当前位置:文档之家› 为何氮化铝陶瓷基板在IGBT模块领域应用广泛

为何氮化铝陶瓷基板在IGBT模块领域应用广泛

为何氮化铝陶瓷基板在IGBT模块领域应用广泛
为何氮化铝陶瓷基板在IGBT模块领域应用广泛

为何氮化铝陶瓷基板在IGBT模块领域应用广泛

IGBT就是绝缘栅双极晶体管,目前大规模应用于电动汽车、电力机车、智能电网等领域。氮化铝陶瓷覆铜板既具有陶瓷的高导热性、高电绝缘性、高机械强度、低膨胀等特性,又具有无氧铜的高导电性和优异的焊接性能,是IGBT模块封装的关键基础材料。今天小编就重点讲述一下氮化铝陶瓷基板在IGBT模块的重要应用。

氮化铝陶瓷基板在IGBT模块的产业应用

IGBT(Insulated Gate Bipolar Transistor)全称绝缘栅双极型晶体管,是实现电能转换和控制的最先进的电力电子器件,具有输入阻抗大、驱动功率小、开关速度快、工作频率高、饱和压降低、安全工作区大和可耐高电压和大电流等一系列优点,被誉为现代工业变流装置的“CPU“,在轨道交通、航空航天、新能源汽车、风力发电、国防工业等战略性产业广泛应用。

氮化铝陶瓷基板被应用到IGBT模块的重要原因

高压大功率IGBT模块所产生的热量主要是通过陶瓷覆铜板传导到外壳而散发出去的,因此陶瓷覆铜板是电力电子领域功率模块封装的不可或缺的关键基础材料。它既具有陶瓷的高导热性、高电绝缘性、高机械强度、低膨胀等特性,又具有无氧铜金属的高导电性和优异的焊接性能,并能像PCB线路板一样刻蚀出各种图形。

氮化铝陶瓷覆铜板集合了功率电子封装材料所具有的各种优点:

1)陶瓷部分具有优良的导热耐压特性;

2)铜导体部分具有极高的载流能力;

3)金属和陶瓷间具有较高的附着强度和可靠性;

4)便于刻蚀图形,形成电路基板;

5)焊接性能优良,适用于铝丝键合。

陶瓷覆铜板性能的决定因素是氮化铝陶瓷基板材料的性能

目前,已应用作为陶瓷覆铜板基板材料共有三种陶瓷,分别是氧化铝陶瓷基板、氮化铝陶瓷基板和氮化硅陶瓷基板。氧化铝基陶瓷基板是最常用的陶瓷基板,由于它具有好的绝缘性、好的化学稳定性、好的力学性能和低的价格,但由于氧化铝陶瓷基片相对低的热导率、与硅的热膨胀系数匹配不好。作为高功率模块封装材料,氧化铝材料的应用前景不容乐观。

氮化铝陶瓷基板在热特性方面具有非常高的热导率,散热快;在应力方面,热膨胀系数与硅接近,整个模块内部应力较低,提高了高压IGBT模块的可靠性。这些优异的性能都使得氮化铝覆铜板成为高压IGBT模块封装的首选。本文研究了直接覆铜工艺(DBC)和活性金属焊接工艺(AMB)制备氮化铝陶瓷覆铜板的工艺方法,对比了两种工艺的异同点和制备的氮化铝陶瓷覆铜板的性能差异。

国家新兴行业的兴起和发展促进高压IGBT陶瓷模块的发展。

电力电子技术在风能、太阳能、热泵、水电、生物质能、绿色建筑、新能源装备、电动汽车、轨道交通等先进制造业等重要领域都发挥着重要的作用,而这其中的许多领域在“十三五”规划中都具备万亿以上的市场规模,其必将带来电力电子技术及其产业的高速发展,迎来重大的发展机遇期。这些将对IGBT模块封装的关键材料---陶瓷覆铜板形成了巨大需求。因此,需要抓住机遇,开发系列化的陶瓷覆铜基板以适应不同领域的需求,特别是需要加快高可靠氮化铝陶瓷覆铜基板、氮化硅陶瓷覆铜基板的研发及产业化进度,为我国高压IGBT模块的国产化奠定基础。

以上是小编从氮化铝陶瓷基板在产业应用、广泛应用的缘由、包括新兴产业对IGBT模块需求增长带来的氮化铝陶瓷基板的需求增长做了全面的阐述,相信您对氮化铝陶瓷基板在IGBT模块领域广泛应用的原因了吧。更多氮化铝陶瓷基板的需求可以咨询金瑞欣特种电路。金瑞欣十年行业经验,主营氧化铝陶瓷基板和氮化铝陶瓷基板加工生产,是值得信赖的氧化铝和氮化铝陶瓷基板厂家。

氮化铝陶瓷基板用于IGBT模块的研究

氮化铝陶瓷基板在IGBT模块的深度研究 电动汽车、电力机车、智能电网等领域需要实现电能转换和控制的绝缘栅双极晶体管(IGBT)作为电力电子器件。氮化铝陶瓷覆铜板既具有陶瓷的高导热性、高电绝缘性、高机械强度、低膨胀等特性,又具有无氧铜的高导电性和优异的焊接性能,是IGBT模块封装的关键基础材料。本文采用直接覆铜工艺(DBC)和活性金属焊接工艺(AMB)制备了氮化铝陶瓷覆铜板,对比了两种工艺的异同点和制备的氮化铝陶瓷覆铜板的性能差异,并指出氮化硅陶瓷覆铜板有望在下一代功率模块上广泛应用。 IGBT作为电力电气功率器件的背景 随着《中国制造2015》、《工业绿色发展专项行动实施方案》、《关于加快新能源汽车推广应用的指导意见》以及“特高压规划”等一系列的政策密集出台,我国的高速铁路、城市轨道交通、新能源汽车、智能电网和风能发电等项目成为未来几年“绿色经济”的热点。而这些项目对于高压大功率IGBT模块的需求迫切且数量巨大。由于高压大功率IGBT模块技术门槛较高,难度较大,特别是要求封装材料散热性能更好、可靠性更高、载流量更大。但是国内相关技术水平落后导致国内高压IGBT市场被欧、美、日等国家所垄断,高压IGBT产品价格高、交货周期长、产能不足,严重限制了我国动力机车、电动汽车和新能源等领域的发展。 IGBT(Insulated Gate Bipolar Transistor)全称绝缘栅双极型晶体管,是实现电能转换和控制的最先进的电力电子器件,具有输入阻抗大、驱动功率小、开关速度快、工作频率高、饱和压降低、安全工作区大和可耐高电压和大电流等一系列优点,被誉为现代工业变流装置的“CPU”,在轨道交通、航空航天、新能

七大方面解析氮化铝陶瓷基板的分类和特性

七大方面解析氮化铝陶瓷基板的分类和特性 氮化铝陶瓷基板在大功率器件模组,航天航空等领域备受欢迎,那么氮化铝陶瓷基板都有哪些种分类以及氮化铝陶瓷基板特性都体现在哪些方面? 一,什么是氮化铝陶瓷基板以及氮化铝陶瓷基板的材料 氮化铝陶瓷基板是以氮化铝(AIN)为主晶相的陶瓷基板,也叫氮化铝陶瓷基片。热导率高,膨胀系数低,强度高,耐高温,耐化学腐蚀,电阻率高,介电损耗小,是大功率集成电路和散热功能的重要器件。 二,氮化铝陶瓷基板分类 1,按电镀要求来分 氮化铝陶瓷覆铜基板(氮化铝覆铜陶瓷基板),旨在氮化铝陶瓷基板上面做电镀铜,有做双面覆铜和单面覆铜的。 2,按应用领域分 LED氮化铝陶瓷基板(氮化铝led陶瓷基板),主要用于LED大功率灯珠模块,极大的提高了散热性能。 igbt氮化铝陶瓷基板,一般用于通信高频领域。 3,按工艺来分 氮化铝陶瓷基板cob(氮化铝陶瓷cob基板),主要用于Led倒装方面。 dpc氮化铝陶瓷基板,采用DPC薄膜制作工艺,一般精密较高。 dpc氮化铝陶瓷基板(AlN氮化铝dbc陶瓷覆铜基板),是一种厚膜工艺,一般可以实现大批量生产。 氮化铝陶瓷基板承烧板 3,按地域分

有的客户对特定的氮化铝陶瓷基板希望是特定地域的陶瓷基板生产厂家,因此有了: 日本氮化铝陶瓷基板 氮化铝陶瓷基板台湾 氮化铝陶瓷基板成都 福建氮化铝陶瓷基板 东莞氮化铝陶瓷基板 台湾氮化铝陶瓷散热基板 氮化铝陶瓷基板珠海 氮化铝陶瓷基板上海 4,导热能力来分 高导热氮化铝陶瓷基板,导热系数一般较高,一般厚度较薄,一般导热大于等于170W的。 氮化铝陶瓷散热基板,比氧化铝陶瓷基板散热好,大于等于50W~170W. 三,氮化铝陶瓷基板特性都有哪一些? 1,氮化铝陶瓷基板pcb优缺点 材料而言:陶瓷基板pcb是陶瓷材料因其热导率高、化学稳定性好、热稳定性和熔点高等优点,很适合做成电路板应用于电子领域。许多特殊领域如高温、腐蚀性环境、震动频率高等上面都能适应。氮化铝陶瓷基板,热导率高,膨胀系数低,强度高,耐高温,耐化学腐蚀,电阻率高,介电损耗小,是理想的大规模集成电路散热基板和封装材料。硬度较高,交工难度大,压合非常难,一般加工成单双面面陶瓷基板pcb. 2,氮化铝陶瓷基板产品规格(尺寸/厚度、脆性) 氮化铝陶瓷基板的产品规格尺寸厚度,有不同的尺寸对应不同个的厚度,具体如下: 氮化铝陶瓷基板尺寸一般最大在140mm*190mm,氮化铝陶瓷基板厚度一般在

银基多层氮化铝陶瓷基板低温共烧的工艺研究

Semiconductor Technology Vol. 29 No. 3 March 2004 41 1 引言 随着半导体IC芯片集成化、速度和功率的日益提高,以及电子整机向小、轻、薄方向发展,对与之相适应的高密度电路基板的要求也越来越高。过去采用高温共烧技术制成的多层陶瓷基板,由于布线导体材料必须是诸如钨、锰等高熔点金属,不仅电阻大,性能差,而且成本高,很难推广应用。而AlN/glass复合材料的烧结温度可控制在1000℃以内,从而使得和高导电银的共烧成为可能。 本文将研究以银为共烧布线材料,采用丝网印刷金属化图形,流延制备AlN/glass复合材料坯片,来实现低温共烧。 2 实验过程 银基多层氮化铝陶瓷基板低温共烧的工艺研究 戎瑞芬,汪荣昌,顾志光 (复旦大学材料科学系, 上海 200433) 摘要:从低温共烧的工艺角度来研究氮化铝坯片和银浆的排胶,从而确立排胶的温度及烧结气氛的控制。结果表明,二次排胶法与在氮气气氛中加入微量氧进行烧结,获得了综合性能优良的银布线多层陶瓷基板。 关键词:氮化铝;银浆;排胶;低温共烧 中图分类号:TN405;TB35 文献标识码:A 文章编号:1003-353X(2004)03-0041-03 Research of LTCC technology of silver-basemultilayer AlN ceramic substrates RONG Rui-fen, WANG Rong-chang, GU Zhi-guang, ( Department of Material Science, Fudan University, Shanghai 200433,China) Abstract: The process of organic vehicle evacuation of AlN green tape and Ag conductor paste have been researched in the view of LTCC technology, and optimum condition of organic vehicleevacuation temperature and cofiring atmosphere have been determined. The result shows that thebest comprehensive properties of silver conductor multilayer AlN ceramic substrates can beenachieved by two-step organic vehicle evacuation technology and cofire the substrate using mixedatmosphere gases of nitride and micro fraction of oxide. Key words: AlN;Ag conductor paste;vehicle evacuation;LTCC 图1 AlN多层基板制备工艺流程图AlN多层基板制备工艺流程图见图1。 专题报 道

陶瓷基板应用行业前景以及行业发展

陶瓷基板应用行业前景以及行业发展陶瓷基板无论在LED大功率照明、大功率模组、制冷片,还是在汽车电子等领域发展需要增加,今天小编就来分享一些陶瓷基板的应用行业清洁和行业发展情况。 陶瓷基板应用行业具体有哪些? 1,氧化铝陶瓷覆铜板电容压力传感器在各种汽车上用量巨大,市场达近百亿,但是目前氧化铝陶瓷覆铜板主要依赖进口,国内的陶瓷氧化铝板在材料的弹性模量、弹性变形循环次数、使用寿命和可靠性凤方面还有差距,尚未进入商业化实际应用。 2,在航天发动机、风力发电、数控机床等高端装备所使用的陶瓷转承,不但要求高的力学性能和热学性能,而且要求优异的耐磨性、可靠性和长寿命,目前国产的氮化硅陶瓷轴承球与日本东芝陶瓷公司还有明显差距;与国际上著名的瑞典SKF公司、德国的FAG公司和日本的KOYO等轴承公司相比,我们的轴承还处于产业产业链的中低端,像风电和数控机床等高端产品还依赖进口。 3,在汽车、冶金、航天航空领域的机械加工大量使用陶瓷刀头,据统计市场需求达数十亿元。陶瓷刀具包括氧化铝陶瓷基、氮化硅基、氧化锆增韧氧化铝、氮碳化钛体系等,要求具有高硬度。高强度和高可靠性。目前国内企业只能生产少量非氧化铝陶瓷刀具,二像汽车缸套加工用量巨大的氧化铝套擦刀具还依赖从瑞典sandvik、日本京瓷、日本NTK公司、德国CeranTec公司进口。 4,在军工国防用到的透明和透红线陶瓷材料,如果氧化钇、氧化镁、阿隆、镁铝尖晶石)陶瓷以及具有激光特性透明陶瓷。目前我们的技术还限于制备有限的尺寸,对于国际上已经达到半米大尺寸透明陶瓷材料我们还很困难,无论在工艺技术和装备上均有差距。

陶瓷基板行业发展趋势 根据新思界产业研究中心发布的《2019-2023年氮化铝陶瓷基板行业深度市场调研及投资策略建议报告》显示,氧化层会对氮化铝陶瓷的热导率产生影响,在基板生产过程中,其加工工艺需进行严格把控,才能保证氮化铝陶瓷基板的优异性能。尽管我国氮化铝陶瓷基板行业在研究领域已经取得一定成果,与国际先进水平的差距不断缩小,但批量生产能力依然不足,仅有军工背景的斯利通具有量产能力。斯利通以及部分台湾企业氮化铝陶瓷基板产量无法满足国内市场需求,我国氮化铝陶瓷基板市场对外依赖度高。 新思界行业分析人士表示,氮化铝陶瓷是现阶段性能最为优异的PCB基板材料,由于其生产难度大、生产企业数量少,其产品价格较高,应用范围相对较窄。但随着氮化铝陶瓷基板技术工艺不断进步,生产成本不断下降,叠加电子产品小型化、集成化、多功能化成为趋势,行业未来发展潜力巨大。在此情况下,我国PCB基板行业中有实力的企业需尽快突破氮化铝陶瓷基板量产瓶颈,实现进口替代。 陶瓷基板龙头企业也非常关注陶瓷基板的发展动向和发展前景。更多陶瓷基板行业信息可以咨询金瑞欣特种电路,金瑞欣十年制作经验,用心服务好每一个客户,做好每一块板。

为何氮化铝陶瓷基板最适合LED散热基板

为何氮化铝陶瓷基板最适合LED散热基板呢? LED向着高效率、高密度、大功率等方面发展。体国内LED有了突飞猛进的进展,功率也是越来越大,开发性能优越的散热材料已成为解决LED散热问题的当务之急。一般来说,LED发光效率和使用寿命会随结温的增加而下降,当结温达到125℃以上时,LED甚至会出现失效。为使LED结温保持在较低温度下,必须采用高热导率、低热阻的散热基板材料和合理的封装工艺,以降低LED总体的封装热阻。氮化铝陶瓷基板作为LED散热基板实在必行。 LED散热基板市场现状 现阶段常用基板材料有Si、金属及金属合金材料、陶瓷和复合材料等,它们的热膨胀系数与热导率如下表所示。其中Si材料成本高;金属及金属合金材料的固有导电性、热膨胀系数与芯片材料不匹配;陶瓷材料难加工等缺点,均很难同时满足大功率基板的各种性能要求。 LED散热基板三种类型以及特点 功率型LED封装技术发展至今,可供选用的散热基板主要有环氧树脂覆铜基板、金属基覆铜基板、金属基复合基板、陶瓷覆铜基板等。 环氧树脂覆铜基板是传统电子封装中应用最广泛的基板。它起到支撑、导电和绝缘三个作用。其主要特性有:成本低、较高的耐吸湿性、密度低、易加工、易实现微细图形电路、适合大规模生产等。但由于FR-4的基底材料是环氧树脂,有机材料的热导率低,耐高温性差,因此FR-4不能适应高密度、高功率LED封装要求,一般只用于小功率LED封装中。 金属基覆铜基板是继FR-4后出现的一种新型基板。它是将铜箔电路及高分子绝缘层通过导热粘结材料与具有高热导系数的金属、底座直接粘结制得,其热导率约为1.12

W/m·K,相比FR-4有较大的提高。由于具有优异的散热性,它已成为目前大功率LED 散热基板市场上应用最广泛的产品。但也有其固有的缺点:高分子绝缘层的热导率较低,只有0.3W/m·K,导致热量不能很好的从芯片直接传到金属底座上;金属Cu、Al的热膨胀系数较大,可能造成比较严重的热失配问题。 金属基复合基板最具代表性的材料是铝碳化硅。铝碳化硅是将SiC陶瓷的低膨胀系数和金属Al的高导热率结合在一起的金属基复合材料,它综合了两种材料的优点,具有低密度、低热膨胀系数、高热导率、高刚度等一系列优异特性。AlSiC的热膨胀系数可以通过改变SiC的含量来加以调试,使其与相邻材料的热膨胀系数相匹配,从而将两者的热应力减至最小。 陶瓷基板作为LED散热基板的优势 陶瓷基板材料常见的主要有Al2O3、氮化铝、SiC、BN、BeO、Si3N4等,与其他基板材料相比,陶瓷基板在机械性质、电学性质、热学性质具有以下特点: (1)机械性能。机械强度,能用作为支持构件;加工性好,尺寸精度高;表面光滑,无微裂纹、弯曲等。 (2)热学性质。导热系数大,热膨胀系数与Si和GaAs等芯片材料相匹配,耐热性能良好。 (3)电学性质。介电常数低,介电损耗小,绝缘电阻及绝缘破坏电高,在高温、高湿度条件下性能稳定,可靠性高。 (4)其他性质。化学稳定性好,无吸湿性;耐油、耐化学药品;无毒、无公害、α射线放出量小;晶体结构稳定,在使用温度范围内不易发生变化;原材料资源丰富。 氮化铝陶瓷基板为何能成为最适合的LED散热基板? 长期以来,Al2O3和BeO陶瓷是大功率封装两种主要基板材料。但这两种基板材

氮化铝陶瓷基板生产制作流程和加工制造工艺

氮化铝陶瓷基板生产制作流程和加工制造工艺 氮化铝陶瓷基板相对于氧化铝套基板而氧,机械强度和硬度增加,相应的导热率比氧化铝陶瓷基板更高。氮化铝陶瓷基板生产制作难度增加,加工工艺也有所不同。今天小编主要是讲述一下氮化铝陶瓷基板生产制作流程和加工制造工艺。 一,氮化铝陶瓷基板生产制作流程 1,氮化铝陶瓷基板生产制作过程 氮化铝陶瓷基板生产制作流程,大致和陶瓷基板的制作流程接近,需要做烧结工艺,厚膜工艺,薄膜工艺因此具的制作流程和细节有所不同。氮化铝陶瓷基板制作流程详见文章“关于氧化铝陶瓷基板这个八个方面你知道几个?” 2,氮化铝陶瓷基板研磨 氮化铝陶瓷电路板的制作流程是非常复杂的,第一步就是氮化铝陶瓷电路板的表面处理,也叫作研磨,其作用是去除其表面的附着物以及平整度的改善。 众所周知,氮化铝陶瓷基板会比氧化铝陶瓷电路板的硬度高很多,遇到比较薄的板厚要求的时候,研磨就是一个非常难得事情了,要保证氮化铝陶瓷电路板不会碎裂,还要达到尺寸精度和表面粗糙度的要求,需要专业的人操作。 不同的研磨方式对氮化铝陶瓷电路板的平整度、生产率、成品率的影响都是很大的,而且后续的工序是没办法提高基材的几何形状的精度。所以氮化铝陶瓷电路板的制作选用的都是离散磨料双面研磨,对于生产企业来讲整个工序的成本会提升很多,但是为了使客户得到比较完美的氮化铝陶瓷电路板。 另外研磨液是一种溶于水的研磨剂,能够很好的做到去油污,防锈,清洁和增光效果,所以可以让氮化铝陶瓷电路板超过原本的光泽。然而如今国内市场上的一些氮化铝

陶瓷电路板仍旧不够完美,例如产品的流痕问题,是困扰氮化铝陶瓷电路板加工行业的难题。主要还是没有办法达到比较好的成本控制和生产工艺。 3,氮化铝陶瓷基板切割打孔 金瑞欣特种电路采用是激光切割打孔,采用激光切割打孔的优点: ●采用皮秒或者飞秒激光器,超短脉冲加工无热传导,适于任意有机&无机材料的高 速切割与钻孔,小10μm的崩边和热影响区。 ●采用单激光器双光路分光技术,双激光头加工,效率提升一倍。 ●CCD视觉预扫描&自动抓靶定位、大加工范围650mm×450mm、XY平台拼接精 度≤±3μm。 ●支持多种视觉定位特征,如十字、实心圆、空心圆、L型直角边、影像特征点等。 ●自动清洗、视觉检测分拣、自动上下料。 ●8年激光微细加工系统研发设计技术积淀、性能稳定、无耗材。 二,氮化铝陶瓷基板加工制造工艺 氮化铝陶瓷具有优良的绝缘性、导热性、耐高温性、耐腐蚀性以及与硅的热膨胀系数相匹配等优点,成为新一代大规模集成电路、半导体模块电路及大功率器件的理想散热和封装材料。成型工艺是陶瓷制备的关键技术,是提高产品性能和降低生产成本的重要环节之一。 1,氮化铝陶瓷的湿法成型工艺 陶瓷的湿法成型近年来成为研究的重点,因为湿法成型具有工艺简单、生产效率高、成本低和可制备复杂形状制品等优点,易于工业化推广。 湿法成型包括流延成型、注浆成型、注射成型和注凝成型等料浆均匀流到或涂到支撑板上,或用刀片均匀的刷到支撑面上,形成浆膜,经干燥形成一定厚度的均匀的素坯

从基材性能告诉你氮化铝和氧化铝陶瓷基板工艺有什么不同

从基材性能告诉你氮化铝和氧化铝陶瓷基板工艺有什么不同 氮化铝陶瓷基板和氧化铝陶瓷基板都同属于陶瓷基板,他们的制作工艺大致是一样的,都有都才可以采用薄膜工艺和厚膜工艺,DBC工艺、HTCC工艺和LTCC工艺,那么不同的什么呢? 氮化铝和氧化铝陶瓷基板工艺的不同主要是因为基材的性能和结构决定了,他们烧结温度的不同。 氮化铝陶瓷基板的结构和性能原理: 1、氮化铝陶瓷(Aluminium Nitride Ceramic)是以氮化铝(AIN)为主晶相的陶瓷。 2、AIN晶体以〔AIN4〕四面体为结构单元共价键化合物,具有纤锌矿型结构,属六方晶系。 3、化学组成AI65.81%,N34.19%,比重3.261g/cm3,白色或灰白色,单晶无色透明,常压下的升华分解温度为2450℃。 4、为一种高温耐热材料。热膨胀系数(4.0-6.0)X10(-6)/℃。 5、多晶AIN热导率达260W/(m.k),比氧化铝高5-8倍,所以耐热冲击好,能耐2200℃的极热。 6、此外,氮化铝具有不受铝液和其它熔融金属及砷化镓侵蚀的特性,特别是对熔融铝液具有极好的耐侵蚀性。

氧化铝陶瓷基板的结构和性能: 1、氧化铝陶瓷是一种以氧化铝(Al2O3)为主体的陶瓷材料,用于厚膜集成电路。 2、氧化铝陶瓷有较好的传导性、机械强度和耐高温性。需要注意的是需用超声波进行洗涤。 3、氧化铝陶瓷是一种用途广泛的陶瓷,因为其优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。 对比可知:氮化铝和氧化铝陶瓷基板工艺的最大区别主要是烧结温度的区别。 氮化铝陶瓷基板是氧化铝陶瓷基板5-8倍,能耐2200℃的极的级热,导热可达260W/(m.k),氧化铝陶瓷基板导热一般在30W/(m.k)左右,好的可以做到50W/(m.k).氮化铝陶瓷陶瓷可以加工更加精密的线路,耐高温,更耐压,制作工艺相对氧化铝陶瓷基板而已烧结的温度把控是不一样的。如果是一个需要用氮化铝陶瓷基板的高精密线路板,用氧化铝陶瓷基板来替代,那肯定会造成基材大量的耗费,制作的难度增加,良品率和低。 以上是小编讲述的氮化铝和氧化铝陶瓷基板工艺不同点的阐述,希望可以解答这个问题。更多陶瓷基板的工艺问题可以咨询金瑞欣特种电路,金瑞欣是专业的陶瓷基板生产厂家,拥有十多年陶瓷基板的行业经验和制作经验。

2019年陶瓷插芯核心供应商三环集团专题研究:陶瓷劈刀、SOFC、氮化铝陶瓷基板等潜力新产品崭露头角

2019年陶瓷插芯核心供应商三环集团专题研究:陶瓷劈刀、SOFC、氮化铝陶瓷基板等潜力新产品崭露头角

目录 1.电子陶瓷材料专家,深挖三个产品护城河 (6) 1.1 陶瓷插芯核心供应商,拥抱光通信建设潮 (6) 1.1.1 5G及IDC建设加速带动陶瓷连接器需求 (6) 1.1.2高毛利陶瓷插芯居寡头地位 (8) 1.2 陶瓷基片受电阻周期影响,去库存结束恢复备货 (9) 1.2.1拥有氧化铝陶瓷基板40%市场份额 (10) 1.2.2氮化铝陶瓷基板有望国产替代 (11) 1.3 从晶振到滤波器,陶瓷封装基座品类拓展 (11) 1.3.1晶振封装13亿市场需求稳中有升 (12) 1.3.2 SAW需求增长迎15亿封装市场 (14) 1.3.3三环半导体封装基座业务任重道远 (15) 2. MLCC迎内需机遇,拓产品线寻求成长 (16) 2.1 5G手机及汽车需求拉动,MLCC增至百亿美元规模 (16) 2.2 MLCC贸易逆差400亿,进口依赖度有待降低 (18) 2.3 行业库存回调结束,MLCC需求触底反弹 (19) 2.4 三环布局MLCC多产品线 (20) 3.率先突破SOFC隔膜板、劈刀等高科技新品 (22) 3.1 率先研发SOFC燃料电池产品 (22) 3.2 首次突破陶瓷劈刀,面向20亿新市场 (23) 4.盈利预测与估值 (25) 4.1 关键假设与盈利预测 (25) 4.2 绝对估值看三环 (26)

图表目录 图1:三环集团业务发展历程 (6) 图2:光纤陶瓷插芯产品 (6) 图3:光纤连接器 (6) 图4:2017-2021年中国光纤连接器市场规模预测 (7) 图5:光纤陶瓷插芯及套筒下游应用及主要客户 (7) 图6:2011-2018年三环集团光纤陶瓷插芯营收(亿元) (9) 图7:2011-2018年光纤陶瓷插芯单价及毛利率 (9) 图8:陶瓷插芯业务同业毛利率对比 (9) 图9:氧化铝陶瓷基片 (9) 图10:氮化铝陶瓷基片 (9) 图11:陶瓷基片的下游应用 (10) 图12:2016年全球片式电阻市场份额 (10) 图13:2012年全球氧化铝陶瓷基片市场份额 (10) 图14:SMD陶瓷封装基座 (12) 图15:LED陶瓷封装基座 (12) 图16:陶瓷封装基座下游应用 (12) 图17:石英晶体振荡器应用领域分布 (13) 图18:2010-2017年全球石英晶体振荡器市场规模 (13) 图19:2017-2023年,全球射频前端市场规模增至225亿美元 (14) 图20:全球SAW滤波器各厂商市场份额 (15) 图21:NTK退出产能前各厂商市场份额 (15) 图22:2011-2015年三环陶瓷基座单价与毛利率 (15) 图23:2017-2018年京瓷与三环半导体零部件营业收入与毛利率对比 (16) 图24:2016年全球MLCC应用分布 (16) 图25:iPhone的MLCC单机用量增至千颗 (17) 图26:2G-5G手机MLCC用量从200增至千颗 (17) 图27:2015-2024年全球车用市场MLCC需求量 (17) 图28:2014-2020年全球MLCC市场规模 (17) 图29:2018-2019年中国MLCC进出口额 (18)

氮化铝陶瓷基板的应用和价格

氮化铝陶瓷基板的应用和价格 无论在5G领域还是半导体,亦或是大功率模组等领域,氮化铝陶瓷基板的应用越发受到市场的亲睐。氮化铝陶瓷基板相当于氧化铝陶瓷基板有更好的导热性和机械性能,因此在价格方面有要比氧化铝陶瓷基板或者普通PCB板要贵一些。今天小编就来分享一下,氮化铝陶瓷基板的应用和价格。 一,氮化铝陶瓷基板为何比一般的陶瓷板导热性更高? 陶瓷基板中氧化铝陶瓷基板和氮化铝陶瓷基板是目前市面上需求较大的陶瓷基板,氧化铝陶瓷基板的导热一般在30~50W,氮化铝陶瓷基板则可以去掉190W甚至更高。 二,氮化铝陶瓷基板的应用范围 1,氮化铝陶瓷基板在半导体应用 半导体方面集成电路、消费电子、通信系统、光伏发电、照明应用、大功率电源转换等领域都需要较好的散热功能,普通FR4玻纤板导热很低,容易导致线路板短路等问题。氮化铝陶瓷基板较好导热性能和电器性能能解决应用产品出现散热不足的问题。 2,氮化铝陶瓷基板的应用-5g通信领域 随着通讯领域迭代升级步伐不断加速,4G进入后周期,5G将助陶瓷基板行业进一步发展繁荣陶瓷基板市场。目前4G网络已基本实现全球覆盖,运营商进入4G后周期。截至2017年第三季度,全球224个国家和地区中,已有200个国家和地区建成了644个LTE公共网络,LTE 用户数达到23.6亿,平均每4个移动用户中就有一名LTE用户。截至2017年上半年,我国4G 基站总量达到341万个,4G用户总数达到8.85亿,渗透率达到65%。 5G通讯射频领域前端主要包括天线振子、高频5G氮化铝陶瓷基板、滤波器和PA(功率放大器)等核心部件。由于大规模天线(MassiveMIMO)技术和有源天线(AAU)技术的广泛应用,射

氮化铝陶瓷电路板结构工艺要求和费用

氮化铝陶瓷电路板结构工艺要求和费用 随着电路板不断集成化,高集成度的电子器件需要获得更高的电气性能,因此同时导致器件内部的工作温度迅速上升。优质的金属化氮化铝陶瓷电路板应运而生,出色的绝缘性能和优良的导热性能,能快速消散器件内部产生的热量,使其成为大功率电子器件的极佳选择。今天小编就带您一起来深入了解一下氮化铝陶瓷电路板。 氮化铝陶瓷电路板的结构 氮化铝陶瓷电路板一般结构是三层,中间是绝缘层,一般用的氮化铝陶瓷基板,它是A一种为主晶相的陶瓷材料,再在氮化铝陶瓷基片上面蚀刻金属电路,就是氮化铝陶瓷基板了。 单面氮化铝陶瓷电路板则一般一面做表面处理或者,一面做线路。中间是氮化铝陶瓷基板。双面氮化铝陶瓷电路板,则是上下面是线路层中间是绝缘层材料-氮化铝陶瓷基板。 什么是氮化铝陶瓷覆铜电路板 氮化铝陶瓷覆铜电路板是在氮化铝陶瓷基板上面做覆铜金属化处理,也就是利用铜的含氧共晶体直接将铜覆接在氮化铝陶瓷上,其基本原理是覆接过程前或过程中在铜与陶瓷之间引入适量的氧元素,在1065℃~1083℃范围内(低于铜的熔点1083℃),铜与氧形成铜—氧共晶体,该共晶体一方面与陶瓷发生化学反应生成尖晶石的。 氮化铝陶瓷电路板的工艺要求 氮化铝陶瓷电路板的工艺要求,主要是跟进客户的制版要求来制作的。按制作技术工艺可以分为HTCC、LTCC、DBC、DPC、和目前获得国家发明专利众成三维电子生产销售研发的LAM(激光快速活化金属化技术);按表面处理工艺要求包含表面处理工艺包含:沉金、沉银、镀金、镀银、OSP、沉锡。

氮化铝陶瓷电路板多少钱 氮化铝陶瓷电路板多少钱,针对这个价格的问题。没有做过氮化铝陶瓷电路板需要知道氮化铝陶瓷电路板价格比普通的FR4贵4-10倍,比氧化铝陶瓷电路板价格要贵2倍。主要是因为氮化铝陶瓷电路板硬度较高,且易碎,需要钻孔或者做精密线路的话则费用不一样,具体要看图纸的文件资料。一般简单没有什么孔的,线路简单的则需要三四千元。 关于氮化铝陶瓷电路板问题可以咨询金瑞欣特种电路,金瑞欣是专业的氮化铝陶瓷基板厂家,可以加工精密线路、实铜填孔等难度工艺陶瓷电路板。

生产加工氮化铝陶瓷基板厂家哪里有

生产加工氮化铝陶瓷基板厂家哪里有? 氮化铝陶瓷基板厂家这几年新增了不少企业,产业链也逐渐完善,国内氮化铝陶瓷基板供应商也增加,不在局限于国外进口基材。那么生产加工氮化铝陶瓷基板的厂家哪里有呢?据小编了解广东一带以及江浙一带相对较好,广东一带配套更加成熟,加工费用相对较低。 广东深圳氮化铝陶瓷基板生产厂家相对其他地区的优势广东省是最早做PCB板,产业链和供应链相对更加成熟。在技术方面的可行性方面也更加成熟,制作的成功率更高一些。尤其是深圳,深圳是科技电子之城,也是创新城市,华为,海尔,小米等通讯科技企业都在深圳。对PCB的需求大,深圳5G建设是先行者,5G网络的发展离不开电子通讯事业的发展,尤其是高频陶瓷pcb需求。在广东深圳氮化铝陶瓷基板生产厂家相对也会比较多一些。比如金瑞欣特种电路、深南电路等都做氮化铝陶瓷基板的加工生产。 台湾有氮化铝陶瓷基板生产厂家? 据我了解有一家是謄騏國際(科技)股份有限公司,要供應各類電子陶瓷產品及精密陶瓷產品及精品陶瓷,TSK堅持打造國際化品牌為企業目標與理想,並於2009年開始投入陶瓷電路板(基板)的研發及生產而成為高科技企業。 歷經多年的快速發展,從精密陶瓷起步發展,橫向銷售精品陶瓷到全球,進而於2009年成功跨入高功率高散熱陶瓷電路板(基板),如今TSK在大陸深圳、東莞、廣州佛山、日本、韓國、俄羅斯、美國、德國等地皆有合作的LED封裝大廠及供應給需要

陶瓷基板之工廠,產品廣泛應用於高功率LED陶瓷基板、微波無線通訊、HCPV太陽畜電池、陶瓷傳感器基板、半導體及軍事電子等領域。 要论氮化铝陶瓷基板生产厂家哪里有或哪家好?企业还是根据自己的需要选择合适的厂家合作,有的厂家以打样为主,而有的以批量为主,价格优势也都不一样的。更多氮化铝陶瓷基板咨询金瑞欣特种电路,十年行业经验,可以加工精密线路,实铜填孔等工艺难度板。

氮化铝陶瓷基板市场分析

氮化铝陶瓷基板市场分析 氮化铝陶瓷基板是陶瓷基板里面常见的陶瓷基板,在大功率方面散热起到了很好的作用。氮化铝陶瓷基板的市场有它不可替代的作用,今天主要从氮化铝陶瓷基板的性能和应用以及陶瓷基板市场趋势三个方面阐述氮化铝陶瓷基板。 氮化铝陶瓷基板的性能和应用 1,氮化铝粉末纯度高,粒径小,活性大,是制造高导热氮化铝陶瓷基片的主要原料。 2、氮化铝陶瓷基片,热导率高,膨胀系数低,强度高,耐高温,耐化学腐蚀,电阻率高,介电损耗小,是理想的大规模集成电路散热基板和封装材料。 3、氮化铝硬度高,超过传统氧化铝,是新型的耐磨陶瓷材料,但由于造价高,只能用于磨损严重的部位. 4、利用AIN陶瓷耐热耐熔体侵蚀和热震性,可制作GaAs晶体坩埚、Al蒸发皿、磁流体发电装置及高温透平机耐蚀部件,利用其光学性能可作红外线窗口。氮化铝薄膜可制成高频压电元件、超大规模集成电路基片等。 5、氮化铝耐热、耐熔融金属的侵蚀,对酸稳定,但在碱性溶液中易被侵蚀。AIN 新生表面暴露在湿空气中会反应生成极薄的氧化膜。利用此特性,可用作铝、铜、银、铅等金属熔炼的坩埚和烧铸模具材料。AIN陶瓷的金属化性能较好,可替代有毒性的氧化敏瓷在电子工业中广泛应用。 氮化铝陶瓷基板的市场趋势 无论是氧化铝陶瓷基板还是氮化铝陶瓷基板目前在散热方面的突出特性,以及好的绝缘性,耐腐蚀性。随着制作成本的降低,工艺的成熟。

氮化铝陶瓷是一种高温耐热材料,其热导率高,较氧化铝陶瓷高5倍以上,膨胀系数低,与硅性能一致。使用氮化铝陶瓷为主要原材料制造而成的基板,具有高热导率、低膨胀系数、高强度、耐腐蚀、电性能优、光传输性好等优异特性,是理想的大规模集成电路散热基板和封装材料。随着我国电子信息产业蓬勃发展,我国市场对PCB基板的需求不断上升,氮化铝陶瓷基板凭借其优异性能,市场占有率正在不断提升。 氮化铝陶瓷基板行业进入技术壁垒高,全球市场中,具有批量化生产能力的企业主要集中在日本,日本企业在国际氮化铝陶瓷基板市场中处于垄断地位,此外,中国台湾地区也有部分产能。随着中国电子信息产业快速发展,技术水平不断提高,国内市场对氮化铝陶瓷基板的需求快速上升,在市场的拉动下,进入行业布局的企业开始增多,但现阶段我国拥有量产能力的企业数量依然极少。 根据新思界产业研究中心发布的《2019-2023年氮化铝陶瓷基板行业深度市场调研及投资策略建议报告》显示,氧化层会对氮化铝陶瓷的热导率产生影响,在基板生产过程中,其加工工艺需进行严格把控,才能保证氮化铝陶瓷基板的优异性能。尽管我国氮化铝陶瓷基板行业在研究领域已经取得一定成果,与国际先进水平的差距不断缩小,但批量生产能力依然不足,金瑞欣以及部分台湾企业氮化铝陶瓷基板产量无法满足国内市场需求,我国氮化铝陶瓷基板市场对外依赖度高。更多氮化陶瓷基板的问题可以咨询金瑞欣特种电路。

为何氮化铝陶瓷基板在IGBT模块领域应用广泛

为何氮化铝陶瓷基板在IGBT模块领域应用广泛 IGBT就是绝缘栅双极晶体管,目前大规模应用于电动汽车、电力机车、智能电网等领域。氮化铝陶瓷覆铜板既具有陶瓷的高导热性、高电绝缘性、高机械强度、低膨胀等特性,又具有无氧铜的高导电性和优异的焊接性能,是IGBT模块封装的关键基础材料。今天小编就重点讲述一下氮化铝陶瓷基板在IGBT模块的重要应用。 氮化铝陶瓷基板在IGBT模块的产业应用 IGBT(Insulated Gate Bipolar Transistor)全称绝缘栅双极型晶体管,是实现电能转换和控制的最先进的电力电子器件,具有输入阻抗大、驱动功率小、开关速度快、工作频率高、饱和压降低、安全工作区大和可耐高电压和大电流等一系列优点,被誉为现代工业变流装置的“CPU“,在轨道交通、航空航天、新能源汽车、风力发电、国防工业等战略性产业广泛应用。 氮化铝陶瓷基板被应用到IGBT模块的重要原因 高压大功率IGBT模块所产生的热量主要是通过陶瓷覆铜板传导到外壳而散发出去的,因此陶瓷覆铜板是电力电子领域功率模块封装的不可或缺的关键基础材料。它既具有陶瓷的高导热性、高电绝缘性、高机械强度、低膨胀等特性,又具有无氧铜金属的高导电性和优异的焊接性能,并能像PCB线路板一样刻蚀出各种图形。 氮化铝陶瓷覆铜板集合了功率电子封装材料所具有的各种优点: 1)陶瓷部分具有优良的导热耐压特性; 2)铜导体部分具有极高的载流能力; 3)金属和陶瓷间具有较高的附着强度和可靠性;

4)便于刻蚀图形,形成电路基板; 5)焊接性能优良,适用于铝丝键合。 陶瓷覆铜板性能的决定因素是氮化铝陶瓷基板材料的性能 目前,已应用作为陶瓷覆铜板基板材料共有三种陶瓷,分别是氧化铝陶瓷基板、氮化铝陶瓷基板和氮化硅陶瓷基板。氧化铝基陶瓷基板是最常用的陶瓷基板,由于它具有好的绝缘性、好的化学稳定性、好的力学性能和低的价格,但由于氧化铝陶瓷基片相对低的热导率、与硅的热膨胀系数匹配不好。作为高功率模块封装材料,氧化铝材料的应用前景不容乐观。 氮化铝陶瓷基板在热特性方面具有非常高的热导率,散热快;在应力方面,热膨胀系数与硅接近,整个模块内部应力较低,提高了高压IGBT模块的可靠性。这些优异的性能都使得氮化铝覆铜板成为高压IGBT模块封装的首选。本文研究了直接覆铜工艺(DBC)和活性金属焊接工艺(AMB)制备氮化铝陶瓷覆铜板的工艺方法,对比了两种工艺的异同点和制备的氮化铝陶瓷覆铜板的性能差异。 国家新兴行业的兴起和发展促进高压IGBT陶瓷模块的发展。 电力电子技术在风能、太阳能、热泵、水电、生物质能、绿色建筑、新能源装备、电动汽车、轨道交通等先进制造业等重要领域都发挥着重要的作用,而这其中的许多领域在“十三五”规划中都具备万亿以上的市场规模,其必将带来电力电子技术及其产业的高速发展,迎来重大的发展机遇期。这些将对IGBT模块封装的关键材料---陶瓷覆铜板形成了巨大需求。因此,需要抓住机遇,开发系列化的陶瓷覆铜基板以适应不同领域的需求,特别是需要加快高可靠氮化铝陶瓷覆铜基板、氮化硅陶瓷覆铜基板的研发及产业化进度,为我国高压IGBT模块的国产化奠定基础。

氮化铝陶瓷基板制作技术有哪些关键问题

氮化铝陶瓷基板制作技术有哪些关键问题 氮化铝陶瓷基板在大功率器件领域,因其导热率而被市场受用。那么今天天小编要分享的氮化铝陶瓷基板制作技术的关键词问题。 一,氮化铝基板简介和应用概况 1.氮化铝材料有哪些突出特性 氮化铝是氮和二元系列中唯一稳定的化合物,具有高的熔点和良好的导热特性。 晶形:六方晶系钙钛矿型 分解温度:2500摄氏度 理论热导率:320W/m.k 导热率是氧化铝的7倍,高温导热优于氧化铍; 热膨胀系数:与硅热膨胀系数匹配 电特性:高电绝缘,低介电常数;耐腐蚀特性:对熔融金属有优良的耐腐蚀特殊性。 无毒,高纯, 综合性能优异的电子封装材料。 2,氮化铝应用背景。 氮化铝陶瓷覆铜板满足高压IGBT模块,广泛应用于高铁、电动汽车、智能电网和新能源等“绿色经济”。氮化铝陶瓷封装基板满足大功率LED芯片散热的需求,在汽车大灯、室外照明、舞台灯等高速LED中应用广泛。氮化铝薄膜封装基板满足芯片功率散热、高频传输等方面,在光通讯中的TOSA/ROSA/TO 中的PD、LD器件中应用广泛。氮化铝具有高热导率、高强度、低介电常数、

热膨胀系数接近和无毒等优异的综合性能。 光通讯领域、微波通讯领域、LED领域等军民各个高功率需要氮化铝封装和基板作为关键散热材料。氧化铝是未来小型化、集成化、多功能电子封装发展必不可缺的材料之一,前景广阔。 二,氮化铝基板制作关键技术问题 1氮化铝粉体和烧结助剂选择。氮化铝粉体:高纯度、粒度小、比表面积大、碳含量低、氧含量低、杂质金属离低。烧结助剂于AIN粉表面的氧化铝成份在烧结过程中反应形成低熔点的复合氧化物,从而烧结体中产生液相。这些液相包围AIN颗粒,在毛细管力的作用下发生颗粒重排和内部气孔排出,最终实现AIN 瓷的致密烧结。 2.氮化铝成型工艺流延成型: 浆料稳定性及粘度的控制 流延带料厚度均匀性控制 带料X-Y方向收缩率控制 3.氮化铝烧结工艺 氮化铝陶瓷烧结需要注意的问题: 选取合适烧结制度(升温制度、烧结温度、保温时间) 采用合适的保护气氛防止氮化铝陶瓷的氧化 烧结设备:温度均匀性 4.氮化铝金属化工艺氮化铝厚膜金属化 金属化体系:金属化结合力:2KG/平方毫米 表面覆铜100um满足电流承载需求

为什么氮化铝陶瓷电路板是市场上导热率最高的电路板

为什么氮化铝陶瓷电路板是市场上导热率最高的电路板? 市场上用户需求量最多的氮化铝陶瓷电路板,在大功率集成电路广泛使用。采用的电路板材料一直沿用AL2O3和Beo陶瓷,但是AL2O3基板的导热率低、热膨胀系数与Si不太匹配;Beo虽然具有优异的综合性能,但其具有较高的生产成本和剧毒的缺点限制了它的应用推广。因而无论是性能、成本、环保要求方面来看AL2O3和Beo陶瓷已经不能满足电子功率器件的发展和需求了,取而代之是氮化铝陶瓷电路板。 氮化铝陶瓷电路板性能 氮化铝陶瓷具备优异的综合性能,是近年来受到广泛关注的新一代先进陶瓷,在多方面都有着广泛的应用前景,尤其是其具有高导热率、低介电常数、低介电损耗、优良的电绝缘性,与硅相匹配的热膨胀系数及无毒性等优点,使其成为高密度、大功率和高速集成电路板与封装基板的理想材料。 氮化铝陶瓷电路板是导热率最高的电路板 在氮化铝一系列重要性质中,最为显著的是高导热率。其主要机理为:通过点阵或晶格震动,即借助晶格波或热波进行传递。氮化铝陶瓷为绝缘陶瓷材料,对于绝缘陶瓷材料,热能以原子振动方式传递,属于声子导热,声子在它的导热过程中扮演者重要的角色。氮化铝热导率理论上可达320W(m·K),但由于氮化铝中有杂质和缺陷,导致氮化铝陶瓷电路板的导热率达不到理论值。氮化铝粉末中杂质主要是氧、碳,另外还有少量的金属离子杂质,在晶格中产生各种缺陷形式,这些缺陷对声子的散射会导致热导率。即便如此,氮化铝陶瓷电路板也是目前市场上导热率最高的电路板。 氮化铝陶瓷电路板的成型工艺也会影响到导热率。 陶瓷基板的成型主要有压膜、干压、和流延成型三种方法。其中以流延法成型生产效率最高,且易于实现生产的连续化和自动化,改善产品质量,降低成本,实现大批量

氮化铝陶瓷

氮化铝陶瓷氮化铝陶瓷 氮化铝陶瓷AlNF 系列 (Aluminium Nitride Ceramic) 结构结构 氮化铝陶瓷AlNF 系列是以氮化铝(AIN)为主晶相的陶瓷。AIN 晶体以〔AIN4〕四面体为结构单元共价键化合物,具有纤锌矿型结构,属六方晶系。化学组成 AI 65.81%,N 34.19%,比重3.261g/cm3,白色或灰白色,单晶无色透明,常压下的升华分解温度为2450℃。为一种高温耐热材料。热膨胀系数(4.0-6.0)X10(-6)/℃。多晶AIN 热导率达260W/(m.k),比氧化铝高5-8倍,所以耐热冲击好,能耐2200℃的极热。此外,氮化铝具有不受铝液和其它熔融金属及砷化镓侵蚀的特性,特别是对熔融铝液具有极好的耐侵蚀性。 性能性能 AIN 陶瓷的性能与制备工艺有关。 如热压烧结AIN 陶瓷,其密度为3 .2一3 .3g/cm3,抗弯强度350一400 MPa(高强型900 MPa),弹性模量310 GPa,热导率20-30W/m*K,热膨胀系数5.6x10(-6)K(-1)(25℃一400℃)。机械加工性和抗氧化性良好。 应用应用 1、氮化铝AlNF 系列粉末纯度高,粒径小,活性大,是制造高导热氮化铝陶瓷基片的主要原料。 2、氮化铝陶瓷基片,热导率高,膨胀系数低,强度高,耐高温,耐化学腐蚀,电阻率高,介电损耗小,是理想的大规模集成电路散热基板和封装材料。 3、氮化铝硬度高,超过传统氧化铝,是新型的耐磨陶瓷材料,可用于磨损严重的部位. 4、利用AIN 陶瓷耐热耐熔体侵蚀和热震性,可制作GaAs 晶体坩埚、Al 蒸发皿、磁流体发电装置及高温透平机耐蚀部件,利用其光学性能可作红外线窗口。氮化铝薄膜可制成高频压电元件、超大规模集成电路基片等。 5、氮化铝耐热、耐熔融金属的侵蚀,对酸稳定,但在碱性溶液中易被侵蚀。AIN 新生表面暴露在湿空气中会反应生成极薄的氧化膜。 利用此特性,可用作铝、铜、银、铅等金属熔炼的坩埚和烧铸模具材料。AIN 陶瓷的金属化性能较好,可替代有毒性的氧化敏瓷在电子工业中广泛应用。 典型典型产品产品产品:: 氮化铝粉ALNF 特点: 1. 高热导系数:320W/m*k 2. 高阻抗:体积电阻率 : > 1014 ?-cm

相关主题
文本预览
相关文档 最新文档