当前位置:文档之家› 100G以太网技术和应用

100G以太网技术和应用

100G以太网技术和应用
100G以太网技术和应用

100G以太网技术和应用

100G Ethernet Technologies and Applications

2009-09-25

作者:张远望

摘要:急速增加的带宽需求驱动100G以太网尽快地投入应用,支撑100G以太网接口的关键技术,主要包含物理层通道汇聚技术、多光纤通道及波分复用(WDM)技术。接口部分的高速光器件关键技术需要突破,接口速率提高带来的高带宽需求对包处理和存储、系统交换、背板技术等都提出了新要求。另外,网络需要解

决新接口的传输问题,包括新接口传输标准定义和传输技术解决。就目前的成本和需求来看,100G以太网的商用在城域网先行是比较可行的方案。

关键字:100G以太网;IEEE802.3ba;100GE传输

英文摘要:The rapidly increasing requirement of bandwidth drives the 100G Ethernet into use as quickly as possible. The key technologies supporting 100G Ethernet interface include the physical layer channel convergence technology, multi-fiber channel and Wavelength Division Multiplexing (WDM) technology. The high speed fiber device needs to be resolved, and the higher bandwidth requirements by higher interface speed demands more packet processing and storage, system switching, and the backplane design. Besides, the network needs to solve the issue of the transport for the new interface, including defining new transport standard and resolving the key transport technologies. Considering current cost and requirements, the commercial service of 100 Gbit/s Ethernet is viable in metropolitan area network.

英文关键字:100G Ethernet;IEEE802.3ba;100GE transport

推动以太网接口速率升级到100 Gbit/s的根本需求是带宽增加,其中最主要的因素就是视频等带宽密集应用,另外以太网的电信化应用也导致汇聚带宽需求增速加剧。从以太网用户接入、企业到主干在内的

每一级网络都在逼近着其当前的速度极限。

推广100G以太网应用的前提是相关标准的制定。100 Gbit/s以太网接口对应的标准是IEEE802.3ba[1],目前处于草案2.1阶段[2],标准已经确定了各种接口介质、速率和物理编码子层(PCS)、媒体接入控制(MAC)层架构定义。标准在2009年7月会议后停止所有技术变更,2009年11月标准会议将产生草案3.0,预计

于2010年6月前发布。此外,和100GE相关的标准组织还包括国际电信联盟远程通信标准组(ITU-T)和光

互联论坛(OIF),其关注的侧重点不同,ITU-T主要制定100G传输光转换单元(OTU)帧结构和编码、容错技术;OIF主要研究物理层高速通道规范、定义电接口标准。

以太网升级到100 Gbit/s接口离不开关键技术支撑,关键技术的成熟和商用化也都还需要时间。从芯片、系统、网络各个层面包括标准研究都还需要技术突破和时间。

1 100 G以太网技术及标准

支撑100G以太网接口的关键技术,主要包含物理层(PHY)通道汇聚技术、多光纤通道及波分复用(WDM)技术。物理介质相关(PMD)子层满足100 Gbti/s速率带宽,新的芯片技术支持到40 nm工艺,这些提供了

开发下一代高速接口的可能。对应于接口部分,光纤接口PMD的并行多模接口存在着封装密度大和功耗问

题需要解决,单模4×25 Gbit/s的WDM接口存在25 Gbit/s串行并行转换电路(SERDES)技术和非冷却光器

件的技术需要突破;对应于系统部分,接口速率提高带来的高带宽给包处理、存储,系统交换,背板技术都提出了新的门槛;对应于网络,需要解决新接口的传输问题,不光需要定义新的OTU帧结构,对于如此超高速传输,需要解决电子线路极限情况下的信号处理、光信号的调制、物理编码、色散补偿、非线性处理、与FE/GE/10GE帧结构和PHY内各子层的兼容性和一致性问题等,还需要使100G传输特性能够满足现有10G传输网的相关特性,否则带来的网络重建必将影响新技术的推进。

下一代以太网技术标准包含了40 Gbit/s和100 Gbit/s两种速度,主要针对服务器和网络方面不同的需求。40 Gbit/s主要针对计算应用,而100 Gbit/s则主要针对核心和汇接应用。提供两种速度,IEEE意在保证以太网能够更高效更经济地满足不同应用的需要,进一步推动基于以太网技术的网络会聚。标准规定了物理编码子层(PCS)、物理介质接入(PMA)子层、物理介质相关(PMD)子层、转发错误纠正(FEC)各模块及连接接口总线,MAC、PHY间的片间总线使用XLAUI(40 Gbit/s)、CAUI(100 Gbit/s),片内总线用XLGMII(40 Gbit/s)、CGMII(100 Gbit/s),各种介质的架构如图1所示[3]。

标准仅支持全双工操作,保留了802.3MAC的以太网帧格式;定义了多种物理介质接口规范,其中有1 m背板连接(100GE接口无背板连接定义)、7 m铜缆线、100 m并行多模光纤和10 km单模光纤(基于WDM技术),100 Gbit/s接口最大定义了40 km传输距离。标准定义了PCS的多通道分发(MLD)协议架构,标准还定义了用于片间连接的电接口规范,40 Gbit/s和100 Gbit/s分别使用4个和10个10.312 5 Gbit/s通道,采用轮询机制进行数据分配获得40G和100G的速率,另通过虚拟通道的定义解决了适配不同物理通道或光波长问题;明确了物理层编码采用64B/66B。

标准虽然给出了100 Gbit/s以太网的架构、接口定义,但目前尚有诸多待解决的问题。首先,PMD是802.3ba的一个关键部分,40G/100G光模块包含短波长的并行接口,对应40GBASE-4SR和100GBASE-10SR,主要的技术难点在于封装密度大;长波长的波分接口,难度在于PMA对应的25 Gbit/s的SERDES和封装技术,对于100G的WDM光模块非制冷激光器技术是标准相关的关键技术,封装形式由CFP多源协议(MSA)规

定为CFP[4];对应的铜缆介质有关接口(MDI)标准的定义采用SFF-8436和SFF-8642,具体的结构尺寸和引脚分配已经给出。据了解目前主要供应商提供100G WDM光模块要到2010年。

100G接口对应的相关芯片在MAC层已经没有问题,PMA业务接口电接口规范要求每个通道工作在10.312 5 Gbit/s速率,除了标准成熟后使用专用集成电路(ASIC)实现,前期基于现场可编程门阵列(FPGA)实现的MAC则需要支持到10.312 5 Gbit/s速率,仅有少数FPGA公司支持[5]。之前的评估系统采用的是增加SERDES Mux器件[6],由8/20个5.156 25 Gbit/s的通道转换到4/10个10.312 5 Gbit/s的标准接口的过渡措施[7]。

对于100G以太网设备系统,除了以上100G以太网接口相关技术难点需要克服,还需要配套的包处理器,对于分布式大容量交换系统还需要大容量的分组交换系统套片等系统级的困难需要解决。

对于100G的包处理能力,目前业界还没有通用可选方案,开发中的几个方案都还待评估;对于网络处理器的内容可寻址存储器(CAM)等查找接口带宽最少要增加2倍以上,数据总线宽度、速率也都存在瓶颈,催生了Interlaken LA等串行高速总线接口投入使用。由于单片处理能力限制及总线接口转换等导致存在和多片堆砌的情况,至使单板面积、功耗等都难接受。基于FPGA定制开发的解决方案需要企业具备全面的技术,往往提供的业务处理能力受限。

分组交换系统套片,包括交换网和交换网接口芯片,或含流量管理(TM)芯片,以前大多数系统都难于支持每线卡大于100 Gbit/s的有效数据带宽,目前新方案每线卡背板接口带宽最大约为100~200 Gbit/s,背板SERDES总线速率支持到6.5 Gbit/s左右;支持100 Gbit/s接口每线卡带宽需要升级到200~500 Gbit/s 带宽,背板SERDES速率甚至要达到10.312 5 Gbit/s以上,对于背板设计、工艺要求、材料、总线长度满足等都比以前要苛刻的多;对于满足电信级要求的系统,还需要满足虚拟队列(VoQ)、层次化服务质量(HQoS)等流管理特性,这就要求更大的处理带宽需求、更多的队列支持能力、更大的缓冲等提升系统设计难度。随着系统要求的提升,系统功率也在提高。100 Gbit/s长波长PMD需要4个25 Gbit/s通道,SERDES速率和通道数的增加需要更大电源;100 Gbit/s处理器需要更大量的存储器,当然也需要更大功率;微处理技术也需要更大功率。对此,需要寻找解决方案。功率事关未来,同时功率也是重大的障碍,不仅要为电路板供电,还需要控制如此大的功率并保证系统冷却。随着我们转向速度更快的以太网,这些都是业界面对的主要问题。

高速以太网要想真正给用户带来实际的科技效益,必须将传送网业务承载到传送网上,而不能仅仅用在大型数据中心或者小范围局域网内。所以除了调制技术之外,高速以太网如何在光传送网上传输以及操作维护管理(OAM)等特性也是决定其成败的关键技术。ITU-T SG15 Q11济州岛中间会议已经达成了40G/100G 以太网接口的OTU映射定义[8]:G.709中给出40GE映射到OPU3,使用1 024B/1 027B传输编码;100GE 映射到ODU4/OTU4,比特率为111.809 973 Gbit/s(=255/227×2.488 320 Gbit/s×40)。标准的成熟预计要到2011/2012年左右。对100 Gbit/s以太网等高速业务而言,虚级联技术可以实现适配,但是要提高光纤的利用率,虚级联并不是高效的技术,而只能提高每个波长的比特率。

采用串行100G的密集波分复用(DWDM)传输技术,将10×10GE/4×25GE的100GE业务通过ODU4适配到111.809 973 Gbit/s的OTU4中。由于单波100G速率非常高,对于各种物理损伤容限,如光信噪比(OSNR)、偏振膜色散(PMD)等提出了更高要求,需要使用特殊技术来降低传输光纤线路上传输光信号的波特率来提升损伤容限。例如,采用高阶的编码调制技术如正交相移键控(QPSK)、8相移相键控(8PSK)、正交幅度调制(QAM)、正交频分复用(OFDM)等,并结合偏振复用解复用技术。由于单波传输100GE对偏振膜色散(PMD)、

色度色散(CD)有更严格的要求,因此,未来在接收端可能采用相干接收/电处理的方式,来提升对物理损伤的容限,包括非线性效应抑制、PMD、CD补偿等,从而使单波100GE能够在10G/40G网络中混合传送、平滑升级。

从长期来看,100GE DWDM传输将采用偏振复用、高阶编码调制、相干接收/电处理、超强FEC等技术的组合解决方案,从而可以平滑的将40G光网络升级到100G系统。由于100G传输需要高速光电器件的支撑,预计2012年,这些高速光电器件将会趋于成熟。

对应于以上介绍的关键技术,100 Gbit/s以太网不单单是解决接口构建的技术,更需要同步提升系统的处理能力,对应大容量的交换系统,高带宽的流管理和包处理能力,才能提供线速的处理和转发,提供电信级的特色功能。类似中兴通讯新开发的ZXCME 9500城域以太系列硬件平台目前就可以支持到100 Gbit/s接口带宽,还保留有足够的冗余和加速比,可以支持单个100 Gbit/s接口真正的线速转发,不需要更换交换网,系统散热也完全支持,只需要增加新线卡就可以。系统升级后,可以支持到单线卡双向400 Gbit/s以上的带宽。与此同时,解决了单机系统的问题100G以太网接口的应用还受制于传输网络的技术提升,100GE走向商用还有待时日。

2 100G以太网的应用

100 Gbit/s以太网标准和技术的开发是基于需求的驱动,但却是超前的,根据IEEE802.3ba任务组(TF)的计划预计到2010年中间可以完成标准制定,但真正的商用时间却取决于更多的因素。

首先,在标准成熟的前提下,还需要实实在在的网络需求驱动,并符合运营商的利益。带宽需求的主要因素包含:不断增加的业务都是基于IP的,就像现在ALL IP所描述的;几乎所有的IP分组从源发送到宿的全过程都是封装在以太网帧中;时分复用在以太网中透传(TDM over Ethernet)的技术已经成熟,传统语音的兼容已经不是问题;以太网封装比同步光网络/同步数字体系(SONET/SDH)封装更简单而且成本更低。这些决定以太网接口速率升级到100 Gbit/s的需求是客观和迫切的,在100 Gbit/s以太网上可以实现“网络通信加速、应用效能提升”的网络通信境界,能够快速存取储存于数据中心的种种应用,执行频宽管理、快取、压缩、路径最佳化及协议加速等功能。具体参见图2的应用场景[9],对于汇聚层的应用,下行端口正在切换到10 Gbit/s,上行只能采用10 Gbit/s端口的链路聚合,如果使用100 Gbit/s以太网接口则可以在数据流的管理、分配及效率上得到改善;对于数据中心,随着10 Gbit/s接口增加也同样存在上行及内部互联高速接口的需求;对于骨干网的高效传输也期待着100G高速接口和传输的成熟。

P802.3ba标准在制订时,已经充分考虑了电接口相关标准和技术的成熟情况,采用了10.312 5 Gbit/s 的片间互联传输通道,多模的并行光纤接口可以支持在OM3光纤满足100 m甚至更远的距离;单模的40GB ASE-LR4使用粗波分复用(CWDM)经济可行,100GB ASE-LR4使用DWDM,每波长传25.781 25 Gbit/s,使用

1 295~1 310 nm波长,完全可以使用原有光纤,综合技术和成本,标准选用的技术都是实用可行的,有助于促进100G接口在局部和城域网范围内商用。

对于全网范围的使用,串行100GE传输标准和技术成熟前,可采用反向复用技术。将10×10GE或者4×25GE接口的100GE业务经ODU2/ODU3适配到OTU2/OTU3,在10G/40G光网络中通过多个波长进行传输。

可以不需对现存的10G/40G DWDM光网络进行重新设计与改动,传输码型仍然为光双二进制编码(ODB)/差分归零码(DRZ)/电归零码-差分正交相移键控(eRZ-DQPSK)。这种模式可以采用10G/40G现有的成熟光电器件,并且整个系统的性能指标和10G/40G系统一致。这一方案可实现网络平滑升级,满足运营商的成本期望,

并且器件成熟[10]。

所以就目前的成本和需求来看,100 Gbit/s以太网的商用在城域网先行是比较可行的方案,因为在城域网中,大量的数据需要随时的上下路,一个无需各种补偿器件的传输系统将会大大简化网络设计,100 Gbit/s以太网刚好可以满足这一需求, 同时高带宽满足了城域网每年40%的流量增长。总之,100 Gbit/s

以太网的发展需求已经很明显,成本优势也会不断加强,但是100 Gbit/s以太网传输从调制方式到运营管理维护都需要不断的技术完善,真正大规模的商用还需时日。

此外,对这次技术升级,除100 Gbit/s以太网之外,包括光纤通道、Infiniband和SONET在内的其

他协议也将现身40/100 Gbit/s网络,在90年代末,以太网端口设备的价格下降速度比竞争对手异步传输模式(ATM)和光纤分布式数据接口(FDDI)要快两倍以上。然而,40 Gbit/s和更快速度网络共享很多相似的FPGA、SERDES和编码技术,使任何协议所对应的设备都很难通过量产来获得成本优势。100 Gbit/s以太网也许不会像之前那样占据绝对的优势地位。

3 结束语

通过前面对100 Gbit/s以太网技术的介绍,和对关键技术及系统设计带来的困难分析,以及100GE传输网络的讨论,总的来说,100 Gbit/s以太网技术是很有生命力、备受关注的技术,大家都在热心参与,但标准和技术本身也都还有待成熟,商用试点会在2009年底启动,但成熟商用预计要到2012年以后。除了技术和商用的挑战,给各方面带来的机遇也是巨大的,首先给研究机构带来了研究发现和创新的机会;

对于元件和模块供应商带来了新的高回报的市场(但也需要高投资);对于系统供应商是一次翻盘和藉此引

领市场的机会。虽然目前正面临全球性的金融危机,我们乐观的相信,就像1994年至2002年在全球市场

低迷情况下,以太网一支独秀,这次经济低迷也无碍100G以太网发展。

4 参考文献

[1] IEEE 802.3ba 40Gb/s and 100Gb/s Ethernet Task Force, IEEE P802.3ba/D1.1[S/OL]. 2008. (2009-07-20) [2008-12-12]. https://www.doczj.com/doc/c215375495.html,/3/ba/.

[2] IEEE 802.3ba 40Gb/s and 100Gb/s Ethernet Task Force, IEEE P802.3ba/D2.1[S/OL].2009. (2009-05-29) [2008-12-12]. https://www.doczj.com/doc/c215375495.html,/3/ba/index.html.

[3] IEEE 802.3ba 40Gb/s and 100Gb/s Ethernet Task Force,

BaselineSummary_0908[S/OL].2008.[2008-12-12].

https://www.doczj.com/doc/c215375495.html,/groups/802/3/ba/BaselineSummary_0908.pdf.

[4] CFP MSA, CFP-MSA-DRAFT, rev-1-0[S/OL]. (2009-03-23) [2008-12-12].

https://www.doczj.com/doc/c215375495.html,/Documents/

CFP-MSA-DRAFT-rev-1-0.pdf.

[5] Altera 40-100Gbps Ethernet Solutions, Version 9.0[EB/OL].2009. [2008-12-12].

https://www.doczj.com/doc/c215375495.html,/literature/wp/

wp-01080-stratix-iv-gt-40g-100g.pdfWT.mc_id=ut_pr_al_ne_tx_j_213.

[6] Netlogic Calico NLP10142 100Gbps MLD Quad Channel Transceiver Preliminary Data Sheet[EB/OL]. (2008-11-03) [2008-12-12]. https://www.doczj.com/doc/c215375495.html,/4-news/

pr/2009/09-03-19.htm.

[7] TORZA Anthony. Using FPGA Technology to Solve the Challenges of Implementing High-End Networking Equipment:Adding A 100 GbE MAC to Existing Telecom Equipment[S/OL]. 2008 (2008-09-23) [2008-12-12]. https://www.doczj.com/doc/c215375495.html,/support/

documentation/white_papers/wp280.pdf.

[8] JONES M L. Report of Joint Q9/15 and Q11/15 Meeting[R/OL]. 2008. (2008-11-26)[2008-12-12]. http://www.itu.int/md/

T09-SG15-081201-TD-GEN-0037/en.

[9] ZHAO Yongpeng. 100G: Opportunities and challenges, and enabling technologies[EB/OL].(2008-10) [2008-12-12].

https://www.doczj.com/doc/c215375495.html,/focus/aoe/file/100GOpportunities%20and%20challenges,%20and%20enabling%2

0technologies_AOE2008.pdf.

[10] 100G传输时代来临IT前沿[EB/OL].(2008-10-27)[2008-12-12].

https://www.doczj.com/doc/c215375495.html,/20080623/ca510849.htm.

收稿日期:2008-12-12

日本KDDI实验室公布了其成功完成100G以太网1000公里的无纠错传输试验,阿朗也在北京智能光网络论坛上介绍了其100G以太网的主要技术。100G以太网在运营商、设备商和各实验室得到广泛的关注。

100G以太网—势在必行

当前所有的IT服务都是基于分组的,特别是家庭市场,IPTV是一个快速增长的高带宽业务。各种IPTV 可以大致分成三类:(A) 从几百个频道中选择高质量内容的视频流,(B) 从成千上万个专业生产的、存储的电影和节目中点播的视频,(C) Web 2.0和社交网络站点中产生的大量内容。A类视频的传输需要利用组播技术,B和C则需要单播。每一类的IPTV都需要在网络的局部部署40或者100Gb/s。但是随着VoD业务的快速增长和C类业务视频质量的提升,B和C类IPTV 将同质化而且占据主流,IPTV业务将从传统的封闭式向基于Web的开放模式转变。

所以业界正在将居民用户的带宽从1-6Mb/s 提升到25-30Mb/s或者100Mb/s(FTTH),这一转变同时要求汇聚层面1到2个数量级的扩容。当下,ISP 骨干网的的连接以10Gb/s为主,所以100Gb/s就不会太远。

此外,100Gb/s 以太网必然会建设还有以下原因:

1、不断增加的业务都是基于IP的,就像现在ALL IP所描述的;

2、几乎所有的IP分组从源发送到宿的全过程都是封装在以太网帧中;

3、TDM over Ethernet的技术已经

成熟,传统语音的兼容已经不是问题;

4、以太网封装比SONET/SDH 封装更简单而且成本更低。

对所有居民和企业IT 用户来说,web应用提供商提供了大量令人兴奋的业务(Google, Yahoo等),这些基于Web的应用包括许多生产协作服务比如地图和导航,拍卖,零售,股市跟踪,游戏,共享日历,照片分享,编辑等等。这些业务在客户端并不需要太多的带宽,但在服务器中心汇聚的通信负载已经超过了10Gb/s。而且用户数不断增长,所以服务器簇内部以及网络出口链路如果大于10Gb/s将会更加高效。

当然,除了这些web应用,传统以太网接入也是IT用户的关键业务。当因特网用户和他们的平均计算能力和I/O带宽与日俱增,对网络而言,其结果就是核心IP路由器和网络的流量负载变得非常大。这些核心路由器采用最快的端口速率时,将具有更高的性价比。因为路由器的原理是在每个接口进行路由处理,而不是集中处理,因此接口越少,效率越高。虽然每个端口的成本上升,但是每Gb/s的成本却下降了很多。

此外,企业用户也有自己的业务需求,比如为了保证企业通信和交易安全,VPN业务往往是一个较好的选择,根据企业自身的大小和客户的多寡,企业的通信可能采用以太网VPN或者以太网专线来承载。客户端的带宽为10Mb/s 到1Gb/s,到了运营商的网络侧就需要超过10Gb/s 的以太网。

2006年AT&T就已经开始部署40Gb/s(OC-768)的路由器,几年后100G以太网将会有很大需求,除了核心路由器,AT&T的边缘路由器的容量也在不断增长,不远将来40Gb/s 也会部署。而且随着高速SONET/SDH 板卡需求量的下降,高速以太网需求的增长,以太网接口的价格优势将会更加明显。

100G以太网关键技术

以太网协议是提高网络性价比的最大动力所在, 它的特点是简单、灵活、互操作性强和低成本。而以太网主要应用在传统局域网(LAN ),随着技术的持续发展, 在城域网也有大量的应用。但是100G以太网的真正商用还需要克服几大关键技术,比如100G以太网的调制解调技术、可扩展问题和运营级特性。这也是最近研究和标准化努力的目标。

2007年7月, IEEE802.3通过决议成立新的项目组来发展高速以太网使其速率达到40Gb/s和100Gb/s。该项目的目标是:

仅支持全双工操作

保留802.3,即保留采用802.3MAC的以太网帧格式

支持MAC信令子层业务接口的比特错误率不大于10-12

提供对OTN的支持

支持40Gb/s的MAC数据速率

提供物理层规范能够使40Gb/s运行在以下条件:

在ISO/IEC 多模光纤OM3上至少传输100m

在铜缆线上至少10m

在背板上至少1m

支持100Gb/s的MAC数据速率

提供物理层规范能够使100Gb/s运行在以下条件:

在单模光纤(SMF)上至少40km

在单模光纤(SMF)至少10km

在OM3 多模光纤上至少100m

在铜缆上至少10m

在各种先进的调制格式中,NRZ调制因为简单和成本低廉而被大量应用于陆地传输系统的设计中,但是当速率超过10Gb/s,非线性和偏振模色散导致信号严重的损伤,很多实验室研究了RZ,Duo-binary,PSK,

QPSK等调制方式。OFDM 对光纤色散和偏振模色散(PMD)有很强的健壮性已经使其成为100G以太网系统的主流调制技术。OFDM通过许多平行正交子载波来传输数据,并在频域实现信道均衡,这相对传统在时域实现信道均衡大大简化。此外OFDM使用高阶调制自适应动态的数据速率而具有高频谱资源利用率的优点。OFDM在无线领域的研究已经很成熟,并已纳入许多通讯标准,如IEEE 802.11 a/g。

近日,日本KDDI实验室宣布完成无信号纠错的100Gb/s以太网1000公里的传输试验,这并不是最早的,早些时候, 澳大利亚墨尔本大学在OE(Optical Express)上发表了他们基于OFDM的107G SSMF系统。但毋庸置疑,要实现长距离无纠错的高速传输,OFDM将是最佳的调制方式。

高速以太网要想真正给企业和居民用户带来实际的科技效益,必须将传送网业务承载到传送网上,而不能仅仅用在大型数据中心或者小范围局域网内。所以除了调制技术之外,高速以太网如何在光传送网上传输以及OAM等特性也是决定其成败的关键技术。

目前传送网领域的主流技术是SONET/SDH,随着DWDM的出现, ITU-T已经将OTN标准化。标准化的OTN 提供运营级的操作、运营和管理(OAM)以及前向纠错(FEC)能力。OTN支持各种不同的客户信号,包括完整的波长,或者TDM信号,也包括以太网在内的数据业务。OTN目前定义的速率级别有三个,分别为2.5Gb/s、10Gb/s和40Gb/s,对低于这三个等级的低速业务,可以通过复用功能实现适配。对100Gb/s 以太网等高速业务而言,虚级联技术可以实现适配,但是要提高光纤的利用率,虚级联并不是高效的技术,而只能提高每个波长的比特率。因此,ITU-T开始定义适合100G以太网的OTU4/ODU4接口,满足以下规范:

在单个OTN容器内,单个波长上透明传输100G以太网

高频谱利用率地复用低速ODUs

目前有两种主流的OTU4备选方案:

112Gb/s左右OTU4包括FEC。能够承载单个100G以太网或者2个40Gb/s和两个10Gb/s信号或者10个10Gb/s信号。

130G b/s左右OTU4带有FEC。能够承载单个100G以太网或者3个40Gb/s信号或者12个10Gb/s信号。

虽然ITU-T正在抓紧制定OTU4的标准,但100G以太网究竟以何种方式传输,还要决定于技术的发展以及各项技术相应的成本。

商用还需时日

虽然100G以太网已经在实验室中成功部署,但是100G以太网离商用需要继续努力,首先一点就是成本还需降低,在107 Gb / s光通信系统的发射机和接收机中,电处理部分的带宽需求大约15GHz。而在集成电路中最经济的数模/模数转换模块频带为6GHz,也就是说实现100Gb/s光系统在电处理部分的成本还有待降低。

所以就目前的成本和需求来看,100G以太网的商用在城域网先行是比较可行的方案,因为在城域网中,大量的数据需要随时的上下路,一个无需各种补偿器件的传输系统将会大大简化网络设计,基于OFDM的100G以太网刚好可以满足这一需求, 同时高带宽满足了城域网每年40%的流量增长。总之,100G以太网的发展需求已经很明显,成本优势也会不断加强,但是100G以太网从调制方式到运营管理维护都需要不断的技术完善,真正大规模的商用还需时日。

摘要:10万兆以太网目前有没有实际的应用需求?IEEE 802.3ba特别任务小组主席John D'Ambrosia给出的答案是,对40G和100G以太网的需求压抑已久。

10万兆以太网目前有没有实际的应用需求?IEEE 802.3ba特别任务小组主席John D'Ambrosia给出的答案是,对40G和100G以太网的需求压抑已久。

“很多人已经在使用链路聚合来尝试创建这种容量的通道,但那不是最纯净的途径。”D'Ambrosia说,“与过去对万兆以太网的需求相比,我们将更早看到人们对40G/100G的需求。从某种意义上说,我们在100G标准制定上的脚步有点晚了。”

据802.3ba特别任务小组介绍,数据中心、Internet交换、路由和聚合,以及像视频点播和高性能计算这样的高带宽应用,都需要万兆以太网接口。目前,万兆在大型网络的接入层上刚刚起飞,一旦扩展到客户端设备,将很快引发汇聚层和网络核心层对40G/100G以太网的需要。此外,在核心网络中采用10万兆(包括40G和100G)以太网的需求,与万兆以太网在网络接入层和客户端的采用互相促进。而在网络接入层和客户端中,万兆以太网端口数量仍大大低于需求潜力。

最近两年正值数据中心高速成长的时期,再加上万兆以太网设备价格的下降,有越来越多的用户愿意采用这项技术。搜狐公司就在下一代数据中心项目中选择了H3C基于100G平台的核心交换机S12500构建网络基础设施。搜狐网络运维部总监裘伟在谈到目前对基于100G平台交换机的需求时表示,“随着互联网的发展,数据量不断增加,需要海量的存储和快速的数据交换。像视频等多媒体业务、云计算、互联网搜索等,都对数据中心网络交换的高带宽提出了要求。”

这里需要说明的是,对高带宽交换机的需求与当前的经济危机并没有直接关系。Infonetics Research公司企业语音和数据分析师Matthias Machowinski解释说:“无论经济是否衰退,网络流量都在继续增长,企业也要扩建自己的网络来应对流量的增长。在以太网交换市场,2008年端口出货总量仅增长了2%,但是10G端口出货量却增长了78%,我们预计企业将会继续投资他们自己的网络核心来避免流量拥塞。”

实际上,对于在局域网和数据中心采用高密度万兆以太网的IT经理们来说,用不着等太长时间就会得到更高速度的连接性,准40G和100G以太网产品(包括服务器网卡、交换上行链路和交换机)将在年底出货。以太网联盟主席Brad Booth 说,虽然802.3ba要等到2010年6月后才能得到批准,但最初的互操作性测试将在今年年底开始。

不过,迁移到40G/100G网络上和实际部署时还需要留意一些问题。“部署基于100G的交换机产品,除了要升级原有网络交换机和接入端口外,还需要改造物理链路,如光纤和铜线,以满足100G标准。”裘伟表示,“在选择100G平台交换机时,应从设备架构上看是否满足100G的无阻塞交换带宽和包转发能力,如背板、端口和交换矩阵是否能达到100G线速交换,以及足够的数据缓存能力、队列调度机制、低延迟等。”

业内专家也表示,当用户从万兆向40G/100G以太网迁移时,必须确保来自不同厂商的系统之间精确的时钟同步,否则延时和数据包丢失问题的严重程度将超出人们的预料。此外,确保光纤合适的级别和长度对于实现平滑、无缝的10万兆以太网运营至关重要。(更多内容详见https://www.doczj.com/doc/c215375495.html,/P/1459)

10万兆以太网发展时间表

■ 2006年下半年

IEEE着手制定100G标准

■ 2007年7月

IEEE确定开发一项包括40G和100G以太网的标准802.3ba ■ 2009年年底

40G和100G以太网设备将出货

■ 2010年6月

融合40G/100G的IEEE 802.3ba规范将获得批准

■ 2015年

百万兆速率以太网将成为现实

工业以太网的意义和应用分析

以太网技术在工业控制领域的应用及意义 随着计算机和网络技术的飞速发展,在企业网络不同层次间传送的数据信息己变得越来越复杂,工业网络在开放性、互连性、带宽等方面提出了更高的要求。现场总线技术适应了工业网络的发展趋势,用数字通信代替传统的模拟信号传输,大量地减少了仪表之间的连接电缆、接线端口等,降低了系统的硬件成本,被誉为自动化领域的计算机局域网。 现场总线的出现,对于实现面向设备的自动化系统起到了巨大的推动作用,但现场总线这类专用实时通信网络具有成本高、速度低和支持应用有限等缺陷,以及总线通信协议的多样性使得不同总线产品不能直接互连、互用和互可操作等,无法达到全开放的要求,因此现场总线在工业网络中的进一步发展受到了限制。 随着Internet技术的不断发展,以太网己成为事实上的工业标准,TCP/IP 的简单实用已为广大用户所接受,基于TCP/IP协议的以太网可以满足工业网络各个层次的需求。目前不仅在办公自动化领域,而且在各个企业的上层网络也都广泛使用以太网技术。由于它技术成熟,连接电缆和接口设备价格较低,带宽也在飞速增加,特别是快速Ethernet与交换式Ethernet的出现,使人们转向希望以物美价廉的以太网设备取代工业网络中相对昂贵的专用总线设备。 Ethernet通信机制 Ethernet是IEEE802. 3所支持的局域网标准,最早由Xerox开发,后经数字仪器公司、Intel公司和Xerox联合扩展,成为Ethernet标准。Ethernet采用星形或总线形结构,传输速率为10Mb/s,100 Mb/s,1000 Mb/s或是更高,传输介质可采用双绞线、光纤、同轴电缆等,网络机制从早期的共享式发展到目前盛行的交换式,工作方式从单工发展到全双工。 在OSI/ISO 7层协议中,Ethernet本身只定义了物理层和数据链路层,作为一个完整的通信系统,它需要高层协议的支持。自从APARNET将TCP/IP和Ethernet捆绑在一起之后,Ethernet便采用TCP/IP作为其高层协议,TCP用来保证传输的可靠性,IP则用来确定信息传递路线。 Ethernet的介质访问控制层协议采用CSMA/CD,其工作原理如下:某节点要

以太网的技术

以太网的技术 1以太网的发展 以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。由于其简单、成本低、可扩展性强、与IP网能够很好地结合等特点,以太网技术的应用正从企业内部网络向公用电信网领域迈进。以太网接入是指将以太网技术与综合布线相结合,作为公用电信网的接入网,直接向用户提供基于IP的多种业务的传送通道。以太网技术的实质是一种二层的媒质访问控制技术,可以在五类线上传送,也可以与其它接入媒质相结合,形成多种宽带接入技术。以太网与电话铜缆上的VDSL相结合,形成EoVDSL技术;与无源光网络相结合,产生EPON 技术;在无线环境中,发展为WLAN技术。 以太网技术作为数据链路层的一种简单、高效的技术,以其为核心,与其它物理层技术相结合,形成以太网技术接入体系。EoVDSL方式结合了以太网技术和VDSL技术的特点,与ADSL和(五类线上的)以太网技术相比,具有一定的潜在优势。WLAN技术的应用不断推广,EPON技术的研究开发正取得积极进展。随着上述“可运营、可管理”相关关键技术问题的逐步解决,以太网技术接入体系将在宽带接入领域得到更加广泛的应用。 同时,以太网技术的应用正在向城域网领域扩展。IEEE802.17RPR技术在保持以太网原有优点的基础上,引入或增强了自愈保护、优先级和公平算法、OAM等功能,是以太网技术的重要创新。对以太网传送的支持,成为新一代SDH设备(MSTP)的主要特征。10G以太网技术的迅速发展,推动了以太网技术在城域网范围内的广泛应用,WAN接口(10Gbase-W)的引入为其向骨干网领域扩展提供了可能。 随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。在1993年10月以前,对于要求10Mbps以上数据流量的LAN应用,只有光纤分布式数据接口(FDDI)可供选择,但它是一种价格非常昂贵的、基于100Mbps光缆的LAN。1993年10月,Grand Junction公司推出了世界上第一台快速以太网集线器Fastch10/100和网络接口卡FastNIC100,快速以太网技术正式得以应用。随后Intel、SynOptics、3COM、BayNetworks等公司亦相继推出自己的快速以太网装置。与此同时,IEEE802工程组亦对100Mbps以太网的各种标准,如100BASE-TX、100BASE-T4、MⅡ、中继器、全双工等标准进行了研究。1995年3月IEEE宣布了IEEE802.3u 100BASE-T快速以太网标准(Fast Ethernet),就这样开始了快速以太网的时代。 快速以太网与原来在100Mbps带宽下工作的FDDI相比它具有许多的优点,最主要体现在快速以太网技术可以有效的保障用户在布线基础实施上的投资,它支持3、4、5类双

工业以太网的特色技术及其应用选择

工业以太网的特色技术及其应用选择 发布时间:2007-05-15 浏览次数:105 | 我要说几句 | ?? 用户解决方案2012优秀论文合订本 ?? NIDays2012产品演示资料套件 ?? 《提高测量精度的七大技巧》资源包 ?? LabVIEW 2012评估版软件 关键词:工业以太网实时特色技术 编者按:工业以太网成为自动化领域业界的技术热点已有时日,其技术本身尚在发展之中,还没有走向成熟,还存在许多有待解决的问题。究竟什么是工业以太网,它有哪些特色技术,如何应用与选择适合自己需求的工业以太网技术与产品,依然是今天人们所关心的问题。 一什么是工业以太网 工业以太网技术,是以太网或者说是互联网系列技术延伸到工业应用环境的产物。前者源于后者又不同于后者。以太网技术原本不是为工业应用环境准备的。经过对工业应用环境适应性的改造,通信实时性改进,并添加了一些控制应用功能后,形成了工业以太网的技术主体。因此,工业以太网是一系列技术的综称。 二工业以太网涉及企业网络的各个层次

企业网络系统按其功能划分,一般称为以下三个层次:企业资源规划层(Enterprise Resource Plan NI ng, ERP)、制造执行层(Manufacturing Excurtion System, MES)和现场控制层(Field Control System,FCS)。通过各层之间的网络连接与信息交换,构成完整的企业信息系统。( 见图1) 图中的ERP与MES功能层属于采用以太网技术构成信息网络。这个层次的工业以太网,其核心技术依然是信息网络中原本的以太网以及互联网系列技术。工业以太网在该层次的特色技术是对其实行的工业环境适应性改造。而现场控制层FCS中,基于普通以太网技术的控制网络、实时以太网则属于该层次中工业以太网的特色技术范畴。可以把工业以太网在该层的特色技术看作是一种现场总线技术。除了工业环境适应性改造的内容之外,通信实时性、时间发布与同步、控制应用的功能与规范,则成为工业以太网在该层次的技术核心。

工业以太网与现场总线的优缺点 整理

工业以太网与现场总线的优缺点 1 引言 用于办公室和商业的以太网伴随着现场总线大战硝烟已悄悄地进入了控制领域,近年来以太网更是走向前台,发展迅速,颇引人注目。究其原因,主要由于工业自动化系统正向分布化、智能化的实时控制方面发展,其中通信已成为关键,用户对统一的通信协议和网络的要求日益迫切。另一方面,Intranet/Internet等信息技术的飞速发展,要求企业从现场控制层到管理层能实现全面的无缝信息集成,并提供一个开放的基础构架,而目前的现场总线尚不能满足这些要求。 现场总线的出现确实给工业自动化带来一场深层次的革命,但多种现场总线互不兼容,不同公司的控制器之间不能实现高速的实时数据传输,信息网络存在协议上的鸿沟,导致“自动化孤岛”现象的出现,促使人们开始寻求新的出路并关注到以太网。同时现场总线的传输速率也远远不如工业以太网传输速率快。 2 以太网与工业以太网 2.1 什么是以太网与工业以太网 以太网是当今现有局域网采用的最通用的通信协议标准。该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆型号为10 Base T。以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性好。 普通以太网应用到工业控制系统,这种网络叫工业以太网。 2.2 以太网具有的优点 (1)具有相当高的数据传输速率(目前已达到100Mbps),能提供足够的带宽; (2)由于具有相同的通信协议,Ethernet和TCP/IP很容易集成到IT(信息技术)世界; (3)能在同一总线上运行不同的传输协议,从而能建立企业的公共网络平台或基础构架;

千兆以太网技术与应用

千兆以太网技术与应用 1. 简介 于1998年6月通过的IEEE 802.3z千兆比以太网标准描述了用于一个通用链路编码且可进行1000Mb/s 传输的3个物理层接口(1000BASE-SX、1000BASE-LX和1000BASE-CX)。1000BASE-SX、 1000BASE-LX接口采用光纤作为介质时,最远传输距离可达5000米,因而可应用于建筑物内或校园主干网络。 1000BASE-CX接口计划用于限制在25米内的计算机房内的连接。 IEEE 802.3ab千兆比以太网标准于1999年6月通过认证,它描述了用于不同线路编码的附加物理层接口(1000BASE-T)。 1000BASE-T接口通过5类非屏蔽双绞线(UTP)介质传输的最远距离可达100米,并主要应用于面向桌面的网络连接。 在1999年3月,一个IEEE 802.3研究小组正式成立,主要致力于发展通过光纤介质传输万兆比以太网的标准。 2. 铜缆布线系统 事实上,所有采用结构化综合布线系统的建筑物都有双绞线铜缆水平子系统,用于连接每一层的通讯配线间和墙上的信息出口。而这些布线系统的安装大部分都采用5类产品,所以1000BASE-T是设计应用于5类布线系统的。 1000BASE-T采用一根电缆中的所有4对线来传输,每对线的有效传输速率为250Mb/s,以此完成全双工传输。为了应用于5类带宽的布线系统,1000BASE-T 采用5级编码传输,而接收器采用数字信号处理(DSP)技术以减少来自布线系统中反射和近端串音干扰(NEXT)的影响。 应用于1000BASE-T的布线系统要求包括原5类系统未描述的附加的传输性能,如ELFEXT(等电平远端串扰)和回路损耗。这可由经强力推荐的最新专业测试仪测试、认可,多数已安装的5类布线系统能够支持1000BASE-T来证实。 ---https://www.doczj.com/doc/c215375495.html,(学电脑) 1000BASE-T布线系统的规范将反馈到随ANSI/TIA/EIA的发展而形成的新的规程中。“4对100欧姆5类布线系统的附加传输性能参数”有望于今年年底由TSB-95颁布。 ANSI/TIA/EIA还发布了一篇说明“4对100欧姆增强型5类布线系统的传输性能参数”的草案,现在已是第12稿,预计作为ANSI/TIA/EIA568A标准的附录5在今年年底颁布。该草案同TSB-95的描述类似,但回路损耗和NEXT性能指标好2dB~3dB。 ANSI建议新的布线安装至少应满足增强型5类布线性能要求。

以太网在传输网络中的应用

以太网在传输网络中的应用 摘要:随着以太网的发展,带宽从最初的2Mbps增长到目前的10Mbp,已经增长了千倍以上,对现有的SDH 网络要求越来越高,如何满足用户带宽和网络稳定性要求成为当务之急。本文阐述了基于SDH的以太网业务的传送方式、传送功能和组网方式,并且举例说明了各种组网方式。针对我公司发展现状,结合实际工作,分析了以太网业务对我们在激烈的电信市场竞争中的重要性。 关键词:以太网业务 SDH VCTRUNK 近年来,通信网络技术因与以因特网为代表的计算机网络技术相结合而飞速发展,随着因特网的发展,电子商务、视频点播、网络生活等的需求不断地增长,使得全球范围内的数据业务量迅猛增长,互联网的用户数呈现指数增长的规律,对带宽的需求永无止境。与此同时,作为基础传送网的SDH,其关键技术也在不断进步,新的SDH设备具有高集成度、对ADM 集成和灵活的业务调度能力、多业务传送能力、智能化管理的特点,它采用灵活可变的带宽来适应以太网业务的实际传送。SDH将在业务汇聚层起到协议透明传输和带宽管理的作用,很好地发挥现有网络的功能,配置和控制带宽,动态地从包交换和TDM业务中直接分配带宽,提供逐渐增长的数据带宽。 一、基于SDH的以太网业务传送 1.基于SDH的以太网业务传送方式 传统的SDH传送网络主要针对语音业务,缺乏面对指数型增长的带宽需求和以IP数据为主流的网络所需的扩展性和灵活性。同时,在可预见的未来,面向TDM业务的SDH传输体制将继续存在。但数据业务的增长使得业务提供商和运营商们正在寻求一种方案,从现有的静态TDM复用时代过渡到动态IP业务网时代。 基于下一代SDH的多业务传输平台灵活可变的带宽来适应以太网业务实际传送带宽变化范围大的需求通常采用的方式有两种:一种是采用ML-PPP,灵活捆绑多个VC-12/VC-3通道传送以太网帧;另一种方式是采用多个VC-12/VC-3、VC-4级联或虚级联通道来传送。因为虚级联可以兼容传统的SDH网络,从而得到广泛的应用。 2.基于SDH的以太网业务传送功能 1.1透明传输功能 以太网业务透明传送功能是指将来自以太网接口的信号不经过以太网交换,直接映射到SDH的虚荣器(VC)中,然后通过SDH设备进行点到点的传送。 基于SDH的具备以太网业务透明传送功能的业务传送设备必须具备以下功能: ⑴链路带宽可配置。 ⑵接收的正常数据帧必须能完整的映射到虚容器中,应保证以太网业务的透明性,包括以太网MAC帧、VLAN标记等的透明传送。 ⑶以太网数据帧的封装应采用PPP协议或者LAPS协议和GFP协议。 ⑷数据帧可以采用ML-PPP协议封装或采用VC通道的连续级联或虚级联映射来保证数据帧在传输过程中的完整性。

网络技术与应用的作业及答案

《网络技术与应用》第一次作业:(本次作业包括教学大纲的1-2 章) 一、填空题 1. 从逻辑上看,计算机网络是由通信子网和终端系统组成。 2. 通信协议的三要素是语法、语义和同步。 3. 按照网络作用范围,计算机网络分为局域网、城域网、广域网、区域个人 网和因特网。 4. 在OSI 参考模型中,传输的基本单位是帧的层次是数据链路层,该模型的 最高层是应用层。 二、单项选择题 1. 在OSI 参考模型中,自下而上第一个提供端到端服务的层次是( C )。 (A )数据链路层(B)网络层(C)传输层(D)应用层 2. 若网络形状是由站点和连接站点的链路组成的一个闭合环,则称这种拓扑结构为( C )。(A )星形拓扑(B )总线拓扑(C)环形拓扑(D)树形拓扑 3. 在OSI 参考模型中,物理层的主要功能是( B )。 (A )数据链路的访问控制和管理(B )透明地传输比特流 (C )在物理实体间传送数据帧(D )发送和接收用户数据报文 4. 下面关于计算机网络的体系结构和协议的叙述,不正确的是( B )。 (A )计算机网络体系结构是计算机网络及其部件所应完成的功能的精确定义 (B )TCP/IP 体系结构中的应用层对应于OSI 体系结构中的表示层和应用层

(C )网络协议是为进行网络中的数据交换而建立的规则、标准和约定 (D )网络协议是“水平”的概念 5. 下列选项中,不属于网络体系结构中所描述的内容是( A )。 (A )协议内部实现细节(B )网络层次(C)每一层使用协议(D )每层须完成的功能 三、综合题 1. 什么是网络协议?由哪几个基本要素组成? 答:协议是指通信双方必须遵循的、控制信息交换的规则的集合,是一套语义和语法规则, 用来规定有关功能部件在通信过程中的操作,它定义了数据发送和接收工作中必经的过程。 协议规定了网络中使用的格式、定时方式、顺序和检错。 一般说,一个网络协议主要由语法、语义和同步三个要素组成。语义:协议的语义是指对构成协议的协议元素含义的解释。语法:指数据与控制信息的结构或格式。同步:规定了事件 的执行顺序。

万兆以太网技术发展及应用

万兆以太网技术发展及应用摘要:随着互联网技术的更新与发展,万兆以太网(10GBase-T)技术将在不久的将来成为网络应用的主流,本文综合阐述了10GBase-T技术、市场及应用。应用10GBase-T铜缆布线解决方案构建高性能网络核心成为行业发展趋势。 关键字:万兆以太网802.3ae10GE标准10GBase-T铜缆布线线性传输性能 一以太网技术的发展 以太网(Ethernet)技术由施乐公司(Xerox)于1973年提出并实现,它采用“载波监听多路访问/冲突检测CSMA/CD(Carrier Sense Multiple Access/Collision Detection)”的共享访问方案,将多个工作站都连接在一条总线上,所有的工作站都不断向总线发出监听信号。但在同一时刻,只能有一个工作站在总线上传输,其它工作站必须等待传输结束后,再开始自己的传输。由于以太网技术具有共享性、开放性、加上设计技术上的一些优势(如结构简单、算法简洁、良好的兼容性和平滑升级)以及关键的传输速率的大幅提升,它不但在局域网领域站稳了脚跟,而且在城域网甚至广域网范围内都得到了进一步的应用。 最早的以太网传输速率为10Mbps。采用CSMA/CD介质访问控制方式的局域网技术,由Xerox公司于1975年研制成功。而在1979年7月至1982年间,当时的DEC、Intel和Xerox三家公司共同制定了以太网的技术规范DIX。在这个技术规范的基础上,形成了IEEE802.3以太网标准,并在1989年正式成为一种以太网技术的国际标准。在20多年中,以太网

技术经历了不断发展,成为迄今最广泛应用的局域网技术。 千兆以太网技术作为一种高速以太网技术,给用户带来了提高核心网络的有效解决方案。它继承了传统以太网技术价格便宜的特点,采用与10M 以太网相同的帧格式、帧结构、网络协议、全/半双工工作方式、流控模式以及布线系统。由于这项技术可以不用改变传统以太网的桌面应用和操作系统,因此可与10M或100M的以太网很好地配合工作。在升级到千兆以太网时,不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地保护用户投资,所以这项技术的市场前景十分被用户看好。 再发展就进入到以太网的万兆时代。万兆以太网使用IEEE 802.3以太网介质接入控制(MAC)协议、IEEE 802.3以太网帧格式和IEEE 802.3帧格式,不需要修改以太网介质接入控制(MAC)协议或分组格式。所以,能够支持所有网络的上层服务,包括在OSI七层模型的第二/三层或更高层次上运行的智能网络服务,具有高可用性、多协议标记交换(MPLS)、含IP语音(VoIP)在内的服务质量(QoS)、安全与策略实施、服务器负载均衡(SLB)和Web高速缓存等特点。 二10GBase-T万兆以太网技术 万兆以太网技术(10GBase-T)始于2002年6月802.3ae10GE标准的正式发布。在物理层,802.3ae大致分为两种类型,一种为与传统以太网连接速率为10Gbps的“LANPHY”,另一种为连接SDH/SONET速率为9.58464Gbps的“WANPHY”;WANPHY与SONETOC-192帧结构的融合,可以与OC-192电路和SONET/SDH设备一起运行,保护了传统基础设施投资,使运营商能够在不同地区中通过城域网提供端到端以太网。

六种工业以太网比较

六种工业以太网比较 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

六种工业以太网比较 摘要:当前,工业以太网技术是控制领域中的研究热点。所谓工业以太网,一般来讲是指技术上与商用以太网(即标准)兼容,但在产品设计时,在材质的选用、产品的强度、适用性以及实时性、可互操作性、可靠性、抗干扰性和本质安全等方面能满足工业现场的需要。随着互联网技术的发展与普及推广,Ethernet技术也得到了迅速的发展,Ethernet传输速率的提高和Ethernet交换技术的发展,给解决Ethernet通信的非确定性问题带来了希望,并使Ethernet全面应用于工业控制领域成为可能。目前,几种典型的工业以太网有HSE、PROFInet、Modbus/TCP、EtherNet/IP、Powerlink、EPA六种。本文通过对这六种工业以太网比较,以便更好的应用于系统集成。 关键词:工业以太网、HSE、PROFInet、Modbus、EtherNet、Powerlink、EPA 与传统控制网络相比,工业以太网具有应用广泛、为所有的编程语言所持、软硬件资源丰富、易于与Internet连接、可实现办公自动化网络与工业控制网络的无缝连接等诸多优点。由于这些优点,特别是与信息传输技术的无缝集成以及传统技术无法比拟的传输宽带,以太网得到了工业界的认可。 1.HSE(高速以太网) HSE(High Speed Ethernet Fieldbus)由现场总线基金会组织(FF)制定,是对FF-H1的高速网段的解决方案,它与H1现场总线整合构成信息集成开放的体系结构。 FF HSE的1-4层由现有的以太网、TCP/IP和IEEE标准所定义,HSE和H1使用同样的用户层,现场总线信息规范(FMS)在H1中定义了服务接口,现场设备访问代理(FDA)为HSE提供接口。用户层规定功能模块、设备描述(DD)、功能文件(CF)以及系统管理(SM)。HSE网络遵循标准的以太网规范,并根据过程控制的需要适当

工业以太网通信标准PROFInet及其应用

工业以太网通信标准PROFInet及其应用 发布日期:2011-09-27 浏览次数:2110 分享到:0 【摘要】:随着信息技术技术的飞速发展,当今自动化技术的发展正日益受到信息技术原理及其标准的重大影响。在自动化领域中集成信息技术可以为企业内部自动化系统间的全局通信提供解决方案,基于工业以太网通信标准的PROFInet通信技术使这种集成 成为可能。PROFInet是Process Field Net的缩写,它是Profibus客户、生产商与系统集成联盟协会推出的在PROFIBUS与以太网间全开放的通信协议。 1 引言 随着信息技术技术的飞速发展,当今自动化技术的发展正日益受到信息技术原理及其 标准的重大影响。在自动化领域中集成信息技术可以为企业内部自动化系统间的全局通信提供解决方案,基于工业以太网通信标准的PROFInet通信技术使这种集成成为可能。PROFInet 是Process Field Net的缩写,它是Profibus客户、生产商与系统集成联盟协会推出的在PROFIBUS与以太网间全开放的通信协议。PROFInet是一种基于实时工业以太网的自动化解决方案,包括一整套完整高性能并可升级的解决方案,可以为PROFIBUS及其他各种现场总线网络提供以太网移植服务;PROFInet标准的开放性保证了其长远的兼容性与扩展性,从而 可以保护用户的投资与利益。PROFInet可以使工程与组态、试运行、操作和维护更为便捷,并且能够与PROFIBUS以及其它现场总线网络实现无缝集成与连接。工程实践证明,在组建企业工控网络时采用PROFInet通讯技术可以节省近15%的硬件投资。 2 PROFInet通讯标准 PROFInet可以提供办公室和自动化领域开放的、一致的连接。PROFInet方案覆盖了分散自动化系统的所有运行阶段,它主要包含以下方面:(1)高度分散自动化系统的开放对象模型(结构模型);(2)基于Ethernet的开放的、面向对象的运行期通信方案(功能单元间的通信关系);(3)独立于制造商的工程设计方案(应用开发)。PROFInet方案可以用一条等式简单而明了地描述:PROFInet=Profibus+具有PROFIBUS和IT标准Ethernet的开放的、一致的通信。 2.1 PROFInet设备的软件结构 PROFInet设备的软件覆盖了现场设备的整个运行期通信,基于模块化设计的软件包含若干通信层,每层都与系统环境一致。PROFInet软件主要包括一个RPC(Remote Procedure Call)层,一个DCOM(Distributed Component Object Model)层和一个专门为PROFInet对象定义的层。PROFInet对象可以是ACCO(Active Connection Control Object)设备、RT auto (Runtime Automation)设备、物理设备或逻辑设备。软件中定义的实时数据通道提供PROFInet对象与以太网间的实时通信服务。PROFInet通过系统接口连接到操作系统(如WinCE),通过应用接口连接到控制器(如PLC)。

几种典型工业以太网技术比较

几种典型工业以太网技术比较

1 工业以太网总览 表1给出了常见的几种工业以太网及其管理组织。 表1-1 常见工业以太网及其管理组织列表 上述各种工业以太网管理组织的标识如图1所示。 图1-1 工业以太网管理组织标识 根据从站设备的实现方式,可将工业以太网分为三种类型: (1)类型A ——通用硬件、标准TCP/IP协议 Modbus/TCP、Ethernet/IP、PROFInet/CbA(版本1)采用这种方式。使用标准TCP /IP协议和通用以太网控制器,结构如图1-2所示。这种方式下,所有的实时数据(如过程数据)和非实时数据(如参数配置数据)均通过TCP/IP 协议传输。其优点是成本低廉,实现方便,完全兼容通用以太网。在具体实现中,某些产品可能更改/优化了TCP/IP协议以获得更好的性能,但其实时性始终受到底层结构的限制。

通用以太网控制器IP TCP/UDP IT 应用 HTTP SNMP FTP … 图1-2 工业以太网类型A 结构 (2)类型B —— 通用硬件、自定义实时数据传输协议 Ethernet Powerlink 、PROFInet/RT (版本2)采用这种方式。采用通用以太网控制器,但不使用TCP/IP 协议来传输实时数据,而是定义了一种专用的包含实时层的实时数据传输协议,用来传输对实时性要求很高的数据,结构如图1-3所示。TCP/IP 协议栈可能依然存在,用来传输非实时数据,但是其对以太网的读取受到实时层(Timing-Layer )的限制,以提高实时性能。这种结构的优点是实时性较强,硬件与通用以太网兼容。 通用以太网控制器 IT 应用 HTTP SNMP FTP … 图1-3 工业以太网类型B 结构 (3)类型C —— 专用硬件、自定义实时数据传输协议 EtherCAT 、SERCOS-III 、PROFInet/IRT (版本3)采用这种方式。这种方式在类型B 的基础上底层使用专有以太网控制器(至少在从站侧),以进一步

以太网的应用论文

PROFINET(工业以太网)技术在工业现场总线中应用的趋势 0 引言

过去十几年中,现场总线是工厂自动化和过程自动化领域中现场级通讯系统的主流解决方案。但随着自动化控制系统的不断进步和发展,传统的现场总线技术在许多应 用场合已经难以满足用户不断增长的需求。以太网已经在局域网和Internet上取得了巨大的成功,在整个企业的信息系统中,以太网已经非常成功的应用于市场经营管理层、生产管理层和过程监控层。如果能够在底层设备网络上引入以太网不仅可以使现 场设备层、过程控制层和管理层在垂直层面方便集成,更能降低不同厂家设备在水平 层面上的集成成本。 以太网技术由于具有成本低、通信速率和带宽高、兼容性好、软硬件资源丰富、广 泛的技术支持基础和强大的持续发展潜力等诸多优点,在过程控制领域的管理层已被 广泛应用。事实证明,通过一些实时通信增强措施及工业应用高可靠性网络的设计和 实施,以太网可以满足工业数据通信的实时性及工业现场环境要求,并可直接向下延 伸应用于工业现场设备间的通信。 2 工业以太网相关技术 2.1 工业以太网简介 工业以太网一般是指在技术上与商业以太网(即IEEE802.3标准)兼容,但在产品设计时,材质的选用、产品的强度、适用性以及实时性等方面能够满足工业现场的需要,也就是满足环境性、可靠性、安全性以及安装方便等要求的以太网。以太网是按 IEEE802.3标准的规定,采用带冲突检测的载波侦听多路访问方法(CSMA/CD)对共享媒 体进行访问的一种局域网。其协议对应于ISO/OSI七层参考模型中的物理层和数据链 路层,以太网的传输介质为同轴电缆、双绞线、光纤等,采用总线型或星型拓扑结构,传输速率为10Mbps, 100Mbps, 1000Mbps或更高。在办公和商业领域,以太网是最常 用的通信网络,近几年来,随着以太网技术的快速发展,以太网技术已开始广泛应用 于工业控制领域,它是现代自动控制技术和信息网络技术相结合的产物,是下一代自 动化设备的标志性技术,是改造传统工业的有力工具,同时也是信息化带动工业化的 重点方向。国内对工业以太网络技术的需求日益增加,在石油、化工、冶金、电力、 机械、交通、建材、楼宇管理、现代农业等领域和许多新规划建设的项目中都需要工 业以太网络技术的支持。 以太网是当今最流行、应用最广泛的通信技术,具有价格低、多种传输介质可选、高速度、易于组网应用等诸多优点,而且其运行经验最为丰富,拥有大量安装维护人员,是一种理想的工业通信网络。首先,基于TCP/IP的以太网是一种开放式通信网络,不同厂商的设备很容易互联。这种特性非常适合于解决控制系统中不同厂商设备的兼 容和互操作等问题;其次,低成本、易于组网是以太网的优势。以太网网卡价格低廉,

实时以太网EtherCAT的技术和应用

实时以太网EtherCAT的技术和应用 目录 摘要: (3) 关键词: (3) 前言 (3) 一.实时以太网 (3) 1.1 实时以太网的发展历史 (3) 1.2 实时以太网的发展现状 (4) 1.2.1 通信确定性与实时性 (4) 1.2.2 稳定性与可靠性 (4) 1.2.3 安全性 (4) 1.2.4 总线供电问题 (5) 1.3 实时以太网的技术优势 (5) 1.3.1 应用广泛 (5) 1.3.2 通信速率高 (5) 1.3.3 成本低廉 (5) 1.3.4 资源共享能力强 (5) 1.3.5 可持续发展潜力大 (6) 1.4 实时以太网的关键技术 (6) 1.4.1 实时通信技术 (6) 1.4.2 总线供电技术 (6) 1.4.3 远距离传输技术 (6) 1.4.4 网络安全技术 (6) 1.4.5 可靠性技术 (6) 1.5 实时以太网的未来技术 (7) 1.5.1 工业以太网的防爆保护 (7) 1.5.2 未来的网络拓扑结构 (7) 1.5.3 让交换机学习自动化语言 (7) 1.5.4 安全增长的重要性 (7) 1.5.5 无线网络提供新的应用可能 (7) 1.5.6 更高的网络带宽 (7) 1.6 实时以太网的主流五种标准 (8) 1.6.1 EtherCAT标准 (8) 1.6.2 Ethernet/IP标准 (8) 1.6.3 PowerLink标准 (8) 1.6.4 Profinet标准 (9) 1.6.5 Sercos-III标准 (9) 1.7 实时以太网的五种标准比较 (9) 1.7.1 硬件和软件的差异 (9) 1.7.2 实现确定性的方案 (10) 1.7.3 实现实时性的异同 (11)

以太网技术的发展和应用研究论文

以太网技术的发展和应用研究论文 关键词:电信级以太网;以太网技术要求;以太网技术;以太网技术应用 论文摘要:文章首先提出了电信级以太网技术的基本概念,然后介绍了电 信级以太网的基本技术要求和几种典型的电信级以太网技术,并分析了电信级 以太网技术的发展前景。 1、电信级以太网的基本技术要求 1.1业务标准划分 EPL(以太网专线):具有两个UNI接口,每个UNI仅接入一个客户的业务,实现点到点的以太网透明传送,基本特征是传送带宽为专用,在不同用户之间 不共享。 EVPL(以太网虚拟专线):具有两个或多个UNI接口,每个UNI接口接入 一个或多个客户的业务,实现点到点的连接,基本特征是UNI-N接口或传送带 宽在不同用户之间共享。 EPLAN(以太网专用局域网):具有多个UNI接口,每个UNI仅接入一个客户的业务,实现多个客户之间的多点到多点的以太网连接,基本特征是传送带 宽为专用,在不同用户之间不共享。 EVPLAN(以太网虚拟专用局域网):具有多个UNI接口,每个UNI可以接 入多个客户的业务,实现多个客户之间的多点到多点的以太网连接,基本特征 是在EPLAN基础上增加了不同用户共享传送带宽的功能。 1.2服务质量(QoS) 服务质量(QoS)的量化指标主要有两个方面:一方面是由呼叫与连接建立的速度,包括端到端延迟(End-to-endDelay)和延迟变化(Jitter);另一方面是网络数据的吞吐量,吞吐量的主要指标可以表明可用的带宽大小,吞吐量 决定着网络传输的流量,与带宽、出错率、缓冲区容量和处理机的能力等因素 有关。 早期的以太网在局域网内主要承载数据业务,数据业务的特点是对时延不 敏感,TCP的重传机制又可以容忍以太网上少量数据包的丢失,因此不需要差 异化的服务质量保证。但对于电信级以太网技术,由于其需要承载综合业务, 这种不区分流量类型的Besteffort服务难以保证业务的质量。电信级以太网实现QoS有IntServ(集成业务体系结构)和Diff-Serv(区分业务体系结构)两种方法,通常使用后者,其具体实现过程包括流分类、映射、拥塞控制和队列 调度。 1.3电信级可靠性

工业以太网各场合应用

工业以太网 工业以太网是基于IEEE 802.3 (Ethernet)的强大的区域和单元网络。利用工业以太网,SIMATIC NET 提供了一个无缝集成到新的多媒体世界的途径。企业内部互联网(Intranet),外部互联网(Extranet),以及国际互联网(Internet) 提供的广泛应用不但已经进入今天的办公室领域,而且还可以应用于生产和过程自动化。继10M波特率以太网成功运行之后,具有交换功能,全双工和自适应的100M波特率快速以太网(Fast Ethernet,符合IEEE 802.3u的标准)也已成功运行多年。采用何种性能的以太网取决于用户的需要。通用的兼容性允许用户无 基本定义 不稳定因素 今天的控制系统和工厂自动化系统,以太网的应用几乎已经和PLC一样普及。但现场工程师们对以太网的了解,大多来自他们对传统商业以太网的认识。很多控制系统工程的实施甚至是直接让IT部门的技术人员来实施。但是,IT工程师们对于以太网的了解,往往局限于办公自动化商业以太网的实施经验,可能导致工业以太网在工业控制系统中实施的简单化和商业化,不能真正理解工业以太网在工业现场的意义,也无法真正利用工业以太网内在的特殊功能,常常造成工业以太网现场实施的不彻底,给整个控制系统留下不稳定因素。 需考虑因素 那么选择正确的工业以太网要考虑哪些因素?简单的来说,要从以太网通讯协议、电源、通信速率、工业环境认证考虑、安装方式、外壳对散热的影响、简单通信功能和通信管理功能、电口或光口的考虑。这些都是最基本需要了解的产品选择因素。如果对工业以太网的网络管理有更高要求,则需要考虑所选择产品的高级功能如:信号强弱、端口设置、出错报警、串口使用、主干(TrunkingTM)冗余、环网冗余、服务质量(QoS)、虚拟局域网(VLAN)、简单网络管理协议(SNMP)、端口镜像等等其他工业以太网管理交换机中可以提供的功能。不同的控制系统对网络的管理功能要求不同,自然对管理型交换机的使用也有不同要求。控制工程师们应该根据其系统的设计要求,挑选适合自己系统的工业以太网产品。 由于工业环境对工业控制网络可靠性能的超高要求,工业以太网的冗余功能应运而生。从快速生成树冗余(RSTP)、环网冗余(RapidRingTM)到主干冗余(TrunkingTM),都有各自不同的优势和特点,控制工程师们可以根据自己的要求进行选择。为了更好地帮助大

工业以太网的意义及其应用分析

工业以太网的意义及其应用分析

以太网技术在工业控制领域的应用及意义 随着计算机和网络技术的飞速发展,在企业网络不同层次间传送的数据信息己变得越来越复杂,工业网络在开放性、互连性、带宽等方面提出了更高的要求。现场总线技术适应了工业网络的发展趋势,用数字通信代替传统的模拟信号传输,大量地减少了仪表之间的连接电缆、接线端口等,降低了系统的硬件成本,被誉为自动化领域的计算机局域网。 现场总线的出现,对于实现面向设备的自动化系统起到了巨大的推动作用,但现场总线这类专用实时通信网络具有成本高、速度低和支持应用有限等缺陷,以及总线通信协议的多样性使得不同总线产品不能直接互连、互用和互可操作等,无法达到全开放的要求,因此现场总线在工业网络中的进一步发展受到了限制。 随着Internet技术的不断发展,以太网己成为事实上的工业标准,TCP/IP 的简单实用已为广大用户所接受,基于TCP/IP协议的以太网可以满足工业网络各个层次的需求。目前不仅在办公自动化领域内,而且在各个企业的上层网络也都广泛使用以太网技术。由于它技术成熟,连接电缆和接口设备价格较低,带宽也在飞速增加,特别是快速Ethernet与交换式Ethernet的出现,使人们转向希望以物美价廉的以太网设备取代工业网络中相对昂贵的专用总线设备。Ethernet通信机制 Ethernet是IEEE802. 3所支持的局域网标准,最早由Xerox开发,后经数字仪器公司、Intel公司和Xerox联合扩展,成为Ethernet标准。Ethernet采用星形或总线形结构,传输速率为10Mb/s,100 Mb/s,1000 Mb/s或是更高,传输介质可采用双绞线、光纤、同轴电缆等,网络机制从早期的共享式发展到目前盛行的交换式,工作方式从单工发展到全双工。 在OSI/ISO 7层协议中,Ethernet本身只定义了物理层和数据链路层,作为一个完整的通信系统,它需要高层协议的支持。自从APARNET将TCP/IP和Ethernet捆绑在一起之后,Ethernet便采用TCP/IP作为其高层协议,TCP用来保证传输的可靠性,IP则用来确定信息传递路线。

六种工业以太网比较

六种工业以太网比较 摘要:当前,工业以太网技术是控制领域中的研究热点。所谓工业以太网,一般来讲是指技术上与商用以太网(即IEEE802.3标准)兼容,但在产品设计时,在材质的选用、产品的强度、适用性以及实时性、可互操作性、可靠性、抗干扰性和本质安全等方面能满足工业现场的需要。随着互联网技术的发展与普及推广,Ethernet技术也得到了迅速的发展,Ethernet传输速率的提高和Ethernet交换技术的发展,给解决Ethernet通信的非确定性问题带来了希望,并使Ethernet全面应用于工业控制领域成为可能。目前,几种典型的工业以太网有HSE、PROFInet、Modbus/TCP、EtherNet/IP、Powerlink、EPA六种。本文通过对这六种工业以太网比较,以便更好的应用于系统集成。 关键词:工业以太网、HSE、PROFInet、Modbus、EtherNet、Powerlink、EPA 与传统控制网络相比,工业以太网具有应用广泛、为所有的编程语言所持、软硬件资源丰富、易于与Internet连接、可实现办公自动化网络与工业控制网络的无缝连接等诸多优点。由于这些优点,特别是与信息传输技术的无缝集成以及传统技术无法比拟的传输宽带,以太网得到了工业界的认可。 1.HSE(高速以太网) HSE(High Speed Ethernet Fieldbus)由现场总线基金会组织(FF)制定,是对FF-H1的高速网段的解决方案,它与H1现场总线整合构成信息集成开放的体系结构。 FF HSE的1-4层由现有的以太网、TCP/IP和IEEE标准所定义,HSE和H1使用同样的用户层,现场总线信息规范(FMS)在H1中定义了服务接口,现场设备访问代理(FDA)为HSE提供接口。用户层规定功能模块、设备描述(DD)、功能文件(CF)以及系统管理(SM)。HSE网络遵循标准的以太网规范,并根据过程控制的需要适当增加了一些功能,但这些增

100G以太网技术和应用

100G以太网技术和应用 100G Ethernet Technologies and Applications 2009-09-25 作者:张远望 摘要:急速增加的带宽需求驱动100G以太网尽快地投入应用,支撑100G以太网接口的关键技术,主要包含物理层通道汇聚技术、多光纤通道及波分复用(WDM)技术。接口部分的高速光器件关键技术需要突破,接口速率提高带来的高带宽需求对包处理和存储、系统交换、背板技术等都提出了新要求。另外,网络需要解 决新接口的传输问题,包括新接口传输标准定义和传输技术解决。就目前的成本和需求来看,100G以太网的商用在城域网先行是比较可行的方案。 关键字:100G以太网;IEEE802.3ba;100GE传输 英文摘要:The rapidly increasing requirement of bandwidth drives the 100G Ethernet into use as quickly as possible. The key technologies supporting 100G Ethernet interface include the physical layer channel convergence technology, multi-fiber channel and Wavelength Division Multiplexing (WDM) technology. The high speed fiber device needs to be resolved, and the higher bandwidth requirements by higher interface speed demands more packet processing and storage, system switching, and the backplane design. Besides, the network needs to solve the issue of the transport for the new interface, including defining new transport standard and resolving the key transport technologies. Considering current cost and requirements, the commercial service of 100 Gbit/s Ethernet is viable in metropolitan area network. 英文关键字:100G Ethernet;IEEE802.3ba;100GE transport 推动以太网接口速率升级到100 Gbit/s的根本需求是带宽增加,其中最主要的因素就是视频等带宽密集应用,另外以太网的电信化应用也导致汇聚带宽需求增速加剧。从以太网用户接入、企业到主干在内的 每一级网络都在逼近着其当前的速度极限。 推广100G以太网应用的前提是相关标准的制定。100 Gbit/s以太网接口对应的标准是IEEE802.3ba[1],目前处于草案2.1阶段[2],标准已经确定了各种接口介质、速率和物理编码子层(PCS)、媒体接入控制(MAC)层架构定义。标准在2009年7月会议后停止所有技术变更,2009年11月标准会议将产生草案3.0,预计 于2010年6月前发布。此外,和100GE相关的标准组织还包括国际电信联盟远程通信标准组(ITU-T)和光 互联论坛(OIF),其关注的侧重点不同,ITU-T主要制定100G传输光转换单元(OTU)帧结构和编码、容错技术;OIF主要研究物理层高速通道规范、定义电接口标准。 以太网升级到100 Gbit/s接口离不开关键技术支撑,关键技术的成熟和商用化也都还需要时间。从芯片、系统、网络各个层面包括标准研究都还需要技术突破和时间。 1 100 G以太网技术及标准 支撑100G以太网接口的关键技术,主要包含物理层(PHY)通道汇聚技术、多光纤通道及波分复用(WDM)技术。物理介质相关(PMD)子层满足100 Gbti/s速率带宽,新的芯片技术支持到40 nm工艺,这些提供了 开发下一代高速接口的可能。对应于接口部分,光纤接口PMD的并行多模接口存在着封装密度大和功耗问 题需要解决,单模4×25 Gbit/s的WDM接口存在25 Gbit/s串行并行转换电路(SERDES)技术和非冷却光器

相关主题
文本预览
相关文档 最新文档