当前位置:文档之家› 运放七大应用电路设计

运放七大应用电路设计

运放七大应用电路设计
运放七大应用电路设计

运放七大应用电路设计

运放的基本分析方法:虚断,虚短。对于不熟悉的运放应用电路,就使用该基本分析方法。

运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。

1、运放在有源滤波中的应用

上图是典型的有源滤波电路(赛伦-凯 电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。

该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。其中电阻R280是防止输入悬空,会导致运放输出异常。

滤波最常用的3种二阶有源低通滤波电路为 巴特沃兹,单调下降,曲线平坦最平滑; [/*]

巴特沃兹低通滤波中 用的最多的是 赛伦凯乐电路,即仿真的该电路。

一个滤波器,要知道其截至频率是多少,或者能写出传递函数和频率响应也可以。

如果该滤波器还有放大功能,要知道该滤波器的增益是多少。

当两级RC电路的电阻、电容值相等时,叫赛伦凯电路,在二阶有源电路中引入一个负反馈,目的是使输出电压在高频率段迅速下降。

二阶有源低通滤波电路的通带放大倍数为 1+Rf/R1 ,与一阶低通滤波电路相同;

截止频率为

注明,m的单位为 欧姆, N 的单位为 u

所以计算得出 截止频率为

?切比雪夫 ,迅速衰减,但通带中有纹波;

?贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。

[/*]

2、运放在电压比较器中的应用

电压比较

上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。

该电路实际上是过零比较器和深度放大电路的结合。

将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。

该电路中还有一个关键器件的阻值要注意,那就是R275,R275决定了方波的上升速度。

3、恒流源电路的设计

如图所示,恒流原理分析过程如下:

U5B(上图中下边的运放)为电压跟随器,故V1=V4;

由运算放大器的虚短原理,对于运放U4A(上图中上边的运放)有:V3=V5;

有以上等式组合运算得:

当参考电压Vref固定为1.8V时,电阻R30为3.6,电流恒定输出0.5mA。

该恒流源电路可以设计出其他电流的恒流源,其基本思路就是:所有的电阻都需要采用高精度电阻,且阻值一致,用输入的参考电压(用专门的参考电压芯片)比上阻值,

就是获得的输出电流。

但在实际使用中,为了保护恒流源电路,一般会在输出端串一只二极管和一只电阻,这样做的好处第一是防止外界的干扰会进入恒流源电路,导致恒流源电路的损坏,二是可以防止外界负载短路时,不至于对恒流源电路造成损坏。

4、整流电路中的应用

整流电路

上述电路是一个整流电路,将输入的一定频率的脉冲整流成固定的电平电压,再用此电压控制4-20mA电流的输出电流。该电路功能类似一些DAC功能的接口。

5、热电阻测量电路

热电阻测量电路

上图的电路是典型的热电阻/电偶的测量电路,其测量思路为:将1-10mA的恒流源加于负载,将会在负载上产生一定的电压,将该电压进行有源滤波处理,处理后在进行信号的调整(信号放大或衰减),最后将信号送入ADC接口。

该电路应用时,要注意在输入端施加保护,可以并TVS,但要注意节电容对测量精度的影响,当然,如果在一些低成本场合,上述电路图可简化为下电路

热电阻测量简化电路

6、电压跟随器

在运放的使用中,电压跟随器是一种常见的应用,该电路的好处是:一是减小负载对信号源的影响;二是提高信号带负载的能力。

电压跟随器

上图是运用运放实现了电阻分压的功能,首先用电阻获得需要输出的电压,然后用运放对该电压进行跟随,提高其输出能力。

7、单电源的应用

在运放的实际使用,我们一般为了保持运放的频率特性,一般都采用双电源供电,但有的时候在实际使用,我们只有单电源的情况,也能实现运放的正常工作。

首先我们运用运放跟随电路,实现一个VCC/2的分压:

分压电路

当然,如果在要求不是很高的场合,我们可以直接电阻分压,获得+VCC/2,但由于电阻分压的特性所在,其动态的响应速度会非常慢,请谨慎使用。

获得+VCC/2后,我们可以用单电源实现信号放大功能,如下图:

单电源的应用

该电路中 R66=R67//R68, 信号的输出增益G=-R67/R68 。

具体应用如下图:运放为单+5V_AD供电,AD芯片的电压是3.3V(基准电压芯片REF3033得到),该3.3V再电阻分压和经过运放跟随后得到1.65V,给到运放的同相输入端

单电源差分输入并放大的应用附:运放的应用要点

运放电路PCB设计技巧

运放电路PCB设计技巧 虽然这里主要针对与高速运算放大器有关的电路,但是这里所讨论的问题和方法对用于大多数其它高速模拟电路的布线是普遍适用的。当运算放大器工作在很高的射频(RF)频段时,电路的性能很大程度上取决于PCB布线。“图纸”上看起来很好的高性能电路设计,如果由于布线时粗心马虎受到影响,最后只能得到普通的性能。在整个布线过程中预先考虑并注意重要的细节会有助于确保预期的电路性能。 原理图 尽管优良的原理图不能保证好的布线,但是好的布线开始于优良的原理图。在绘制原理图时要深思熟虑,并且必须考虑整个电路的信号流向。如果在原理图中从左到右具有正常稳定的信号流,那么在PCB上也应具有同样好的信号流。在原理图上尽可能多给出有用的信息。因为有时候电路设计工程师不在,客户会要求我们帮助解决电路的问题,从事此工作的设计师、技术员和工程师都会非常感激,也包括我们。 除了普通的参考标识符、功耗和误差容限外,原理图中还应该给出哪些信息呢?下面给出一些建议,可以将普通的原理图变成一流的原理图。加入波形、有关外壳的机械信息、印制线长度、空白区;标明哪些元件需要置于PCB上面;给出调整信息、元件取值范围、散热信息、控制阻抗印制线、注释、扼要的电路动作描述……(以及其它)。 谁都别信 如果不是你自己设计布线,一定要留出充裕的时间仔细检查布线人的设计。在这点上很小的预防抵得上一百倍的补救。不要指望布线的人能理解你的想法。在布线设计过程的初期你的意见和指导是最重要的。你能提供的信息越多,并且整个布线过程中你介入的越多,结果得到的PCB就会越好。给布线设计工程师设置一个暂定的完成点——按照你想要的布线进展报告快速检查。这种“闭合环路”方法可以防止布线误入歧途,从而将返工的可能性降至最低。

集成运放电路的设计

一设计目的 1.集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负反 馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面,可组成比例、加法、减法、积分、微分等模拟运算电路。 2.本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输入 不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并利用Protel软件对实现对积累运算放大电路的设计,并最终实现PCB版图形式。二设计工具:计算机,Mulitisim,Protel软件 三设计任务及步骤要求 1)通过Mulitisim编写程序运算放大电路仿真程序,通过输入不同类型与 幅度的波形信号,测量输出波形信号对电路进行验证。输入电压波形可以任意选取,并且可对输入波形的运算进行实时显示,并进行比较; 2)对设计完成的运算放大电路功能验证无误后,通过Protel软件对首先对电 路进行原理图SCH设计,要求:所有运算放大电路在一张原理图上; 输入输出信号需预留接口; 3)设计完成原理图SCH后,利用Protel软件设计完成印制板图PCB,要求:至 少为双层PCB板; 四设计内容 1集成运算放大器放大电路概述

集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 2集成运放芯片的选取和介绍 由于LM324具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,而本次电子设计实验对精度要求不是非常高,LM324完全满足要求,因此我们这里选用LM 324作为运放元件 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图。 3运放电路基本原理及其Mulitisim仿真 3.1.同相比例运放电路

集成运放组成的运算电路 习题解答

第7章 集成运放组成的运算电路 本章教学基本要求 本章介绍了集成运放的比例、加减、积分、微分、对数、指数和乘法等模拟运算电路及其应用电路以及集成运放在实际应用中的几个问题。表为本章的教学基本要求。 表 第7章教学内容与要求 学完本章后应能运用虚短和虚断概念分析各种运算电路,掌握比例、求和、积分电路的工作原理和输出与输入的函数关系,理解微分电路、对数运算电路、模拟乘法器的工作原理和输出与输入的函数关系,并能根据需要合理选择上述有关电路。 本章主要知识点 1. 集成运放线性应用和非线性应用的特点 由于实际集成运放与理想集成运放比较接近,因此在分析、计算应用电路时,用理想集成运放代替实际集成运放所带来的误差并不严重,在一般工程计算中是允许的。本章中凡未特别说明,均将集成运放视为理想集成运放。 集成运放的应用划分为两大类:线性应用和非线性应用。 (1) 线性应用及其特点 集成运放工作在线性区必须引入深度负反馈或是兼有正反馈而以负反馈为主,此时其输出量与净输入量成线性关系,但是整个应用电路的输出和输入也可能是非线性关系。 集成运放工作在线性区时,它的输出信号o U 和输入信号(同相输入端+U 和反相输入端-U 之差)满足式(7-1) )(od o -+-=U U A U (7-1) 在理想情况下,集成运放工作于线性区满足虚短和虚断。虚短:是指运放两个输入端之间的电压几乎等于零;虚断:是指运放两个输入端的电流几乎等于零。即 虚短:0≈-+-U U 或 +-≈U U 虚断:0≈=+-I I

(2) 非线性应用及其特点 非线性应用中集成运放工作在非线性区,电路为开环或正反馈状态,集成运放的输出量与净输入量成非线性关系)(od o +--≠U U A U 。输入端有很微小的变化量时,输出电压为正饱和电压或负饱和电压值(饱和电压接近正、负电源电压),+-=U U 为两种状态的转折点。即 当+->U U 时,OL o U U = 当+-

电流反馈运放电路设计

电流反馈运放电路设计 电流反馈放大器不受基本增益带宽积的限制,随着信号幅度的增加,带宽的损失非常小。因为可以在最小失真的条件下对大信号进行调节,这些放大器在非常高的频率下通常都具有优异的线性度。而电压反馈放大器的带宽随着增益的增加降低,电流反馈放大器在很宽的增益范围上维持其大部分带宽不变。 正因为如此,准确地说,电流反馈运放没有增益带宽积的限制。当然,电流反馈运放也不是无限快,其压摆率(Slew Rate)不受内部偏置电流的限制,但受三极管本身的速度限制。对给定的偏置电流,这就容许不用通常可能影响稳定性的正反馈或其方法来获得较大的压摆率。 那么如何构建这些电路呢?电流反馈运放具有一个与差分对相对的输入缓冲器,该输入缓冲器大多数情况下常常是射极跟随器或其它非常类似的电路。正相输入端具有高阻抗,而缓冲器的输出,即放大器的反相输入具有低阻抗。相比之下,电压反馈放大器的输入都是高阻。 电流反馈运放的输出是电压,并且它与流出或流入运放的反相输入端的电流有关,这由称为互阻抗(transimpedance)的复杂函数Z(s)来表示(图1)。在直流时,互阻抗是一个非常大的数,并且像电压反馈运放一样,它随着频率的增加具有单极点滚降特性。 电流反馈运放灵活性的关键之一是具有可调节的带宽和可调节的稳定性。因为反馈电阻的数值实际上改变放大器的交流环路的动态特性,所以能够影响带宽和稳定性两个方面。加之具有非常高的压摆率和基于反馈电阻的可调节带宽,你可以获得与器件的小信号带宽非常接近的大信号带宽。在甚至更好的情况下,该带宽在很宽的增益范围内大部分都维持不变。而因为具有固有的线性度,你也可以在高频大信号时获得较低的失真。 如何发现最佳的反馈电阻R F 由于放大器的交流特性部分地取决于反馈电阻,这就让我们能够针对每一个特定的应用“量身定制”放大器。降低反馈电阻的数值将提升环路增益。为了保持稳定性和最大的带宽,在低增益时,反馈电阻要设置为较高的数值;随着增益的上升,环路增益自然降低。如果需要高的增益,可以利用较小的反馈电阻来部分地恢复环路增益。 图1:具有Z(s)和反馈电阻的电路示意图

运放的应用实例和设计指南

1.1 运放的典型设计和应用 1.1.1 运放的典型应用 运放的基本分析方法:虚断,虚短。对于不熟悉的运放应用电路,就使用该基本分析方法。 运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。 1) 运放在有源滤波中的应用 图5.2 有源滤波 上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。 该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。 其中电阻R280是防止输入悬空,会导致运放输出异常。 滤波最常用的3种二阶有源低通滤波电路为 巴特沃兹,单调下降,曲线平坦最平滑; 切比雪夫,迅速衰减,但通带中有纹波; 贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。 二阶有源低通滤波 电路的画法和截止频率 2) 运放在电压比较器中的应用

图5.3 电压比较 上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。 该电路实际上是过零比较器和深度放大电路的结合。 将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。 该电路中还有一个关键器件的阻值要注意,那就是R275,R275决定了方波的上升速度。 3) 恒流源电路的设计 如图所示,恒流原理分析过程如下: U5B (上图中下边的运放)为电压跟随器,故V4 V1=; 由运算放大器的虚短原理,对于运放U4A (上图中上边的运放)有: V5 V3=; 而 () 421 2020 V4-Vref V5V R R R ++? =; ()019 1819 0-V2 V3++?=R R R ; 有以上等式组合运算得:Vref V1 V2=- 当参考电压Vref 固定为1.8V 时,电阻R30为3.6Ωk ,电流恒定输出0.5mA 。 该恒流源电路可以设计出其他电流的恒流源,其基本思路就是:所有的电阻都需要采用高精度电阻,且阻值一致,用输入的参考电压(用专门的参考电压芯片)比上阻值,就是获得的输出电流。 但在实际使用中,为了保护恒流源电路,一般会在输出端串一只二极管和一只电阻,这样做的好处第一是防止外界的干扰会进入恒流源电路,导致恒流源电路的损坏,二是可以防止外界负载短路时,不至于对恒流源电路造成损坏。

集成运算放大器及其应用

第九章集成运算放大器及其应用(易映萍) 9.1 差分放大电路 9.2互补功率放大电路 9.3 集成运算放大电路 9.4 理想集成运放的线性运用电路 9.5 理想集成运放的非线性运用电路 习题 第九章集成运算放大器及其应用 9.1 差分放大电路 9.1.1 直接耦合多级放大电路的零点漂移现象 工业控制中的很多物理量均为模拟量,如温度、流量、压力、液面和长度等,它们通过不同的传感器转化成的电量也均为变化缓慢的非周期性连续信号,这些信号具有以下两个特点: 1.信号比较微弱,只有通过多级放大才能驱动负载; 2.信号变化缓慢,一般采用直接耦合多级放大电路将其放大。 u=0)时,人们在试验中发现,在直接耦合的多级放大电路中,即使将输入端短路(即 i u≠0),这种现象称为零点漂移(简称为零漂),如图输出端还会产生缓慢变化的电压(即 o 9.1所示。 (a)测试电路(b)输出电压u o的漂移 图9.1 零点漂移现象 9.1.2 零漂产生的主要原因 在放大电路中,任何参数的变化,如电源电压的波动、元件的老化以及半导体元器件参数随温度变化而产生的变化,都将产生输出电压的漂移,在阻容耦合放大电路中,耦合电容对这种缓慢变化的漂移电压相当于开路,所以漂移电压将不会传递到下一级电路进一步放

大。但是,在直接耦合的多级放大电路中,前一级产生的漂移电压会和有用的信号(即要求放大的输入信号)一起被送到下一级进一步放大,当漂移电压的大小可以和有用信号相当时,在负载上就无法分辨是有效信号电压还是漂移电压,严重时漂移电压甚至把有效信号电压淹没了,使放大电路无法正常工作。 采用高质量的稳压电源和使用经过老化实验的元件就可以大大减小由此而产生的漂移,所以由温度变化所引起的半导体器件参数的变化是产生零点漂移现象的主要原因,因而也称零点漂移为温度漂移,简称温漂,从某种意义上讲零点漂移就是静态工作点Q点随温度的漂移。 9.1.3抑制温漂的方法 对于直接耦合多级放大电路,如果不采取措施来抑制温度漂移,其它方面的性能再优良,也不能成为实用电路。抑制温漂的方法主要由以下几种: (1)采用稳定静态工作的分压式偏置放大电路中Re的负反馈作用; (2)采用温度补偿的方法,利用热敏元件来抵消放大管的变化; (3)采用特性完全相同的三极管构成“差分放大电路”; 9.1.4 差分放大电路 差分放大电路是构成多级直接耦合放大电路的基本单元电路。直接耦合的多级放大电路的组成框图如图9.2所示。 图9.2 多级放大的组成框图 A倍后传送到负载上,对电路造从上图可知输入级一旦产生了温漂,会经中间级放大 u2 A≈1,对电路造成的成严重的影响,而中间级产生的温漂,由于直接到达功放级而功放的 u 影响跟输入级相比少得多,所以,我们主要应设法抑制输入级产生的温漂,故在直接耦合的多级放大电路中只有输入级常采用差分放大电路的形式来抑制温漂。 9.1.4.1 差分放大电路的组成及结构特点 一.电路组成 差分放大电路如图9.3所示。

基本运算放大器电路设计

基本运算放大器电路设计

————————————————————————————————作者:————————————————————————————————日期:

武汉理工大学 开放性实验报告 (A类) 项目名称:基本运算放大器电路设计实验室名称:创新实验室 学生姓名:**

创新实验项目报告书 实验名称基本运算放大器电路设计日期2018.1.14 姓名** 专业电子信息工程 一、实验目的(详细指明输入输出) 1、采用LM324集成运放完成反相放大器与加法器设计 2、电源为单5V供电,输入输出阻抗均为50Ω,测试负载为50Ω输出误差 不大于5% 3、输入正弦信号峰峰值V1≤50mV,V2=1V,输出为-10V1+V2. 二、实验原理(详细写出理论计算、理论电路分析过程)(不超过1页) 通过使用LM324来设计反相放大器和加法器,因为每一个芯片内都有4个运放,所以我们就是使用其内部的运放来连接成运算放大器电路。 我们采用两个芯片串联的方式进行芯片的级联。对于反相放大器,输出电压Vo=-Rf/R1*Vi;对于同相加法器,Vo=(Rf/R1*Vi1+Rf/R2*Vi2)。 由于对该运放使用单电源5V供电,故需要对整个电路的共地端进行 2.5V 的直流偏置。为实现2.5V的共地端,在这里采用了电压跟随器的运放模型。2.5V 的分压点用两个相同100k的电阻进行分压,并根据经验选取了一个10uF的极性电容并联在2.5V分压点处,起滤除电源噪声的作用。最终由电压跟随器输出端作为后面电路的共地端。同样为使反相放大器能够放大10倍,有-Rf/R1=-10,即Rf=10R1,可取R1=10kΩ,Rf=100kΩ,则R2=R1//Rf。对于加法器,有R1=R2=Rf,均取为100kΩ,则R=100kΩ。

专用集成电路

实验一 EDA软件实验 一、实验目的: 1、掌握Xilinx ISE 9.2的VHDL输入方法、原理图文件输入和元件库的调用方法。 2、掌握Xilinx ISE 9.2软件元件的生成方法和调用方法、编译、功能仿真和时序仿真。 3、掌握Xilinx ISE 9.2原理图设计、管脚分配、综合与实现、数据流下载方法。 二、实验器材: 计算机、Quartus II软件或xilinx ISE 三、实验内容: 1、本实验以三线八线译码器(LS74138)为例,在Xilinx ISE 9.2软件平台上完成设计电 路的VHDL文本输入、语法检查、编译、仿真、管脚分配和编程下载等操作。下载芯片选择Xilinx公司的CoolRunner II系列XC2C256-7PQ208作为目标仿真芯片。 2、用1中所设计的的三线八线译码器(LS74138)生成一个LS74138元件,在Xilinx ISE 9.2软件原理图设计平台上完成LS74138元件的调用,用原理图的方法设计三线八线译 码器(LS74138),实现编译,仿真,管脚分配和编程下载等操作。 四、实验步骤: 1、三线八线译码器(LS 74138)VHDL电路设计 (1)三线八线译码器(LS74138)的VHDL源程序的输入 打开Xilinx ISE 6.2编程环境软件Project Navigator,执行“file”菜单中的【New Project】命令,为三线八线译码器(LS74138)建立设计项目。项目名称【Project Name】为“Shiyan”,工程建立路径为“C:\Xilinx\bin\Shiyan1”,其中“顶层模块类型(Top-Level Module Type)”为硬件描述语言(HDL),如图1所示。 图1 点击【下一步】,弹出【Select the Device and Design Flow for the Project】对话框,在该对话框内进行硬件芯片选择与工程设计工具配置过程。

运算放大器设计

运算放大器设计 电子竞赛初赛设计方案姓名:刘俊贤学号:班级: 2019301951 08031301 实验一:用集成运放设计一个能实现V0=-(4Vi1+3Vi2+2Vi3) 的加法电路 一.实验要求 用集成运放设计一个能实现V0=-(4Vi1+3Vi2+2Vi3)的加法电路。设计步骤: (1)根据已知条件,确定电路方案,计算并选取各电路元件参数; (2)在输出波形不失真的情况下,测量输入、输出波形的幅度,使之满足设计要求 二.实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大器件。当外界接入线性或非线性元器件组成输入和负反馈电路时,可以灵活实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 在大多数情况下,将运放看成是理想的,有以下三条基本结论: (1)开环电压增益Av=∞。 (2)运算放大器的两个输入端电压近似相等,即V+ = V-,成为虚短。(3)运算放大器同相和反相两个输入端电流可视为0,成为虚断。 三.实验分析设计 题目要求设计能实现 V0=-(4Vi1+3Vi2+2Vi3) U0Ui .. 的加法电路,分析得: (1)输出与输入反相,则采用反相加法运算电路。(2)由基本反相比例放大器的增益公式Auf= =- RfR1

可进一步推出反相加法 运算公式u=-(Rfu+Rfu+Rfu),则Rf=4 Rf=3 Rf=2,所以设计 0i1i2i3 R1R2R3R1R2R3 Rf=120kΩ,R1=30kΩ,R2=40kΩ,R3=60kΩ (3)Vi1=100mV,Vi2=200mV,Vi3=300mV,三者频率都为1kHz的正弦信号,使输出波形不失真,观察并记录结果。反相加法运算电路如下图所示: 四、仿真结果 理论计算(峰值): u0=-(4*100+3*200+2*300)=1600mV 实验测得(峰值): ' u0=1.590V ' u0≈u0 所以该设计较合理。 实验二 RC文氏桥振荡器输出正弦波 一、实验要求 根据文氏电桥振荡电路原理,设计一个正弦波发生器电路。设计任务: (1) 输出正弦波的振荡频率为1KHZ; (2) 振荡频率的测量值与理论值的相对误差 二、实验原理 文氏电桥振荡电路又称RC串并联网络正弦波振荡电路,它是一种较好的正弦波产生电路,适用于频率小于1MHz,频率范围宽,波形较好的低频振荡信号。 从结构上看,正弦波振荡器是没有输入信号的,为了产生正弦波,必须在放大电路中加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。但是,这样两部分构

专用集成电路AD的设计

A/D转换器的设计 一.实验目的: (1)设计一个简单的LDO稳压电路 (2)掌握Cadence ic平台下进行ASIC设计的步骤; (3)了解专用集成电路及其发展,掌握其设计流程; 二.A/D转换器的原理: A/D转换器是用来通过一定的电路将模拟量转变为数字量。 模拟量可以是电压、电流等电信号,也可以是压力、温度、湿度、位移、声音等非电信号。但在A/D转换前,输入到A/D转换器的输入信号必须经各种传感器把各种物理量转换成电压信号。符号框图如下: 数字输出量 常用的几种A/D器为; (1):逐次比较型 逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB 开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。 (2): 积分型 积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。 (3):并行比较型/串并行比较型

并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。 串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级型AD,而从转换时序角度又可称为流水线型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。 一.A/D转换器的技术指标: (1)分辨率,指数字量的变化,一个最小量时模拟信号的变化量,定义为满刻度与2^n的比值。分辨率又称精度,通常以数字信号的位数来表示。 (2)转换速率,是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级,属中速AD,全并行/串并行型AD可达到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为了保证转换的正确完成,采样速率必须小于或等于转换速率。因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。常用单位ksps 和Msps,表示每秒采样千/百万次。 (3)量化误差,由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。通常是1 个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。(4)偏移误差,输入信号为零时输出信号不为零的值,可外接电位器调至最小。(5)满刻度误差,满度输出时对应的输入信号与理想输入信号值之差。 (6)线性度,实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。 三、实验步骤 此次实验的A/D转换器用的为逐次比较型,原理图如下:

双电源运放电路设计

使用双电源的运放交流放大电路 为了使运放在零输入时零输出,运放的内部电路是按使用双电源的要求来设计的。运放交流放大电路采用 双电源供电,可以增大动态范围。 1.1.1 双电源同相输入式交流放大电路 图1是使用双电源的同相输入式交流放大电路。两组电源电压VCC和VEE相等。C1和C2为输入和输出耦合电容;R1使运放同相输入端形成直流通路,内部的差分管得到必要的输入偏置电流;RF引入直流和交流负反馈,并使集成运放反相输入端形成直流通路,内部的差分管得到必要的输入偏置电流;由于C隔直流,使直流形成全反馈,交流通过R和C分流,形成交流部分反馈,为电压串联负反馈。引入直流全反馈和交流部分反馈后,可在交流电压增益较大时,仍能够使直流电压增益很小(为1倍),从而避免输入失 调电流造成运放的饱和。 无信号输入时,运放输出端的电压V0≈0V,交流放大电路的输出电压U0=0V;交流信号输入时,运放输出端的电压V0在-VEE~+VCC之间变化,通过C2输出放大的交流信号,输出电压uo的幅值近似为VCC(V CC=VEE)。引入深度电压串联负反馈后,放大电路的电压增益为放大电路输入电阻Ri=R1//γif。γif是运放引入串联负反馈后的闭环输入电阻。γif很大,所以Ri=R1/γif≈R1;放大电路的输出电阻R0=γof≈0,γof是运放引入电压负反馈后的闭环输出电阻,rof很小。 1.1.2 双电源反相输入式交流放大电路 图2是使用双电源的反相输入式交流放大电路。两组电源电压VCC和VEE相等。RF引入直流和交流负反馈,C1隔直流,使直流形成全反馈,交流通过R和C1分流,形成交流部分反馈,为电压并联负反馈。为了减小运放输入偏置电流造成的零点漂移,可以选择R1=RF。引入深度电压并联负反馈后,放大电路的电 压增益为因为运放反相输入端"虚地",所以放大电路的输入电阻Ri≈R;放大电 路的输出电R0=r0f≈0。

集成运放基本应用之一—模拟运算电路

集成运放基本应用之一—模拟运算电路

————————————————————————————————作者:————————————————————————————————日期:

实验十二集成运放基本应用之一——模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 // R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U -=

集成运算放大器电路分析及应用(完整电子教案)

集成运算放大器电路分析及应用(完整电子教案) 3.1 集成运算放大器认识与基本应用 在太阳能充放电保护电路中要利用集成运算放大器LM317 实现电路电压检测,并通过 三极管开关电路实现电路的控制。首先来看下集成运算放大器的工作原理。 【项目任务】 测试如下图所示,分别测量该电路的输出情况,并分析电压放大倍数。 信息单】 集成运放的实物如图3.2 所示。 图3.2 集成运算放大 1. 集成运放的组成及其符号 各种集成运算放大器的基本结构相似,主要都是由输入级、中间级和输出级以及偏置电路组成,如图3.3 所示。输入级一般由可以抑制零点漂移的差动放大电路组成;中间级的作用是获得较大的电压放大倍数,可以由共射极电路承担;输出级要求有较强的带负载能力,一般采用射极跟随器;偏置电路的作用是为各级电路供给合理的偏置电流。

图3.3 集成运算放大电路的结构组成集成运放的图形和文字符号如图3.4 所示。 图3.4 集成运放的图形和文字符号 其中“ -”称为反相输入端,即当信号在该端进入时,输出相位与输入相位相反;而 “+”称为同相输入端,输出相位与输入信号相位相同。 2. 集成运放的基本技术指标集成运放的基本技术指标如下。 ⑴输入失调电压U OS 实际的集成运放难以做到差动输入级完全对称,当输入电压为零时,输出电压并不为零。规定在室温(25℃ )及标准电源电压下,为了使输出电压为零,需在集成运放的两输入端额外附加补偿电压,称之为输入失调电压U OS,U OS 越小越好,一般约为0.5~5mV 。 ⑵开环差模电压放大倍数A od 集成运放在开环时(无外加反馈时),输出电压与输入差模信号的电压之比称为开环差模电压放大倍数A od。它是决定运放运算精度的重要因素,常用分贝(dB) 表示,目前最高值可 达140dB(即开环电压放大倍数达107)。 ⑶共模抑制比K CMRR K CMRR 是差模电压放大倍数与共模电压放大倍数之比,即K CMRR = A A od,其含义与差 动放大器中所定义的K CMRR 相同,高质量的运放K CMRR 可达160dB 。 ⑷差模输入电阻r id r id 是集成运放在开环时输入电压变化量与由它引起的输入电流的变化量之比,即从输入端看进去的动态电阻,一般为M Ω数量级,以场效应晶体管为输入级的r id 可达104M Ω。分析集成运放应用电路时,把集成运放看成理想运算放大器可以使分析简化。实际集成运放绝大部分接近理想运放。对于理想运放,A od、K CMRR 、r id 均趋于无穷大。 ⑸开环输出电阻r o r o 是集成运放开环时从输出端向里看进去的等效电阻。其值越小,说明运放的带负载能 力越强。理想集成运放r o趋于零。 其他参数包括输入失调电流I OS、输入偏置电流I B、输入失调电压温漂d UOS/d T 和输入失 调电流温漂d IOS/ d T、最大共模输入电压U Icmax、最大差模输入电压U Idmax 等,可通过器件

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告 一、实验目的 1. 了解运算放大器的特性和基本运算电路的组成; 2. 掌握运算电路的参数计算和性能测试方法。 二、实验仪器及器件 1 .数字示波器; 2. 直流稳压电源; 3. 函数信号发生器; 4. 数字电路实验箱或实验电路板; 5. 数字万用表; 6. 集成电路芯片UA741 2块、电容个,各个阻值的电阻若干个。 三、实验内容 1、在面包板上搭接卩A741的电路。首先将+12V和-12V直流电压正确接入卩A741的Vcc+(7脚)和Vcc- (4脚)。 2、用卩A741组成反比例放大电路,放大倍数自定,用示波器观察输入和输出波形,测量放大器的电压放大倍数。 3、用卩A741组成积分电路,用示波器观察输入和输出波形,并做好记录。 四、实验原理 (1)集成运放简介 集成电路运算放大器(简称集成运放或运放)是一个集成的高

增益直接耦合放大器,通过外接反馈网络可构成 各种运算放大电路和 其它应用电路。集成运放uA741 的 引脚图下图所示 uA741电路符号及引脚图 任何一个集成运放都有两个输入端,一个输出端以及正、负电源端,有的品种还有补偿端和调零端等。 (a)电源端:通常由正、负双电源供电,典型电源电压为土15V、±12V等。如:uA741的7脚和4脚。 (b)输出端:只有一个输出端。在输出端和地(正、负电源公共端) 之间获得输出电压。如:uA741的6脚。最大输出电压受运放所接电源的电压大小限制,一般比电源电压低1?2V;输出电压的正负也受电源极性的限制;在允许输出电流条件下,负载变化时输出电压几乎不变。这表明集成运放的输出电阻很小,带负载能力较强。 (c)输入端:分别为同相输入端和反相输入端。如:uA741的3脚和2脚。输入端有两个参数需要注意:最大差模输入电压V id max和最大共模输入电压V ic max 。 两输入端电位差称为“差模输入电压” V id :V id V V 。两输入端电 位的平均值,称为“共模输入电压”V ic : 任何一个集成运放,允许承受的V d max和V c max都有一定限制。两输入端的输入电流i + 和i - 很小,通常小于1?A ,所以集成运放的输入电阻很大。 (2)集成运放的主要参数

运算放大器基本电路——11个经典电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB 以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。

集成运放电路的应用分析

摘要集成运算放大电路简称集成运放电路,其属直接耦合的多级放大电路的一种。它通过对半导体集成工艺的运用来实现电路与电路系统以及元件三结合。因其使用的集成工艺可使相邻元器件间的参数保持较高的一致性,且其采用多晶体管复杂电路,使得性能极为优越。集成运算电路型号较为复杂,但所有型号中,通用型集成运放应用最为广泛。其内部电路可大致分为差分输入级、中间级与互补输出级,且各级之间均带有不同的电流源电路。本文主要对集成运放电路的特点、分析及应用进行了初步分析,为集成运放电路的更为广泛的应用提供参考。 【关键词】集成运放电路线性应用非线性应用 运算放大器又称运放,其英文缩写为op amp,其最初应用于模拟计算机对模拟信号进行加减法、微积分等数学运算,并因此得名。自其1963年问世已经历了整整三代的升级,其第四代产品,即集成运放通过对中、大规模集成技术加以利用,将之前极为复杂的分立元件电路部件集成在一片极小的芯片上。第四代产品设计调试更为简便,且性能更为稳定可靠,通用性极强,性价比较之于前三代也更高,且灵活性更大。继承运放是包含两个输入端、高输入阻抗和一个输出端的高增益的电压放大器。我们在它的输入端与输出端之间加上一个反馈网络,则可成功实现各种电路功能。在当前的模拟电路中,除去大功率及高频等较特殊的场合外,集成运放电路已基本取代分立元件电路。运算放大器可顺利实现放大其、比较器、缓冲器、电平转换器、积分器、有源滤波器以及峰值检波器等多种电路功能,并且其应用范围已由最初的计算机延伸至电子、汽车、通信以及消费娱乐等诸多产品和各个领域。目前,基本上各个大型半导体制造商所制造的产品线中均应用了运算放大器。而且随着集成技术的不断发展,其应用也从最初的信号运算延伸至对信号的处理、产生及变换等。集成运放的应用可大致分为线性与非线性应用两大类型,对于电子技术人员来说,对运放电路进行正确判断极为重要,因而对其进行准确的分析则显得十分重要。 1 集成运放应用及其判断方法 集成运放因其较强的通用性,目前已广泛应用于对信号进行处理、运算以及测量等诸多方面。集成运放电路具有多种不同型号,且不同型号之间其相应的内部线路也不相同,但各型号间电路总体机构极为相似,均是由输入级、输出级、中间放大级与偏置电路这四部分所构成,集成运放应用已发展为目前模拟电子技术中极为重要的一项内容,因而其相关应用也引起人们日渐重视。根据其相关属性可将集成运放电路分为线性与非线性应用两大类型,对某一运放电路及时作出准确判断极为重要。集成运放电路不同功能的实现必须通过对其的分析中得出,而通常情况下我们对电路类型的分析则是根据该电路工作的不同区域特点加以判断。若对电路运放所属应用类型无法准确判断,则难以利用其相应的应用特点来对其电路功能进行确定。 集成运放电路其内部的多级放大电路可将其分为输入级、中间级、输出级与偏置电路四大基本部分(见图1)。 1.1 集成运放线性应用电路 1.1.1 判断方法 集成运放电路线性应用最为重要的特征为其电路中存在负反馈,即是说在其相应的单元运放输出端与其反相输入端间跨接负反馈网络,只要该电路中存在负反馈网络,该集成运放则属于线性应用,该应用工作区域在线性区域。 1.1.2 理想集成运放线性区的特点 一旦集成运放电路与深度电压负反馈进行外接后,该电路集成运算放大器即可处于理想的线性工作范围内,而此时该电路输出的电压vo及输入电压va两者间运算关系则取决于输入端阻抗与外接负反馈网络间的连接方式,而与该运放本身完全无关。如此我们则可充分利

专用集成电路设计

专用集成电路课程设计 简易电子琴 通信工程学院 011051班 侯珂

01105023 目录 1 引言 (1) 1.1设计的目的 (1) 1.2设计的基本内容 (2) 2 EDA、VHDL简介 (2) 2.1EDA技术 (2) 2.2硬件描述语言——VHDL (3) 2.2.1 VHDL的简介 (3) 2.2.2 VHDL语言的特点 (3) 2.2.3 VHDL的设计流程 (4) 3 简易电子琴设计过程 (5) 3.1简易电子琴的工作原理 (5) 3.2简易电子琴的工作流程图 (5) 3.3简易电子琴中各模块的设计 (6) 3.3.1 乐曲自动演奏模块 (7) 3.3.2 音调发生模块 (8) 3.3.3 数控分频模块 (9)

3.3.4 顶层设计 (10) 4 系统仿真 (12) 5 结束语 (14) 收获和体会.................................................................................................. 错误!未定义书签。参考文献 .. (15) 附录 (16)

1 引言 我们生活在一个信息时代,各种电子产品层出不穷,作为一个计算机专业的学生,了解这些电子产品的基本组成和设计原理是十分必要的,我们学习的是计算机组成的理论知识,而课程设计正是对我们学习的理论的实践与巩固。本设计主要介绍的是一个用超高速硬件描述语言VHDL设计的一个具有若干功能的简易电子琴,其理论基础来源于计算机组成原理的时钟分频器。 摘要本系统是采用EDA技术设计的一个简易的八音符电子琴,该系统基于计算机中时钟分频器的原理,采用自顶向下的设计方法来实现,它可以通过按键输入来控制音响。系统由乐曲自动演奏模块、音调发生模块和数控分频模块三个部分组成。系统实现是用硬件描述语言VHDL按模块化方式进行设计,然后进行编程、时序仿真、整合。本系统功能比较齐全,有一定的使用价值。 关键字电子琴、EDA、VHDL、音调发生 1.1 设计的目的 本次设计的目的就是在掌握计算机组成原理理论的基础上,了解EDA技术,掌握VHDL硬件描述语言的设计方法和思想,通过学习的VHDL语言结合电子电路的设计知识理论联系实际,掌握所学的课程知识,例如本课程设计就是基于所学的计算机原理中的时钟分频器和定时器的基础之上的,通过本课程设计,达到巩固和综合运用计算机原理中的知识,理论联系实际,巩固所学理论知识,并且提高自己通过所学理论分析、解决计算机实际问题的能力。

相关主题
文本预览