现了二维图像的离散小波变换。这种二维变换是行列可分离的变换方式,即二维分解可以通过行和列依次作一维分解实现。对图像作二维离散小波分解后得到一个低频子带和一系列高频子带,分别反映图像的基本信息和细节信息。用这些子带也可以实现图像的重构。

目录 第一章绪论 (1) 1. 1小波理论与应用技术的发展概况 (1) 1. 2图像技术的发展历程及面临的问题 (2) 1. 3小波的特点及其在图像处理中的应用 (2) 第二章Mallat算法由一维到二维的推广 (4) 2. 1小波级数 (4) 2. 2 Mallat算法 (5) 2. 3二维离散小波变换 (7) 2. 4二维离散小波变换后的系数分布 (8) 第三章二维Mallat算法的C语言实现 (10) 3. 1基本模块 (10) 3.2 单层分解与重构 (10)

3.3金字塔结构的多层分解和重构 (11) 3.4小波系数的数据结构 (14) 3.5 结果与分析 (14) 参考文献 (19) 致谢 (20)

第一章绪论 1. 1小波理论与应用技术的发展概况 小波分析是当前数学中一个迅速发展的新领域,它同时具有理论深刻和应用十分广泛的双重意义。小波分析的应用是与小波分析的理论研究紧密地结合在一起的。现在,它已经在科技信息产业领域取得了令人瞩目的成就。电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图像和信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。从数学地角度来看,信号与图象处理可以统一看作是信号处理(图像可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。现在,对于其性质随实践是稳定不变的信号,处理的理想工具仍然是傅立叶分析。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波分析。 自1807年法国数学家Fourier从热传导理论提出Fourier分析以后,无论对数学史还是工程科学史的发展都起到了很大的影响和推动作用。Fourier分析的核心是通过Fourier变换引入频率的概念,并发展了频谱分析理论,使许多通过时域分析无法看清的现象在频域中一目了然。但Fourier变换是一种全时域变换,无法提取局部时时间段上的信号特征,为此数学家和工程师们提出了一种加时间窗的短时Fourier变换,最著名的是以Gaussian函数为窗口的Gabor变换,日后被发展为Morlet小波。因此,小波是一类能进行伸缩和平移操作的紧支局部函数,而小波分析就是以小波函数为变换核的一类积分变换的统称,本质上是对Fourier分析的继承与发展.1910年,Harr通过对双极函数进行伸缩操作,构造了一组最早的小波规范止交基:Harr小波基,提出了小波变换的原始思想。1936年Littlewood和Paley对Fourier级数建立了二进频率分量组理论(即L-P理论),后来的多分辨分析思想来源于此。接着科学家们在奇异积分算子、框架分解、小波级数、正交小波系、Besov空间等方面日益完善了小波理论,但都局限于数学理论研究方面。小波研究与应用的热潮始于20世纪80年代,1983年法国工程师Morlet在分析地震波的局部特性时,为解决Gabor变换在高频条件下不能很好地收集信号能量的问题,引入了小波概念,将Gabor变换中的Gaussian函数进行伸缩和平移,这就是Morlet小波。理论物理学家Grossmann对该小波的分解可行性作了研究,提出了确定函数的伸缩与平移展开理论,为小波分析理论的形成奠定了基础。随后,Meyer证明了一维小波函数的存在性,并构造了具有衰减性的光滑函数--Meyer小波,其二进伸缩和平移构成Q(R)的规范正交基。1987年Mallat将多分辨分析思想引入小波函数构造,完善了正交小波及其正交补一尺度函数理论,并研究了小波变换的离散化形式和滤波器组概念,提出了信号小波分解与重构的Mallat算法。比利时数学家Daubechies证明了紧支集正交小波基的存在性,并构造了Daubechies类正交小波基。近年来,为弥补单小波在解决高频段分辨率差、维护难、自由度不够、高维奇异性、缺乏方向性以及混和光滑函数类逼近等问题上的不足,小波理论在实践需要的推动下快速发展,产生了许多新的研究方向,如小波包(wavelets packet)、区间小波(interval Wavelets)、多小波(multiwavelets)、基于提升型(liftingscheme)的第二代小波以及脊波(ridgelet)、曲线波(curvelet)、双曲波(hyperbolic wavelet)等新兴小波理论受到广泛关注,这些将成为未来小波的主要研究方向。小波理论从诞生的那天起就注定它是一门应用性很强的学科,目前在信号分析、图像压缩机器视觉、模式识别、航空航天、量子力学、目标跟踪、系统辨识、自动控制、函数逼近数值计算甚至金融经济等领域都有小波技术的影子。数字图像的压缩己成为小波的顶级应用。 一言以蔽之,小波以其时频联合局部性和多分辨分析性能等优势正深刻改变着工程技术领域的一些传统研究和分析方法,图像技术等学科同样也深受其影响。

基于小波信号的噪声消除matlab实验报告

南京师范大学物理科学与技术学院 医用电子学论文 论文名称:基于小波变换的心电信号噪声消除 院系:物科院 专业:电路与系统 姓名:聂梦雅 学号: 121002043 指导教师:徐寅林

摘要 以小波变换的多分辨率分析为基础, 通过对体表心电信号(ECG) 及其噪声的分析, 对ECG信号中存在的基线漂移、工频干扰及肌电干扰等几种噪声, 设计了不同的小波消噪算法; 并利用MIT/BIH 国际标准数据库中的ECG 信号和程序模拟所产生的ECG 信号, 分别对算法进行了仿真与实验验证。结果表明, 算法能有效地滤除ECG 信号检测中串入的几类主要噪声, 失真度很小, 可满足临床分析与诊断对ECG 波形的要求。 关键词: ECG 信号, 小波变换, 基线漂移, 工频干扰, 肌电干扰

Abstract We apply the multi-resolution analysis (MRA ) of wavelet transform ( WT ) , which was proposed by Mallat [ 5 ] , to suppress the three main types of noises existing in electrocardiogram ( ECG ) signals : baseline wander, power line interference and electro my ographical interference. We apply Mallat algorithm [ 4 ] to suppress the baseline wander in ECG signals. We apply the sof t-thresholding algorithm, proposed by donohoetal on the basis of MRA of WT , to suppress power line interference in ECG signals. We apply Mallat algorithm and then the algorithm proposed by Donohoetal to suppress the electro my ographical interference in ECG signals ,who sefrequency range varies f rom 5Hz to 2kHz. We performed simulations ,using both ECG signals from MIT/BIH database, and ECG signals generated via computer simulation .The results show that the algorithm can suppress the main no isesexisting in ECG signals efficiently with very little distortion, and can satisfy the requirement s of clinical analysis and diagnosis on ECG waveforms. Key words: ECG (electro cardio gram ) signal, wavelet transform , baseline wander, power line interference , electro my ographical interference

MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1) dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname') [cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT 说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信 号进行分解。 (2) idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname') X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L) 说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经 小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。 X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能

--------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1) wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分 格式:Y=wcodemat(X,NB,OPT,ABSOL) Y=wcodemat(X,NB,OPT) Y=wcodemat(X,NB) Y=wcodemat(X) 说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16; OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现 一维、二维和 N 维 DFT OPT='row' ,按行编码 OPT='col' ,按列编码

离散数学实验报告

离散数学实验报告(实验ABC) 专业班级 学生姓名 学生学号 指导老师 完成时间

目录 第一章实验概述..................................... 错误!未定义书签。 实验目的....................................... 错误!未定义书签。 实验内容....................................... 错误!未定义书签。 实验环境....................................... 错误!未定义书签。第二章实验原理和实现过程........................... 错误!未定义书签。 实验原理....................................... 错误!未定义书签。 建立图的邻接矩阵,判断图是否连通 ............ 错误!未定义书签。 计算任意两个结点间的距离 ................... 错误!未定义书签。 对不连通的图输出其各个连通支 ................ 错误!未定义书签。 实验过程(算法描述)........................... 错误!未定义书签。 程序整体思路 ............................... 错误!未定义书签。 具体算法流程 ................................ 错误!未定义书签。第三章实验数据及结果分析........................... 错误!未定义书签。 建立图的邻接矩阵并判断图是否连通的功能测试及结果分析错误!未定义书签。 输入无向图的边 .............................. 错误!未定义书签。 建立图的连接矩阵 ............................ 错误!未定义书签。 其他功能的功能测试和结果分析................... 错误!未定义书签。 计算节点间的距离 ............................ 错误!未定义书签。 判断图的连通性 .............................. 错误!未定义书签。 输出图的连通支 .............................. 错误!未定义书签。 退出系统 .................................... 错误!未定义书签。第四章实验收获和心得体会........................... 错误!未定义书签。

小波变换详解

基于小波变换的人脸识别 近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。 具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。 4.1 小波变换的研究背景 法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。在早期的信号处理领域,傅立叶变换具有重要的影响和地位。定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下: ()()dt e t f F t j ωω-? ∞ -∞ += (4-1) 傅立叶变换的逆变换为: ()()ωωπ ωd e F t f t j ? +∞ ∞ -= 21 (4-2) 从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率

的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。 尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。 因此需要一种如下的数学工具:可以将信号的时域和频域结合起来构成信号的时频谱,描述和分析其时频联合特征,这就是所谓的时频局部化分析方法,即时频分析法。1964年,Gabor 等人在傅立叶变换的基础上引入了一个时间局部化“窗函数”g(t),改进了傅立叶变换的不足,形成窗口化傅立叶变换,又称“Gabor 变换”。 定义“窗函数”(t)g 在有限的区间外恒等于零或很快地趋于零,用函数(t )g -τ乘以(t)f ,其效果等同于在t =τ附近打开一个窗口,即: ()()()dt e t g t f G t j f ωττω-+∞ ∞--=?, (4-3) 式(4-3)即为函数f(t)关于g(t)的Gabor 变换。由定义可知,信号(t)f 的Gabor 变换可以反映该信号在t =τ附近的频谱特性。其逆变换公式为: ()()()ττωτωπ ωd G t g e d t f f t j ,21 ? ?+∞ ∞ --- = (4-4) 可见()τω,f G 的确包含了信号(t)f 的全部信息,且Gabor 窗口位置可以随着 τ的变化而平移,符合信号时频局部化分析的要求。 虽然Gabor 变换一定程度上克服了傅立叶变换缺乏时频局部分析能力的不

小波变换

《医学图像处理》实验报告 实验十:小波变换 日期: 2014年05月06日 摘要 本次实验的实验目的及主要内容是: 一维小波变换和反变换 二维小波变换和反变换 二维小波细节置零、去噪

一、技术讨论 1.1实验原理 小波变换的原理:是指一组衰减震动的波形,其振幅正负相间变化为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波去噪的原理:利用小波变换把含噪信号分解到多尺度中,小波变换多采用二进型,然后在每一尺度下把属于噪声的小波系数去除,保留并增强属于信号的小波系数,最后重构出小波消噪后的信号。其中关键是用什么准则来去除属于噪声的小波系数,增强属于信号的部分。 1.2实验方法 1)dwt函数(实现1-D离散小波变换) [cA,cD]=dwt(X,’wname’)使用指定的小波基函数‘wname’对信号X进行分解,cA和cD分别是近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D)用指定的滤波器组Lo_D,Hi_D对信号进行分解 2)idwt函数(实现1-D离散小波反变换) X=idwt(cA,cD,’wname’) X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,’wname’,L) X=idwt(cA,cD,Lo_R,Hi_R,L) 由近似分量cA和细节分量cD经过小波反变换,选择某小波函数或滤波器组,L为信号X中心附近的几个点 3)dwt2函数(实现2-D离散小波变换) [cA,cH,cV,cD]=dwt2(X,’wname’) [cA,cH,cV,cD]=dwt2(X,’wname’) cA近似分量,cH水平细节分量,cV垂直细节分量,cD对角细节分量 4)idwt2函数(实现2-D离散反小波变换) X=idwt2(cA,cH,cV,cD,’wname’) X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R) X=idwt2(cA,cH,cV,cD,’wname’,S) X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)

MATLAB小波变换指令及其功能介绍(超级有用).

MATLAB 小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1 dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname' [cA,cD]=dwt(X,Lo_D,Hi_D别可以实现一维、二维和 N 维 DFT 说明:[cA,cD]=dwt(X,'wname' 使用指定的小波基函数 'wname' 对信号X 进行分解,cA 、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。 (2 idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname' X=idwt(cA,cD,Lo_R,Hi_R X=idwt(cA,cD,'wname',L函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L 说明:X=idwt(cA,cD,'wname' 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L 和 X=idwt(cA,cD,Lo_R,Hi_R,L 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能 --------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1 wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式: Y=wcodemat(X,NB,OPT,ABSOL Y=wcodemat(X,NB,OPT Y=wcodemat(X,NB

哈工大小波分析上机实验报告

小波分析上机实验报告 院系:电气工程及自动化学院 学科:仪器科学与技术

实验一小波分析在信号压缩中的应用 一、试验目的 (1)进一步加深对小波分析进行信号压缩的理解; (2)学习Matlab中有关信号压缩的相关函数的用法。 二、相关知识复习 用一个给定的小波基对信号进行压缩后它意味着信号在小波阈的表示相对缺少了一些信息。之所以能对信号进行压缩是因为对于规则的信号可以用很少的低频系数在一个合适的小波层上和一部分高频系数来近似表示。 利用小波变换对信号进行压缩分为以下几个步骤来完成: (1)进行信号的小波分解; (2)将高频系数进行阈值量化处理。对从1 到N 的每一层高频系数都可以选择不同的阈值并且用硬阈值进行系数的量化; (3)对量化后的系数进行小波重构。 三、实验要求 (1)对于某一给定的信号(信号的文件名为leleccum.mat),利用小波分析对信号进行压缩处理。 (2)给出一个图像,即一个二维信号(文件名为wbarb.mat),利用二维小波分析对图像进行压缩。 四、实验结果及程序 (1)load leleccum %将信号装入Matlab工作环境 %设置变量名s和ls,在原始信号中,只取2600-3100个点 s = leleccum(2600:3100); ls = length(s); %用db3对信号进行3级小波分解 [c,l] = wavedec(s, 3, 'db3'); %选用全局阈值进行信号压缩 thr = 35; [xd,cxd,lxd,perf0,perfl2] = wdencmp('gbl',c,l,'db3',3,thr,'h',1); subplot(2,1,1);plot(s); title('原是信号s'); subplot(2,1,2);plot(xd); title('压缩后的信号xd');

离散数学实验报告--四个实验!!!

《离散数学》 课程设计 学院计算机学院 学生姓名 学号 指导教师 评阅意见 提交日期 2011 年 11 月 25 日

引言 《离散数学》是现代数学的一个重要分支,也是计算机科学与技术,电子信息技术,生物技术等的核心基础课程。它是研究离散量(如整数、有理数、有限字母表等)的数学结构、性质及关系的学问。它一方面充分地描述了计算机科学离散性的特点,为学生进一步学习算法与数据结构、程序设计语言、操作系统、编译原理、电路设计、软件工程与方法学、数据库与信息检索系统、人工智能、网络、计算机图形学等专业课打好数学基础;另一方面,通过学习离散数学课程,学生在获得离散问题建模、离散数学理论、计算机求解方法和技术知识的同时,还可以培养和提高抽象思维能力和严密的逻辑推理能力,为今后爱念族皮及用计算机处理大量的日常事务和科研项目、从事计算机科学和应用打下坚实基础。特别是对于那些从事计算机科学与理论研究的高层次计算机人员来说,离散数学更是必不可少的基础理论工具。 实验一、编程判断一个二元关系的性质(是否具有自反性、反自反性、对称性、反对称性和传递性) 一、前言引语:二元关系是离散数学中重要的内容。因为事物之间总是可以 根据需要确定相应的关系。从数学的角度来看,这类联系就是某个集合中元素之间存在的关系。 二、数学原理:自反、对称、传递关系 设A和B都是已知的集合,R是A到B的一个确定的二元关系,那么集合R 就是A×B的一个合于R={(x,y)∈A×B|xRy}的子集合 设R是集合A上的二元关系: 自反关系:对任意的x∈A,都满足∈R,则称R是自反的,或称R具有自反性,即R在A上是自反的?(?x)((x∈A)→(∈R))=1 对称关系:对任意的x,y∈A,如果∈R,那么∈R,则称关系R是对称的,或称R具有对称性,即R在A上是对称的? (?x)(?y)((x∈A)∧(y∈A)∧(∈R)→(∈R))=1 传递关系:对任意的x,y,z∈A,如果∈R且∈R,那么∈R,则称关系R是传递的,或称R具有传递性,即R在A上是传递的? (?x)(?y)(?z)[(x∈A)∧(y∈A)∧(z∈A)∧((∈R)∧(∈R)→(∈R))]=1 三、实验原理:通过二元关系与关系矩阵的联系,可以引入N维数组,以数 组的运算来实现二元关系的判断。 图示:

离散小波变换

长期以来,离散小波变换(Discrete Wavelet Transform)在数字信号处理、石油勘探、地震预报、医学断层诊断、编码理论、量子物理及概率论等领域中都得到了广泛的应用。各种快速傅氏变换(FFT)和离散小波变换(DWT)算法不断出现,成为数值代数方面最活跃的一个研究领域,而其意义远远超过了算法研究的范围,进而为诸多科技领域的研究打开了一个崭新的局面。本章分别对FFT 和DWT 的基本算法作了简单介绍,若需在此方面做进一步研究,可参考文献[2]。 1.1 离散小波变换DWT 1.1.1 离散小波变换DWT 及其串行算法 先对一维小波变换作一简单介绍。设f (x )为一维输入信号,记)2(2)(2/k x x j j jk -=--φφ, )2(2)(2/k x x j j jk -=--ψψ,这里)(x φ与)(x ψ分别称为定标函数与子波函数,)}({x jk φ与 )}({x jk ψ为二个正交基函数的集合。记P 0f =f ,在第j 级上的一维离散小波变换 DWT(Discrete Wavelet Transform)通过正交投影P j f 与Q j f 将P j -1f 分解为: ∑∑+=+=-k k jk j k jk j k j j j d c f Q f P f P ψφ1 其中:∑ =-=-+1 1 2)(p n j n k j k c n h c ,∑=-=-+1 1 2)(p n j n k j k c n g d )12,...,1,0,,...,2,1(-==j N k L j ,这里,{h (n )}与{g (n )}分别为低通与高通权系数,它们由基函数)}({x jk φ与)}({x jk ψ 来确定,p 为权系数 的长度。}{0 n C 为信号的输入数据,N 为输入信号的长度,L 为所需的级数。由上式可见,每级一维DWT 与一维卷积计算很相似。所不同的是:在DWT 中,输出数据下标增加1时,权系数在输入数据的对应点下标增加2,这称为“间隔取样”。 算法 一维离散小波变换串行算法 输入:c 0 =d 0 (c 00 , c 10 ,…, c N-10 ) h=(h 0, h 1,…, h L-1) g=(g 0, g 1,…, g L-1) 输出:c i j , d i j (i=0, 1,…, N/2j-1 , j ≥0)

小波实验报告一维Haar小波2次分解

一、题目:一维Haar 小波2次分解 二、目的:编程实现信号的分解与重构 三、算法及其实现:离散小波变换 离散小波变换是对信号的时-频局部化分析,其定义为:/2200()(,)()(),()()j j Wf j k a f t a t k dt f t L R φ+∞---∞=-∈? 本实验实现对信号的分解与重构: (1)信号分解:用小波工具箱中的dwt 函数来实现离散小波变换,函数dwt 将信号分解为两部分,分别称为逼近系数和细节系数(也称为低频系数和高频系数),实验中分别记为cA1,cD1,它们的长度均为原始信号的一半,但dwt 只能实现原始信号的单级分解。在本实验中使用小波函数db1来实现单尺度小波分解,即: [cA1,cD1]=dwt(s,’db1’),其中s 是原信号;再通过[cA2,cD2]=dwt(cA1,’db1’)进行第二次分解,长度又为cA2的一半。 (2)信号重构:用小波工具箱中的upcoef 来实现,upcoef 是进行一维小波分解系数的直接重构,即: A1 = upcoef('a',cA1,'db1'); D1 = upcoef('a',cD1,'db1')。 四、实现工具:Matlab 五、程序代码: %装载leleccum 信号 load leleccum; s = leleccum(1:3920); %用小波函数db1对信号进行单尺度小波分解 [cA1,cD1]=dwt(s,'db1'); subplot(3,2,1); plot(s); title('leleccum 原始信号'); %单尺度低频系数cA1向上一步的重构信号 A1 = upcoef('a',cA1,'db1'); %单尺度高频系数cD1向上一步的重构信号 D1 = upcoef('a',cD1,'db1'); subplot(3,2,3); plot(A1); title('单尺度低频系数cA1向上一步的重构信号'); subplot(3,2,5); plot(D1); title('单尺度高频系数cD1向上一步的重构信号'); [cA1,cD1]=dwt(cA1,’db1'); subplot(3,2,2); plot(s); title('leleccum 第一次分解后的cA1信号'); %第二次分解单尺度低频系数cA2向上一步的重构信号 A2= upcoef('a',cA2,'db1',2); %第二次分解单尺度高频系数cD2向上一步的重构信号 D2 = upcoef('a',cD2,'db1',2); subplot(3,2,4); plot(A2);

离散数学实验报告()

《离散数学》实验报告 专业网络工程 班级 姓名 学号 授课教师 二 O 一六年十二月

目录 实验一联结词的运算 实验二根据矩阵的乘法求复合关系 实验三利用warshall算法求关系的传递闭包实验四图的可达矩阵实现

实验一联结词的运算 一.实验目的 通过上机实验操作,将命题连接词运算融入到C语言的程序编写中,一方面加强对命题连接词运算的理解,另一方面通过编程实现命题连接词运算,帮助学生复习和锻炼C语言知识,将理论知识与实际操作结合,让学生更加容易理解和记忆命题连接词运算。二.实验原理 (1) 非运算, 符号: ,当P=T时,P为F, 当P=F时,P为T 。 (2) 合取, 符号: ∧ , 当且仅当P和Q的真值同为真,命题P∧Q的真值才为真;否则,P∧Q的真值为假。 (3) 析取, 符号: ∨ , 当且仅当P和Q的真值同为假,命题P∨Q的真值才为假;否则,P∨Q的真值为真。 (4) 异或, 符号: ▽ , 当且仅当P和Q的真值不同时,命题P▽Q的真值才为真;否则,P▽Q的真值为真。 (5) 蕴涵, 符号: →, 当且仅当P为T,Q为F时,命题P→Q的真值才为假;否则,P→Q 的真值为真。 (6) 等价, 符号: ?, 当且仅当P,Q的真值不同时,命题P?Q的真值才为假;否则,P→Q的真值为真。 三.实验内容 编写一个程序实现非运算、合取运算、析取运算、异或运算、蕴涵运算、等价运算。四.算法程序 #include void main() { printf("请输入P、Q的真值\n"); int a,b; scanf("%d%d",&a,&b); int c,d; if(a==1) c=0; else c=1; if(b==1) d=0;

图像处理 实验报告

摘要: 图像处理,用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。基本内容图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。图像处理一般指数字图像处理。 数字图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。目前,图像处理演示系统应用领域广泛医学、军事、科研、商业等领域。因为数字图像处理技术易于实现非线性处理,处理程序和处理参数可变,故是一项通用性强,精度高,处理方法灵活,信息保存、传送可靠的图像处理技术。本图像处理演示系统以数字图像处理理论为基础,对某些常用功能进行界面化设计,便于初级用户的操作。 设计要求 可视化界面,采用多幅不同形式图像验证系统的正确性; 合理选择不同形式图像,反应各功能模块的效果及验证系统的正确性 对图像进行灰度级映射,对比分析变换前后的直方图变化; 1.课题目的与要求 目的: 基本功能:彩色图像转灰度图像 图像的几何空间变换:平移,旋转,剪切,缩放 图像的算术处理:加、减、乘 图像的灰度拉伸方法(包含参数设置); 直方图的统计和绘制;直方图均衡化和规定化; 要求: 1、熟悉图像点运算、代数运算、几何运算的基本定

义和常见方法; 2、掌握在MTLAB中对图像进行点运算、代数运算、几何运算的方法 3、掌握在MATLAB中进行插值的方法 4、运用MATLAB语言进行图像的插值缩放和插值旋转等 5、学会运用图像的灰度拉伸方法 6、学会运用图像的直方图设计和绘制;以及均衡化和规定化 7、进一步熟悉了解MATLAB语言的应用,将数字图像处理更好的应用于实际2.课题设计内容描述 1>彩色图像转化灰度图像: 大部分图像都是RGB格式。RGB是指红,绿,蓝三色。通常是每一色都是256个级。相当于过去摄影里提到了8级灰阶。 真彩色图像通常是就是指RGB。通常是三个8位,合起来是24位。不过每一个颜色并不一定是8位。比如有些显卡可以显示16位,或者是32位。所以就有16位真彩和32位真彩。 在一些特殊环境下需要将真彩色转换成灰度图像。 1单独处理每一个颜色分量。 2.处理图像的“灰度“,有时候又称为“高度”。边缘加强,平滑,去噪,加 锐度等。 3.当用黑白打印机打印照片时,通常也需要将彩色转成灰白,处理后再打印 4.摄影里,通过黑白照片体现“型体”与“线条”,“光线”。 2>图像的几何空间变化: 图像平移是将图像进行上下左右的等比例变化,不改变图像的特征,只改变位置。 图像比例缩放是指将给定的图像在x轴方向按比例缩放fx倍,在y轴按比例缩放fy倍,从而获得一幅新的图像。如果fx=fy,即在x轴方向和y轴方向缩放的比率相同,称这样的比例缩放为图像的全比例缩放。如果fx≠fy,图像的比例缩放会改变原始图象的像素间的相对位置,产生几何畸变。 旋转。一般图像的旋转是以图像的中心为原点,旋转一定的角度,也就是将图像上的所有像素都旋转一个相同的角度。旋转后图像的的大小一般会改变,即可以把转出显示区域的图像截去,或者扩大图像范围来显示所有的图像。图像的旋转变换也可以用矩阵变换来表示。

基于Gabor小波变换的人脸表情特征提取

—172 — 基于Gabor 小波变换的人脸表情特征提取 叶敬福,詹永照 (江苏大学计算机科学与通信工程学院,镇江 212013) 摘 要:提出了一种基于Gabor 小波变换的人脸表情特征提取算法。针对包含表情信息的静态灰度图像,首先对其预处理,然后对表情子区域执行Gabor 小波变换,提取表情特征矢量,进而构建表情弹性图。最后分析比较了在不同光照条件下不同测试者做出6种基本表情时所提取的表情特征,结果表明Gabor 小波变换能够有效地提取与表情变化有关的特征,并能有效地屏蔽光照变化及个人特征差异的影响。关键词:模式识别;表情特征提取;Gabor 小波变换 Facial Expression Features Extraction Based on Gabor Wavelet Transformation YE Jingfu, ZHAN Yongzhao (School of Computer Science and Communications Engineering, Jiangsu University, Zhenjiang 212013) 【Abstract 】This paper introduces a facial expression features extraction algorithm. Given a still image containing facial expression information,preprocessors are executed firstly. Secondly, expression feature vectors of the expression sub-regions are extracted by Gabor wavelet transformation to form expression elastic graph. Different expression features are extracted and compared while different subjects display six basic expressions with illumination variety. Experiment shows that expression features can be extracted effectively based on Gabor wavelet transformation, which is insensitive to illumination variety and individual difference. 【Key words 】Pattern recognition; Expression feature extraction; Gabor wavelet transformation 计 算 机 工 程Computer Engineering 第31卷 第15期 Vol.31 № 15 2005年8月 August 2005 ·人工智能及识别技术·文章编号:1000—3428(2005)15—0172—03 文献标识码:A 中图分类号:TP37 人脸表情识别是指从给定的表情图像或者视频序列中分析检测出特定的表情状态,进而确定被识别对象的心理情绪。人脸表情识别技术在许多领域有着潜在的应用价值,这些领域包括心理学研究、图像理解、合成脸部动画、视频检索、机器人技术、虚拟现实技术以及新型人机交互环境等[1]。 典型的人脸表情识别系统包括人脸检测、表情特征提取、表情特征分类识别3个阶段。人脸检测要能够从复杂的背景中检测出人脸的存在并确定其位置,对于图像序列,还要能精确跟踪人脸区域,国内外在人脸检测方面已做了大量的研究,且已有相关的有效方法及成果报道。而对于表情特征的提取和分类识别算法的研究目前还处于探索之中,国外学者已做了一定的研究工作,国内关于这方面的研究则相对较少。 针对处理图像的性质,可将表情特征提取方法分为两类:基于静态图像的表情特征提取和基于视频序列的动态表情特征提取。前者处理的是单帧静态表情图像,一般要求该图像反映的表情处于夸张或极大状态,使得提取的表情特征更为典型,这类方法主要包括主成份分析、奇异值分解以及基于小波变换的方法等。后者处理的是表情图像序列,目标是提取表情特征的变化过程。光流模型(Optical Flow Models)是提取动态表情特征的典型方法。比较而言,静态方法处理的数据量少,方法简单可靠,且提取的特征较为典型,能获得较高的识别率,但待处理的图像所包含的表情信息需处于夸张状态。而动态方法处理视频序列中的每一帧图像,因此计算量较大,难以满足实时性要求。 1表情图像的预处理 表情图像的预处理包括表情图像子区域的分割以及表情图像的归一化处理。前者指从表情图像中分割出与表情最相关的子区域,而后者包括图像的灰度均衡和尺度归一。图像预处理的好坏直接影响表情特征提取的效果和计算量。 (a) (b) 图1 分割人脸表情图像以提取特征区域 人脸表情特征可分为两类:持久性表情特征和瞬态表情特征,前者包括嘴巴、眼睛和眉毛,决定了基本表情状态,后者包括脸颊和额角皱纹的瞬间变化,能在一定程度上揭示表情状态。实验表明[3],嘴角形状对表情的影响最大,其次是眼睛和眉毛,而皱纹变化属于动态特征,且受年龄等因素影响较大,对表情的贡献不大,甚至会对表情识别产生不利影响。因此表情识别应重点提取嘴巴、眼睛和眉毛等局部表情特征,并忽略皱纹的变化。图像分割算法的目标就是要精确定位和分离出持久表情特征子区域。对于样本图像,可以人工框出这些区域,也可以根据眼睛的灰度特征并结合先验知识采用特定的定位算法实现特征区域的自动分割。分割结 基金项目:国家自然科学基金资助项目(60273040);江苏省高校自然科学基金资助项目(02KJB520003) 作者简介:叶敬福(1980—),男,硕士生,研究方向:多媒体技术,CSCW ;詹永照,教授、博导 定稿日期:2004-06-26 E-mail :yejingfu@https://www.doczj.com/doc/bd17909303.html,

相关主题
文本预览
相关文档 最新文档